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High-speed water entry is a transient hydrodynamic process that is accompanied by
strongly compressible flow, free surface splash, cavity evolution and other nonlinear
hydrodynamic phenomena. To address these problems, a novel fluid—structure interaction
(FSI) scheme based on the immersed boundary method is proposed which is suitable
for strongly compressible multiphase flows. In this scheme, considering the multiphase
interfaces at the immersed boundary, an improved immersed boundary method for
effectively suppressing the non-physical force oscillation is proposed. Additionally, a
quaternion-based six degrees of freedom motion system is used to describe rigid body
motion, and the multiphase flow Eulerian finite element method is applied as the fluid
solver. Using analytical solutions, experimental data and literature data, the accuracy and
robustness of the FSI scheme are validated. Finally, the high-speed water entry of the
slender body with different noses is investigated, and the hydrodynamic loads including
the axial and normal drag forces and the bending moment are extensively discussed. The
hydrodynamic load and motion trajectory are determined by the nose configuration. The
tail slamming phenomenon is the primary focus, and it is revealed that its formation is
primarily related to the pitch moment formed at the stage of crossing the free surface.
Tail slamming also causes violent impact loads, especially bending moments, which may
cause slender projectiles to break off. Finally, to combine the features of the flat and
hemispherical noses, the water entry of the projectile with a truncated hemispherical nose
is simulated and discussed.
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1. Introduction

Water entry of vehicles widely exists in the fields of aeronautics, astronautics and
military weapons, i.e. aerial-underwater and air-drop vehicles. With the development
of technology, the water-entry velocity of vehicles is increasing, reaching hundreds of
metres per second. The process of high-speed water entry is a transient process with
strong nonlinear characteristics. In this process, the vehicle structure suffers severe
hydrodynamic loads which may not only cause the deformation and damage of the
thin structures but also lead to the malfunction of internal instruments. Moreover, the
hydrodynamic loads affect and determine the characteristics and stability of the trajectory.
High-speed water entry usually occurs within a very short period of time and is usually
accompanied by nonlinear flow phenomena such as water impact, free surface splash,
air entrainment and cavity evolution. Such behaviour poses great challenges in fluid
mechanics.

High-speed water entry is a classical hydrodynamic problem. The related water-entry
work can be found dating back to the beginning of the last century. The pioneering work on
the theoretical research of water impact was carried out by Von Karman (1929) and Wagner
(1932). Then, for impacting bodies with small deadrise angles, Cointe & Armand (1987)
and Howison, Ockendon & Wilson (1991) further developed and extended Wanger’s
theory through the matched asymptotic expansions. Dobrovol’skaya (1969), Semenov &
Iafrati (2006) and Semenov & Wu (2016) presented similarity solutions for wedges that
enter the water surface with a constant velocity. Previous methods were designed and
developed for two-dimensional asymmetric objects (Semenov & Iafrati 2006; Faltinsen &
Semenov 2008; Semenov & Wu 2019), arbitrary section bodies (Zhao & Faltinsen 1993;
Mei, Liu & Yue 1999), axisymmetric three-dimensional objects (Shiffman & Spencer
1951; Hulin et al. 2022) and three-dimensional simple objects (Korobkin & Scolan 2006;
Tsaousis, Papadopoulos & Chatjigeorgiou 2020). However, these studies are based on
potential flow theory, and the liquid is assumed to be incompressible. When the impact
velocity is high and/or the object is blunt enough, it is necessary to take into account the
compressibility of the fluid (Skalak & Feit 1966; Korobkin & Pukhnachov 1988). Previous
researchers examined the impact of water on compressible fluids (Korobkin 1992, 1994).
However, in most cases, the liquid is assumed to be ideal and weakly compressible, and
shock waves induced by the impact are described based on the acoustic approximation.
Eroshin’s experiments indicated that the maximum impact force by the linear acoustic
approximation is lower than the experimental results for high-speed water entry (Eroshin
et al. 1980). Furthermore, the theoretical methods have two other limitations: they are only
suitable for the initial stage of water-entry processes, and the presence of air is not taken
into account.

In addition to theoretical research, researchers have also carried out various water-entry
experiments including different nose shapes (Thoroddsen et al. 2004; Truscott, Epps &
Techet 2012; Bodily 2013; Marston et al. 2016), spinning bodies (Truscott & Techet
2009; Kiara, Paredes & Yue 2017), hydrophobic and hydrophilic objects (Aristoff &
Bush 2009; Techet & Truscott 2011; Yi et al. 2021) and air cushion effects (Chuang
1966; Eroshin et al. 1984; Ermanyuk & Ohkusu 2005; Ma et al. 2016). Published
research on high-speed water entry is rare. Several experimental studies looked at the
trajectory and cavity of high-speed projectiles (Abelson 1970; Waugh & Stubstad 1972;
Hrubes 2001; Shi & Kume 2001; Truscott 2009; Chen et al. 2019b; Kiyama et al.
2019; Guo et al. 2020), and the research on strong loading is insufficient (May &
Woodhull 1948; Eroshin et al. 1980; Truscott, Epps & Belden 2014). Due to the limitations
of experimental technology and measurement equipment, the size of the experimental
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projectile is relatively small, and the collection of experimental information and data is
difficult.

With the advancement of computer technology, computational fluid dynamics (CFD)
techniques have gradually become an important and useful tool to solve high-speed
water-entry problems and have the advantage of capturing the detailed characteristics
of flow fields. Zhao & Faltinsen (1993), Iafrati (2000) and Wu, Sun & He (2004)
developed the boundary element method (BEM) with a jet flow approximation for the
two-dimensional water entry with arbitrary cross-section. Battistin & Iafrati (2003), Sun
& Wu (2013) and Wu & Sun (2014) extended the BEM to an axisymmetric model and a
three-dimensional model. Park, Jung & Park (2003) developed the source plane method
to compute the impact forces and ricochet behaviour of the body during water entry. In
addition, various approaches were proposed and developed to study water-entry problems,
including smoothed particle hydrodynamics (SPH) method (Oger et al. 2006; Yuan et al.
2022) and finite volume method (FVM) (Kleefsman et al. 2005; Hong, Wang & Liu 2019).
In terms of high-speed water entry, preliminary research has been carried out, mainly
focusing on impact load (Hong ef al. 2019), load-reducing buffers (including various foam
materials, springs and so on) (Shi, Gao & Pan 2019; Li et al. 2021a; Li, Zong & Sun
2021b), trajectory and stability (Li, Lu & Cai 2020; Wang et al. 2021), cavity formation
and evolution (Guo ef al. 2012; Chen et al. 2019a; Sun et al. 2020), etc. To date, numerical
research on high-speed water impact is not rich, and the tail slamming phenomenon has
rarely been addressed. The strong impact and strong nonlinearity of high-speed water entry
pose great challenges to the robustness and stability of CFD methods.

Among the various CFD methods, the immersed boundary (IB) method (Iaccarino
& Verzicco 2003; Mittal & Taccarino 2005; Griffith & Patankar 2020) is an important
approach for fluid—structure interaction (FSI) problems and is widely utilized due to its
excellent ability to deal with complex boundaries (Mittal et al. 2008; Luo et al. 2019;
Zhou et al. 2020; Ou et al. 2022). The IB method employs Euler grids for the flow field
and Lagrangian grids for the boundary to address the FSI problems (see figure 1) and
introduces body forces into the momentum equation to represent the effect of complex
boundaries on the flow. The key challenge in developing the IB methods is the calculation
of the body force. Calculation of the body force for the rigid boundary includes the
penalty IB method (Goldstein, Handler & Sirovich 1993; Lai & Peskin 2000; Kim 2003;
Kim & Peskin 2016) (also known as the feedback forcing method) and the direct forcing
method (Mohd-Yusof 1997; Fadlun et al. 2000). In the first method, a rigid boundary is
attached to an equilibrium location by a damped oscillator with a zero resting length. The
empirical coefficients (i.e. spring constant and damped coefficient) are employed in the
calculation of the body force, which may cause severe stability constraints or spurious
elastic effects. In the second method, the direct forcing method proposed by Mohd-Yusof
(1997) removes the uncertainties of the empirical coefficients, and velocity reconstruction
is employed to calculate the force. However, severe force oscillations usually occur for
flows with moving boundaries. Yang et al. (2009) and Gazzola et al. (2011) recommended
that the smooth discrete delta function be employed to avoid the spurious elastic effects
and force oscillations mentioned above. The implicit scheme is also recommended since
the boundary condition can be satisfied easily (Le et al. 2009; Obeidat & Bordas 2019;
Yu & Pantano 2022). Different IB methods have their own advantages and disadvantages
for flows with moving boundaries. Such deficiencies, i.e. spurious force oscillations, are
usually minimal in the penalty IB method due to the smooth distribution from solid to
fluid (Liao et al. 2010).

Previous approaches based on the penalty IB method were designed and developed for
single-phase flow problems, e.g. flow over cylinders, flow over flexible airfoils and blood
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Figure 1. Sketch of immersed boundary for (@) single-phase flow (fluid grid contains one fluid phase, forming
a liquid—solid interface or gas—solid interface) and () multiphase flow (fluid grid contains multiple fluid phases,
forming a gas—liquid—solid interface). Fluid domain 2 is discretized with fixed Cartesian grids, and surface of
rigid body is discretized as an immersed boundary I". Concentrated nodal masses of fluid grid a are basically
uniform, but concentrated nodal masses of fluid grid b are uneven due to presence of the multiphase interface.

flow in heart valves (Peskin 1982; Wu, Shu & Zhang 2010; Wang et al. 2017). The fluid grid
near the IB is generally homogeneous, i.e. the fluid grid contains one fluid phase, as shown
in figure 1(a). However, in multiphase flow problems, the fluid grid near the boundary
may contain multiple fluid phases, e.g. the free surface, as shown in figure 1(b). Since the
discrete delta function is determined only by the distance parameter in the previous penalty
IB methods, numerical instability and spurious force oscillation will occur for multiphase
flow problems, especially for multiphase flow with high density ratios. To tackle this issue,
Wang et al. (2017) added a partitioned iterative manner to the penalty IB method and used
a four-point delta function as a distribution function to study a flexible plate moving across
a multiphase flow. Tian et al. (2021b) proposed a force distribution technique by adding the
term of fluid mass weight to address the low-speed water entry of spheres. The motivation
of this work is to seek a novel IB formulation for FSI problems involving multiphase flow
and strong impact.

In the present work, a novel FSI scheme to deal with high-speed water entry is proposed.
This FSI scheme is based on an improved IB method, which is designed considering the
mass difference at the multiphase interface. It is simple to implement and is efficient
in controlling spurious force oscillation. In addition, unit quaternions are used instead
of Euler angles to describe the spatial orientations and rotations of rigid bodies in
three-dimensional space due to the issue of gimbal lock, which always occurs when
using Euler angles to describe the rotation of a three-dimensional object because of the
singularity that occurs whenever the first rotation axis is aligned with the third rotation
axis. Considering the compressibility of fluid and the presence of air, the multiphase
Euler finite element method (EFEM) (Benson 1992a) is introduced as the fluid solver.
Using these improvements and measures mentioned above, an efficient FSI scheme is
constructed. The present scheme is validated by a variety of numerical cases. Based on
this FSI scheme, the hydrodynamic process of high-speed water entry of a slender body
with different noses is investigated, including the two stages of the initial water impact and
tail slamming.

This paper is structured as follows. The theoretical model and numerical methodology
are reported in detail in §2. To validate the accuracy and capability of the present
FSI scheme, three numerical cases of water entry are carried out in §3. In §4, the
hydrodynamic loads of high-speed oblique water entry with different noses are analysed
and discussed. Finally, conclusions are drawn in § 5.
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2. Theoretical methodology and mathematical model

This section describes the details of the novel fluid—structure interaction scheme. The
FSI treatment in this scheme is performed based on the improved IB method, which can
handle multiphase flow problems during high-speed water entry. The multiphase EFEM
was developed with the parallelization technique for fluid simulation. A quaternion-based
six degrees of freedom (6-DOF) system is implemented as the rigid body motion solver.

2.1. Problem description of high-speed water entry

High-speed water entry of the slender body of revolution is investigated numerically in
this work. The IB method (Mittal & Iaccarino 2005; Griffith & Patankar 2020), which
is widely applied in FSI problems, is used to replicate this process. The fluid (water and
air) is described by Eulerian grids on account of the large deformation and splash of the
free surface during water entry. It is convenient to formulate the motion of the slender
body by Lagrangian grids. In the numerical implementation, fluid grids (Eulerian grids)
and surface grids of the body (Lagrangian grids) overlap (see figure 1), and there is no
effect between the two sets of grids except around the IB. That is, the fluid motion and
body motion are solved separately, and some treatments are employed for the coupling
interface, i.e. the IB.

The numerical model for high-speed water entry is established in the framework of
the IB method, as illustrated in figure 2. The slender body of revolution enters the still
water with an initial velocity vp and initial angle 6. Initial angle 6y is the angle between
the rotating axis and the horizontal free surface. The domain size of the fluid field is
L x W x H, and the water depth is D. The origin of the inertial reference frame is set up
at the intersection of the rotating axis and the horizontal free surface, which is defined
as the global coordinate system (GCS), i.e. (xyz). In addition, a body reference frame
fixed with a slender body is set to describe the motion of the body, of which the origin
coincides with the centre of gravity G. This body reference frame is defined as the local
coordinate system (LCS), i.e. (xpypzp). Both frames of reference are represented using a
Cartesian coordinate system. To facilitate the subsequent discussion of the hydrodynamic
loads exerted on the body, it is specified here that the direction of the x; axis is along the
axial direction of the body, and the direction of the z; axis is along the normal direction.
The dimensionless coefficients are commonly used to characterize the water impact loads.
The axial drag coefficient and the normal drag coefficient are respectively defined as

F
Cop = ——5——, 1)
0.5pv5mR?
Fu
Cp=—-"7——, 2.2
& 0.50v5TR2 (22)

where F, is the axial force on the projectile, F,;, is the normal force on the projectile,
p is the density of water, vg is the initial water-entry velocity and R is the radius of the
projectile. In addition, it is marked that # = 0 ms when the body contacts the free surface
in the present work. In the following, the FSI treatment, fluid solver and rigid body motion
solver are presented in sequence.

2.2. Immersed boundary method for FSI treatment

The core of the IB method represents the interaction between the complex boundary and
fluid through a body-force field f added to the momentum equation of the fluid, as shown
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Figure 2. Schematic diagram of model of high-speed water entry. Slender body of revolution enters the still
water, where initial velocity is vg, initial angle is 6y and gravitational acceleration is g. Domain size of fluid
field (including water and air) is L x W x H, and water depth is D. Global coordinate system (xyz) is set up at
intersection of rotating axis and horizontal free surface. Local coordinate system (xpypzp) is fixed with gravity
centre G of the slender body, where the xj-axis points to head along revolving axis, the yp-axis is in same
direction as y-axis at initial moment and the z-axis is determined by the right-hand rule.

in figure 3. Therefore, the governing equations of fluid can be discretized and solved on a
regular grid to retain the advantages of accuracy and efficiency. The governing equations
of the IB method (Kim 2003) can be written as

fe =Y FX.08xX.1). (2.3)
r

(X, ) =) v(x.08xX, 1), (2.4)
2

where 2 represents the whole fluid field, and I" represents the boundary of the body, also
known as the IB; x, v and f are the coordinates of the fluid grid node, the fluid velocity
and the body force acting on the fluid, respectively; X and F represent the coordinates of
the boundary node and the coupling forces from the IB to the fluid, respectively; § is a
Dirac delta function and is usually replaced by a discrete delta function used to interpolate
the variables from the boundary node to the fluid grid node. In previous research, various
smoothed discrete delta functions were proposed to suppress the non-physical oscillations
of the coupling force. However, the smoothing of these functions also weakens the sharp
representation of the IB. The simple bilinear/trilinear interpolation function (also called
the shape function in EFEM) is used as the Dirac delta function in the present numerical
scheme.

2.2.1. Penalty IB method

In the penalty IB method (Kim 2003; Kim & Peskin 2016), also known as the feedback
forcing method (Goldstein et al. 1993), the coupling force between the fluid and the body
can be determined by

t
F(X,t):K/ VX, o)—vX,))dt+CV(X,H)—v(X,0), (2.5)
0
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Figure 3. Sketch of coupling force in IB method. Coupling force F is calculated from fluid field at position of
boundary node X and then interpolated to surrounding fluid grid node x to obtain body force f'. Reacting force
—F is exerted on the body.

where V(X t) and V(X t) denote the velocity of boundary node X, v(X, t) and v(X, 1)
denote the interpolated fluid velocity at boundary node X, i.e. (2.4). Here, K and C are
free constants according to the problem being solved. For the inviscid fluid and the rigid
body, the free-slip conditions hold at the interface. The boundary coupling force is exerted
only in the normal direction of the boundary I”, as shown in figure 4(a), and is given as

FX,n={KAt[lVX,)—vX,0]-n(X,1)
+CVX,n—vX,n]l-nX,0)}nX,1), (2.6)

where n is the unit normal vector of the boundary I, and At is the time increment.
From a physical point of view, it can be regarded as a damped simple harmonic oscillator
placed between the boundary and the fluid interface for the consistent motion of the
IB (see figure 4b). Hence, K is regarded as the spring stiffness, and C is the damping
coefficient. Aquelet, Souli & Olovsson (2006) proposed a coefficient formula to define the
two coefficients K and C, and the formula for K is expressed as

[S&x, ]

K=k D=y xy

Ky (X,1), (2.7)

where K} is the bulk modulus of the fluid cell containing the boundary node X, and V is
the volume of the fluid cell; S is the average area of the body surface grids connected to
the boundary node X; py is an empirical coefficient with a range of 0 < py < 1. A larger
pr value may cause instabilities, and py is generally set to 0.1. Also, C is taken as the
critical damping coefficient of the spring system to eliminate numerical oscillations and is

calculated by
C=CX,n=2JyKX,nm(X,1), (2.8)

where m(X, ¢) is the fluid mass obtained by interpolation at the boundary node, that is,

mX, 1) = Z m(x, )8(x, X, 1), (2.9)
2

where m(x, t) is concentrated nodal mass corresponding to the component of the lumped
mass matrix described in (2.37) in § 2.3, which is the average mass of the connected fluid
cells.
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Figure 4. Sketch of coupling force calculation in the IB method. (@) The IB (red solid line) and the fictitious
fluid interface (green solid line) coincide at ¢ = #,,. After one time increment Ar without FSI treatment, they
(dashed line) deviate from each other with the respective velocities ¥ and v. A pair of equal and opposite forces
F and —F in the normal direction to the surface are exerted on the fictitious fluid interface and IB, respectively,
to counteract their deviation. (b) In the penalty IB method, the coupling force F is determined by a damped
oscillator with a zero resting length, which is used to connect the boundary node (red hollow dot) and fictitious
fluid point (green solid dot). Here, K and C are artificial empirical coefficients and are regarded as the spring
stiffness and damping coefficient from a physical point of view. (¢) In the present IB method, the coupling
force F is directly calculated based on the velocity difference AV between the boundary node and the fictitious
fluid point, where m (X, t) is the fluid mass obtained by interpolation at the boundary node.

The resultant force Fy and moment Ty exerted by the fluid on the rigid body are given
by
Fr(=-) FX.0,
r (2.10)
Tr()=-> (X—G) xF(X,0.
r

With its inherent advantage of momentum conservation, the penalty IB method has been
extensively applied to the study of FSIs by many researchers. The details of the numerical
scheme can be found in Aquelet ez al. (2006), Wang & Guedes Soares (2014) and Tian
et al. (2021D).

2.2.2. Improved IB method

Since the violent water impact is usually inertia dominated, fluid viscosity is currently

ignored. Therefore, the free-slip condition (Anderson 1995) holds on the IB for the inviscid

fluid and the rigid body. On the IB I, it satisfies
AVX,n=[VX,H—-vX,)]-n(X,t)=0. (2.11)

Without the FSI treatment, AV # 0 is self-evident at the next time increment, as shown
in figure 4(a). To eliminate the velocity difference AV between the boundary node and the

fictitious fluid point (see figure 4¢), the novel coupling force F at the boundary node X in
one time increment At is directly defined as

FX,n=mX,NAX,1), (2.12)
where m(X, 1) is the fluid mass calculated by (2.9), and A (X, 7) is defined as
AV* (X, 1) [V*&X.n—v* X, 0] -n(X,0)
At At

where the superscript * represents the variables calculated at the next time increment
without FSI treatment. Namely, v* (X, 7) denotes the interpolated fluid velocity by solving
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the momentum equation without taking into account the body-force field. However, since
the coupling force is zero, V* (X, £) is replaced by the boundary node velocity at the current
moment, i.e. V' (X, ). Thus,

[VX.0)—v*X,0]-n(X,0)

FX,H)=mX,1 X

nX,t). (2.14)

In the conventional IB method, the coupling force F(X,1) is distributed to the
surrounding fluid grid nodes through the Dirac delta function, as in (2.3), that is,

fe. X, D=FX.0)8x.X.0) =8 X,0mX,HAX,1). (2.15)

The Dirac delta function is dependent only on the distance parameters. When the
fluid cells near the IB contain free surfaces or multiphase interfaces, the conventional
methods may cause discontinuities in the flow velocity due to the uneven mass distribution.
This will cause non-physical force oscillations, numerical instability and even interface
disturbance.

Substituting (2.9) into (2.12), we obtain

FX,)=AX, 1 Z m(x, 1)8(x, X, 1). (2.16)
2

Itis noticeable that (2.16) contains the summation term for the mass of surrounding fluid
grid nodes. With this feature, we can assign the force to the surrounding fluid nodes as

fe. X, =mx,DAX, )8 x X,1). 2.17)

By combining (2.16) and (2.17), we can obtain

FX.)=AX.D)Y mx0sx.X. 0= AX.)mx Déx.X. 0= fx.X.0,
2 2 2

(2.18)

which indicates that the novel force distribution method still satisfies linear momentum
conservation. _
Integrating f(x, X, ) over the IB I", we obtain the body-force field exerted on the fluid:

fe.n=> fexX0. (2.19)
r

The ratio of the fluid grid size to the boundary grid size in the IB method is
generally greater than one to ensure the robustness of the numerical scheme and is set
to approximately two in the present numerical scheme. The term [S(X, N1?/V(X, 1) in
(2.7) represents the correction for the difference in grid sizes. Similarly, the dimensionless
coefficient A is defined to consider the discrepancy between the fluid grids and boundary
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grids, that is,
SX, 1)

V&, n]”

Adding the dimensionless coefficient A to (2.19), the novel fluid body-force field can be
obtained as

fan=)Y AX.0f(x.X.1
r

AX, 1) = (2.20)

[VX.0)—v*X,0]-n(X,0)
At

=m (x, z)Z S ’])2/3 n(X.08x X.1).

[V,
(2.21)

Therefore, the novel coupling force is calculated as

FX.)=21X.0AX.0) Y mx,08(x.X.1)
2
SX,n [V&X.0—-v"X,0]-nX,0

T v o At

nX, 1 Zm(x, NS(x, X, 1).
2
(2.22)

According to (2.10), the resultant forces and moments on the rigid body can also be
obtained as

Fr(n) = —ZF(X, 0,
r

) (2.23)
Tr()=-) X—-G) xFX,0.
r

2.2.3. Comparison between penalty IB method and present IB method

Although the calculations of body force in the above two methods are completely different,
as one is a spring system and the other is directly calculated based on velocity difference
AV, they lead to expressions with very similar structures. In the penalty IB method, the
body force f is deduced by (2.3) and (2.6), and the formula can be reorganized as

f&x0 :Z[K(X,I)At—l— CX,n]AVX,HnX, 1) (x, X, 1). (2.24)
r

In the improved IB method, the body force f is rewritten in a similar form as

AX, 0
At

fan=mxny AVF (X, Hn (X, 1) 8 (x, X, D). (2.25)
r

Observing the two expressions for the body force, it can be found that both of them
are proportional to velocity difference AV, but the coefficients are different. This also
conforms to the core of the IB method, which is that the fluid velocity near the IB is
reconstructed with the body force added into the momentum equation of the fluid for
consistent motion of the FSI interface.
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In the classical IB method, the coupling force is distributed to the surrounding fluid grid
nodes through the Dirac delta function as (2.3). When the fluid is a single homogeneous
material, it works well. However, for multiphase flows with IB, the mass difference of
fluid nodes at the interface, i.e. the fluid cell containing the moving interface, as shown
in figure 3, may cause excessive nodal acceleration. The discontinuity in the velocity
of the flow field inevitably leads to non-physical force oscillation. For example, for the
high-speed water entry in the present work, due to the high density ratio of water and air
at the interface, the concentrated nodal mass may differ by hundreds of times. The general
approaches of the smooth distribution function and the implicit scheme usually cannot deal
with this issue of uneven mass distribution. Tian et al. (2021b) corrected (2.3) by adding
the term of mass weight, that is,
f(x,t):ZF(X,t) m(x,1)8(x,X,1) ’

T ka(xk,t)é(xk,X, 1)

where the subscript k indicates the nodes of the fluid grid overlapping the boundary node.
The accelerations induced by body force for Tian’s method and the improved IB method
are compared in (2.27) and (2.28):

(2.26)

m(x,t) At

ae.n =7 & ? Y Fx.1) S X, 1) , 2.27)
m(x. 1) ka(xk, 18 (xi, X, 1)
aoen =t 0 _ 3 AXD Ny X (X0 8 ( X. 1), (2.28)
I

We find that a in (2.28) is dependent only on the velocity difference AV and not the
concentrated nodal masses of the fluid grid. In addition, Tian’s method is based on the
penalty IB method and indeed causes non-physical force oscillation. The applicability of
Tian’s method in the problem of high-speed water impact needs to be examined further
(see § 3 for the detailed discussion). Additionally, it is also dependent on the empirical
coefficients, which is crucial for the stability and robustness of the numerical scheme.

The present IB method provides two major advantages over the previous penalty 1B
methods: it can tackle the FSI problems of multiphase flow with high density ratios,
and also removes the uncertainties related to the artificial coefficients in the penalty 1B
methods. Therefore, the improved IB method has good applicability and robustness. The
comparative analysis of the above methods for high-speed water entry is detailed in § 3.

2.2.4. Internal treatment of the body

In the present numerical scheme, there are no special treatments for the fluid inside the IB,
leaving the inner fluid free to develop. Previous research indicated that the fluid inside the
closed IB has an influence on the dynamics of the rigid body (Suzuki & Inamuro 2011). In
all cases of water entry carried out in the present work, the inner fluid is set as air, of which
the density is much smaller than that of the solid. Therefore, in this case, the influence is
negligible.

2.3. Multiphase Eulerian finite element method for fluid dynamics

2.3.1. Governing equations of fluid
According to previous research on the hydrodynamics of high-speed water entry, the
characteristics of high velocity and transient and strong impact at the initial stage are
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observed, so the fluid viscosity, surface tension and heat conduction can be ignored.
Therefore, the Cauchy stress tensor o in the Navier—Stokes equations (Anderson 1995) can
be simplified to its isotropic part —p4, that is, the nonlinear Euler equations of inviscid and
initially irrotational compressible single-phase flow:

oE

o’ +V.(Ev) =S, (2.29)
where E is the conservation variable of the fluid, v is the fluid velocity and on the right
side of the equation, S is the source term. In the coordinate system of (xyz), as shown in
figure 2, the conservation variable of the fluid and the source term are

Jo 0
E=|pvi|, S=|-(Vpitpgitfi|, i=123, (2.30)
Péein —pV v

where the subscript i represents three components, corresponding to the three axis
directions of the coordinate system (xyz). Also, p is the fluid density, e;, is the internal
energy per unit mass of the fluid, p is the pressure, v; is the component of fluid velocity v
and g; is the component of gravitational acceleration g. The gravity direction is specified
along the axial direction of z, and g = (0,0, —9.8) m s~2. In addition, f;» the component
of f, is the body force from the IB.

The volume of fluid method (Hirt & Nichols 1981) is used to deal with multiphase flow
in the process of water entry, and the advection equation is

oa;

W +v- VOl] = 0, (231)

where o; is the volume fraction of the fluid phase and satisfies 0 < o; < 1 and Zj aj =1

in one fluid cell. Here, j is the fluid phase number, i.e. j = 1, 2, representing the water
phase and the air phase, respectively. In a mixed fluid cell, the fluid is assumed to be a
homogeneous mixture of fluid phases, and the fluid density and pressure are computed as
a functionof p = ) ajpjandp =Y a;p;.

The advection equation (2.31) is reorganized and added to (2.29) to compose the Euler
equations for multiphase compressible flow, in which the conservation variable of the fluid
E and source term S are

Qa; Ole -V
oip; 0 . :
E=| %% | s= o . i=1,2,3,j=1,2. 2.32
pVi —(Vp)i + pgi +fi l / (232
oej,oje,-nj —Olij L)

In (2.29), the number of unknown variables in the equations is greater than the number
of equations. Therefore, to make the Euler equations closed, the equation of state (EOS) is
used. It is assumed that air is an ideal gas, and the y-law EOS (Fedkiw et al. 1999) used
for an ideal gas is given as

Py = pgein, (Vg — 1), (2.33)

where the subscript g indicates the gas phase; y, is the ratio of the specific heats. For air,
the reference densities are pg, = 1.29 kg m~> and ve = 1.4. The EOS commonly used for
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water includes the Tait EOS, stiffened gas (SG) EOS and Mie—Griineisen EOS. The SG
EOS (Saurel et al. 2007) is used in this work, and it can be expressed as

Pl = Pi€in, i — 1) — yiPw, (2.34)

where the subscript [ indicates the liquid phase; y; and P,, are parameters obtained
from the shock Hugoniot experiment. Typically, for water, the reference density pj, =
1000.0 kg m—3, 3, = 7.15 and P,, = 3.309 x 10® Pa.

Thus, (2.29) and (2.32)—(2.34) constitute the governing equation system and can be
solved for compressible multiphase flow.

2.3.2. Multiphase Eulerian finite element method

In CFD techniques, there are many methods to solve the above governing equations of
fluid motion, such as SPH, FVM and finite difference method (FDM). In this work, the
multiphase EFEM (Benson 1992a; Benson & Okazawa 2004; Liu et al. 2019) based on
the operator splitting technique (OST) is used to solve the above system of (2.29). The
core idea is to separate the convection term from the Euler equations by using operator
splitting to avoid the numerical instability caused by handling the convection term using
the Galerkin method. With the OST treatment, (2.29) is divided into two equations, that
is, (2.35a) and (2.35b), which are solved sequentially in one time increment:

IE
F v . En=5=E . VE+EV.v=5= o PEVIvES G0
ot V= ar Y V= IE

o +v-VE=0. (2.35D)

In the first step, (2.35a) can be solved after some mathematical transformations.
Substituting the continuity equation into the momentum equation and the energy equation
and after some manipulations, (2.35a) can be transformed into

DA

_0v; _ _ . .

P =—(VPitigith i=123.j=12 (2.36)
aeinj
i =—-pV-.v

Pj 97 14

It can be found that the only difference between (2.36) and the standard Lagrangian
formulation is the type of the time derivative. Therefore, it can be solved by the classical
explicit finite element method. In finite element formulations, the velocity component v; is
known at the nodes, while the variables of «;, p; and ein; are at the centre of the elements.
The accelerations of the nodes are calculated by solving the momentum equation though
the Galerkin method (Wu & Gu 2012), and its discrete form is

> (/ k prok ok d9k> b
2

k
:ZU ,3’<<p}§4g,-ds2’<+/ ﬁk(V¢1’f4)iko—/ ,3q>§4nidrk] +fi,  (237)
X 2k kK rk

where the superscript k represents the fluid element number, M and N are both the total
number of nodes of the fluid element £2, (D[]f,l and q§1'§, are the shape functions of element
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k, 2% denotes the element k, I'* indicates the element boundary of k and n; represents

the component of the outer unit normal of I'% in the direction i. Then, the velocity field is
computed and updated, so the density and energy of each phase are updated by

ok
p}‘:—v—fk oKy .ndrk
k
o . =12, (2.38)
eink=—p—k/. <1§]lf,v-nd1“k
mj rk

where n is a unit vector perpendicular to the external surface of 'K, V is the element
volume and m; is the mass of the j fluid phase.

In the second step, the form of (2.35b) is consistent with the advection equation.
Therefore, the transport flux of the conservation variable E between adjacent elements
is calculated to solve (2.35b). Actually, the physical time is not advanced during this
step. In each time increment, the transport calculation can be split into a sequence
of one-dimensional transports (Benson & Okazawa 2004). The structured grids are
decomposed into one-dimensional transport calculations in three directions. Before
solving the advection equation, the interface of multiphase flow is constructed by the
piecewise-linear interface construction algorithm (Rider & Kothe 1998). Then, the volume
of material transported between adjacent elements is calculated, and the element-centred
variables (mass and internal energy) and the node-centred variable (momentum) are
updated by the monotone upwind scheme conservation laws scheme (Van Leer 1977)
and half-index shift algorithm (Benson 1992b), respectively. After advection, the pressure
is updated by the EOS, and the time increment is also updated. Then, the numerical
implementation enters the next loop.

Regarding the simplicity and stability of the technique, the numerical scheme of EFEM
has been extensively discussed by many researchers (Benson 1992a, 1997; Tian et al.
2021a), so the details will not be discussed here.

2.4. Quaternion-based 6-DOF system for rigid motions

2.4.1. Motion equations of rigid body

In this study, the structural deformation of the body during water entry is ignored, and the
object is assumed to be a rigid body since the hydrodynamic loads during high-speed water
entry are primarily investigated. The local coordinate system fixed on the gravity centre
G of the body is established to represent the position and orientation of the rigid body, as
shown in figure 2. It is specified that the translational velocity and angular velocity at the
gravity centre G are Vg and w, respectively. The 6-DOF motion equations of a rigid body
(Fossen 1994), including translation and rotation equations, are as follows:

M(V? + o x V) = FD, (2.39)
Joo" + o’ x (Jgo®) = T3, (2.40)

where the superscript b represents the variables in the LCS, M is the mass of the rigid
body and Jg is the inertia matrix with respect to the gravity centre G of the rigid body in
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the LCS,
Jxx ny sz
Jo= |y Iy Sy |, (2.41)
Jox Jzy Z

constructed from the moments (Jy, Jyy, J;;) and products (Jyy, Jxz, Jy;) of inertia of the
body. In the LCS, the three axes (Jyy, Jx;, Jy;) are principal axes of revolution of the
rigid body, so Jyy = Jy; = Jy; = 0. Also, F; g and T’ 8 are the resultant forces and moments
acting on the rigid body in the LCS, respectively. They are calculated in the GCS and then
transformed into the LCS, which are expressed as

Fb = R(F; + Mg),
(Fy -+ Mg) } (2.42)

b
TO=RTf,

where R is the rotation matrix from the GCS to the LCS.

2.4.2. Unit quaternions for 6-DOF system
Before solving the motion equations (2.39) and (2.40), it is necessary to determine the
relationship between the LCS and the GCS. Although Euler angles are most commonly
used to represent the rigid body motion due to the convenience in implementation and
visualization, a phenomenon called gimbal lock sometimes occurs. Unit quaternions
(Chelnokov 1983; Featherstone 2008) are used instead of Euler angles to represent spatial
orientations and rotations of rigid bodies in three-dimensional space, which have several
advantages over Euler angles, including low computation cost, high accuracy, avoidance
of trigonometric calculation and the absence of singularity.

Unit quaternions are a normalized set of quaternions and are generally represented in
the form

0= (90,91, 92, 93)" = q0 + q1i + q2f + g3k, (2.43)

where i,j,k are the basic quaternions with ? =77 =k*>=i-j-k=—1, and
q0, 41, 92, q3 are real numbers. The four numbers of unit quaternions are called Euler
parameters and satisfy

90° + a1t + P+ g3t =1 (2.44)

When the LCS coincides with the GCS, Q is equal to (1,0,0,0)T. For the initial
condition of high-speed water entry in figure 2, the initial water entry angle of the slender
body is 6y. Correspondingly, the initial unit quaternions are set as

b . 6 . 6 . 6\
Q= |cos —0, sin —0, sin —0, sin 2 . (2.45)
2 2 2 2
According to the rigid body dynamics of mechanisms (Featherstone 2008), the rotation
matrix R from the GCS to the LCS can be derived by unit quaternions Q, that is,

q0* + q1> — @2 — ¢3* 29192 + 2q0q3 2q193 — 240q>
R= 29192 — 2q0q3 90> — 1% + % — ¢3* 29293 + 29041
2q193 + 29092 2q2q93 — 29091 90> — 1% — 2% + ¢3?
(2.46)
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After solving the motion equations (2.39) and (2.40), unit quaternions are updated from
t, to t,41, which is expressed as

0 - —wy —o;
1 w, 0 w, —w
Qtn+1 - Qt,, + EAI wy, —w; 0 Wy Qtn’ (2.47)
w, wy —w; 0

where (wy, ®y, w;) is the component of w’.

However, the drawback of unit quaternion representation is the lack of intuitive
visualization. To address this issue, Euler angles can be derived based on unit quaternions,
and yaw angle v, pitch angle 6 and roll angle ¢ are, respectively, expressed as

2(q192 + q093)

| 90° + q1% — q2 — q3°

¢ = —arcsin (2 (q193 — q042)) » (2.48)

[ 2(q293 + q0q1)

¢ = arctan 3 5 3 5 |-
| 90 — q1° — q2° + g3~ |

Y = arctan

2.5. Time integration and numerical implementation

The FSI scheme based on the improved IB method is established by combining the
multiphase flow solver (multiphase Euler finite element method) and the solver of rigid
body motion (quaternion-based 6-DOF system). The overall framework of the numerical
scheme is illustrated in figure 5. In the time integration, the explicit central difference
method is used to update, and the time increment Az is updated adaptively according
to the Courant—Friedrichs—Lewy (CFL) conditions (Courant, Friedrichs & Lewy 1928;
Anderson 1995):

vis
At =C i , , 2.49

CFme(c+|v| |V-v|> 24
where coefficient Ccry, is taken as 0.5. For the three-dimensional numerical simulation,
the high computational cost is a common problem. The adaptive mesh refinement (AMR)
technique and MPI parallelization technique (MacNeice et al. 2000; Tian et al. 2021a) are
adopted to improve the computational efficiency.

3. Numerical validation and discussion

In this section, three typical cases (two-dimensional water entry of wedges, oblique water
entry and vertical water entry) are selected to assess the performance of the present FSI
scheme.

3.1. Two-dimensional water entry of wedges

Before addressing the water entry of the slender body, a careful check of the capabilities of
the present numerical method is carried out regarding the pressure peak developing about
the spray root during the water impact through a popular benchmark: two-dimensional
water impact of wedges. The sketch of this benchmark is plotted in figure 6, where the
rigid wedge with deadrise angle o rotated by a heel angle «;, enters the still water with a
constant velocity vy.
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Figure 5. Flowchart of FSI scheme, showing how improved IB method integrates fluid solver (Eulerian finite
element method) and rigid body motion solver (quaternion-based 6-DOF system). Step a and step b correspond
to (2.35a) and (2.35D).

Figure 6. Sketch of two-dimensional water entry of wedges with constant velocity vg. Here, oy is deadrise
angle, and «;, is heel angle.

A symmetric case, the wedge rotated by o, = 0°, is first considered. The length and
deadrise angle of this wedge are D = 0.3 m and oy = 20°, respectively. The constant
water-entry velocity is set as 10 m s~!. The gravitational effects are omitted in the
numerical simulation for comparison with the literature results. With the aim of evaluating
the effect of grid discretization, four grid resolutions of D/Ax = 150, 300, 450, 600
are used to simulate this test. The velocity and pressure fields obtained by the present
FSI scheme using the finest grid resolution at # = 1.9 ms are depicted in figure 7(a).
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Figure 7. Water entry of wedge with oy = 20° rotated by «;, = 0°. (a) Velocity and pressure fields obtained
by present model using the finest grid resolution at # = 1.9 ms. (b) Pressure coefficients (P — P) /O.Spvg
vs horizontal coordinate x/vgt for different grid resolutions. (¢) Pressure distributions by present model are
compared with literature data obtained in Zhao & Faltinsen (1993) and Semenov & lafrati (2006).

The present method perfectly reproduces the water impact of a symmetric wedge and
provides smooth velocity and pressure fields. Figure 7(b) gives the pressure coefficient
(P — Pg) /O.Spvg vs the horizontal coordinate x/vgt for different grid resolutions. The
numerical results converge as the resolution increases. In figure 7(c), the results obtained
by the present method are compared with those provided by the asymptotic solution,
similarity solution and BEM (Zhao & Faltinsen 1993; Semenov & lafrati 2006). They
show good agreement with the similarity solution and BEM, especially for the pressure
peak in the jet regions. However, the asymptotic solution deviates from the other results.
According to Zhao & Faltinsen (1993), the simple asymptotic solution based on Wagner is
only available for small oy values and agrees with the similarity solution for oy < 10°.

As a further validation of this model, a more common case of asymmetric water impact
is considered. The wedge with oy = 25° rotated by o), = 5° is referred to as Semenov
& lafrati (2006). Other initial conditions remain the same as those in the previous case,
including the constant velocity and the length of the wedge. This numerical simulation
is performed using the grid resolution D/Ax = 600. From figures 8(a) and 8(b), it can
be seen that the velocity and pressure fields predicted by the present model at r = 2.4 ms
are quite stable and smooth. Good agreements between the present model and analytical
solution can be further found in figure 8(c), which compares the pressure coefficient
provided by the present model and the similarity solution. The pressure coefficient
distributions throughout the wetted body surface are close, although small differences
occur in the left jet regions.
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Figure 8. Water entry of asymmetric wedge predicted by present model using grid resolution D/Ax = 600 at
t = 2.4 ms. (a) Velocity field. (b) Pressure field. (¢) Comparison of pressure coefficients obtained by present
model and by similarity solution proposed in Semenov & Iafrati (2006).

3.2. Oblique water entry of slender cylinder

In this subsection, the water-entry experiment was designed and performed to further
evaluate the performance and accuracy of the present FSI scheme. A schematic of the
experimental set-up is displayed in figure 9(a). The projectile is shot from a pneumatic
cannon into a water tank with a size of 5 m x 1.2 m x 1.8 m, and the water depth is
1.45 m. The projectile is a slender body of revolution, as shown in figure 9(c), which
is a combination of two cylinders with different cross-sections. The profile sizes are
given in figure 10(a). The radius R is 50 mm, and the total length is 740 mm. The
projectile is made of aluminium alloy with a mass of 5.3 kg, and the distance from the
gravity centre to the nose is 310 mm. For the inertia matrix with respect to the gravity
centre in the LCS, as shown in figure 2, the moments (Jyy, Jyy,J;;) of inertia of the
body are 0.00946 kg m?, 0.208 kg m?> and 0.208 kg m?, respectively. The micro data
acquisition instrument and the sensors (see figure 9c) are placed inside the projectile to
record the impact acceleration and pitching motion, including x;-axis acceleration, z;-axis
acceleration and angular velocity about the y,-axis (defined as axial acceleration, normal
acceleration and pitch angular velocity, respectively, hereinafter). The sensor position is
300 mm from the centre of gravity. The sampling rate is set at 100 kHz, which is adequate
for this configuration (Van Nuffel et al. 2013). The process of water entry is recorded by
a high-speed camera. In the experiment, five sets of repeated tests were carried out to
remove the uncertainty and dispersion of the experimental results. The initial velocity of
the projectile is approximately 35 m s~!, and the initial angle 6y is 20°. The reader can
refer to Appendix A for more details.

In the numerical simulation, the fluid domain is taken as 3.6 m x 1.2 m x 1.8 m to
reduce the computational cost, as seen in figure 11(a). The boundary of the fluid domain
is set as the rigid boundary condition. For the convergence of the numerical scheme, four
grid resolutions are set, i.e. R/Ax = 10, 20, 30, 40. Taking the case of R/Ax = 30, the
total number of initial grid points is approximately 7.3 million. Figure 11(b) illustrates
the grid generation strategy in AMR. The fluid grids are adaptively refined around the
projectile and the water—air interface. In the following, we will discuss the oblique water
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Figure 9. Experimental set-up: (a) layout of experimental system, (b) launching system and water tank,
(c) projectile with flat nose. In dashed box, sensors are arranged on the head, including accelerometer along
xp-axis (A), accelerometer along zp-axis (B) and angular velocity sensor about yj-axis (C).
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Figure 10. Schematic diagram of profiles for three projectiles: (a) flat nose, (b) hemispherical nose,
(c) truncated hemispherical nose. Black dot indicates centre of gravity. (Unit: mm.)

entry process in terms of two stages: the early stage for the body crossing the water surface
and the later stage for the body moving in the evolving cavity.

3.2.1. Early stage of water entry

The numerical results of the pressure field and cavity shape for several typical instants at
the early stage of water entry are given in figure 12. Figure 12 clearly shows that the body
gradually crosses the water surface and enters the water, and a high-pressure area around
the nose is formed. With the movement of the body, the pressure decreases gradually to
approximately 0.95 MPa at t = 2 ms. When ¢ = 8 ms, the free surface breaks and splashes
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Figure 11. (a) Initial configuration for oblique water entry. Water domain has width of W = 24R. (b) Grid
generation strategy for AMR and initial pressure field. Solid white line indicates boundary of subgrid blocks,
and solid red line represents free surface. Inset: black solid line represents grid line.
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Figure 12. Snapshots of the cavity shape and the pressure distribution at four time instants ( = 2 ms, 8 ms,
14 ms and 20 ms) during oblique water entry. The solid black line denotes the water—air interface. The inset at
the bottom left corner is the cavity shape at the corresponding time, coloured by the velocity value.

up, and the splash velocity is approximately 65 m s~!, which is much higher than the
initial velocity of water entry. Meanwhile, the air is entrained, and a cavity is gradually
developed. At = 20 ms, a strongly lateral impact occurs on the body, and the initial cavity
is formed. During the whole process, the free surface evolves smoothly, and the pressure
field is smooth and stable. The cylinder is subjected to severe water impact during the
process of water entry. The axial accelerations and normal accelerations at the gravity
centre obtained by different grid resolutions are plotted in figure 13 for the convergence
test of the present method. The numerical results converge well with decreasing grid sizes.

958 A42-21


https://doi.org/10.1017/jfm.2023.120

https://doi.org/10.1017/jfm.2023.120 Published online by Cambridge University Press

W.-T. Liu, A.-M. Zhang, X.-H. Miao, F.-R. Ming and Y.-L. Liu

(@ 200 . . : () 20¢
""""" R/Ax=10 | :
L T RIAX =20 0y
200 E — — = R/Ax=30 | 20+t
& : RiAx=40 | &
n 400 b 3 w40t
g g
< —600 5 60T
= N
~ ~
800 | -80
~1000 f ’ : ~100f -
~1200 : : : ~120 : : '
0 5 10 15 20 0 5 10 15 20
t (ms) ¢ (ms)

Figure 13. Convergence test with four different grid resolutions. (a) Acceleration along the xj-axis,
(b) acceleration along the z-axis.

To test the performance of the improved IB method proposed here, the penalty 1B
method and Tian’s method are also applied to simulate the above oblique water-entry
problem with the same grid resolution R/Ax = 30 and the same initial conditions.
Figure 14(a—c) provides the cavity shapes obtained through the three methods at t =
20 ms. These cavity shapes seem to be identical in general. As a further comparison of
the mentioned IB methods, the measuring point for impact pressure is arranged at the
centre of the cylinder nose. The results for impact pressure are plotted in figure 14(d—f),
where the same sampling rate for different methods is presented. It is noticeable that the
time evolution of pressure by the penalty IB method shows violent oscillations, especially
around the pressure peak. The main reason is that the mass differences of the fluid grid
nodes around the IB make the velocity field discontinuous and thus result in non-physical
oscillations of pressure. For the result from Tian’s method, the pressure curve also shows
some oscillations, but they are less than those of the penalty IB method. This indicates that
it does partly suppress the non-physical oscillations by adding the term of mass weight,
but the oscillations are still obvious around the pressure peak. However, the non-physical
oscillations are significantly suppressed in the result obtained by the improved IB method.
This can be seen more intuitively from figure 14(g—i), which gives the pressure fields
with contour lines at t =4 ms corresponding to the peak time of impact pressure in
figure 14(d-f). There are some notable pressure fluctuations for the results from the
penalty IB method and Tian’s method, especially in the high-pressure region near the
cylinder nose. In contrast, the pressure field is quite smooth for the improved IB method.

3.2.2. Later stage of water entry

Since the period of the projectile crossing the free surface is too short, the later stage
of water entry is discussed further to test this method. The accuracy of the improved 1B
method is further examined by comparison with the experimental results. The sensors are
arranged on the head of the projectile in figure 9(c). According to rigid body dynamics
(Fossen 1994), the acceleration at this location needs to be calculated by

AT =Vl 4 o x Xb, (3.1)

where X f’g indicates coordinates of the location of the accelerometers in the LCS, X2 =
(0.3,0.0,0.0)T m. In figure 15, the results obtained by the present method are compared
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Figure 14. Comparison of numerical results by three methods: penalty IB method (a,d,g), Tian’s method
(b,e,h) and improved IB method (c,fi). (a—c) Cavity shape at r = 20 ms, (d—f) time evolution of pressure
at centre of the flat nose, (g—i) pressure field with contour line at # = 4 ms, where white line denotes pressure
contour line and black line denotes water—air interface.

with the experimental results in terms of axial acceleration, normal acceleration, pitch
angular velocity and cavity shapes. The comparison of axial acceleration is quite good
during the whole water-entry process, even at the steep peak. After the peak, the axial
acceleration decays exponentially and gradually tends towards flatness. In terms of normal
acceleration and pitch angular velocity, they are in good agreement with the experimental
results, although small differences occur, which may be primarily caused by the minor
uncertain disturbances in the initial conditions of the present experiment. However, these
minor disturbances are not taken into account in the numerical simulation. The pitching
motion depends upon the water-entry initial conditions, and minor disturbances in the
initial condition will induce significant changes in the pitching motion of the projectile.
This can also be confirmed by the experimental results that the colour band of the pitch
angular velocity in figure 15(c) is relatively wider than those in figures 15(a) and 15(b)
(the reader can refer to Appendix A and supplementary material for more details). The
phenomenon of tail slamming caused by the differences in pitching motion can be more
intuitively seen in 15(d), which compares the cavity evolutions from experimental and
numerical results. The deformation of the free surface, shape of the cavity and movement
of the body are very close. However, there are some discrepancies in the later stage
after tail slamming. These might be caused by the violent impact, which can induce
unstable angular velocities of the body and thus affect the cavity evolution. Conversely,
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Figure 15. Comparisons between experimental and numerical results. (@) Acceleration along the x;-axis,
(b) acceleration along the zp-axis, (c) angular velocity around the yp-axis and (d) cavity evolution at four

moments. Experimental data are shown by shaded regions from 5 repeated experiments (see Appendix A and
supplementary material available at https://doi.org/10.1017/jfm.2023.120 for more details).

Tail slamming

the cavity evolution will affect the body movement. The effect of tail slamming can also
be confirmed by the inflection point of normal acceleration at approximately t = 150 ms
in figure 15(b). Although the peak induced by tail slamming is smaller than that induced
by water impact in the early stage, the duration is significantly longer than the former. In
addition, tail slamming can also significantly affect the motion trajectory of the projectile.
Therefore, it is necessary to pay attention to the effects of tail slamming. The impact loads
of tail slamming for different nose types are discussed further in § 4. Overall, the present
numerical method for body acceleration, pitch angular velocity and cavity shape shows
good agreement with the experimental results throughout the whole water-entry process.
In addition, the present numerical method can also be applied to the oblique water-entry
problem of a high-speed supercavitating vehicle, see Appendix D.

3.3. Vertical water entry of high-speed circular cylinder

In this subsection, vertical water entry of a high-speed circular cylinder is applied to
examine the present FSI scheme for strong impact problems. Since the initial velocity
vg exceeds 150 m s~!, this is an extremely challenging case where the flow process with
such a high velocity is strongly compressible and the transient impact pressure can be up
to several hundreds of MPa. The numerical results are compared with the experimental
results performed by Eroshin et al. (1980). The same projectile and configuration are used
in the simulation. The projectile has a radius of R = 15 mm, length of 120 mm and mass
of 0.382 kg. The centre of gravity is at the centroid of the geometry. The computational
domain has a size of 0.48 m x 0.48 m x 0.96 m, and the water depth is set as 0.63 m,
as shown in figure 16. The non-reflection boundary condition based on impedance match
theory is enforced at the fluid boundary. The total pressure enforced on the fluid boundary
is equal to the sum of the hydrostatic pressure and the dynamic pressure, and the dynamic

958 A42-24


https://doi.org/10.1017/jfm.2023.120
https://doi.org/10.1017/jfm.2023.120

https://doi.org/10.1017/jfm.2023.120 Published online by Cambridge University Press

Water impact and tail slamming during high-speed water entry

R
—> «—
Air

vOl

64R
Water

42R

32R

v ¥y

Figure 16. Initial configuration for vertical water entry. Width of computational domain is W = 32R.

pressure is assumed to be linearly dependent on the velocity (Liu et al. 2018). Four grid
resolutions R/Ax = 10, 20, 30, 40 are used in the simulation, and the grid generation
strategy in AMR is the same as the previous example.

The vertical water-entry process with initial velocity vop =200 m s~ is given in
figure 17(a). During the process of high-speed water entry, many complex nonlinear
phenomena occur involving the strong compressibility of fluid, breaking and splashing of
the free surface, etc. When the projectile strikes the free surface, shock waves are generated
in the water and propagate outward rapidly. Subsequently, the projectile drives the fluid
movement through the exchange of momentum, and the free surface begins to splash. In
this moment, a cavity is formed and begins to flow in frame 1. As the projectile moves
down, the cavity diameter gradually increases, and a splash crown forms due to the actions
of gravity and inertial force, as shown in frame 2. However, due to the high-speed flow of
air inside the cavity, the internal pressure of the cavity decreases, and thus the pressure
difference between the inside and outside of the cavity forms, which causes the cavity to
shrink quickly and finally seal near the free surface, as plotted in frames 3 and 4.

When the cylinder strikes the free surface, the cylinder is subjected to extremely strong
impact loads. The time evolutions of the axial drag coefficient for different grid resolutions
during water entry are displayed in figure 17(b). The peak stage and plateau stage show
that the drag coefficient gradually converges as the grid size decreases. The maximum
drag coefficient (defined by (2.1)) during water entry is measured in Eroshin’s experiment.
Following this experiment, four test cases with initial velocities of 150 m s~ 200m s,
250 m s~! and 300 m s~! are simulated by the present method. Figure 17(c) shows the
dependence of the maximum axial drag coefficients C';;** on the initial velocity obtained
by the present method and Eroshin’s experiment. It can be found that the numerical
results are in good accordance with the fitting curve by experimental data. When the
initial velocity increases, the errors between them tend to be large, and fluctuate up and
down. This may mainly come from the nonlinearity and instability during the high-speed
and strong impact, which might cause errors in the experimental tests and numerical
simulations. However, the accuracy of the present FSI method for high-speed water entry
is further validated.

Additionally, it is noticeable in figure 17(c) that the acoustic solution (Eroshin et al.
1980) is lower than the results by the present method and the experiment. The acoustic
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Figure 17. (a) Vertical water entry of projectile at initial velocity vy = 200 m s~! at four time instants 7 =
0.3 ms, 0.9 ms, 1.6 ms, 3.0 ms, velocity field (left), pressure field (right) and cavity shape (transparent shadow).
(b) Time evolutions of axial drag coefficient for different grid resolutions. (¢) Maximum drag coefficient vs
initial velocity for cylinder. Experimental results, fitting curve and acoustic solution refer to Eroshin et al.
(1980), and red solid line is fitted by least-squares method according to experimental data.

solution is derived based on the linear acoustic approximation, where the liquid is treated
as lightly compressible and the shock wave velocity is constant. Acoustic pressure is
commonly expressed as pocovg, where pg and cq are the density and shock wave velocity
for the undisturbed liquid, respectively. Figure 18(b) plots the time evolution of the impact
pressure at the centre of the projectile nose obtained from the present method and the
acoustic solution. The lower estimation of the acoustic solution can be further confirmed
by figure 18(b), which shows that the impact pressure captured by the present method is
evidently higher than the acoustic pressure. According to Skalak & Feit (1966), when the
impact velocity is high or the body is sufficiently blunt, i.e. vertical water entry of the
cylinder discussed here, it is necessary to take into account the fluid compressibility to
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Figure 18. (a) Comparison of numerical results of FSI interface at 0.05 ms from penalty IB method (left),
Tian’s method (middle) and improved IB method (right). (b) Time evolutions of pressure at centre of projectile
nose obtained by different methods.

obtain realistic results. As a further discussion of the influence of fluid compressibility, an
incompressible solution obtained by the BEM (Wu ef al. 2004; Sun & Wu 2013, 2020)
is also presented in figure 18(b). Since the BEM is based on the assumption of an
incompressible fluid, the BEM cannot obtain converged and accurate results in the early
impact stage where shock waves are generated in water. This shock wave pressure lasts
for a short period, approximately 7. = R/cp according to Chuang (1966). Therefore, the
time evolution of pressure by BEM starts at t = 7., and the results before ¢t = 7. are not
discussed here (the reader can refer to Appendix B for more details). It can be seen by
comparing the results of the present method and BEM that the impact pressure decays
rapidly after the pressure peak induced by the shock waves, then fluctuates up and down
around the BEM solution and gradually tends to overlap with the BEM solution after
t/(R/co) = 10. The overlap of the results at the later stage by the present method and
BEM again validates the accuracy of the present method for high-speed water entry. It
can be concluded that only if the fluid compressibility is not ignored can the mathematical
model obtain the realistic transient impact pressure during high-speed water entry. This
transient strong impact pressure may not only damage the local structure but also cause
failure of the electronic devices inside the vehicle.

This case of vertical water entry is also simulated by the other two methods, i.e. the
penalty IB method and Tian’s method. Figure 18(a) presents a comparison of the FSI
interfaces at 0.05 ms. For the results of the penalty IB method, there is an obvious interface
disturbance, which causes the non-physical phenomenon of the liquid penetrating the
coupled interface. Tian’s correction method makes some improvements, but there is still
a slight disturbance at the interface. For the improved IB method, the multiphase flow
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interface is stable and smooth and without obvious numerical artefacts. It is demonstrated
that it is essential to consider the mass difference of fluid grid nodes near the IB for violent
water-entry problems. Furthermore, from the time evolutions of the impact pressure at
the centre of the projectile nose in figure 18(b), it can be clearly seen that the pressure
peak and the pulse width from the above numerical methods show a significant difference.
The results of the penalty IB method and Tian’s method show violent oscillations, while
the improved IB method accurately captures the strong impact pressure. Compared with
those from the two methods, the pulse width of shock wave pressure by the present
method is closer to the theoretical estimation 7, = R/cg, and the pressure evolution
is relatively smooth. In general, the robustness and excellent accuracy of the present
FSI scheme are further validated by the strong impact case of high-speed vertical
water entry.

4. Hydrodynamic loads of water entry with different noses

In this section, the hydrodynamic loads of the slender bodies of revolution with different
noses during the process of water entry are studied. First, projectiles with a flat nose and a
hemispherical nose are simulated for comparison. The formation mechanism of the axial
and normal drag forces and the bending moment is discussed, including the initial water
impact and tail slamming. To the authors’ knowledge, this is the first time tail slamming
has been studied in detail. Furthermore, a combination case of the above two cases, the
projectile with a truncated hemispherical nose, is simulated for comparison, and the force
of the water entry process is discussed in detail.

4.1. Cases of flat nose and hemispherical nose

The water entry of the projectile with two different noses is modelled. One is the cylinder
with a flat nose, which is the same as the model in § 3.2, and the other is the cylinder with a
hemispherical nose, whose section and size are shown in figure 10(b). The main parameters
of geometry, mass and moment of inertia, of the two models are consistent except for
the nose shape. In the two cases, the projectile enters the water with an initial velocity
of 200 m s~ !, and the angle of the axis with respect to the water surface is 30°. In the
simulation, the size of the fluid domainis 13.5 m x 4.5 m x 9 m, and the water depth is set
as 6 m. The boundary of the fluid domain is set as the non-reflection boundary condition.
The grid resolution of the fluid domain is taken as R/Ax = 30, and the total number
of initial grid points is approximately 8.5 million. The physical time of the simulation
of the above two cases is 100 ms, and several typical instants of the cavity evolution in
the process are given in figures 19(a) and 19(b). The diameter of the cavity of the flat
nose case is larger than that of the hemispherical nose case. In addition, it is noticeable
that the moving distance of the flat nose case at 90 ms is obviously shorter than that of
the hemispherical nose case, which indicates that the hydrodynamic resistance of the flat
nose is greater. This can be further confirmed from 19(d), which shows that more kinetic
energy is transposed to the fluid for the flat nose case. In addition, the projectile rotates
and collides with the cavity wall in both cases, which is the tail slamming phenomenon.
In the following, the water-entry process is discussed from two stages: one is the early
stage, which corresponds to the stage when the projectile crosses the water surface, and
the other stage is the later stage, corresponding to the stage of cavity evolution and tail
slamming.
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Figure 19. Cavity evolution of oblique water entry of projectile with different noses: (a) flat nose,
(b) hemispherical nose, (c¢) truncated hemispherical nose. Time increases from left to right with = 10 ms,
50 ms, 90 ms. (d) Time evolutions of kinetic energy for projectiles with different noses.

4.1.1. Early stage of water entry
For the early stage, the projectile strikes and crosses the free surface. The lower side of the
projectile touches the free surface first during oblique water entry. Therefore, in addition
to the axial drag force, the normal drag force is the focus of hydrodynamic loads. The
time evolutions of the axial and normal drag coefficients (defined by (2.1) and (2.2)) of the
projectile are plotted in figure 20. For the axial drag force, the peak value of the case of flat
nose is approximately three times that of the hemispherical nose, while the pulse width of
the former is much smaller, at a third to half of the latter case. For the normal drag force,
the case of a flat nose is very small, but the case of a hemispherical nose is very large.
This is determined by the pressure distribution on the nose during the water-entry process.
Figures 21(a) and 21(b) display the pressure field of the flat nose and hemispherical nose
when crossing the free surface, respectively. For the flat nose projectile, when penetrating
the free surface, a high-pressure area is formed at the wetted surface of the nose, and the
centre of the high-pressure area gradually moves from the edge of the nose to the centre.
During this process, the pressure consistently acts in the direction of the normal of the
flat nose. Therefore, the axial drag force increases sharply until the centre of the high
pressure moves to the centre of the nose, and the peak forms when ¢ is approximately
0.55 ms. For the hemispherical nose projectile, a similar high-pressure area is also formed
and gradually moves from the edge to the pole of the hemisphere. However, because the
normal direction of the hemispherical nose changes continuously, a normal drag force
is also generated along with the axial force. At the moment the nose contacts the water
surface, the peak of the normal drag force occurs. In the following, the axial drag force
continues to increase, while the normal force gradually decays from the peak. When the
centre of the high-pressure area moves to the pole of the hemisphere, the peak of the axial
drag force also occurs.

During oblique water entry, the hydrodynamic pressure is normal to the wetted surface
of the projectile nose, and the resultant force may produce a pitch moment about the
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Figure 20. Drag coefficients for different projectiles at early stage of water entry. (@) Drag coefficient on the
xp-axis. (b) Drag coefficient on the z;-axis.
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Figure 21. Water impact process for three different projectiles during he early stage of water entry: (a) t =
0.0 ms, 0.25 ms, 0.4 ms, 0.55 ms for flat nose, (b) t = 0.0 ms, 0.1 ms, 0.25 ms, 0.55 ms for hemispherical
nose, (¢) t = 0.0 ms, 0.05 ms, 0.25 ms, 0.55 ms for truncated hemispherical nose. Straight arrows denote main
hydrodynamic force exerted by fluid on objects, and curved arrows represent change in pitch moment about the
Yp-axis.

gravity centre G, which directly leads to the hydrodynamic pitch phenomenon. It is
noticeable in figure 21 that pitch moments in the opposite direction are produced for
different noses. The time evolutions of the pitch moment (defined as the y,-axis component
of T 8 and denoted as Ty) for different projectiles are given in figure 22. We can clearly
see that the directions of the pitch moment of the two cases are opposite. For the flat nose
case, the moment is positive and reaches the peak at + = 0.25 ms. This is because the
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Figure 22. Pitch moment about the y,-axis vs time for three different projectiles at early stage of water entry.
Time labels (hollow circles in different colours) correspond to time sequences of snapshots in figure 21,
respectively.

centre of the high-pressure area is consistently located at the lower side of the central axis,
which passes the gravity centre. Thus, the moment formed by the pressure in the normal
direction of the flat nose with respect to the gravity centre is always clockwise, that is, it
is positive in this process. In contrast, the high-pressure area acts in the normal direction
of the hemisphere, and an anticlockwise moment with respect to the gravity centre is
formed, until, at t = 0.1 ms, the peak of the moment occurs. The moment peak of the
hemispherical nose case is 2.5 times that of the flat nose case. However, the pulse widths
of the pitch moment in the two cases are basically the same.

4.1.2. Later stage of water entry
As discussed above, the pitch moment in different directions is generated and significantly
affects the trajectory. The tail slamming phenomenon of the two cases is shown in
figures 23(a) and 23(b). The times of tail slamming for the flat nose case and the
hemispherical case are 48 ms and 15 ms, respectively. This is strongly related to the
moment formed at the early stage. Because a greater pitch moment is formed for the
hemispherical nose case, the projectile begins to slam at the tail more quickly. In addition,
the tail of the projectile with a hemispherical nose impacts the lower wall of the cavity, but
on the upper wall for the projectile with a flat nose. The axial and normal drag coefficients
for the two cases during the whole process of water entry are plotted in figure 24. It can be
seen that there is almost no sudden change during tail slamming for the axial drag force.
However, tail slamming causes sudden changes in the normal drag force. Especially for
the hemispherical nose case, the peak of the normal drag force induced by tail slamming
is almost half of the peak when crossing the water surface. Moreover, the pulse width of
the tail slamming force is much larger. In comparison, the tail slamming force of the flat
nose case is gentle, and a small sudden change occurs. This indicates that tail slamming is
also very dangerous for projectiles with hemispherical noses regarding the normal force.
As the projectile is a slender body, the severe normal force, which is perpendicular to the
revolving axis of the slender body, will inevitably lead to a bending tendency. Therefore,
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Figure 23. Tail slamming phenomenon at later stage of water entry: (a) flat nose, (b) hemispherical nose,
(c) truncated hemispherical nose. Corresponding moments are 41 ms, 12 ms and 54 ms, respectively.
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Figure 24. Drag coefficients for different projectiles during water entry process. (a) Drag coefficient on the
xp-axis. (b) Drag coefficient on the z-axis.

the section bending moment is an important factor in the hydrodynamic loads of water
entry, in addition to the axial and normal drag forces. The time evolutions of the bending
moment My, (defined as the yj-axis component of M by at the cross-section with respect
to the gravity centre G are given in figure 25(a). The definition of the bending moment
can be found in Appendix C. For the flat nose case, the bending moment reaches the
maximum peak at the moment of impacting the water surface and then decreases gradually.
When tail slamming occurs, a slight change takes place. However, for the hemispherical
nose case, the amplitude of the bending moment is greater than that of the flat nose case.
After the initial impact on the water surface, the bending moment begins to increase and
reaches the first peak when the centre of the high-pressure area moves to the pole of the
hemisphere. After crossing the free surface, the bending moment gradually increases as
the projectile rotates and reaches the maximum peak before tail slamming. When tail
slamming occurs, the bending moment is suddenly unloaded and then decays when the
projectile rebounds back by the cavity wall. This intensive moment can cause the projectile
to move violently and threaten the stability of the thin structure of the vehicle, even causing
large deformation or break off.
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Figure 25. (a) Time evolutions of bending moment at cross-section with gravity centre G for projectiles with
different noses. (b) Time evolutions of pitch angular velocity for projectiles with different noses.

Cases Truncated hemispherical nose Flat nose Ratio
Maximum axial drag 0.641 1.186 0.54
Area (m?) 0.4 0.785 0.51

Table 1. Maximum axial drag force and nose disc area.

4.2. Case of truncated hemispherical nose

Given the discussion above, the axial drag force is critical for the flat nose case, but for
the hemispherical nose case, violent tail slamming occurs and causes a severe bending
moment. In the following, a variant of flat nose and hemispherical nose is studied, i.e. the
truncated hemispherical nose. The model of the projectile with a truncated hemispherical
nose is depicted in figure 10(c). The parameters of geometry, mass, moment of inertia
and initial condition of water entry are consistent with the numerical case in the previous
section. In figure 24, comparisons of the axial and normal drag forces of the three cases are
displayed. Correspondingly, the pressure field at the early stage of water entry is plotted in
figure 21(c). Obviously, the first peak values of the axial and normal forces of the truncated
hemispherical nose are between the flat nose case and the hemispherical nose case.
A high-pressure area also occurs and moves similarly to the cases of the flat nose and the
hemispherical nose. Initially, the pressure mainly acts in the direction of the normal of the
arcuate part and mainly contributes to the normal drag force (frames 1 and 2). Because the
arc part is small, the normal drag force quickly reaches its peak and then begins to decay.
With the moving of the high-pressure area, the pressure begins to act on the flat part and
acts in the direction of the normal, which is parallel to the axis of the projectile (frames
3 and 4). Thus, the peak of the axial drag force is formed. Table 1 lists the maximum
axial drag force and the nose disc area, where the ratio of disc area between the truncated
hemispherical nose and the flat nose is approximately 0.51, and the axial drag force of the
truncated hemispherical nose case is approximately half of that of the flat nose case. The
maximum axial drag force is linearly dependent on the disc area. Note that the second peak
of the normal drag force, which is from the tail slamming process, is very small and can
even be ignored for the case of a truncated hemispherical nose.
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Figure 26. Trajectories of water entry of projectile with different noses: A, flat nose; B, hemispherical nose;
C, truncated hemispherical nose. Markers on three trajectories represent position of gravity centre with time
interval of 10 ms from 7 = 0 ms to 100 ms, and short solid line represents orientation of projectile.

Additionally, the time evolutions of the bending moment and pitch angular velocity
in the cross-section with respect to the gravity centre in the three cases are plotted in
figure 25. Obviously, compared with the flat nose case and the hemispherical nose case,
the angular velocity of the truncated hemispherical nose case decreases. This is because
the nose is the combination of the arc and the flat plane, and the direction of the pressure
acting on the nose changes smoothly. The pitch moment around the gravity centre is
in anticlockwise and then clockwise direction. Thus, the pitch moment and the angular
velocity are lower. As a result, tail slamming is delayed and occurs at ¢ = 74 ms, as shown
in figure 23(c). With the actions of the force and pitch moment formed at the early stage,
the tail of the projectile begins to slam upward and downward, respectively, for the flat nose
case and hemispherical nose case. The projectile with a truncated nose could maintain
an approximately straight trajectory, referring to figure 26. Although tail slamming also
occurs in the case of oblique water entry of the truncated hemispherical case, the angular
velocity is very low, and therefore the bending moment at tail slamming is also small (see
figure 25a). Based on the above discussions, the projectile shows a low impact load and
stable trajectory, which can be applied to various vehicles crossing the water surface.

5. Concluding remarks

In the present work, a novel FSI scheme was proposed to resolve the high-speed
water-entry problem. An improved IB method was proposed to overcome the interface
disturbance and suppress the non-physical force oscillation, which is always caused by the
mass difference at the multiphase interface. The Eulerian finite element for multiphase
flow was applied to solve the fluid dynamics, and the quaternion-based 6-DOF system is
used for rigid body motions. The improved method showed good accuracy and stability
at the interface when tested by water entry of wedges, oblique water entry of a slender
cylinder and vertical water entry of a high-speed cylinder, despite strong compressibility,
violent splashing, etc. Moreover, the improved method removes the artificial coefficients
in penalty IB methods, which seriously affects the stability and accuracy.

Based on this methodology, the high-speed water entry of a slender body with different
noses was simulated, and the violent hydrodynamic loads, including the axial and normal
drag forces and the bending moment, were intensively discussed, especially focusing on
the process of crossing the water surface and tail slamming. To the authors’ knowledge,
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this is the first time tail slamming has been a subject of focus. The water entry of the
projectile with a flat nose and hemispherical nose forms a high-pressure area when the nose
contacts the water surface. The high-pressure area gradually moves to the centre of the
nose, and the peaks of the axial and normal drag forces are reached during this process. For
the axial drag force, there exists a larger peak but with a narrow pulse width for the flat nose
case and the opposite for the hemispherical nose case. For the normal drag force, there is a
significant peak in the hemispherical nose case, but it is almost negligible in the flat nose
case. Because the hydrodynamic pressure is normal to the wetted surface of the projectile
nose, a clockwise moment and an anticlockwise moment are formed for the flat nose case
and the hemispherical nose case, respectively. It is the pitch moment at the early stage that
induces the tail of the projectile at the later stage to slam upward and downward. Especially
for the hemispherical nose case, more intensive tail slamming causes the projectile to
rebound and causes a sudden unloading of the bending moment, which is destructive for
the vehicle structure. To combine the features of the flat and hemispherical noses, the water
entry of the projectile with a truncated hemispherical nose was simulated and compared.
The results showed that medium axial and normal drag forces occur when compared with
the former two cases. Moreover, the tail slamming load is significantly reduced, and the
trajectory is relatively stable for the projectile with a truncated hemispherical nose. This
can provide some references for studies of various vehicles crossing a water surface.

Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2023.120.
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Appendix A. Experimental data of oblique water entry

In §3.2, we designed and carried out an oblique water-entry experiment to verify the
accuracy of the FSI scheme. The projectile with a flat nose is launched from a pneumatic
canon, and minor perturbations in the initial conditions may induce significant changes in
the result. Five sets of repeated experiments were carried out to remove the uncertainty
and dispersion of the experimental results, as shown in table 2. The deviation of the
initial velocity is within £0.5 m s~!, and the initial velocity of water entry in the
numerical simulation is set to 35 m s~!. Figure 27 illustrates the results of five sets of
experiments, including acceleration along the x;-axis, acceleration along the z,-axis and
angular velocity around the yp,-axis. The detailed experimental data are shown in the
supplementary material. It can be seen that the evolutions of the xj-axis acceleration
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Figure 27. Experimental results of oblique water entry. (@) Acceleration along the xp-axis, (b) acceleration
along the z;,-axis, (¢) angular velocity around the yj,-axis. Legends in (b,c) are same as in (a).

Test case Projectile type Initial velocity (m s~!) Initial angle (deg)
1 Flat nose 35.08 20
2 34.95 20
3 35.35 20
4 34.82 20
5 35.35 20

Table 2. Summary of initial conditions for water-entry experiments.

in different cases are basically coincident, but the evolutions of pitch angular velocity
are clearly dispersed due to the initial perturbations. The time instants of tail slamming
in different cases are different and range from 127 to 147 ms, which is also reflected in
the different inflection points of the zj-axis acceleration. Overall, the repeatability of the
experimental data is quite good. The shaded band into which all the data of the five sets of
experiments fall is established as the experimental result region for better analysis and is
used in figure 15.

Appendix B. Results of vertical water entry by BEM

To compare the influence of fluid compressibility, the BEM (Wu et al. 2004; Sun &
Wu 2013, 2020; Han et al. 2022; Zhang et al. 2023) is introduced to simulate the
vertical water entry. It is derived based on potential flow theory, and the fluid is assumed
to be incompressible. The initial conditions are the same as those in §3.3, and the
initial water-entry velocity is set as 200 m s~ !. This simulation is performed based on
the two-dimensional axisymmetric model, and five grid resolutions are set for the grid
convergence test.

Figure 28 illustrates the time evolutions of the pressure at the centre of the projectile
nose obtained by the BEM for different grid resolutions. As the grid size decreases, the
impact pressure increases gradually and does not converge. According to the water hammer
theory (Cook 1928), the impact pressure can be estimated by pcv, where p, ¢ and v are the
liquid density, the shock wave velocity in the liquid and the impact velocity, respectively.
For an incompressible fluid, c is infinite, and the impact pressure tends to infinity. However,
it is noticeable in figure 28 that the latter segments of pressure evolutions (tco/R > 1) for
different grid resolutions are convergent. According to shock theory (Chuang 1966; Obara,
Bourne & Field 1995), the shock wave pressure lasts for a short period of approximately
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Figure 28. Time evolutions of pressure at centre of projectile nose obtained by BEM for different grid
resolutions.

Figure 29. Sketch of bending moment calculation. Dotted line represents cross-section with gravity centre G.

t. = R/co. This indicates that the results of the BEM are convergent after the shock wave
period for vertical water entry. Therefore, the results by the BEM starting from ¢t = R/cg
are used in figure 18 as the solution for the incompressible fluid.

Appendix C. Definition of bending moment at body cross-section

The definition of the bending moment is presented in this section. The bending moment is
usually a quantity for a deformable body. However, to illustrate the bending effect during
oblique water entry, the bending moment for a rigid body is also defined. Taking the
cross-section at the centre of gravity G as an example, as shown in figure 29, the section
divides the projectile into two parts. The part of the projectile from this section to the
nose, denoted by A, is regarded as an independent body. The rotational equation of motion
(Fossen 1994) for part A with respect to the equilibrium point G in the LCS is expressed
as

JA + 0 x (JEo') + MAXL x Vo + MAXE x (@” x V2)=T5,  (Cl)
where the superscript b indicates the variable in the LCS, X' ’(’j indicates the coordinates
of the gravity centre C of part A in the LCS, M4 is the mass of part A and
Jé is the rotational inertia of part A with respect to the gravity centre G in the
LCS.
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Figure 30. A 34 mm-diameter supercavitating projectile entries water at vo = 31.5 m s~!, with an inclination
angle of 6y = 30°. The mass of the projectile is 1.14 kg, and the moments (Jyy, Jyy, J;z) of inertia of the
projectile are 0.000265 kg m2, 0.0256 kg m? and 0.0256 kg m2, respectively. (a) Schematic diagram of profile
(unit: mm), (b) comparison of cavity evolution at six time instants.

Equation (2.40) is a specific case of this equation where the equilibrium point
is chosen to coincide with the centre of gravity. The term on the right-hand side
of this equation is the resultant moments acting on the part A and is calculated
as

T = M’ + X% x (M"Rg) + RT 4. (C2)

The first term on the right-hand side is the bending moment at the cross-section. The
second term is the moment induced by the gravity of part A. The third term is the moment
exerted by the fluid on part A. As in (2.10), T 4 is obtained by

TA=—Z(X—G)><F. (C3)
A

Substituting (C2) into (C1), we can get

M? = Jhé’ + o x (JAe?) + MAXE x Vi + MAXL x (0" x V2)
— X2 x (M"Rg) — RT 4. (C4)

The bending moment at the cross-section with respect to the gravity centre G
during water entry can be calculated by this equation. In §4, we mentioned that the
mass parameters of the three projectiles (flat nose, hemispherical nose and truncated
hemispherical nose) are assumed to be identical for the comparative analysis. Similarly,
the relevant parameters required to calculate the bending moment for the three projectiles
are set to the same parameters, as shown below:
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Figure 31. Oblique water entry of high-speed supercavitating projectile. (@) Schematic diagram of profile
(unit: mm), (b) cavity evolution at six time instants, (c) acceleration along the xj-axis, (d) acceleration along
the zp-axis, (e) angular velocity around the yp-axis.

(i) M* is equal to 2.41 kg;
(ii) Xlé is equal to (0.189, 0.0, 0.0)T m;
(ii1) Jé is equal to

0.00559 0.0 0.0
00 0.1117 0.0 | kgm?. (C5)
0.0 0.0 0.1117

Appendix D. Oblique water entry of high-speed supercavitating vehicle

In order to illustrate the applicability of the numerical method proposed here, two cases
of oblique water entry of a high-speed supercavitating vehicle are given in this section.
An experiment of oblique water entry with a 34 mm-diameter supercavitating projectile
was carried out. Figure 31 illustrates a good agreement of cavity evolution between the
numerical results and the experimental results. In addition, the high-speed case is only
simulated by the present method and the model of the supercavitating projectile is shown
in figure 30(a). The parameters of mass and moment of inertia are consistent with the
numerical case in § 3.2. In the simulation, the initial velocity of the projectile is set as
200 m s~!, and the initial angle 6 is set as 30°. Figure 30(b) gives the numerical results of
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cavity shape at several time instants, including cavity formation, cavity closure and cavity
collapse. At the last moment, the tail slamming phenomenon also occurs, as in the example
in § 3.2, and the tail of the projectile collided with the lower wall of the cavity. The axial
acceleration, the normal acceleration and the pitch angular velocity during water entry are
plotted in figure 30(c—e). It can be noticed that the maximum impact load of high-speed
water impact can reach approximately 10000 m s~2, which will seriously threaten the
safety of the structure. The tail slamming of the projectile leads to a normal impact load
with a longer pulse width, which seriously affects the pitching motion of the projectile. It
can be concluded from figures 30 and 31 that the water entry process of the high-speed
supercavitating projectile is well reproduced by the present method.
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