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Abstract

A strongly concave composition of n is an integer partition with strictly decreasing and then increasing
parts. In this paper we give a uniform asymptotic formula for the rank statistic of a strongly concave
composition introduced by Andrews et al. [‘Modularity of the concave composition generating function’,
Algebra Number Theory 7(9) (2013), 2103–2139].
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1. Introduction

A partition of a positive integer n is a sequence of nonincreasing positive integers
whose sum equals n. Let p(n) be the number of integer partitions of n. To explain
Ramanujan’s famous partition congruences with modulus 5, 7 and 11, the rank and
crank statistic for integer partitions was introduced and investigated by Dyson [9] and
Andrews and Garvan [2, 11]. Let N(m, n) and M(m, n) be the number of partitions of
n with rank m and crank m, respectively. It is well known that∑

n≥0

N(m, n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1qn(3n−1)/2+|m|n(1 − qn)

and ∑
n≥0

M(m, n)qn =
1

(q; q)∞

∑
n≥1

(−1)n−1qn(n−1)/2+|m|n(1 − qn),

where (a; q)∞ =
∏

j≥0(1 − aq j) for any a ∈ C and |q| < 1.
In [10], Dyson conjectured an asymptotic formula for the crank statistic for integer

partitions:

M(m, n) ∼
π

4
√

6n
sech2

(
πm

2
√

6n

)
p(n), n→ +∞. (1.1)
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Bringmann and Dousse [4] proved that (1.1) holds for all |m| ≤ (
√

n log n)/(π
√

6). In
[8], Dousse and Mertens proved the same result for N(m, n). For more results on the
asymptotics of the rank and crank statistic for integer partitions, see [6, 7, 13, 14].

A concave composition λ of n is a nonnegative integer sequence {ar}
s
r=1 of the form

a1 ≥ a2 ≥ · · · ≥ ak−1 > ak < ak+1 ≤ · · · ≤ as−1 ≤ as

and with sum n for some s ∈ Z+. Here ak is called the central part of λ. If all the
‘≥’ and ‘≤’ are replaced by ‘>’ and ‘<’, respectively, we refer to a strongly concave
composition. The rank of λ is defined as rk(λ) := s − 2k + 1; it is the analogue of the
rank statistic for integer partitions and measures the position of the central part.

LetV(n) andVd(n) be the sets of all concave compositions and all strongly concave
compositions, respectively, of the nonnegative integer n. Also, let V(n) = #V(n)
and Vd(n) = #Vd(n) be the numbers of concave compositions and strongly concave
compositions of n, respectively. Andrews [1] found the generating functions

v(q) :=
∑
n≥0

V(n)qn =
∑
n≥0

qn

(qn+1; q)2
∞

and
vd(q) :=

∑
n≥0

Vd(n)qn =
∑
n≥0

(−qn+1; q)2
∞qn.

Andrews et al. [3] proved that v(q) is a mixed mock modular form. More precisely,
they established the following modularity properties.

Theorem 1.1. Let q = e2πiτ with τ ∈ C and =(τ) > 0. Define f (τ) = q(q; q)3
∞v(q) and

f̂ (τ) = f (τ) −
i
2
η(τ)3

∫ i∞

−τ̄

η(z)3

(−i(z + τ))1/2 dz +

√
3

2πi
η(τ)

∫ i∞

−τ̄

η(z)
(−i(z + τ))3/2 dz,

where the Dedekind η-function is given by η(τ) = q1/24(q; q)∞. Then the function f̂
transforms as a modular form of weight 2 for SL2(Z).

For vd(q), Andrews [1] proved that

vd(q) = 2(−q; q)2
∞

∑
n≥0

(
−12

n

)
q(n2−1)/24 −

∑
n≥0

(−1)nqn(n+1)/2,

where ( ·
·
) is the Kronecker symbol, that is, vd(q) +

∑
n≥0(−1)nqn(n+1)/2 is essentially a

modular function multiplied by a false theta function. So, we may expect Vd(n) to be
simpler to study than V(n), but not to yield such precise results. For example, Andrews
et al. [3] obtained an asymptotic formula with a polynomial error for V(n) by using
the circle method of Bringmann and Mahlburg [5]. They also gave an asymptotic
expansion for Vd(n) which is technically easier to establish:1

Vd(N) ∼ 2−1/43−5/4N−3/4e2π
√

N/6
(
1 +

∑
n≥1

cnN−n/2
)

(1.2)

for N → +∞, where the cn ∈ R, n ∈ Z+, are computable constants.

1Note that the leading coefficient of the asymptotic expansion (1.2) is 2−1/43−5/4 rather that 2 ·
2−1/43−5/4 as stated in [3, Theorem 1.5].
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Let Vd(m, n) be the number of strongly concave compositions of n with rank equal
to m. Andrews et al. [3] proved that1∑

n≥0

∑
m∈Z

Vd(m, n)xmqn = −
∑
n≥0

(−1)nqn(n+1)/2x2n+1

+ (−x; q)∞(−x−1q; q)∞
∑
n≥0

(
−12

n

)
x(n−1)/2q(n2−1)/24. (1.3)

In this paper we investigate the asymptotics of Vd(m, n) as n tends to infinity with
arbitrary m, motivated by the questions in [3, pages 2108–2109] for the more complex
behaviour of the distribution of concave compositions.

The first result of this paper is the following proposition.

Proposition 1.2. Let p(n) be the number of integer partitions of a nonnegative integer
n and let p(−`) = 0 for ` ∈ Z+. Then, for N, ` ∈ Z,

Vd

(
`,N +

|`|(|`| + 1)
2

)
=

∑
n≥0

(
−3

2n + 1

)
p
(
N −

2n(n + 1)
3

− n|`|
)
. (1.4)

In particular, for m, n ∈ Z with 0 ≤ n < 1
2 |m|(|m| + 5) + 4,

Vd(m, n) = p
(
n −
|m|(|m| + 1)

2

)
. (1.5)

From Proposition 1.2, we derive the following uniform asymptotics for Vd(m, n) as
n→ +∞.

Theorem 1.3. Uniformly for all ` ∈ Z and N → +∞,

Vd

(
`,N +

|`|(|`| + 1)
2

)
= p(N)F

(
π|`|
√

6N

)
(1 + O(N−1/10)), (1.6)

where the implied constant is absolute and

F(α) =
1 + e−α

1 + e−α + e−2α .

In particular, if the integer m satisfies m = o(N3/8), then

Vd(m,N)
Vd(N)

∼
1

(24N)1/4 exp
(
−

πm2

√
24N

)
. (1.7)

Finally, we give a limiting distribution for the rank statistic for strongly concave
compositions. Define the real function Ψd(x) by

Ψd(x) = lim
N→+∞

1
Vd(N)

#
{
λ ∈ Vd(N) :

rk(λ)
(6N/π2)1/4 ≤ x

}
for x ∈ R.

1We correct some sign errors in the statement of (1.3) in [3].
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It is clear that

Ψd(x) = lim
N→+∞

1
Vd(N)

∑
m∈Z

m≤(6N/π2)1/4 x

∑
λ∈Vd(N)
rk(λ)=m

1 = lim
N→+∞

∑
m∈Z

m≤(6N/π2)1/4 x

Vd(m,N)
Vd(N)

and that Ψd(−∞) = 0 and Ψd(+∞) = 1. Hence, by using (1.7) and the fact
that Vd(m, N) = Vd(|m|, N), it is easy to deduce the following corollary by Abel’s
summation formula.

Corollary 1.4. The distribution function Ψd(x) is the standard normal distribution on
R, that is,

Ψd(x) =
1
√

2π

∫ x

−∞

e−x2/2 dx.

2. Proofs of the results
2.1. The proof of Proposition 1.2. By the Jacobi triple product formula,

(q; q)∞(−xq; q)∞(−x−1; q)∞ =
∑
n∈Z

qn(n+1)/2xn,

the basic properties of the Kronecker symbol and (1.3),∑
n≥0
m∈Z

Vd(m, n)xmqn = −
∑
n≥0

(−1)nqn(n+1)/2x2n+1

+
1

(q; q)∞

∑
`∈Z

q`(`+1)/2x−`
∑
n≥0

(
−12

2n + 1

)
xnqn(n+1)/6.

This yields, for integer r ≥ 0,∑
n≥0

Vd(−r, n)qn =
1

(q; q)∞

∑
`−n=r
`∈Z,n≥0

(
−3

2n + 1

)( 2
2n + 1

)2
q(1/6)n(n+1)+(1/2)`(`+1)

=
∑
k≥0

p(k)qk
∑
n≥0

(
−3

2n + 1

)
q(1/6)n(n+1)+(1/2)(n+r)(n+r+1)

=
∑
N≥0

qN
∑
n≥0

(
−3

2n + 1

)
p
(
N −

2n(n + 1)
3

− rn −
r(r + 1)

2

)
,

which means that

Vd

(
−`,N +

`(` + 1)
2

)
=

∑
n≥0

(
−3

2n + 1

)
p
(
N −

2n(n + 1)
3

− n`
)

for all integers ` ≥ 0. Since Vd(−m, n) = Vd(m, n), we have proved (1.4) in
Proposition 1.2. Further, if 2` + 4 > N, then

Vd

(
`,N +

|`|(|`| + 1)
2

)
= p(N),

which gives (1.5) in Proposition 1.2.
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2.2. Asymptotic results for p(n). We need the following asymptotic result for p(n)
proved by Hardy and Ramanujan in [12].

Lemma 2.1. For n ∈ Z+,

p(n) − p̂(n − 1/24) = O(n−1eB
√

n/2),

where B = 2π/
√

6 and

p̂(x) =
eB
√

x

4
√

3x

(
1 −

1
B
√

x

)
.

(These definitions for B and p̂(x) are used throughout this section.)

We also need the following approximation for p(X + r) with r = o(X3/4).

Lemma 2.2. For r = o(X3/4) and X sufficiently large,

p(X + r)
p(X)

= eBr/2
√

X
(
1 + O

( 1
X

+
|r|
X

+
|r|2

X3/2

))
.

Proof. From Lemma 2.1, it is clear that

p̂(X + r)
p̂(X)

= eB(
√

X+r−
√

X)
(
1 + O

(
|r|
X

))
= eBr/2

√
X+O(r2/X3/2)

(
1 + O

(
|r|
X

))
= eBr/2

√
X
(
1 + O

(
|r|
X

+
|r|2

X3/2

))
by the generalised binomial theorem. Since

p(N)
p̂(N)

= 1 + O
( 1

N

)
for all N ≥ 1,

p(X + r)
p(X)

= eBr/2
√

X
(
1 + O

( 1
X

+
|r|
X

+
|r|2

X3/2

))
,

which completes the proof of the lemma. �

2.3. The proof of Theorem 1.3.

2.3.1. Case |`| >
√

N(log N)2. Define

F(`,N) := Vd

(
`,N +

|`|(|`| + 1)
2

)
. (2.1)
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For N/2 ≥ |`| >
√

N(log N)2, from Proposition 1.2 and Lemma 2.2,

F(`,N) =
∑
n≥0

2n(n+1)/3+n|`|≤N

(
−3

2n + 1

)
p
(
N −

2n(n + 1)
3

− n|`|
)

= p(N) + O
( ∑

n≥2
2n(n+1)/3+n`≤N

p(N − n|`|)
)

= p(N) + O
(√

N p(N − 2|`|)
)

= p(N) + O
(√

N p(N − b
√

N(log N)2c)
)

= p(N)
(
1 + O

(√
N exp

(
−

Bb
√

N(log N)2c

2
√

N

)))
,

where b·c is the greatest integer function. Hence, for N/2 ≥ |`| >
√

N(log N)2,

F(`,N) = p(N)(1 + O(N−
√

log N)). (2.2)
2.3.2. Case |`| ≤

√
N(log N)2. Since

(
−3

2n + 1

)
=


1 if n ≡ 0 mod 3,
0 if n ≡ 1 mod 3,
−1 if n ≡ 2 mod 3

for 0 ≤ ` ≤
√

N(log N)2,

F(`,N) =
∑
n≥0

(
−3

2n + 1

)
p
(
N −

2n(n + 1)
3

− n`
)

=
∑
n≥0

[p(N − Q1(n, `)) − p(N − Q2(n, `))],

where
Q1(n, `) = 2n(3n + 1) + 3n` and Q2(n, `) = Q1(n, `) + (8n + 4 + 2`).

We split the sum into two parts:
F(`,N)

p(N)
=

1
p(N)

∑
n≥0

n2+n`>
√

N(log N)2

[p(N − Q1(n, `)) − p(N − Q2(n, `))]

+
1

p(N)

∑
n≥0

n2+n`≤
√

N(log N)2

[p(N − Q1(n, `)) − p(N − Q2(n, `))] =: R + I.

Noting that Q2(n, `) ≥ Q1(n, `) ≥ n2 + n` for all n ≥ 0, we can estimate R by

|R| ≤
2

p(N)

∑
n≥0

n2+n`>
√

N(log N)2

p(N − Q1(n, `))

≤
2

p(N)

∑
n≥0

n2+n`>
√

N(log N)2

p
(
N − (n2 + n`)

)
≤ 2
√

N
p(N − b

√
N(log N)2c)

p(N)
.
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Thus, from Lemma 2.2,

R�
√

Ne−Bb
√

N(log N)2c/2
√

N � N−
√

log N .

To estimate I, we note that

0 ≤ Q1(n, `) ≤ Q2(n, `) ≤ 16(n2 + n`) + 2` + 4 = O(
√

N(log N)2)

for n ≥ 0 and n2 + n` ≤
√

N(log N)2. By Lemma 2.2,

I =
∑
n≥0

(
e−BQ1(n,`)/2

√
N − e−BQ2(n,`)/2

√
N)

−
∑
n≥0

n2+n`>
√

N(log N)2

(
e−BQ1(n,`)/2

√
N − e−BQ2(n,`)/2

√
N)

+ O
( 2∑

i=1

∑
n≥0

n2+n`≤
√

N(log N)2

e−BQi(n,`)/2
√

N
( 1

N
+

Qi(n, `)
N

+
Qi(n, `)2

N3/2

))
= IM + IR

with

IM =
∑
n≥0

(
e−BQ1(n,`)/2

√
N − e−BQ2(n,`)/2

√
N)

and

IR �
∑
n≥0

n2+n`>
√

N(log N)2

e−B(n2+`n)/
√

N +
∑
n≥0

n2+n`≤
√

N(log N)2

(log N)4

N1/2 e−B(n2+n`)/2
√

N

� N−
√

log N + N−1/2(log N)4
∑
n≥0

n2+n`≤
√

N(log N)2

1� N−1/4(log N)5.

We conclude that

F(`,N)/p(N) = IM + O(N−1/5) (2.3)

for 0 ≤ ` ≤
√

N(log N)2. To estimate IM , we need the following lemma.

Lemma 2.3. Let 0 ≤ ` = o(α−1). Then, as α→ 0+,

f (α) := α
∑
n≥0

(4n + `)e−2αn2−αn` = 1 + O(
√
α + |α`|).

Proof. By Abel’s summation formula, or integration by parts for a Riemann–Stieltjes
integral,
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f (α) = 4α
∑
n≥0

(n + `/4)e−2α(n+`/4)2+α`2/8

= 4αeα`
2/8

∫ ∞

0−
e−2α(x+`/4)2

d
( ∑

0≤n≤x

(n + `/4)
)

= 4αeα`
2/8

( ∫ ∞

0
e−2α(x+`/4)2

d
( x2

2
+

x`
4

)
+ O

(
α

∫ ∞

0
(x + `/4)2e−2α(x+`/4)2

dx
))

= 4αeα`
2/8

( ∫ ∞

`/4
xe−2αx2

dx + O
(
α

∫ ∞

`/4
x2e−2αx2

dx
))

= eα`
2/8

∫ ∞

α`2/8
e−x dx + O

(√
αeα`

2/8
∫ ∞

α`2/8
x1/2e−x dx

)
= 1 + O

(√
α + |α`|

)
,

which completes the proof of the lemma. �

We now evaluate IM . By the definitions of F(α) and IM , for ` ≥ N3/8,

IM =
∑

0≤n≤N1/5

(
e−BQ1(n,`)/2

√
N − e−BQ2(n,`)/2

√
N)

+ O
(
N−
√

log N)
=

∑
0≤n≤N1/5

e−B(3n+1)n/
√

N(
1 − e−B(`+4n)/

√
N)

e−3Bn`/2
√

N + O
(
N−
√

log N)
= (1 + O(N−1/10))

∑
0≤n≤N1/5

(
1 − e−B(`+4n)/

√
N)

e−3Bn`/2
√

N + O
(
N−
√

log N)
= (1 + O(N−1/10))

1 − e−B`/
√

N

1 − e−3B`/2
√

N
= (1 + O(N−1/10))F

( B`

2
√

N

)
and, for 0 ≤ ` ≤ N3/8,

IM =
∑

0≤n≤N2/5

(
e−Bn/

√
N − e−B(5n+`)/

√
N)

e−B(6n2+3n`)/2
√

N + O
(
N−
√

log N)
= (1 + O(N−1/10))

∑
0≤n≤N2/5

B(4n + `)
√

N
e−B(6n2+3n`)/2

√
N + O

(
N−
√

log N)
= (1 + O(N−1/10))

B
√

N

∑
n≥0

(4n + `)e−B(6n2+3n`)/2
√

N + O
(
N−
√

log N)
=

2
3

(1 + O(N−1/10))(1 + O(N−1/4 + `N−1/2)) =
(
1 + O(N−1/10)

)
F
( B`

2
√

N

)
by the use of Lemma 2.3. Thus, for 0 ≤ ` ≤

√
N(log N)2,

F(`,N) = p(N)F
(
π`
√

6N

)
(1 + O(N−1/10)) (2.4)

from (2.3) and the definition B = 2π/
√

6.
Finally, by using (2.1), (2.2), (2.4) and the fact that Vd(m, n) = Vd(|m|, n), we finish

the proof of (1.6). By using (1.2), (1.6) and Lemma 2.1, we obtain the proof of (1.7),
which completes the proof of Theorem 1.3.
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