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Supersymmetry of the chiral de Rham complex

David Ben-Zvi, Reimundo Heluani and Matthew Szczesny

Abstract

We present a superfield formulation of the chiral de Rham complex (CDR), as introduced
by Malikov, Schechtman and Vaintrob in 1999, in the setting of a general smooth manifold,
and use it to endow CDR with superconformal structures of geometric origin. Given a
Riemannian metric, we construct an N = 1 structure on CDR (action of the N = 1 super-
Virasoro, or Neveu–Schwarz, algebra). If the metric is Kähler, and the manifold Ricci-flat,
this is augmented to an N = 2 structure. Finally, if the manifold is hyperkähler, we
obtain an N = 4 structure. The superconformal structures are constructed directly from
the Levi-Civita connection. These structures provide an analog for CDR of the extended
supersymmetries of nonlinear σ-models.

1. Introduction

In the paper [MSV99], Malikov, Schechtman and Vaintrob introduced a sheaf of vertex superalgebras
Ωch

M attached to any smooth complex variety M , called the chiral de Rham complex (CDR) of M
(see also [GMS04]). If M is n-dimensional, the fibers of Ωch

M are isomorphic as vertex superalgebras
to a completion of the bc − βγ system on n generators, or, in physics terminology, to the tensor
product of the bosonic and fermionic ghost systems on n generators. The sheaf cohomology of Ωch

M ,
H∗(M,Ωch

M ), also a vertex superalgebra, is related to the chiral algebra of the half-twist of the σ-
model with target M , a quantum field theory associated to M (see [FL07], [Kap05] and [Wit05]).
It is shown in [MSV99] that, in the holomorphic setting, for arbitrary M , H∗(M,Ωch

M ) carries a
conformal structure, and when M has a global holomorphic volume form, H∗(M,Ωch

M ) admits N = 2
superconformal symmetry (equivalently, admits the structure of a topological vertex algebra).

In this paper, we present a superfield construction of the chiral de Rham complex in the C∞

setting, and examine how various geometric structures on a manifold give rise to extra symmetries
on Ωch

M . (For the C∞ formulation of CDR, see [MSV99] and [LL07] – we present a streamlined
formulation in § 5. For a related super-spacetime approach to CDR, see [GMS03].) We show that a
Riemannian metric on M gives rise to an N = 1 structure on Ωch

M , i.e. there exist global sections of
Ωch

M that generate an N = 1 superconformal vertex subalgebra. The N = 1 structure is constructed
from the Levi-Civita connection on M . When M is Ricci-flat and Kähler, this is augmented to
an N = 2 structure (quasiclassical limits of the N = 1 and N = 2 structures on CDR were
independently obtained by Malikov (private communication), starting from the Lagrangian for the
σ-model). In this case, choosing holomorphic and anti-holomorphic coordinates on M , Ωch

M can be
locally written as a tensor product of a holomorphic and anti-holomorphic part. TheN = 2 structure
splits as a tensor product of two commuting N = 2 vertex algebras, one ‘holomorphic’ and another
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‘anti-holomorphic’. These structures are slightly different from the ones considered in [MSV99], and
agree only in the case when the metric g is flat.

Finally, we consider the case where M is a hyperkähler manifold. Recall that a hyperkähler
manifold is a Riemannian manifold possessing three isometric complex structures I, J andK, parallel
with respect to the Levi-Civita connection, and satisfying the quaternionic relations

I2 = J2 = K2 = −Id, IJ = −JI = K.

The real dimension of M is then necessarily a multiple of 4, and the above is equivalent to the
holonomy group ofM being contained in Sp(n,H) ⊂ SO(4n,R). We show that, in this case, the sheaf
Ωch

M carries N = 4 superconformal symmetry, i.e. has an embedding of the N = 4 superconformal
vertex algebra.

Our approach relies heavily on the superfield formalism for vertex algebras introduced in [HK07]
under the moniker of SUSY vertex algebras. In the standard approach to vertex superalgebras one
considers fields which are endomorphism-valued distributions,

A(z) =
∑
n∈Z

z−n−1A(n) ∈ EndV [[z, z−1]], A(n) ∈ EndV,

where V is the vertex superalgebra. Let θ be an odd formal variable satisfying θ2 = 0. A superfield
is an endomorphism-valued distribution of the form

As(z, θ) = A(z) + θB(z), A(z), B(z) ∈ EndV [[z, z−1]].

The operator products of the two fields A(z) and B(z) are now encoded in the operator product
of the single superfield As(z, θ). In the standard field approach to vertex superalgebras, the N = 4
superconformal algebra is generated by eight fields. Thus, constructing a representation of this
object in terms of free fields involves checking that a very large number of operator products are
correct. In the SUSY vertex algebra formalism, the N = 4 superconformal algebra is generated by
only four fields, which greatly simplifies the computations involved.

The SUSY vertex algebra formalism also yields a simpler, tensorial description of the chiral
de Rham complex. In a coordinate patch U diffeomorphic to R

n, Ωch
X (U) is generated by sections

ai(z), bi(z), φi(z), ψi(z), i = 1, . . . , n. Under a change of coordinates, bi(z) transforms as a function,
φi(z) as a 1-form and ψi(z) as a vector field, while ai(z) transforms in a seemingly complicated, non-
linear way (see Equation (4.1.3)). In the SUSY formalism, these are combined into two superfields:

Bi(z, θ) = bi(z) + θφi(z), Ψi(z, θ) = ψi(z) + θai(z).

We show that, under a change of coordinates, Bi(z, θ) transforms as a function and Ψi(z, θ) simply as
a vector field. In particular, the well-known cancellation of anomalies necessary for the construction
of the chiral de Rham complex becomes an obvious consequence of the superfield formalism.

To construct the desired supersymmetries, we first show that endomorphisms of the tangent
bundle give sections of the chiral de Rham complex, and hence (under the state–field correspon-
dence) fields or superfields. The basic N = 1 structure (Neveu–Schwarz current) of CDR on any
Riemannian manifold is constructed explicitly out of the metric. Finally, to enhance this to an
N = 2 (respectively, N = 4) structure on a Calabi–Yau (respectively, hyperkähler) manifold, we
simply adjoin the superfield associated to the complex structure endomorphism I (respectively, the
superfields associated to I, J and K).

The superconformal structures exhibited in this paper are inspired by the well-known super-
symmetries of σ-models. Zumino [Zum79] and Alvarez-Gaumé and Freedman [AGF81] showed that
nonlinear σ-models on general Riemannian, complex and hyperkähler targets carry N = 1, 2, 4
super-Poincaré symmetries, respectively (see [HKLR87, Fre99] for excellent discussions, and [BGL04]
for a related recent development). In the N = 2 case, this structure is superconformal when the
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target is Calabi–Yau. (Note that the quantum σ-model is only conformally invariant, up to higher
order terms, when the Ricci curvature vanishes.)

It is interesting to compare the superconformal structures we exhibit with the bundles of super-
conformal vertex algebras constructed by Tamanoi [Tam99] and Zhou [Zho00]. Note that these
bundles of vertex algebras are linear, i.e. associated to the (frame bundles of the) tangent bundles
of Riemannian manifolds, and should be compared with the associated graded of our construction
with respect to a natural filtration on CDR (which depends on all order jets on the manifold). Note
also that [MSV99] endow CDR with an N = 2 structure that is defined for any smooth manifold,
coming from the choice of a volume form on that manifold. However, this structure is different from
ours (and that for the σ-model), which depends directly on the metric, and does not seem to allow
for an N = 4 extension in the hyperkähler case.

Finally, the superfield formulation of the chiral de Rham complex is closely related to its geo-
metric formulation as a factorization algebra over supercurves, extending the factorization structure
over (even) curves described by Kapranov and Vasserot [KV04]. This geometric construction was
an initial motivation for this work and we plan to return to it in the future.

The outline of the paper is as follows. In § 2 we recall the standard approach to vertex super-
algebras following [Kac96], and review the N = 1, 2, 4 superconformal vertex algebras in this lan-
guage. In § 3 we introduce the formalism of SUSY vertex algebras following [HK07], and give several
examples, including a description of the N = 1, 2, 4 superconformal vertex algebras in this more
compact language. Section 4 recalls the construction of the chiral de Rham complex and gives its
simplified superfield description. Section 5 presents a coordinate-free construction of CDR on gen-
eral smooth manifolds. Section 6 is a brief review of hyperkähler manifolds. Finally, § 7 contains the
construction of the N = 1, 2, 4 structures on the chiral de Rham complex.

2. Vertex superalgebras

In this section, we review the definition of vertex superalgebras, as presented in [Kac96], in order
to fix notation, and facilitate comparison with the superfield formalism introduced later.

2.1. Given a vector space V , an End(V )-valued field is a formal distribution of the form

A(z) =
∑
n∈Z

z−1−nA(n), A(n) ∈ End(V ), (2.1.1)

such that, for every v ∈ V , we have A(n)v = 0 for large enough n.

Definition 2.2. A vertex superalgebra consists of the data of a supervector space V , an even
vector |0〉 ∈ V (the vacuum vector), an even endomorphism T , and a parity preserving linear map
A �→ Y (A, z) from V to End(V )-valued fields (the state–field correspondence). These data should
satisfy the following set of axioms.

(i) Vacuum axioms:

Y (|0〉, z) = Id,
Y (A, z)|0〉 = A+O(z), (2.2.1)

T |0〉 = 0.

(ii) Translation invariance:
[T, Y (A, z)] = ∂zY (A, z). (2.2.2)

(iii) Locality:
(z − w)n[Y (A, z), Y (B,w)] = 0, n� 0. (2.2.3)

(The notation O(z) denotes a power series in z without constant term.)
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2.3. Given a vertex super-algebra V and a vector A ∈ V , we expand the fields

Y (A, z) =
∑
j∈Z

z−1−jA(j) (2.3.1)

and we call the endomorphisms A(j) the Fourier modes of Y (a, z). Define now the operations

[AλB] =
∑
j�0

λj

j!
A(j)B,

AB = A(−1)B.

(2.3.2)

The first operation is called the λ-bracket and the second is called the normally ordered product. The
λ-bracket contains all of the information about the commutators between the Fourier coefficients of
fields in V .

The N = 1, N = 2 and N = 4 superconformal vertex algebras

In this section we review the standard description of the N = 1, 2, 4 superconformal vertex algebras.
In § 3, the same algebras will be described in the SUSY vertex algebra formalism.

Example 2.4 (The N = 1 (Neveu–Schwarz) superconformal vertex algebra). The N = 1 supercon-
formal vertex algebra [Kac96] of central charge c is generated by two fields: L(z), an even field of
conformal weight 2, and G(z), an odd primary field of conformal weight 3

2 , with the λ-brackets

[LλL] = (T + 2λ)L+
cλ3

12
,

[LλG] =
(
T +

3
2
λ

)
G,

[GλG] = 2L+
cλ2

3
.

(2.4.1)

Here L(z) is called the Virasoro field.

Example 2.5 (The N = 2 superconformal vertex algebra). The N = 2 superconformal vertex algebra
of central charge c is generated by the Virasoro field L(z) with λ-bracket (2.4.1), an even primary
field J(z) of conformal weight 1, and two odd primary fields G±(z) of conformal weight 3

2 , with the
λ-brackets [Kac96]

[LλJ ] = (T + λ)J, (2.5.1)

[LλG
±] =

(
T +

3
2
λ

)
G±, (2.5.2)

[JλG
±] = ±G±, [JλJ ] =

c

3
λ, (2.5.3)

[G+
λG

−] = L+
1
2
TJ + λJ +

c

6
λ2, [G±

λG
±] = 0. (2.5.4)

Example 2.6 (The ‘small’ N = 4 superconformal vertex algebra). The even part of this vertex
algebra is generated by the Virasoro field L(z) and three primary fields of conformal weights 1, J0,
J+ and J−. The odd part is generated by four primary fields of conformal weight 3

2 , G± and Ḡ±.
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The remaining (non-vanishing) λ-brackets are (cf. [KW04, p. 36])

[J0
λJ

±] = ±2J±, [J0
λJ

0] =
c

3
λ, (2.6.1)

[J+
λ J

−] = J0 +
c

6
λ, [J0

λG
±] = ±G±, (2.6.2)

[J0
λḠ

±] = ±Ḡ±, [J+
λ G

−] = G+, (2.6.3)
[J−

λ G
+] = G−, [J+

λ Ḡ
−] = −Ḡ+, (2.6.4)

[J−
λ Ḡ

+] = −Ḡ−, [G±
λ Ḡ

±] = (T + 2λ)J±, (2.6.5)

[G±
λ Ḡ

∓] = L± 1
2
TJ0 ± λJ0 +

c

6
λ2. (2.6.6)

(Note that the J currents form an sl2 current algebra.)

3. SUSY vertex algebras

In this section we collect some results on SUSY vertex algebras (SUSY VAs) from [HK07]. Since
we only need the case with one odd variable, we will adapt the notation to this case, and avoid the
prefix ‘super’ when possible.

Structure theory of SUSY VAs

3.1. Let us fix notation first. We introduce formal variables Z = (z, θ) and W = (w, ζ), where θ, ζ
are odd anticommuting variables and z,w are even commuting variables. Given an integer j and
J = 0 or 1 we put Zj|J = zjθJ .

Let H be the universal enveloping algebra of the 1|1 dimensional Lie super-algebra [χ, χ] = −2λ,
where χ is odd and λ is even and central (super-Heisenberg or Clifford algebra). We will consider
another set of generators −S and −T for H , where S is odd, T is central, and [S, S] = 2T . Whenever
we treat H as an H -module it will be by the adjoint action. Denote Λ = (λ, χ), ∇ = (T, S),
Λj|J = λjχJ and ∇j|J = T jSJ .

Given a supervector space V and a vector a ∈ V , we will denote by (−1)a its parity.

3.2. Let U be a vector space. A U -valued formal distribution is an expression of the form∑
j∈Z

J=0,1

Z−1−j|1−Jw(j|J), w(j|J) ∈ U. (3.2.1)

The space of such distributions will be denoted by U [[Z,Z−1]]. If U is a Lie algebra, we will say
that two such distributions a(Z) and b(W ) are local if

(z − w)n[a(Z), b(W )] = 0, n� 0. (3.2.2)

The space of distributions such that only finitely many negative powers of z appear (i.e. w(j|J) = 0
for large enough j) will be denoted U((Z)). In the case when U = End(V ) for another vector space
V , we will say that a distribution a(Z) is a field if a(Z)v ∈ V ((Z)) for all v ∈ V .

Definition 3.3. An N = 1 SUSY vertex algebra consists of the data of a vector space V , an even
vector |0〉 ∈ V (the vacuum vector), an odd endomorphism S (whose square is an even endomorphism
that we denote by T ), and a parity preserving linear map A �→ Y (A,Z) from V to End(V )-valued
fields (the state–field correspondence). These data should satisfy the following set of axioms.
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(i) Vacuum axioms:

Y (|0〉, Z) = Id,
Y (A,Z)|0〉 = A+O(Z), (3.3.1)

S|0〉 = 0.

(ii) Translation invariance:

[S, Y (A,Z)] = (∂θ − θ∂z)Y (A,Z),
[T, Y (A,Z)] = ∂zY (A,Z).

(3.3.2)

(iii) Locality:
(z − w)n[Y (A,Z), Y (B,W )] = 0, n� 0. (3.3.3)

Remark 3.4. Given the vacuum axiom for a SUSY vertex algebra, we will use the state–field corre-
spondence to identify a vector A ∈ V with its corresponding field Y (A,Z).

3.5. Given an N = 1 SUSY vertex algebra V and a vector A ∈ V , we expand the fields

Y (A,Z) =
∑
j∈Z

J=0,1

Z−1−j|1−JA(j|J) (3.5.1)

and we call the endomorphisms A(j|J) the Fourier modes of Y (A,Z). Define now the operations

[AΛB] =
∑
j�0

J=0,1

Λj|J

j!
A(j|J)B,

AB = A(−1|1)B.

(3.5.2)

The first operation is called the Λ-bracket and the second is called the normally ordered product.

Remark 3.6. As in the standard setting, given a SUSY VA V and a vector A ∈ V , we have

Y (TA,Z) = ∂zY (A,Z) = [T, Y (A,Z)]. (3.6.1)

On the other hand, the action of the ‘odd’ derivation S is described by

Y (SA, Z) = (∂θ + θ∂z)Y (A,Z) �= [S, Y (A,Z)]. (3.6.2)

The relation with the standard field formalism is as follows. Suppose that V is a vertex super-
algebra as defined in § 2, together with a homomorphism from the N = 1 superconformal vertex
algebra in Example 2.4. Therefore V possesses an even vector ν of conformal weight 2, and an odd
vector τ of conformal weight 3

2 , whose associated fields

Y (ν, z) = L(z) =
∑
n∈Z

Lnz
−n−2,

Y (τ, z) = G(z) =
∑

n∈ 1
2
+Z

Gnz
−n− 3

2
(3.6.3)

have the λ-brackets as in Example 2.4, and where we require G−1/2 = S and L−1 = T . We can
then endow V with the structure of an N = 1 SUSY vertex algebra via the state–field correspon-
dence [Kac96]

Y (A,Z) = Y c(A, z) + θY c(G−1/2A, z),

where we have written Y c to emphasize that this is the ‘classical’ state–field (rather than state–
superfield) correspondence in the sense of § 2.
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(Note however that there exist SUSY vertex algebras without such a map from the N = 1
superconformal vertex algebra.)

Definition 3.7. Let H be as before. An N = 1 SUSY Lie conformal algebra is an H -module R
with an operation [ Λ ] : R ⊗ R → H ⊗ R of degree 1 satisfying the following.

(i) Sesquilinearity:

[SaΛb] = χ[aΛb], [aΛSb] = −(−1)a(S + χ)[aΛb]. (3.7.1)

(ii) Skew-symmetry:

[bΛa] = (−1)ab[b−Λ−∇a]. (3.7.2)

Here the bracket on the right-hand side is computed as follows: first compute [bΓa], where
Γ = (γ, η) are generators of H supercommuting with Λ, then replace Γ by (−λ− T,−χ− S).

(iii) Jacobi identity:

[aΛ[bΓc]] = −(−1)a[[aΛb]Γ+Λc] + (−1)(a+1)(b+1) [bΓ[aΛc]]. (3.7.3)

Here the first bracket on the right-hand side is computed as in skew-symmetry and the identity
is an identity in H ⊗2 ⊗ R.

Morphisms of SUSY Lie conformal algebras are H -module morphisms ϕ : R → R′ such that
the following diagram is commutative.

R ⊗ R
ϕ⊗ϕ ��

��

R′ ⊗ R′

��
H ⊗ R

1⊗ϕ
�� H ⊗ R′

(3.7.4)

Remark 3.8. In this definition we consider R ⊗R as a module over H using the co-multiplication
of H . Similarly H ⊗ R is a module over H (recall that H is a module over itself with the
adjoint action). The bracket [ Λ ] is a morphism of H -modules. The Jacobi identity is an identity
in H ⊗ H ⊗ R.

3.9. Given an N = 1 SUSY VA, it is canonically an N = 1 SUSY Lie conformal algebra with the
bracket defined in (3.5.2). Moreover, given an N = 1 Lie conformal algebra R, there exists a unique
N = 1 SUSY VA called the universal enveloping SUSY vertex algebra of R with the property that,
if W is another N = 1 SUSY VA and ϕ : R →W is a morphism of Lie conformal algebras, then ϕ
extends uniquely to a morphism ϕ : V →W of SUSY VAs.

3.10. The operations (3.5.2) satisfy the following.

(i) Quasi-commutativity:

ab − (−1)abba =
∫ 0

−∇
[aΛb] dΛ. (3.10.1)

(ii) Quasi-associativity:

(ab)c− a(bc) =
∑
j�0

a(−j−2|1)b(j|1)c+ (−1)ab
∑
j�0

b(−j−2|1)a(j|1)c. (3.10.2)

(iii) Quasi-Leibniz (non-commutative Wick formula):

[aΛbc] = [aΛb]c+ (−1)(a+1)bb[aΛc] +
∫ Λ

0
[[aΛb]Γc] dΓ. (3.10.3)

509

https://doi.org/10.1112/S0010437X07003223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003223


D. Ben-Zvi, R. Heluani and M. Szczesny

Here the integral
∫
dΛ is ∂χ

∫
dλ. In addition, the vacuum vector is a unit for the normally

ordered product and the endomorphisms S and T are odd and even derivations respectively of
both operations.

Examples
Example 3.11. Let R be the free H -module generated by an odd vector H. Consider the following
Lie conformal algebra structure in R:

[HΛH] = (2T + χS + 3λ)H. (3.11.1)

This is the Neveu–Schwarz algebra (of central charge 0). This algebra admits a central extension
of the form

[HΛH] = (2T + χS + 3λ)H +
c

3
χλ2, (3.11.2)

where c is any complex number. The associated universal enveloping SUSY VA is the Neveu–Schwarz
algebra of central charge c.1 If we decompose the corresponding field

H(z, θ) = G(z) + 2θL(z), (3.11.3)

then the fieldsG(z) and L(z) satisfy the commutation relations of the well-known N = 1 supervertex
algebra in Example 2.4.

Example 3.12. Consider now the free H -module generated by even vectors {Bi}n
i=1 and odd vectors

{Ψi}n
i=1, where the only non-trivial commutation relations are

[Bi
ΛΨj ] = δij = [Ψj

ΛB
i]. (3.12.1)

Expand the corresponding fields as

Bi(z, θ) = bi(z) + θφi(z), Ψi(z, θ) = ψi(z) + θai(z). (3.12.2)

Then the fields bi, ai, φi and ψi generate the bc − βγ system as in [MSV99].

Example 3.13. The N = 2 superconformal vertex algebra is generated by four fields [Kac96]. In this
context it is generated by two superfields – an N = 1 vector H as in Example 3.11 and an even
current J , primary of conformal weight 1, i.e.

[HΛJ ] = (2T + 2λ+ χS)J. (3.13.1)

The remaining commutation relation is

[JΛJ ] = −
(
H +

c

3
λχ

)
. (3.13.2)

Note that given the current J we can recover the N = 1 vector H. In terms of the fields of
Example 2.5, H and J decompose as

J(z, θ) = −√−1 J(z) −√−1 θ(G−(z) −G+(z)),
H(z, θ) = (G+(z) +G−(z)) + 2θL(z).

(3.13.3)

Example 3.14. The ‘small’ N = 4 superconformal vertex algebra is a vertex algebra generated by
eight fields [Kac96]. In this formalism, it is generated by four superfields H,J i, i = 0, 1, 2, such
that each pair (H,J i) forms an N = 2 SUSY VA as in the previous example and the remaining
commutation relations are

[J i
ΛJ

j] = εijk (S + 2χ)Jk, i �= j, (3.14.1)

1Properly speaking, we consider the universal enveloping SUSY vertex algebra of R ⊕ CC with C central and TC =
SC = 0 and then we quotient by the ideal generated by C = c for any complex number c.
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where ε is the totally antisymmetric tensor. (In other words, we are writing the N = 4 algebra in
terms of an su2 basis J i of superfields rather than the sl2 basis J0, J± of even fields, together with
odd G fields, as before.) In terms of the fields of Example 2.6, H and J i decompose as

J0(z, θ) = −√−1J0(z) −√−1 θ(Ḡ−(z) −G+(z)),

J1(z, θ) =
√−1(J+(z) + J−(z)) +

√−1(Ḡ+(z) −G−(z)),

J2(z, θ) = (J+(z) − J−(z)) + θ(Ḡ+(z) +G−(z)),
H(z, θ) = (G+(z) + Ḡ−(z)) + 2θL(z).

(3.14.2)

4. Chiral de Rham complex

In this section we recollect some results from [MSV99]. We then provide and discuss a superfield
formulation of the chiral de Rham complex in the algebraic setting. For the applications we have in
mind, we will need to work in the C∞ setting, which is described in § 5.

4.1. The chiral de Rham complex Ωch
M is a sheaf of vertex algebras defined over any smooth algebraic

variety M over the complex numbers. In order to construct such a sheaf, the authors in [MSV99]
first construct a sheaf of supervertex algebras on C

n and then show that we can glue these sheaves
by studying the action of changes of coordinates.

To construct the sheaf on U = Spec C[x1, . . . , xn], we first look at its global sections. This
vertex algebra can be described in terms of generators and relations as follows. Then Ωch(U) is the
bc−βγ system vertex algebra. Namely, it is generated by fields {ai, bi, ψi, φi}n

i=1, with commutation
relations

[ai
λb

j ] = [φi
λψ

j ] = δij , (4.1.1)
where we have identified the coordinate functions xi with the (−1) Fourier mode of the fields bi(z)
(recall that we identify vectors in our vertex algebras with the corresponding fields by the state–field
correspondence).

The next step in [MSV99] is to consider a localization of this vertex algebra, whereby we allow
expressions of the form

f(b1(z), . . . , bn(z)), (4.1.2)
where f(x1, . . . , xn) is an arbitrary algebraic function on U . This allows us to construct a Zariski
sheaf on C

n. We may also pass to a formal completion, allowing f to be an arbitrary function on
the formal disk Spf C[[x1, . . . , xn]].

Finally, in order to glue these sheaves, one has to analyze how these generators transform under
changes of coordinates of the formal disk. Given such a change of coordinates x̃i = gi(x), with
inverse xi = f i(x̃), the generating fields transform as

b̃i = gi(b),

φ̃i =
(
∂gi(b)
∂bj

φj

)
,

ψ̃i =
(
∂f j

∂b̃i
(g(b))ψj

)
,

ãi =
(
aj ∂f

j

∂b̃i
(g(b))

)
+
(
∂2fk

∂b̃j ∂b̃l
(g(b))

∂gl

∂br
φrψk

)
.

(4.1.3)

4.2. Let us analyze this sheaf of vertex algebras as a sheaf of N = 1 SUSY VAs. For this, we combine
the generators into superfields as

Bi = bi + θφi, Ψi = ψi + θai. (4.2.1)
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These fields generate a SUSY VA as in Example 3.12. Given a change of coordinates g as above,
the formulas (4.1.3) imply that these fields transform as

B̃i = gi(B),

Ψ̃i =
(
∂f j

∂B̃i
(g(B))Ψj

)
.

(4.2.2)

Therefore the chiral de Rham complex is described in a simple fashion when viewed as a sheaf of
SUSY VAs.

Conversely, the transformation properties (4.2.2) imply (4.1.3). Indeed, suppose that the fields
Ψi and Bi transform as in (4.2.2). Evaluating at θ = 0 we immediately obtain the transformation
properties of ψi and bi as in (4.1.3). We now note that

SB̃i = Sgi(B) =
∂gi(B)
∂Bj

SB j (4.2.3)

and evaluating at θ = 0 we obtain the transformation property of φi. Finally, we have

SΨ̃i = S

(
∂f j

∂B̃i
(g(B))Ψj

)

=
(

∂2f j

∂B̃i ∂B̃k
(g(B))SB̃k

)
Ψj +

∂f j

∂B̃i
(g(B))SΨj

=
(

∂2f j

∂B̃i ∂B̃k
(g(B))

∂gk(B)
∂Bl

SBl

)
Ψj +

∂f j

∂B̃i
(g(B))SΨj . (4.2.4)

Using quasi-commutativity we can write the second term as

SΨj ∂f
j

∂B̃i
(g(B)) − T

(
∂2f j

∂B̃i ∂B̃j
(g(B))

∂B̃l

∂Bj

)
. (4.2.5)

On the other hand, using quasi-associativity we can write the first term of (4.2.4) as

∂2f j

∂B̃i ∂B̃k
(g(B))

∂gk(B)
∂Bl

SBlΨj + T

(
∂2f j

∂B̃i ∂B̃k
(g(B))

∂gk(B)
∂Bj

)
. (4.2.6)

Adding these two terms and evaluating at θ = 0 we obtain the transformation property of ai.

4.2.1 From this perspective, we can construct the chiral de Rham complex as a sheaf of SUSY
vertex algebras, by arguing as in [MSV99], replacing vertex algebras by SUSY VAs and using (4.2.2)
instead of (4.1.3). To do this we must check that (4.2.2) preserves the SUSY VA structure. This can
be done as follows. We check immediately that

[B̃i
ΛB̃

j] = 0. (4.2.7)

On the other hand, we have from the Wick formula:

[B̃i
ΛΨ̃j ] =

∂fk

∂B̃j
(g(B))

∂gi(B)
∂(Bk)

= δij . (4.2.8)

To compute [Ψ̃i
ΛΨ̃j ] we first need[

Ψ̃i
Λ

∂fk

B̃j
(g(B))

]
=
∂f l

∂B̃i
(g(B))

∂

∂Bl

(
∂fk

∂B̃j
(g(B))

)
(4.2.9)

and

[Ψ̃i
ΛΨk] = − ∂

∂Bk

(
∂f l

∂B̃i
(g(B))

)
Ψl. (4.2.10)
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Now using the Wick formula and noting that the integral term vanishes we obtain

[Ψ̃i
ΛΨ̃j] =

∂f l

∂B̃i
(g(B))

∂

∂Bl

(
∂fk

∂B̃j
(g(B))

)
Ψk − i↔ j

=
∂f l

∂B̃i
(g(B))

∂2fk

∂B̃j ∂B̃m
(g(B))

∂gm(B)
∂Bl

Ψk − i↔ j

=
∂2fk

∂B̃j ∂B̃i
(g(B))Ψk − i↔ j

= 0. (4.2.11)

The equivalence of (4.1.3) and (4.2.2) shows that the sheaf constructed is in fact the chiral de Rham
complex of M .

Remark 4.2.2. We note that in this approach all the cancellation of anomalies is contained in the fact
that the integral term in the Λ-bracket (4.2.11) vanishes, which in turn is an obvious consequence
of our formalism.

Formal setting

4.3. In the formal setting, the chiral de Rham complex is constructed by using the standard argu-
ments of ‘formal geometry’ [MSV99, 3.9] (see also [FBZ01, ch. 17]), i.e. using an action of the Lie
algebra of vector fields on the formal n-dimensional disk on the bc − βγ system. Indeed the vector
field f(xi)∂xj acts as the residue of the field

f(bi)aj +
n∑

k=1

(∂xk
f)(bi)φkψj . (4.3.1)

In the context of SUSY vertex algebras, the vector field f(xi)∂xj simply acts as the super-residue
of the superfield

f(Bi)Ψj . (4.3.2)

Here the super-residue is defined to be

sresz,θf(z, θ) = ∂θ resz f(z, θ). (4.3.3)

5. The C∞ case

5.1. In this section we give a coordinate independent description of the chiral de Rham complex
of a smooth differentiable manifold M . This construction is essentially a superfield reformulation
of the corresponding construction in [LL07].

5.2. Let us fix notation first. Let U be a differentiable manifold. Let T be the tangent bundle of
U and T ∗ be its cotangent bundle. We let T = Γ(U,T ) be the space of vector fields on U and
A = Γ(U,T ∗) be the space of differentiable 1-forms on U . We let C = C∞(U) be the space of
differentiable functions on U . Denote by

〈 , 〉 : A⊗ T → C (5.2.1)

the natural pairing. Finally, we denote by Π the functor of change of parity.

Consider now a SUSY Lie conformal algebra R generated by the supervector space

C ⊕ ΠT ⊕A⊕ ΠA. (5.2.2)
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That is, we consider differentiable functions (to be denoted f, g, . . . ) as even elements, vector fields
X,Y, . . . are odd elements, and finally we have two copies of the space of differential forms. For dif-
ferential forms α, β, . . . ∈ A we will denote the corresponding elements of ΠA by ᾱ, β̄, . . . . The
non-vanishing commutation relations in R are given by (up to skew-symmetry)

[XΛf ] = X(f),
[XΛY ] = [X,Y ]Lie,

[XΛα] = LieX α+ λ〈α,X〉,
[XΛᾱ] = LieX α+ χ〈α,X〉,

(5.2.3)

where [ , ]Lie is the Lie bracket of vector fields and LieX is the action of X on the space of differential
forms by the Lie derivative. The fact that (5.2.3) is compatible with the Jacobi identity is a (long
but) straightforward computation.

We let R(U) be the corresponding universal enveloping SUSY vertex algebra of R. As noted
in [LL07], this algebra is too big. We want to impose some relations in R(U). We let 1U denote the
constant function 1 in U . Let d : C → A be the de Rham differential. Define I(U) ⊂ R(U) to be
the ideal generated by elements of the form

f(−1|1)g − (fg), f(−1|1)X − (fX ), f(−1|1)α− (fα), f(−1|1)ᾱ− (fα), (5.2.4)

1U − |0〉, Tf − df , Sf − d̄f . (5.2.5)

Finally we define the SUSY vertex algebra as

Ωch(U) := R(U)/I(U). (5.2.6)

Expanding the superfields in terms of ordinary fields, it is straightforward to check that this super-
vertex algebra is just Q(U) in the notation of [LL07]. We therefore arrive at the following result.

Theorem 5.3 [LL07].

(i) Let M ⊂ R
n be an open submanifold. The assignment U �→ Ωch(U) defines a (weak) sheaf of

SUSY vertex algebras Ωch
M on M .

(ii) For any diffeomorphism of open sets M ′ ϕ−→ M we obtain a canonical isomorphism of SUSY

vertex algebras Ωch(M)
Ωch(ϕ)−−−−→ Ωch(M ′). Moreover, given diffeomorphisms M ′ ϕ′

−→ M ′ ϕ−→ M ,
we have Ωch(ϕ ◦ ϕ′) = Ωch(ϕ′) ◦ Ωch(ϕ).

5.4. This theorem allows us to construct a sheaf of SUSY vertex algebras in the Grothendieck
topology on R

n (generated by open embeddings). This in turn lets us attach to any smooth manifold
M , a sheaf of SUSY vertex algebras Ωch

M . We call this sheaf the chiral de Rham complex of M .

Remark 5.5. In the algebraic case, this construction gives the chiral de Rham complex as described
in the previous section in terms of coordinates. Indeed, we see that identifying Bi with the field
corresponding to the coordinate xi and Ψi with the field corresponding to the vector field ∂xi , the
relations defining I(U) are obviously satisfied.

6. Recollections on hyperkähler manifolds

In this section, we briefly review the notion of a hyperkähler manifold following [Joy00]. Let (M,g)
be a Riemannian manifold of real dimension 2n, and J a complex structure on M . The metric g is
Hermitian if J is an isometry of g, i.e. if

g(Ju, Jv) = g(u, v) for tangent vectors u, v.

514

https://doi.org/10.1112/S0010437X07003223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003223


Supersymmetry of the chiral de Rham complex

Given (M,g, J) we can define a 2-form ω by

ω(v,w) = g(Jv,w),

and ω is called the Hermitian form of g. The metric g is said to be Kähler if dω = 0, in which case
ω is called the Kähler form. The following theorem [Joy00] gives other useful characterizations of
Kähler metrics.

Theorem 6.1. Let (M,g, J) be as above, and ∇ denote the Levi-Civita connection of g. Then the
following conditions are equivalent:

(i) g is Kähler;

(ii) ∇J = 0;

(iii) ∇ω = 0;

(iv) the holonomy group of g is contained in U(n) ⊂ SO(2n,R).

A Riemannian manifold (M,g) of dimension 4n is hyperkähler if it possesses three complex
structures I, J and K such that (M,g, I), (M,g, J), and (M,g,K) are each Kähler, and satisfy the
quaternionic relations

IJ = −JI = K.

This is equivalent to the holonomy group of g lying inside of Sp(n,H) ⊂ SO(4n,R). Dualizing using
the metric yields three Kähler forms ωI , ωJ and ωK .

7. Superconformal structures from geometry

7.1. Let now (M,g) be a Riemannian manifold. Denote by Γi
jk

the Christoffel symbols of the Levi-
Civita connection of M . Let I be an endomorphism of the tangent bundle of M , namely I is a tensor
of type 1, 1 on M . Let ωj

i be the coordinate components of such a tensor. We will systematically
raise and lower indices using the metric g and sum over repeated indices.

In the rest of this paper, we will adopt the following notational convention, aimed at reducing
clutter.

Convention. In the βγ − bc SUSY vertex algebra, expressions such as

(ωj
i SB i)Ψj + Γi

jkω
j
i TBk

correspond to the field

(ωj
i (B

1(z, θ), . . . , Bn(z, θ))(SB i)(z, θ))Ψj(z, θ)

+ Γi
jk(B

1(z, θ), . . . , Bn(z, θ))ωj
i (B

1(z, θ), . . . , Bn(z, θ))(TBk)(z, θ). (7.1.1)

In other words, all coefficients of tensors, Christoffel symbols, etc., are being evaluated on the
superfields Bi(z, θ). This in turn should be interpreted as follows. If f(x1, . . . , xn) is a C∞ function
on an open set U , then

f(B1(z, θ), . . . , Bn(z, θ)) = f(b1(z) + θφ1(z), . . . , bn(z) + θφn(z)) (7.1.2)

= f(b1(z), . . . , bn(z)) + θ
n∑

i=1

∂f

∂xi
(b1(z), . . . , bn(z))φi(z). (7.1.3)

The meaning of expressions such as f(b1(z), . . . , bn(z)) is explained in [MSV99] (see also § 5 and
[LL07]).
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Lemma 7.2. The assignment

I �→ J = (ωj
i SB i)Ψj + Γi

jkω
j
i TBk (7.2.1)

defines a linear morphism

Γ(M,E nd(TM )) → Γ(M,Ωch
M ). (7.2.2)

7.3. In the case where I is a complex structure on M with associated Kähler form ω, we will denote
the corresponding current J by Jω.

Proof of Lemma 7.2. Given that the fields Bi transform as coordinates do, we will simplify the
notation and denote

∂B̃i

∂Bj
=
∂gi(B)
∂Bj

. (7.3.1)

The first term in Jω expressed in the coordinates B̃i is given by(
∂Bk

∂B̃i

∂B̃j

∂Bl

∂B̃i

∂Bm
ωl

kSBm

)(
∂Bn

∂B̃j
Ψn

)
=
(
∂B̃j

∂Bl
ωl

kSBk

)(
∂Bn

∂B̃j
Ψn

)
. (7.3.2)

Using quasi-associativity (3.10.2) we see that this is

(ωj
i SB i)Ψj − ∂2Bl

∂B̃j ∂B̃m

∂B̃j

∂Bk

∂B̃m

∂Bn
ωk

l TBn. (7.3.3)

On the other hand, in the second term in Jω, there are no quasi-associativity issues and the anoma-
lous term comes from the transformation properties of the Christoffel symbols. Indeed, the second
term in Jω transforms as

∂2Bl

∂B̃j ∂B̃k

∂B̃i

∂Bl

∂Bm

∂B̃i

∂B̃j

∂Bn

∂B̃k

∂Bp
ωn

mTBp + Γi
jkω

j
i TBk. (7.3.4)

Adding (7.3.4) and (7.3.3) we obtain the result.

Theorem 7.4.

(i) Let (M,g) be a Riemannian manifold of dimension n, and g = log
√

det gij , where det gij is
the determinant of the metric. Then

H = SB iSΨi + TB iΨi − TSg (7.4.1)

generates an N = 1 superconformal structure of central charge 3n. We shall refer to H as the
Neveu–Schwarz vector.

(ii) Let (M,g) be a Calabi–Yau 2n-manifold with Kähler form ω. Then Jω and H generate an
N = 2 vertex algebra structure of central charge 6n.

(iii) If moreover M is hyperkähler of dimension 4n, with three Kähler structures ω, η and γ such
that the corresponding complex structures satisfy the quaternionic relations, then Jω, Jη, Jγ

and H generate an N = 4 vertex algebra of central charge 12n.

Proof. (i) If we write H = H0−TSg, then the fact that H0 defines a global section of Ωch
M and that

H0 is a Neveu–Schwarz vector of central charge 3n follows from the analogous results in [MSV99].
The fact that TSg is a well-defined global section follows since M is orientable. To check that H is
indeed a Neveu–Schwarz vector (3.11.2) we compute

[H0
Λg] = (2T + χS)g, (7.4.2)
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which in turn follows from the fact that H0 is a Neveu–Schwarz vector and any function f = f(Bi)
is primary of conformal weight 0 (cf. [HK07, § 5.6]). Using sesquilinearity we obtain

[H0
ΛTSg] = (λ+ T )(S + χ)(2T + χS)g

= (2T + 3λ+ χS)TSg + λ2Sg + λχTg,

[TSgΛH
0] = −λχ(2T − (χ+ S)S)g

= −λχTg− λ2Sg.

(7.4.3)

It follows then that

[HΛH] = [H0
ΛH

0] − [TSgΛH
0] − [H0

ΛTSg]

= (2T + 3λ+ χS)H0 + nλ2χ− (2T + 3λ+ χS)TSg

= (2T + 3λ+ χS)H + nλ2χ. (7.4.4)

(ii) To check the remaining commutation relations of the N = 2 vertex algebra as in Exam-
ple 3.13, it is enough to do it in any coordinate system. In particular, we may choose holomorphic
coordinates {xα} (respectively anti-holomorphic coordinates {xᾱ}) for the complex structure asso-
ciated to ω such that

ωj
i =

(
i Id 0
0 −i Id

)
. (7.4.5)

In this case J = Jω is given by

J = iSBαΨα − iSB ᾱΨᾱ + ig,αTB
α − ig,ᾱTB ᾱ. (7.4.6)

Here we have used the fact that for a Kähler manifold

Γα
γα = g,γ = ∂γg, Γᾱ

γ̄ᾱ = g,γ̄ = ∂γ̄g. (7.4.7)

Let us first compute [HΛJ ]. For this we need

[HΛΨα] = (2T + λ+ χS)Ψα + λχg,α,

[HΛΨᾱ] = (2T + λ+ χS)Ψᾱ + λχg,ᾱ,

[HΛB
α] = (2T + χS)Bα,

[HΛB
ᾱ] = (2T + χS)Bᾱ,

[HΛSBα] = (2T + λ+ χS)SBα,

[HΛSB ᾱ] = (2T + λ+ χS)SB ᾱ,

(7.4.8)

which follow from the fact that Ψi and Bi are primary with respect to H0. Using now the non-
commutative Wick formula we obtain

[HΛSBαΨα] = ((2T + λ+ χS)SBα)Ψα + SBα(2T + λ+ χS)Ψα

+ SBαλχg,α +
∫ Λ

0
[(2T + λ+ χS)SBα

ΓΨα] dΓ

= (2T + 2λ+ χS)SBαΨα − λχg,αSBα +
∫ Λ

0
(−2γ + λ− χη)η[Bα

ΛΨα] dΓ. (7.4.9)

Since the integral clearly vanishes, we obtain

[HΛSBαΨα] = (2T + 2λ+ χS)SBαΨα − λχg,αSBα. (7.4.10)

517

https://doi.org/10.1112/S0010437X07003223 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003223


D. Ben-Zvi, R. Heluani and M. Szczesny

Similarly, we compute now

[g,αΛ
H] = SB i(χ+ S)g,αi + TBig,αi

= −χSg,α + SB iSg,αi + Tg,α

= (T − χS)g,α − g,αijSB jSB i

= (T − χS)g,α,

[HΛg,α] = (2T + χS)g,α.

(7.4.11)

We also have

[HΛTB
α] = (λ+ T )(2T + χS)Bα = (2T + 2λ+ χS)TBα + λχSBα. (7.4.12)

Hence using the Wick formula again and noting that the integral term trivially vanishes, we obtain

[HΛg,αTB
α] = ((2T + χS)g,α)TBα

+ g,α(2T + 2λ+ χS)TBα + g,αλχSBα

= (2T + 2λ+ χS)g,αTB
α + λχg,αSBα. (7.4.13)

Adding (7.4.10) to (7.4.13) plus their conjugates we obtain

[HΛJ ] = (2T + 2λ+ χS)J, (7.4.14)

as we wanted.
Finally, we need to check (3.13.2). For this we compute using the non-commutative Wick formula:

[ΨαΛJ ] = iχΨα + ig,βαTB
β + iλg,α

= iχΨα + i(T + λ)g,α,

[JΛΨα] = −i(χ+ S)Ψα − iλg,α,

[SBα
ΛJ ] = −iχSBα,

[JΛSBα] = i(χ+ S)SBα.

(7.4.15)

Here in the second line we used the fact that M is Ricci-flat, therefore g,αβ̄ = 0. Using this we can
compute now

[JΛSBαΨα] = i((χ+ S)SBα)Ψα

+ iSBα(χ+ S)Ψα + iSBαλg,α +
∫ Λ

0
i[(χ+ S)SBα

ΓΨα] dΓ

= iTBαΨα + iSBαSΨα + iλSBαg,α + in

∫ Λ

0
(η − χ)η dΓ

= iTBαΨα + iSBαSΨα + iλSBαg,α + inλχ. (7.4.16)

Similarly we have

[g,αΛ
J ] = −iSBβg,αβ

= −iSg,α,

[JΛg,α] = −iSg,α,

[JΛTB
α] = −i(λ+ T )SBα.

(7.4.17)

Hence using the Wick formula we obtain

[JΛg,αTBα] = −i(Sg,α)TBα − ig,α(λ+ T )SBα

= −iλg,αSBα − iS(g,αTBα). (7.4.18)
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Adding (7.4.18) and (7.4.16) plus their conjugates, we obtain

[JΛJ ] = −TBiΨi − SB iSΨi − λχ2n+ S(g,αTB
α) + S(g,ᾱTB

ᾱ)

= −TBiΨi − SB iSΨi + STg− 2nλχ. (7.4.19)

(iii) In order to prove the rest of the statement, we may choose holomorphic coordinates for one
of the three complex structures. We suppose then that Jω is given by (7.4.6). This forces the other
two complex structures to be of the form

ηj
i =

(
0 ηβ̄

α

ηβ
ᾱ 0

)
, γj

i =

(
0 iηβ̄

α

−iηβ
ᾱ 0

)
(7.4.20)

with ηβ̄
αη

γ
β̄

= −δγ
α. It follows then that J+ = 1

2(Jη − iJγ) is given by

J+ = ηβ̄
αSBαΨβ̄, (7.4.21)

where we note that the second term in (7.2.1) vanishes in this case since M is Kähler. Therefore
the only non-vanishing components of the Christoffel symbols are Γα

βγ and Γᾱ
β̄γ̄

. The theorem will
be proved then if we show that2

[JωΛJ
+] = i(2χ + S)J+. (7.4.22)

In order to do so we compute (we denote J = Jω)

[ηβ̄
αΛJ ] = −iηβ̄

α,γSBγ + iηβ̄
α,γ̄SB γ̄ ,

[JΛη
β̄
α] = −iηβ̄

α,γSBγ + iηβ̄
α,γ̄SB γ̄ .

(7.4.23)

It follows then from (7.4.15) and the Wick formula that

[JΛη
β̄
αSBα] = −iηβ̄

α,γSBγSBα + iηβ̄
α,γ̄SB γ̄SBα + iηβ̄

α(χ+ S)SBα. (7.4.24)

Since the complex structure is parallel we have

ηβ̄
α,γ = Γδ

γαη
β̄
δ = ηβ̄

γ ,α
. (7.4.25)

Therefore the first term in (7.4.24) vanishes and we have

[JΛη
β̄
αSBα] = iηβ̄

α,γ̄SB γ̄SBα + iηβ̄
α(χ+ S)SBα. (7.4.26)

Now conjugating (7.4.15) we see that

[JΛΨβ̄] = i(χ+ S)Ψβ̄ + iλg,β̄. (7.4.27)

Now using the non-commutative Wick formula we obtain

[JωΛJ
+] = i(ηβ̄

α,γ̄SB γ̄SBα)Ψβ̄ + i(ηβ̄
α(χ+ S)SBα)Ψβ̄

− i(ηβ̄
αSBα)(χ+ S)Ψβ̄ − i(ηβ̄

αSBα)λg,β̄

+ i

∫ Λ

0
[ηβ̄

α,γ̄SB γ̄SBα
ΛΨβ̄] dΓ + i

∫ Λ

0
[ηβ̄

α(χ+ S)SBα
ΛΨβ̄] dΓ. (7.4.28)

Let us compute the integral term first. Clearly the second integral vanishes since Ψβ̄ commutes with
SBα. The first term on the other hand is given by

−
∫ Λ

0
ηηβ̄

α,β̄SBα dΓ = −ληβ̄
α,β̄SBα. (7.4.29)

2Note that the commutation relations with J− = 1
2
(Jη + iJγ) follow by conjugation.
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Re-grouping the terms in (7.4.28) we obtain

[JωΛJ
+] = i(2χ+ S)J+ − iλ(ηβ̄

αg,β̄SBα + ηβ̄
α,β̄SBα). (7.4.30)

Finally, using again the fact that η is parallel, we see immediately that

ηβ̄
α,β̄ = −Γβ̄

β̄γ̄
ηγ̄

α = −g,γ̄η
γ̄
α. (7.4.31)

This proves (7.4.22) and completes the proof of Theorem 7.4.

Remark 7.5. (i) In the Calabi–Yau case, choosing holomorphic coordinates xα and anti-holomorphic
coordinates xᾱ, we see that g = g0 + ḡ0 where g0 is holomorphic. The superfield H can be decom-
posed as a sum of two terms H0 + H̄0, where

H0 = SBαSΨα + TBαΨα −TSg0. (7.5.1)

The superfield J decomposes in a similar way as a ‘holomorphic’ part J0 and an ‘anti-holomorphic’
part J̄0. These fields are invariant under holomorphic changes of coordinates, and hence we obtain
two commuting N = 2 superconformal structures.

We note that these fields are different from the ones considered in [MSV99]. In the case of the
Virasoro field, the correction given by TSg0 appeared in [Wit05, p. 16]. When the metric is flat
(i.e. g0 = 0) we obtain the same topological structure as in [MSV99].

(ii) When the manifold M is complex but not Calabi–Yau, the decomposition H = H0 + H̄0

is not invariant under holomorphic changes of coordinates. Therefore our N = 1 structure pairs in
a non-trivial way the ‘holomorphic’ and ‘anti-holomorphic’ parts of the chiral de Rham complex
of M .

(iii) The fields H and J are defined for any almost complex manifold M (though they gen-
erate N = 2 only when M is Calabi–Yau). In particular, the field J allows us to construct a
Dolbeault resolution of the holomorphic chiral de Rham complex in terms of the differentiable one
(see also [Kap05]). We plan to return to this matter elsewhere.
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