ON THE DISTRIBUTION OF THE RANK STATISTIC FOR STRONGLY CONCAVE COMPOSITIONS

NIAN HONG ZHOU

(Received 3 November 2018; accepted 31 December 2018; first published online 13 February 2019)

Abstract

A strongly concave composition of n is an integer partition with strictly decreasing and then increasing parts. In this paper we give a uniform asymptotic formula for the rank statistic of a strongly concave composition introduced by Andrews *et al.* ['Modularity of the concave composition generating function', *Algebra Number Theory* **7**(9) (2013), 2103–2139].

2010 *Mathematics subject classification*: primary 11P82; secondary 05A16, 05A17. *Keywords and phrases*: concave composition, partitions, rank, asymptotics.

1. Introduction

A partition of a positive integer n is a sequence of nonincreasing positive integers whose sum equals n. Let p(n) be the number of integer partitions of n. To explain Ramanujan's famous partition congruences with modulus 5, 7 and 11, the rank and crank statistic for integer partitions was introduced and investigated by Dyson [9] and Andrews and Garvan [2, 11]. Let N(m, n) and M(m, n) be the number of partitions of n with rank m and crank m, respectively. It is well known that

$$\sum_{n \ge 0} N(m, n) q^n = \frac{1}{(q; q)_{\infty}} \sum_{n \ge 1} (-1)^{n-1} q^{n(3n-1)/2 + |m|n} (1 - q^n)$$

and

$$\sum_{n\geq 0} M(m,n)q^n = \frac{1}{(q;q)_{\infty}} \sum_{n\geq 1} (-1)^{n-1} q^{n(n-1)/2 + |m|n} (1-q^n),$$

where $(a; q)_{\infty} = \prod_{j \ge 0} (1 - aq^j)$ for any $a \in \mathbb{C}$ and |q| < 1.

In [10], Dyson conjectured an asymptotic formula for the crank statistic for integer partitions:

$$M(m,n) \sim \frac{\pi}{4\sqrt{6n}} \operatorname{sech}^2\left(\frac{\pi m}{2\sqrt{6n}}\right) p(n), \quad n \to +\infty.$$
(1.1)

This research was supported by the National Science Foundation of China (Grant No. 11571114).

^{© 2019} Australian Mathematical Publishing Association Inc.

Bringmann and Dousse [4] proved that (1.1) holds for all $|m| \le (\sqrt{n} \log n)/(\pi \sqrt{6})$. In [8], Dousse and Mertens proved the same result for N(m, n). For more results on the asymptotics of the rank and crank statistic for integer partitions, see [6, 7, 13, 14].

A concave composition λ of *n* is a nonnegative integer sequence $\{a_r\}_{r=1}^s$ of the form

$$a_1 \ge a_2 \ge \cdots \ge a_{k-1} > a_k < a_{k+1} \le \cdots \le a_{s-1} \le a_s$$

and with sum *n* for some $s \in \mathbb{Z}_+$. Here a_k is called the central part of λ . If all the ' \geq ' and ' \leq ' are replaced by '>' and '<', respectively, we refer to a strongly concave composition. The rank of λ is defined as $rk(\lambda) := s - 2k + 1$; it is the analogue of the rank statistic for integer partitions and measures the position of the central part.

Let $\mathcal{V}(n)$ and $\mathcal{V}_d(n)$ be the sets of all concave compositions and all strongly concave compositions, respectively, of the nonnegative integer *n*. Also, let $V(n) = \#\mathcal{V}(n)$ and $V_d(n) = \#\mathcal{V}_d(n)$ be the numbers of concave compositions and strongly concave compositions of *n*, respectively. And rews [1] found the generating functions

$$v(q) := \sum_{n \ge 0} V(n)q^n = \sum_{n \ge 0} \frac{q^n}{(q^{n+1}; q)_{\infty}^2}$$

and

$$v_d(q) := \sum_{n \ge 0} V_d(n) q^n = \sum_{n \ge 0} (-q^{n+1}; q)_{\infty}^2 q^n.$$

Andrews *et al.* [3] proved that v(q) is a mixed mock modular form. More precisely, they established the following modularity properties.

THEOREM 1.1. Let
$$q = e^{2\pi i \tau}$$
 with $\tau \in \mathbb{C}$ and $\mathfrak{I}(\tau) > 0$. Define $f(\tau) = q(q; q)_{\infty}^3 v(q)$ and
 $\hat{f}(\tau) = f(\tau) - \frac{i}{2}\eta(\tau)^3 \int_{-\bar{\tau}}^{i\infty} \frac{\eta(z)^3}{(-i(z+\tau))^{1/2}} dz + \frac{\sqrt{3}}{2\pi i}\eta(\tau) \int_{-\bar{\tau}}^{i\infty} \frac{\eta(z)}{(-i(z+\tau))^{3/2}} dz,$

where the Dedekind η -function is given by $\eta(\tau) = q^{1/24}(q;q)_{\infty}$. Then the function \hat{f} transforms as a modular form of weight 2 for SL₂(\mathbb{Z}).

For $v_d(q)$, Andrews [1] proved that

$$v_d(q) = 2(-q;q)_{\infty}^2 \sum_{n \ge 0} \left(\frac{-12}{n}\right) q^{(n^2 - 1)/24} - \sum_{n \ge 0} (-1)^n q^{n(n+1)/2},$$

where (:) is the Kronecker symbol, that is, $v_d(q) + \sum_{n\geq 0} (-1)^n q^{n(n+1)/2}$ is essentially a modular function multiplied by a false theta function. So, we may expect $V_d(n)$ to be simpler to study than V(n), but not to yield such precise results. For example, Andrews *et al.* [3] obtained an asymptotic formula with a polynomial error for V(n) by using the circle method of Bringmann and Mahlburg [5]. They also gave an asymptotic expansion for $V_d(n)$ which is technically easier to establish:¹

$$V_d(N) \sim 2^{-1/4} 3^{-5/4} N^{-3/4} e^{2\pi \sqrt{N/6}} \left(1 + \sum_{n \ge 1} c_n N^{-n/2} \right)$$
(1.2)

for $N \to +\infty$, where the $c_n \in \mathbb{R}$, $n \in \mathbb{Z}_+$, are computable constants.

¹Note that the leading coefficient of the asymptotic expansion (1.2) is $2^{-1/4}3^{-5/4}$ rather that $2 \cdot 2^{-1/4}3^{-5/4}$ as stated in [3, Theorem 1.5].

N. H. Zhou

Let $V_d(m, n)$ be the number of strongly concave compositions of *n* with rank equal to *m*. And rews *et al.* [3] proved that¹

$$\sum_{n\geq 0} \sum_{m\in\mathbb{Z}} V_d(m,n) x^m q^n = -\sum_{n\geq 0} (-1)^n q^{n(n+1)/2} x^{2n+1} + (-x;q)_{\infty} (-x^{-1}q;q)_{\infty} \sum_{n\geq 0} \left(\frac{-12}{n}\right) x^{(n-1)/2} q^{(n^2-1)/24}.$$
(1.3)

In this paper we investigate the asymptotics of $V_d(m, n)$ as *n* tends to infinity with arbitrary *m*, motivated by the questions in [3, pages 2108–2109] for the more complex behaviour of the distribution of concave compositions.

The first result of this paper is the following proposition.

PROPOSITION 1.2. Let p(n) be the number of integer partitions of a nonnegative integer n and let $p(-\ell) = 0$ for $\ell \in \mathbb{Z}_+$. Then, for $N, \ell \in \mathbb{Z}$,

$$V_d\left(\ell, N + \frac{|\ell|(|\ell|+1)}{2}\right) = \sum_{n \ge 0} \left(\frac{-3}{2n+1}\right) p\left(N - \frac{2n(n+1)}{3} - n|\ell|\right).$$
(1.4)

In particular, for $m, n \in \mathbb{Z}$ with $0 \le n < \frac{1}{2}|m|(|m| + 5) + 4$,

$$V_d(m,n) = p\left(n - \frac{|m|(|m|+1)}{2}\right).$$
(1.5)

From Proposition 1.2, we derive the following uniform asymptotics for $V_d(m, n)$ as $n \to +\infty$.

THEOREM 1.3. Uniformly for all $\ell \in \mathbb{Z}$ and $N \to +\infty$,

$$V_d\left(\ell, N + \frac{|\ell|(|\ell|+1)}{2}\right) = p(N)F\left(\frac{\pi|\ell|}{\sqrt{6N}}\right)(1 + O(N^{-1/10})),\tag{1.6}$$

where the implied constant is absolute and

$$F(\alpha) = \frac{1 + e^{-\alpha}}{1 + e^{-\alpha} + e^{-2\alpha}}.$$

In particular, if the integer m satisfies $m = o(N^{3/8})$, then

$$\frac{V_d(m,N)}{V_d(N)} \sim \frac{1}{(24N)^{1/4}} \exp\left(-\frac{\pi m^2}{\sqrt{24N}}\right).$$
(1.7)

Finally, we give a limiting distribution for the rank statistic for strongly concave compositions. Define the real function $\Psi_d(x)$ by

$$\Psi_d(x) = \lim_{N \to +\infty} \frac{1}{V_d(N)} \# \left\{ \lambda \in \mathcal{V}_d(N) : \frac{\operatorname{rk}(\lambda)}{(6N/\pi^2)^{1/4}} \le x \right\} \quad \text{for } x \in \mathbb{R}.$$

232

¹We correct some sign errors in the statement of (1.3) in [3].

It is clear that

$$\Psi_{d}(x) = \lim_{N \to +\infty} \frac{1}{V_{d}(N)} \sum_{\substack{m \in \mathbb{Z} \\ m \le (6N/\pi^{2})^{1/4}x}} \sum_{\substack{\lambda \in \mathcal{V}_{d}(N) \\ rk(\lambda) = m}} 1 = \lim_{N \to +\infty} \sum_{\substack{m \in \mathbb{Z} \\ m \le (6N/\pi^{2})^{1/4}x}} \frac{V_{d}(m,N)}{V_{d}(N)}$$

and that $\Psi_d(-\infty) = 0$ and $\Psi_d(+\infty) = 1$. Hence, by using (1.7) and the fact that $V_d(m, N) = V_d(|m|, N)$, it is easy to deduce the following corollary by Abel's summation formula.

COROLLARY 1.4. The distribution function $\Psi_d(x)$ is the standard normal distribution on \mathbb{R} , that is,

$$\Psi_d(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-x^2/2} \, dx.$$

2. Proofs of the results

2.1. The proof of Proposition 1.2. By the Jacobi triple product formula,

$$(q;q)_{\infty}(-xq;q)_{\infty}(-x^{-1};q)_{\infty} = \sum_{n\in\mathbb{Z}} q^{n(n+1)/2} x^n,$$

the basic properties of the Kronecker symbol and (1.3),

$$\begin{split} \sum_{\substack{n \ge 0 \\ m \in \mathbb{Z}}} V_d(m,n) x^m q^n &= -\sum_{n \ge 0} (-1)^n q^{n(n+1)/2} x^{2n+1} \\ &+ \frac{1}{(q;q)_{\infty}} \sum_{\ell \in \mathbb{Z}} q^{\ell(\ell+1)/2} x^{-\ell} \sum_{n \ge 0} \left(\frac{-12}{2n+1}\right) x^n q^{n(n+1)/6} . \end{split}$$

This yields, for integer $r \ge 0$,

$$\begin{split} \sum_{n\geq 0} V_d(-r,n)q^n &= \frac{1}{(q;q)_{\infty}} \sum_{\substack{\ell-n=r\\\ell\in\mathbb{Z},n\geq 0}} \left(\frac{-3}{2n+1}\right) \left(\frac{2}{2n+1}\right)^2 q^{(1/6)n(n+1)+(1/2)\ell(\ell+1)} \\ &= \sum_{k\geq 0} p(k)q^k \sum_{n\geq 0} \left(\frac{-3}{2n+1}\right) q^{(1/6)n(n+1)+(1/2)(n+r)(n+r+1)} \\ &= \sum_{N\geq 0} q^N \sum_{n\geq 0} \left(\frac{-3}{2n+1}\right) p\left(N - \frac{2n(n+1)}{3} - rn - \frac{r(r+1)}{2}\right), \end{split}$$

which means that

$$V_d\left(-\ell, N + \frac{\ell(\ell+1)}{2}\right) = \sum_{n \ge 0} \left(\frac{-3}{2n+1}\right) p\left(N - \frac{2n(n+1)}{3} - n\ell\right)$$

for all integers $\ell \ge 0$. Since $V_d(-m, n) = V_d(m, n)$, we have proved (1.4) in Proposition 1.2. Further, if $2\ell + 4 > N$, then

$$V_d\left(\ell, N + \frac{|\ell|(|\ell|+1)}{2}\right) = p(N),$$

which gives (1.5) in Proposition 1.2.

[4]

N. H. Zhou

2.2. Asymptotic results for p(n). We need the following asymptotic result for p(n) proved by Hardy and Ramanujan in [12].

LEMMA 2.1. For $n \in \mathbb{Z}_+$,

234

 $p(n) - \hat{p}(n - 1/24) = O(n^{-1}e^{B\sqrt{n}/2}),$

where $B = 2\pi / \sqrt{6}$ and

$$\hat{p}(x) = \frac{e^{B\sqrt{x}}}{4\sqrt{3}x} \left(1 - \frac{1}{B\sqrt{x}}\right).$$

(These definitions for *B* and $\hat{p}(x)$ are used throughout this section.)

We also need the following approximation for p(X + r) with $r = o(X^{3/4})$.

LEMMA 2.2. For $r = o(X^{3/4})$ and X sufficiently large,

$$\frac{p(X+r)}{p(X)} = e^{Br/2\sqrt{X}} \left(1 + O\left(\frac{1}{X} + \frac{|r|}{X} + \frac{|r|^2}{X^{3/2}}\right)\right).$$

PROOF. From Lemma 2.1, it is clear that

$$\begin{aligned} \frac{\hat{p}(X+r)}{\hat{p}(X)} &= e^{B(\sqrt{X+r} - \sqrt{X})} \Big(1 + O\Big(\frac{|r|}{X}\Big) \Big) \\ &= e^{Br/2\sqrt{X} + O(r^2/X^{3/2})} \Big(1 + O\Big(\frac{|r|}{X}\Big) \Big) \\ &= e^{Br/2\sqrt{X}} \Big(1 + O\Big(\frac{|r|}{X} + \frac{|r|^2}{X^{3/2}}\Big) \Big) \end{aligned}$$

by the generalised binomial theorem. Since

$$\frac{p(N)}{\hat{p}(N)} = 1 + O\left(\frac{1}{N}\right)$$

for all $N \ge 1$,

$$\frac{p(X+r)}{p(X)} = e^{Br/2\sqrt{X}} \left(1 + O\left(\frac{1}{X} + \frac{|r|}{X} + \frac{|r|^2}{X^{3/2}}\right)\right),$$

which completes the proof of the lemma.

2.3. The proof of Theorem 1.3.

2.3.1. *Case* $|\ell| > \sqrt{N} (\log N)^2$. Define

$$F(\ell, N) := V_d \left(\ell, N + \frac{|\ell|(|\ell| + 1)}{2}\right).$$
(2.1)

For $N/2 \ge |\ell| > \sqrt{N}(\log N)^2$, from Proposition 1.2 and Lemma 2.2,

$$\begin{split} F(\ell,N) &= \sum_{\substack{n \ge 0\\2n(n+1)/3+n|\ell| \le N}} \left(\frac{-3}{2n+1}\right) p \left(N - \frac{2n(n+1)}{3} - n|\ell|\right) \\ &= p(N) + O\left(\sum_{\substack{n \ge 2\\2n(n+1)/3+n\ell \le N}} p(N-n|\ell|)\right) \\ &= p(N) + O(\sqrt{N}p(N-2|\ell|)) = p(N) + O(\sqrt{N}p(N-\lfloor\sqrt{N}(\log N)^2\rfloor)) \\ &= p(N) \left(1 + O\left(\sqrt{N}\exp\left(-\frac{B\lfloor\sqrt{N}(\log N)^2\rfloor}{2\sqrt{N}}\right)\right)\right), \end{split}$$

where $\lfloor \cdot \rfloor$ is the greatest integer function. Hence, for $N/2 \ge |\ell| > \sqrt{N} (\log N)^2$,

$$F(\ell, N) = p(N)(1 + O(N^{-\sqrt{\log N}})).$$
(2.2)

2.3.2. Case $|\ell| \leq \sqrt{N} (\log N)^2$. Since

$$\left(\frac{-3}{2n+1}\right) = \begin{cases} 1 & \text{if } n \equiv 0 \mod 3, \\ 0 & \text{if } n \equiv 1 \mod 3, \\ -1 & \text{if } n \equiv 2 \mod 3 \end{cases}$$

for $0 \le \ell \le \sqrt{N} (\log N)^2$,

$$F(\ell, N) = \sum_{n \ge 0} \left(\frac{-3}{2n+1}\right) p\left(N - \frac{2n(n+1)}{3} - n\ell\right)$$

=
$$\sum_{n \ge 0} [p(N - Q_1(n, \ell)) - p(N - Q_2(n, \ell))],$$

where

 $Q_1(n,\ell)=2n(3n+1)+3n\ell \quad \text{and} \quad Q_2(n,\ell)=Q_1(n,\ell)+(8n+4+2\ell).$ We split the sum into two parts:

$$\frac{F(\ell, N)}{p(N)} = \frac{1}{p(N)} \sum_{\substack{n \ge 0 \\ n^2 + n\ell > \sqrt{N}(\log N)^2}} [p(N - Q_1(n, \ell)) - p(N - Q_2(n, \ell))] + \frac{1}{p(N)} \sum_{\substack{n \ge 0 \\ n^2 + n\ell \le \sqrt{N}(\log N)^2}} [p(N - Q_1(n, \ell)) - p(N - Q_2(n, \ell))] =: R + I.$$

Noting that $Q_2(n, \ell) \ge Q_1(n, \ell) \ge n^2 + n\ell$ for all $n \ge 0$, we can estimate *R* by

$$\begin{aligned} |R| &\leq \frac{2}{p(N)} \sum_{\substack{n \geq 0 \\ n^2 + n\ell > \sqrt{N}(\log N)^2}} p(N - Q_1(n, \ell)) \\ &\leq \frac{2}{p(N)} \sum_{\substack{n \geq 0 \\ n^2 + n\ell > \sqrt{N}(\log N)^2}} p(N - (n^2 + n\ell)) \leq 2\sqrt{N} \frac{p(N - \lfloor \sqrt{N}(\log N)^2 \rfloor)}{p(N)}. \end{aligned}$$

Thus, from Lemma 2.2,

$$R \ll \sqrt{N} e^{-B\lfloor \sqrt{N} (\log N)^2 \rfloor/2 \sqrt{N}} \ll N^{-\sqrt{\log N}}.$$

To estimate *I*, we note that

$$0 \le Q_1(n,\ell) \le Q_2(n,\ell) \le 16(n^2 + n\ell) + 2\ell + 4 = O(\sqrt{N}(\log N)^2)$$

for $n \ge 0$ and $n^2 + n\ell \le \sqrt{N}(\log N)^2$. By Lemma 2.2,

$$\begin{split} I &= \sum_{n \ge 0} \left(e^{-BQ_1(n,\ell)/2 \sqrt{N}} - e^{-BQ_2(n,\ell)/2 \sqrt{N}} \right) \\ &- \sum_{\substack{n \ge 0 \\ n^2 + n\ell > \sqrt{N}(\log N)^2}} \left(e^{-BQ_1(n,\ell)/2 \sqrt{N}} - e^{-BQ_2(n,\ell)/2 \sqrt{N}} \right) \\ &+ O\left(\sum_{i=1}^2 \sum_{\substack{n \ge 0 \\ n^2 + n\ell \le \sqrt{N}(\log N)^2}} e^{-BQ_i(n,\ell)/2 \sqrt{N}} \left(\frac{1}{N} + \frac{Q_i(n,\ell)}{N} + \frac{Q_i(n,\ell)^2}{N^{3/2}} \right) \right) = I_M + I_R \end{split}$$

with

$$I_M = \sum_{n \ge 0} \left(e^{-BQ_1(n,\ell)/2\sqrt{N}} - e^{-BQ_2(n,\ell)/2\sqrt{N}} \right)$$

and

$$\begin{split} I_R \ll & \sum_{\substack{n \ge 0 \\ n^2 + n\ell > \sqrt{N}(\log N)^2}} e^{-B(n^2 + \ell n)/\sqrt{N}} + \sum_{\substack{n \ge 0 \\ n^2 + n\ell \le \sqrt{N}(\log N)^2}} \frac{(\log N)^4}{N^{1/2}} e^{-B(n^2 + n\ell)/2\sqrt{N}} \\ \ll & N^{-\sqrt{\log N}} + N^{-1/2}(\log N)^4 \sum_{\substack{n \ge 0 \\ n^2 + n\ell \le \sqrt{N}(\log N)^2}} 1 \ll N^{-1/4}(\log N)^5. \end{split}$$

We conclude that

$$F(\ell, N)/p(N) = I_M + O(N^{-1/5})$$
(2.3)

for $0 \le \ell \le \sqrt{N} (\log N)^2$. To estimate I_M , we need the following lemma.

LEMMA 2.3. Let $0 \le \ell = o(\alpha^{-1})$. Then, as $\alpha \to 0^+$,

$$f(\alpha) := \alpha \sum_{n \ge 0} (4n + \ell) e^{-2\alpha n^2 - \alpha n\ell} = 1 + O(\sqrt{\alpha} + |\alpha\ell|).$$

PROOF. By Abel's summation formula, or integration by parts for a Riemann–Stieltjes integral,

236

$$\begin{aligned} f(\alpha) &= 4\alpha \sum_{n\geq 0} (n+\ell/4) e^{-2\alpha(n+\ell/4)^2 + \alpha\ell^2/8} \\ &= 4\alpha e^{\alpha\ell^2/8} \int_{0-}^{\infty} e^{-2\alpha(x+\ell/4)^2} d\left(\sum_{0\leq n\leq x} (n+\ell/4)\right) \\ &= 4\alpha e^{\alpha\ell^2/8} \left(\int_{0}^{\infty} e^{-2\alpha(x+\ell/4)^2} d\left(\frac{x^2}{2} + \frac{x\ell}{4}\right) + O\left(\alpha \int_{0}^{\infty} (x+\ell/4)^2 e^{-2\alpha(x+\ell/4)^2} dx\right)\right) \\ &= 4\alpha e^{\alpha\ell^2/8} \left(\int_{\ell/4}^{\infty} x e^{-2\alpha x^2} dx + O\left(\alpha \int_{\ell/4}^{\infty} x^2 e^{-2\alpha x^2} dx\right)\right) \\ &= e^{\alpha\ell^2/8} \int_{\alpha\ell^2/8}^{\infty} e^{-x} dx + O\left(\sqrt{\alpha} e^{\alpha\ell^2/8} \int_{\alpha\ell^2/8}^{\infty} x^{1/2} e^{-x} dx\right) = 1 + O(\sqrt{\alpha} + |\alpha\ell|), \end{aligned}$$

which completes the proof of the lemma.

We now evaluate I_M . By the definitions of $F(\alpha)$ and I_M , for $\ell \ge N^{3/8}$,

237

 $I_M = \sum_{0 \le n \le N^{1/5}} \left(e^{-BQ_1(n,\ell)/2\sqrt{N}} - e^{-BQ_2(n,\ell)/2\sqrt{N}} \right) + O(N^{-\sqrt{\log N}})$ $= \sum_{0 \le n \le N^{1/5}} e^{-B(3n+1)n/\sqrt{N}} (1 - e^{-B(\ell+4n)/\sqrt{N}}) e^{-3Bn\ell/2\sqrt{N}} + O(N^{-\sqrt{\log N}})$ $= (1 + O(N^{-1/10})) \sum_{\Omega < n < N^{1/5}} (1 - e^{-B(\ell + 4n)/\sqrt{N}}) e^{-3Bn\ell/2\sqrt{N}} + O(N^{-\sqrt{\log N}})$ $= (1 + O(N^{-1/10})) \frac{1 - e^{-B\ell/\sqrt{N}}}{1 - e^{-3B\ell/2\sqrt{N}}} = (1 + O(N^{-1/10}))F\left(\frac{B\ell}{2\sqrt{N}}\right)$

and, for $0 \le \ell \le N^{3/8}$,

$$\begin{split} I_M &= \sum_{0 \le n \le N^{2/5}} \left(e^{-Bn/\sqrt{N}} - e^{-B(5n+\ell)/\sqrt{N}} \right) e^{-B(6n^2 + 3n\ell)/2\sqrt{N}} + O(N^{-\sqrt{\log N}}) \\ &= (1 + O(N^{-1/10})) \sum_{0 \le n \le N^{2/5}} \frac{B(4n+\ell)}{\sqrt{N}} e^{-B(6n^2 + 3n\ell)/2\sqrt{N}} + O(N^{-\sqrt{\log N}}) \\ &= (1 + O(N^{-1/10})) \frac{B}{\sqrt{N}} \sum_{n \ge 0} (4n+\ell) e^{-B(6n^2 + 3n\ell)/2\sqrt{N}} + O(N^{-\sqrt{\log N}}) \\ &= \frac{2}{3} (1 + O(N^{-1/10})) (1 + O(N^{-1/4} + \ell N^{-1/2})) = (1 + O(N^{-1/10})) F\left(\frac{B\ell}{2\sqrt{N}}\right) \end{split}$$

by the use of Lemma 2.3. Thus, for $0 \le \ell \le \sqrt{N} (\log N)^2$,

$$F(\ell, N) = p(N)F\left(\frac{\pi\ell}{\sqrt{6N}}\right)(1 + O(N^{-1/10}))$$
(2.4)

from (2.3) and the definition $B = 2\pi / \sqrt{6}$.

Finally, by using (2.1), (2.2), (2.4) and the fact that $V_d(m, n) = V_d(|m|, n)$, we finish the proof of (1.6). By using (1.2), (1.6) and Lemma 2.1, we obtain the proof of (1.7), which completes the proof of Theorem 1.3.

Acknowledgement

The author would like to thank the referee for very helpful and detailed comments and suggestions which prompted Corollary 1.4 and greatly improved the paper.

References

- [1] G. E. Andrews, 'Concave and convex compositions', Ramanujan J. 31(1-2) (2013), 67-82.
- [2] G. E. Andrews and F. G. Garvan, 'Dyson's crank of a partition', *Bull. Amer. Math. Soc. (N.S.)* 18(2) (1988), 167–171.
- [3] G. E. Andrews, R. C. Rhoades and S. P. Zwegers, 'Modularity of the concave composition generating function', *Algebra Number Theory* **7**(9) (2013), 2103–2139.
- [4] K. Bringmann and J. Dousse, 'On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions', *Trans. Amer. Math. Soc.* **368**(5) (2016), 3141–3155.
- [5] K. Bringmann and K. Mahlburg, 'An extension of the Hardy–Ramanujan circle method and applications to partitions without sequences', *Amer. J. Math.* 133(4) (2011), 1151–1178.
- [6] K. Bringmann and J. Manschot, 'Asymptotic formulas for coefficients of inverse theta functions', *Commun. Number Theory Phys.* 7(3) (2013), 497–513.
- [7] K. Byungchan, K. Eunmi and S. Jeehyeon, 'Asymptotics for *q*-expansions involving partial theta functions', *Discrete Math.* 338(2) (2015), 180–189.
- [8] J. Dousse and M. H. Mertens, 'Asymptotic formulae for partition ranks', *Acta Arith.* **168**(1) (2015), 83–100.
- [9] F. J. Dyson, 'Some guesses in the theory of partitions', *Eureka* 8 (1944), 10–15.
- [10] F. J. Dyson, 'Mappings and symmetries of partitions', J. Combin. Theory Ser. A 51(2) (1989), 169–180.
- [11] F. G. Garvan, 'New combinatorial interpretations of Ramanujan's partition congruences mod 5, 7 and 11', *Trans. Amer. Math. Soc.* 305(1) (1988), 47–77.
- [12] G. H. Hardy and S. Ramanujan, 'Asymptotic formulae in combinatory analysis', Proc. Lond. Math. Soc. (2) 17 (1918), 75–115.
- [13] R. Mao, 'Asymptotic inequalities for k-ranks and their cumulation functions', J. Math. Anal. Appl. 409(2) (2014), 729–741.
- [14] D. Parry and R. C. Rhoades, 'On Dyson's crank distribution conjecture and its generalizations', *Proc. Amer. Math. Soc.* 145(1) (2017), 101–108.

NIAN HONG ZHOU, School of Mathematical Sciences, East China Normal University, Shanghai 200241, PR China e-mail: nianhongzhou@outlook.com