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Abstract

We analyse the mod p étale cohomology of the Lubin–Tate tower both with compact

support and without support. We prove that there are no supersingular representations

in the H1
c of the Lubin–Tate tower. On the other hand, we show that in H1 of the Lubin–

Tate tower appears the mod p local Langlands correspondence and the mod p local

Jacquet–Langlands correspondence, which we define in the text. We discuss the local-

global compatibility part of the Buzzard–Diamond–Jarvis conjecture which appears

naturally in this context.

1. Introduction

In recent years, the mod p and p-adic local Langlands correspondences emerged as a form

of refinement of the l-adic Langlands correspondence for l = p. This program was basically

started by Christophe Breuil and then, by the work of many people, the p-adic local Langlands

correspondence was established for GL2(Qp) (see [Col10] for a final step). Unfortunately, as

for now, it is hard to predict how the conjectures should look like for GL2(F ) where F is

a finite extension of Qp (or other groups) basically because there are too many objects on

the automorphic side (see [BP12]), so that the pure representation theory does not indicate

which representations of GL2 we should choose for our correspondence. A possible remedy to

this situation might come by looking at the mod p and completed p-adic cohomology of the

Lubin–Tate tower. Let us remind the reader that the classical local Langlands correspondence

was also firstly proved for GL2 by representation-theoretic methods. Only afterwards by using

geometric arguments and finding the correspondence in the l-adic cohomology of the Lubin–Tate

tower, it was proved for GLn by Harris and Taylor in [HT01]. Our aim is to do a step in

this direction in the l = p setting, hoping that this will give us an insight how to define a

correspondence for other groups than GL2(Qp).

By the recent work of Emerton (see [Eme11]) we know that the p-adic completed (respectively

mod p) cohomology of the tower of modular curves realizes the p-adic (respectively mod p) local

Langlands correspondence. In this article we will obtain an analogous but weaker result for the

mod p cohomology of the Lubin–Tate tower over Qp. The main result of Emerton from [Eme11]

will be a key ingredient in our proof. We will analyse both the cohomology with compact support

and the cohomology without support of the Lubin–Tate tower. Here are the two main results

which we prove.
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(1) In the first cohomology group H1
LT,F̄p

of the Lubin–Tate tower, there appears the

mod p local Langlands correspondence and the naive mod p Jacquet–Langlands correspondence,
meaning that there is an injection of representations

π ⊗ ρ̄ ↪→ H1
LT,F̄p

and σ ⊗ π ⊗ ρ̄ appears as a subquotient in H1
LT,F̄p

, where π is a supersingular representation

of GL2(Qp), ρ̄ is its associated local mod p Galois representation and σ is the naive mod p
Jacquet–Langlands correspondence (for details, see § 8).

(2) The first cohomology group H1
LT,c,F̄p

with compact support of the Lubin–Tate tower

does not contain any supersingular representations. This surprising result shows that the mod p
situation is much different from its mod l analogue. It also permits us to show that the mod p local
Langlands correspondence appears in H1 of the ordinary locus; again a fact which is different
from the l-adic setting for supercuspidal representations.

Before sketching how we obtain the above results, let us outline the first main difference with
the non-abelian Lubin–Tate theory in the l-adic case. When l 6= p the comparison between the
Lubin–Tate tower and the modular curve tower is made via vanishing cycles. For that, we need
to know that the stalks of vanishing cycles gives the cohomology of the Lubin–Tate tower, or in
other words we need an analogue of the theorem proved by Berkovich in [Ber96]. However, when
l = p, the statement does not hold anymore (see [Ber96, Remark 3.8(iv)]) and hence we cannot
imitate directly the arguments from the l-adic theory.

To circumvent this difficulty, we work from the beginning at the rigid-analytic level and
consider embeddings from the ordinary and the supersingular tubes into modular curves. This
gives two long exact sequences of cohomology, depending on whether we take compact support
or a support in the ordinary locus and we start our analysis by resuming facts about the
geometry of modular curves. We recall a decomposition of the ordinary locus, which proves
that its cohomology is induced from some proper parabolic subgroup of GL2. We use this fact
several times in order to have vanishing of the cohomology of ordinary locus after localising at
a supersingular representation π of GL2(Qp). We then recall standard facts about admissible
representations and review the functor of localisation at π which comes out of the work of
Pas̆kūnas.

We then turn to the analysis of the supersingular locus. In this context, there naturally
appears a quaternion algebra D×/Q which is ramified exactly at p and ∞. We define the local
fundamental representation of Deligne in our setting (which appeared for the first time in the
letter of Deligne [Del73]) and we show a decomposition of the cohomology of supersingular locus.
At this point we will be able to show that H1 of the tower of modular curves injects into H1 of
the Lubin–Tate tower hence proving part of result (1).

Having established this result, we start analysing mod p representations of the p-adic
quaternion algebra and define a candidate for the mod p Jacquet–Langlands correspondence
σm which we later show to appear in the cohomology. It will a priori depend on a global input,
namely a maximal ideal m of a Hecke algebra corresponding to some modular mod p Galois
representation ρ̄, but we conjecture that it is independent of m. This is reasonable as it would
follow from the local-global compatibility part of the Buzzard–Diamond–Jarvis conjecture. After
further analysis of σm we are able to finish the proof of result (1).

Using similar techniques, we start analysing the cohomology with compact support of the
Lubin–Tate tower. By using the Hochschild–Serre spectral sequence, we are able to reduce
result (2) to the question of whether supersingular Hecke modules of the mod p Hecke algebra
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at the pro-p Iwahori level appear in the H1
c of the Lubin–Tate tower at the pro-p Iwahori level.

We resolve this question by explicitly computing some cohomology groups.
While proving the above theorems, we will also prove that the first cohomology group of

the Lubin–Tate tower and the first cohomology group of the ordinary locus are non-admissible
smooth representations. In particular, they are much harder to describe than their mod l
analogues. Moreover our model for the mod p Jacquet–Langlands correspondence σm (actually
we propose three candidates for the correspondence which we discuss in § 7.4) is a representation
of D×(Qp) of infinite length. This indicates that already for D×(Qp) the mod p Langlands
correspondence is complicated (as in the work of [BP12], representations in question are not of
finite length). On the other hand, the case of D×(Qp) is much simpler than that of GL2(F ) for
F a finite extension of Qp, and hence we might be able to describe σm precisely. The natural
question in this discussion is the local-global compatibility part of the Buzzard–Diamond–Jarvis
conjecture (see [BDJ10, Conjecture 4.7]) which says that we have an isomorphism

F[m] ' σm ⊗ πp(ρ̄)

where F denotes locally constant functions on D×(Q)\D×(Af ) with values in F̄p and πp(ρ̄) is a
representation of GL2(Apf ) associated to ρ̄ by the modified Langlands correspondence.

At the end, we remark that our arguments work well in the l 6= p setting and omit the use
of vanishing cycles. As some of our arguments are geometric, we can also get similar results in
the p-adic setting. We hope to return to this issue in our future work. Also, the geometry of
modular curves is very similar to the geometry of Shimura curves and hence we hope that some
of the reasonings in this article will give an insight into the nature of the mod p local Langlands
correspondence of GL2(F ) for F a finite extension of Qp.

2. Geometry of modular curves

Throughout this text we shall assume that p > 2. This is needed for Theorem 6.2 of Emerton.
Let X(Npm) be the Katz–Mazur compactification of the modular curve associated to the

moduli problem (Γ(pm),Γ1(N)) (see [KM85]) which is defined over Z[1/N, ζpm ], where ζpm

is a primitive pmth root of unity, that is X(Npm) parametrizes (up to isomorphism) triples
(E, φ, α), where E is an elliptic curve, φ : (Z/pmZ)2

→ E[pm] is a Drinfeld level structure and
α : Z/NZ → E[N ] is a Γ1(N)-structure. We consider the integral model of it defined over
Znrp [ζpm ], where Znrp is the maximal unramified extension of Zp, which we will denote also by
X(Npm). Let us denote by X(Npm)an the analytification of X(Npm) which is a Berkovich space.

Recall that there exists a reduction map π : X(Npm)an → X(Npm), where X(Npm) is
the special fiber of X(Npm). We define X(Npm)ss (respectively X(Npm)ord) to be the set
of supersingular (respectively ordinary) points in X(Npm). Define the tubes X(Npm)ss =
π−1(X(Npm)ss) and X(Npm)ord = π−1(X(Npm)ord) inside X(Npm)an of supersingular and
ordinary points respectively.

2.1 Two exact sequences
In what follows, we shall use a shorthand notation by writing simply H i(X,F ) for the étale
cohomology group H i

et(XCp , F ) of a rigid-analytic space X after base change to Cp with
coefficients in an étale sheaf F .

We know that X(Npm)ss is an open analytic subspace of X(Npm)an isomorphic to some
copies of Lubin–Tate spaces, where the number of copies is equal to the number of points in
X(Npm)ss (see [Buz03, § 3]). We have a decomposition X(Npm)an = X(Npm)ss ∪ X(Npm)ord
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and we put j : X(Npm)ss ↪→ X(Npm)an and i : X(Npm)ord→ X(Npm)an. We remark that j is
an open immersion of Berkovich spaces. Let F be a sheaf in the étale topoi of X(Npm)an. By
the general formalism of six operations (due in this setting to Berkovich, see [Ber93]) we have a
short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0

which gives a long exact sequence of étale cohomology groups:

· · ·→ H0(X(Npm)ord, i
∗F )→ H1

c (X(Npm)ss, F )

→ H1(X(Npm)an, F )→ H1(X(Npm)ord, i
∗F )→ · · · .

On the other hand, we can consider a similar exact sequence for the cohomology without
compact support, but instead considering support on the ordinary locus. This results in the long
exact sequence

· · ·→ H1
Xord

(X(Npm)an, F )→ H1(X(Npm)an, F )

→ H1(X(Npm)ss, i
∗F )→ H2

Xord
(X(Npm)an, F )→ · · · ,

where we have denoted by H1
Xord

(X(Npm)an, F ) the étale cohomology of X(Npm)an with
support on X(Npm)ord. Because of the vanishing of the cohomology with compact support
of the supersingular locus localised at π (see the explanation in the next sections), this exact
sequence will be of more importance to us later on. We will analyse those two exact sequences
simultaneously.

2.2 Decomposition of ordinary locus
Let us recall that we have the Weil pairing on elliptic curves

epm : E[pm]× E[pm]→ µpm .

Denote by ζpm a pmth primitive root of unity. For a ∈ (Z/pmZ)∗ we define a substack X(Npm)a of
X(Npm) as the moduli problem which classifies elliptic curves E with level structures (φ, α) such
that epm(φ( 1

0 ), φ( 0
1 )) = ζapm . This moduli problem is representable by a scheme over Znrp [ζpm ]

(see [KM85, ch. 9]). Moreover the coproduct
∐
aX(Npm)a is a regular model of X(Npm) over

Znrp [ζpm ].

Let us denote by X(Npm)a,ord the ordinary locus of the reduction of X(Npm)a. We recall

(see for example [KM85, ch. 13]) that the set of irreducible components of X(Npm)ord consists
of smooth curves Ca,b(Np

m) defined on points by

Ca,b(Np
m)(S) =

{
(E, φ, α) ∈ X(Npm)a,ord(S)

∣∣ epm(φ( 1
0

)
, φ
(

0
1

))
= ζapm and Kerφ = b

}
where a ∈ (Z/pmZ)∗ and b ∈ P1(Z/pmZ) is regarded as a line in Z/pmZ × Z/pmZ. We observe
that ζapm = 1 modulo p.

We are interested in lifting Ca,b(Np
m) to characteristic zero and so we put

Xa,b(Npm) = π−1(Ca,b(Np
m)).

Hence {Xa,b(Npm)} for a ∈ (Z/pmZ)∗, b ∈ P1(Z/pmZ) form a decomposition of the ordinary
locus X(Npm)ord because different Ca,b(Np

m) intersect only at supersingular points. The spaces
Xa,b(Npm) may be regarded as analytifications of lifts of Igusa curves. For a detailed discussion,
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see [Col05]. We do not determine here whether Xa,b(Npm) are precisely the connected components
of X(Npm)ord. We remark also that one can give a moduli description of each Xa,b(Npm).

There is an action of GL2(Z/pmZ) on X(Npm)an which is given on points by

(E, φ, α) · g = (E, φ ◦ g, α)

for g ∈ GL2(Z/pmZ). Observe that if epm(φ(1
0), φ(0

1)) = ζapm , then

epm
(
(φ ◦ g)( 1

0
), (φ ◦ g)

(
0
1

))
= ζa·detg

pm for g ∈ GL2(Z/pmZ)

and so g induces an isomorphism between Xa,b(Npm) and Xa·detg,g−1·b(Np
m).

For b ∈ P1(Z/pmZ) there is a Borel subgroup Bm(b) in GL2(Z/pmZ) which fixes b and hence
the Borel subgroup Bm(b)+ = Bm(b) ∩ SL2(Z/pmZ) in SL2(Z/pmZ) stabilises Xa,b(Npm).

Let b =∞ = ( 1
0 ) ∈ P1(Z/pmZ). By the above considerations we have

H i(X(Npm)ord, i
∗F ) =

⊕
a,b

H i(Xa,b(Npm), (i∗F )|Xa,b(Npm))

' Ind
GL2(Z/pmZ)
Bm(∞)

(⊕
a

H i(Xa,∞(Npm), (i∗F )|Xa,∞)

)
and also

H1
Xord

(X(Npm)an, F ) ' Ind
GL2(Z/pmZ)
Bm(∞)

(⊕
a

H1
Xa,∞(Npm)(X(Npm)an, F )

)
.

Those results will be extremely useful for us later on, when we introduce the localisation at a
given supersingular representation.

2.3 Supersingular points
Let us denote by D the quaternion algebra over Q which is ramified precisely at p and at ∞.
We recall the description of supersingular points X(Npm)ss which has appeared in [Del73] and
then was explained in [Car86], §§ 9.4 and 10.4. Fix a supersingular elliptic curve E over Fp and
a two-dimensional vector space V over Qp. Let det(E) = Z be the determinant of E. Denote by
W (F̄p/Fp) the Weil group of Fp and put

∆ = (W (F̄p/Fp)× Isom(det(E)⊗Z Qp(1),∧2V ))/∼
where ∼ is defined by (σ, β) ∼ (σ Frobk, p−kβ) for k ∈ Z, where Frob : x 7→ xp is a Frobenius
map. We define Km to be the kernel of D×(Zp) → D×(Z/pmZ) and we let K(N) = {( a bc d ) ∈
GL2(Z) | a ≡ 1 mod N and c ≡ 0 mod N}, viewed as a subgroup of GL2(Apf ) by the diagonal
embedding. Then

X(Npm)ss = ∆/Km ×D×(Q) GL2(Apf )/K(N).

Every δ ∈ ∆/Km furnishes a supersingular elliptic curve E(δ), so that for every δ ∈ ∆ we can
consider the Lubin–Tate tower LTδ = lim

←−m LTδ(p
m), which is the generic fiber of the deformation

space of the formal group attached to E(δ) and where LTδ(p
m) denotes the generic fiber of

the deformation space of formal groups with pm-level structure (see [Dat12] for details on the
Lubin–Tate tower). Let us denote by E(δ) the universal formal group deforming the formal group
attached to E(δ) and let E(∆) =

∐
δ∈∆ E(δ). By [Car86, § 9.4], the universal formal group over

lim
←−N,pm X(Npm)ss is isomorphic to E(∆)×D×(Q) GL2(Apf ), and hence we conclude that

lim
←−
Npm

X(Npm)ss ' LT∆ ×D×(Q) GL2(Apf )
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where LT∆ =
∐
δ∈∆ LTδ. We also get a description at a finite level

X(Npm)ss ' LT∆/Km
×D×(Q) GL2(Apf )/K(N)

where LT∆/Km
=
∐
δ∈∆/Km

LTδ(p
m).

These results will allow us later on to define the local fundamental representation and analyse
the action of the quaternion algebra D×.

3. Admissibility of cohomology groups

In this section we will recall the notion of admissibility in the context of mod p representations.
It will be crucial in our study of cohomology.

3.1 General facts and definitions
We start with general facts about admissible representations. In our definitions, we will follow
[Eme10]. Let k be a field of characteristic p and let G be a connected reductive group over Qp.

Definition 3.1. Let V be a representation of G over k. A vector v ∈ V is smooth if v is fixed
by some open subgroup of G. Let Vsm denote the subset of smooth vectors of V . We say that a
G-representation V over k is smooth if V = Vsm.

A smooth G-representation V over k is admissible if V H is finitely generated over k for every
open compact subgroup H of G.

Proposition 3.2. The category of admissible k-representations is abelian.

Proof. This category is (anti-)equivalent to the category of finitely generated augmented modules
over certain completed group rings. See [Eme10, Propositions 2.2.13 and 2.4.11]. 2

Now, we will prove an analogue of Lemma 13.2.3 from [Boy99] in the l = p setting. We
will later apply this lemma to the cohomology of the ordinary locus to force its vanishing after
localisation at a supersingular representation of GL2(Qp).

Lemma 3.3. For any smooth admissible representation (π, V ) of the parabolic subgroup P ⊂ G
over k, the unipotent radical U of P acts trivially on V .

Proof. Let L be a Levi subgroup of P , so that P = LU . Let v ∈ V and let KP = KLKU be a
compact open subgroup of P such that v ∈ V KP . We choose an element z in the centre of L such
that

z−nKP z
n ⊂ · · · ⊂ z−1KP z ⊂ KP ⊂ zKP z

−1 ⊂ · · · ⊂ znKP z
−n ⊂ · · ·

and
⋃
n>0 z

nKP z
−n = KLU . For every n and m, modules V z−nKP z

n
and V z−mKP z

m
are of the

same length, as they are isomorphic via π(zn−m), and hence we have not only an isomorphism but
an equality V z−nKP z

n
= V z−mKP z

m
. Thus for every x ∈ V KP we have x ∈ V KP = V z−nKP z

n
=

V KLU , which is contained in V U . 2

We also record the following result of Emerton for the future use.

Lemma 3.4. Let V = IndGP W be a parabolic induction. If V is a smooth admissible
representation of G over k, then W is a smooth admissible representation of P over k.

Proof. This follows from [Eme10, Theorem 4.4.6]. 2
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3.2 Cohomology and admissibility
In [Eme06], Emerton has introduced the completed cohomology, which plays a crucial role in
the p-adic Langlands program. The most important thing for us right now is the fact that those
cohomology groups for modular curves are admissible as GL2(Qp)-representations. We have the
following proposition.

Proposition 3.5. The GL2(Qp)-representation

Ĥ1(X(N), F̄p) = lim−→
m

H1(X(Npm)an, F̄p)

is admissible.

Proof. This proposition is [Eme06, Theorem 2.1.5] (see also [CE13, Theorem 1.16]). 2

By formal properties of the category of admissible representations, which form a Serre
subcategory of the category of smooth representations (see [Eme10, Proposition 2.2.13]), the
above result permits us to deduce admissibility for other cohomology groups which are of interest
to us. Let us remark that we can define also the cohomology of the Lubin–Tate tower with
compact support.

Remark 3.6. A priori, cohomology with compact support is a covariant functor. However, using
the adjunction map

Λ→ π∗π
∗Λ ' π!π

!Λ

where Λ is a constant sheaf and π : X(Npm+1)ss → X(Npm)ss is finite (hence π∗ = π!) and
étale (hence π! = π∗) by the properties of the Lubin–Tate tower, we get maps H i

c(X(Npm)ss,Λ)
→ H i

c(X(Npm+1)ss,Λ) compatible with H i(X(Npm)an,Λ)→ H i(X(Npm+1)ss,Λ).

We start firstly by analysing cohomology groups which appear in the exact sequence for the
cohomology with compact support. We have the following proposition.

Proposition 3.7. The GL2(Qp)-representation

Ĥ0(X(N)ord, F̄p) = lim−→
m

H0(X(Npm)ord, F̄p)

is admissible.

Proof. The number of connected components of X(Npm)ord is finite; let d(Npm) be their number.
For s > 0, we have

H0(X(Npm)ord, F̄p) = (F̄p)d(Npm),

and hence lim−→m
H0(X(Npm)ord, F̄p) is admissible. 2

We deduce the following proposition.

Proposition 3.8. The GL2(Qp)-representation

Ĥ1
c (X(N)ss, F̄p) = lim−→

m

H1
c (X(Npm)ss, F̄p)

is admissible.

1439

https://doi.org/10.1112/S0010437X14008008 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14008008


P. Chojecki

Proof. We consider the exact sequence from § 2.1,

· · ·→ Ĥ0(X(N)ord, F̄p)→ Ĥ1
c (X(N)ss, F̄p)→ Ĥ1(X(N)an, F̄p)→ Ĥ1(X(N)ord, F̄p)→ · · · ,

and finish by using the fact that admissible representations form a Serre subcategory of smooth
representations and the propositions proved above. 2

We remark that the cohomology with compact support of the Lubin–Tate tower is much
easier to work with than the cohomology without the support. This is because the latter will
turn out to be non-admissible.

We finish this section with the following proposition.

Proposition 3.9. The GL2(Qp)-representation

Ĥ1
Xord

(X(N), F̄p) = lim−→
m

H1
Xord

(X(Npm)an, F̄p)

is admissible.

Proof. This follows from the exact sequence (we use the notations from the previous section)

H0(X(Npm)ss, F̄p)→ H1
Xord

(X(Npm)an, F̄p)→ H1(X(Npm)an, F̄p)

and Proposition 3.5. 2

4. Supersingular representations

In this section we recall results on the structure of admissible representations and we apply them
to the exact sequence of cohomology groups that we have introduced before, getting the first
comparison between the cohomology of the Lubin–Tate tower and the cohomology of the tower
of modular curves. We will start with a reminder on the mod p local Langlands correspondence.
We refer to [Ber11] for references to proofs of cited facts.

4.1 The mod p local Langlands correspondence
Let ωn be the fundamental character of Serre of level n which is defined on inertia group I via
σ 7→ σ(p1/n)/p1/n. Let ω be the mod p cyclotomic character. For h ∈ N, we write Indωhn for the
unique semisimple F̄p-representation of GQp which has determinant ωh and whose restriction to

I is isomorphic to ωhn⊕ωphn ⊕· · ·⊕ωp
n−1h
n . If χ : GQp → k× is a character, we will denote by ρ(r, χ)

the representation Ind(ωr+1
2 ) ⊗ χ which is absolutely irreducible if r ∈ {0, . . . , p − 1}. In fact,

any absolutely irreducible representation of GQp of dimension 2 is isomorphic to some ρ(r, χ)

for r ∈ {0, . . . , p− 1}. We remark that Indωr+1
2 is not isomorphic to the induced representation

Ind
GQp

GQ
p2
ωr+1

2 , because of the condition which we put on the determinant. In fact, computing the

determinant of Ind
GQp

GQ
p2
ωr+1

2 , one sees that

Indωr+1
2 = Ind

GQp

GQ
p2

(ωr+1
2 · sgn)

where sgn is the F̄p-character of GQp2 which factors through F×
p2 × Z and which is trivial on

F×
p2 and takes the Frobenius automorphism of GQp2 to −1 in Z (we have to make a choice of a

uniformiser to have the map GQp2 � F×
p2 × Z).
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On the GL2-side, one considers representations Symr k2 inflated to GL2(Zp) and then
extended to GL2(Zp)Q×p by making p acts by identity. We then consider the induced
representation

Ind
GL2(Qp)

GL2(Zp)Q×p
Symr k2.

One can show that the endomorphism ring (a Hecke algebra) Endk[GL2(Qp)](Ind
GL2(Qp)

GL2(Zp)Q×p
Symr k2)

is isomorphic to k[T ], where T corresponds to the double class GL2(Zp)Q×p ( p 1
0 1 ) GL2(Zp)Q×p .

For a character χ : GQp → k× and λ ∈ k. we introduce representations:

π(r, λ, χ) =
Ind

GL2(Qp)

GL2(Zp)Q×p
Symr k2

T − λ ⊗ (χ ◦ det).

For r ∈ {0, . . . , p − 1} such that (r, λ) 6∈ {(0,±1), (p − 1,±1)}, the representation π(r, λ, χ) is
irreducible. If λ=±1, then π(r, λ, χ) appears as either a subrepresentation or a subquotient of the
special representation Sp. One proves that χ◦det, Sp⊗(χ◦det) and π(r, λ, χ) for r ∈ {0, . . . , p−1}
and (r, λ) 6∈ {(0,±1), (p− 1,±1)} are all the smooth irreducible representations of GL2(Qp).

This explicit description gives a mod p correspondence by associating ρ(r, χ) to π(r, 0, χ).

4.2 Supersingular representations
Let us a fix a supersingular representation π of GL2(Qp) on a F̄p-vector space with a central
character ξ. Recall the following result of Pas̆kūnas.

Proposition 4.1. Let τ be an irreducible smooth representation of GL2(Qp) admitting a central
character. If Ext1

GL2(Qp)(π, τ) 6= 0 then τ ' π.

Proof. See [Pas10] and [Pas11] for the case p = 2. 2

This result permits us to conclude that the GL2(Qp)-block of any supersingular representation
consists of one element: the supersingular representation itself. Here, by a GL2(Qp)-block we
mean an equivalence class for a relation defined as follows. We write π ∼ τ if there exists a
sequence of irreducible smooth admissible F̄p-representations of GL2(Qp): π0 = π, π1, . . . , πn = τ
such that for each i one of the following conditions holds:

(1) πi ' πi+1;

(2) Ext1
GL2(Qp)(πi, πi+1) 6= 0;

(3) Ext1
GL2(Qp)(πi+1, πi) 6= 0.

One can find a description of all GL2(Qp)-blocks in [Pas11] or [Pas13]. The general result of
Gabriel on the block decomposition of locally finite categories gives the following proposition.

Proposition 4.2. We have a decomposition,

RepadmGL2(Qp),ξ(F̄p) = RepadmGL2(Qp),ξ(F̄p)(π) ⊕ RepadmGL2(Qp),ξ(F̄p)
(π),

where RepadmGL2(Qp),ξ(F̄p) is the (abelian) category of smooth admissible F̄p-representations

admitting a central character ξ, RepadmGL2(Qp),ξ(F̄p)(π) (respectively RepadmGL2(Qp),ξ(F̄p)
(π)) is the

subcategory of it consisting of representations Π all of whose irreducible subquotients are
(respectively are not) isomorphic to π.

Proof. See [Pas13, Proposition 5.32]. 2
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This result permits us to consider the localisation functor with respect to π

V 7→ V(π)

on the category of admissible representations such that all irreducible subquotients of V(π) are
isomorphic to the fixed π.

Remark 4.3. We note that the condition on the existence of central characters is not important.
Central characters always exist by the work of Berger [Ber12] in the mod p case.

4.3 Cohomology with compact support
We apply the localisation functor to the three admissible terms in the exact sequence obtained
from § 2.1,

· · ·→ Ĥ0(X(N)ord, F̄p)→ Ĥ1
c (X(N)ss, F̄p)→ Ĥ1(X(N)an, F̄p)→ Ĥ1(X(N)ord, F̄p)→ · · · ,

getting the exact sequence

Ĥ0(X(N)ord, F̄p)(π)→ Ĥ1
c (X(N)ss, F̄p)(π)→ Ĥ1(X(N)an, F̄p)(π).

For a ∈ Z×p let us define, in the light of 2.2,

Ĥ1(Xa,∞(N), F̄p) = lim−→
m

H1(Xa,∞(Npm), F̄p).

Recall now, that after § 2.2, Ĥ0(X(N)ord, F̄p) is an admissible representation isomorphic to the
induced representation

Ind
GL2(Qp)
B∞(Qp)

(⊕
a

Ĥ0(Xa,∞(N), F̄p)
)

where B∞(Qp) is the Borel subgroup of upper triangular matrices in GL2(Qp) and a goes over
Z×p . On this representation unipotent group acts trivially by Lemma 3.3 (which we can use thanks
to Lemma 3.4) and hence we see that it is induced from the tensor product of characters. This
means that after localisation at π this representation vanishes

Ind
GL2(Qp)
B∞(Qp)

(⊕
a

Ĥ0(Xa,∞(N), F̄p)
)

(π)

= 0

and we arrive at the following theorem.

Theorem 4.4. We have an injection of representations

Ĥ1
c (X(N)ss, F̄p)(π) ↪→ Ĥ1(X(N), F̄p)(π)

By taking yet another direct limit, we define

Ĥ1
ss,c,F̄p

= lim−→
N

Ĥ1
c (X(N)ss, F̄p),

Ĥ1
F̄p

= lim−→
N

Ĥ1(X(N), F̄p)

Corollary 4.5. We have an injection of representations

(Ĥ1
ss,c,F̄p

)(π) ↪→ (Ĥ1
F̄p

)(π).
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We remark that later on in § 8 using purely local methods we will prove that

(Ĥ1
ss,c,F̄p

)(π) = 0

hence the above corollary will become obsolete.
We define also, for a future use,

Ĥ1
ord,F̄p

= lim−→
N

lim−→
m

H1(X(Npm)ord, F̄p)

and, for a ∈ Z×p ,

Ĥ1
a,∞,F̄p

= lim−→
N

lim−→
m

H1(Xa,∞(Npm), F̄p)

4.4 Cohomology without support
We can apply similar reasoning as above to the situation without compact support. The
roles of the ordinary locus and the supersingular locus are interchanged. By using again the
decomposition of the ordinary locus and Lemmas 3.3 and 3.4, we get that the localisation of
Ĥ1
Xord

vanishes

Ĥ1
Xord

(X(N), F̄p)(π) = 0

and hence we get the following theorem.

Theorem 4.6. We have an injection of representations

(Ĥ1
F̄p

)(π) ↪→ Ĥ1
ss,F̄p

where Ĥ1
ss,F̄p

is defined similarly as above.

Later on, we will show that Ĥ1
ss,F̄p

is a non-admissible representation, and this is why we

cannot localise it a π. Let us finish by giving another definition for a future use (where a ∈ Z×p ):

Ĥ1
Xa,∞,F̄p

= lim−→
N

lim−→
m

H1
Xa,∞(Npm)(X(Npm)an, F̄p).

5. New vectors

Because there does not exist at the moment the Colmez functor in the context of quaternion
algebras, which would be similar to the one considered for example in [Pas13], we are forced to
give a global definition of the mod p Jacquet–Langlands correspondence. To do that, we prove
an analogue of a classical theorem of Casselman in the context of the modified mod l Langlands
correspondence of Emerton and Helm (see [EH]), which amounts to the statement that for any
prime l 6= p, and for any local two-dimensional Galois representation ρ of Gal(Q̄l/Ql), there
exists a compact, open subgroup Kl ⊂ GL2(Zl) such that πl(ρ)Kl has dimension 1, where πl(ρ)
is the mod p representation of GL2(Ql) associated to ρ by [EH].

Let b be an ideal of Zp and put Γ0(b) = {(a bc d) ∈ GL2(Zp)|c ≡ 0 mod b}. Let us recall the
classical result of Casselman (see [Cas73]).

Theorem 5.1. Let π be an irreducible admissible infinite-dimensional representation of GL2(Qp)
on Q̄l-vector space and let ε be the central character of π. Let c(π) be the conductor of π
which is the largest ideal of Zp such that the space of vectors v with π( a bc d )v = ε(a)v, for all
( a bc d ) ∈ Γ0(c(π)), is non-zero. Then this space has dimension 1.
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We will prove that the result holds also modulo p for the modified mod l Langlands
correspondence. For that we need to assume that our prime p is odd.

Theorem 5.2. Let π = π(ρ) be the mod p admissible representation of GL2(Ql) associated by
the modified mod l Langlands correspondence to a Galois representation ρ : GQl

→ GL2(F̄p).
Then there exists an open, compact subgroup K of GL2(Ql) such that dimF̄p

πK = 1.

Proof. We recall the results of [EH] concerning the construction of the modified mod l Langlands
correspondence. By of [EH, Proposition 5.2.1], the theorem is true when ρss is not a twist of
1 ⊕ | · |, by the reduction modulo p of the classical result of Casselman from [Cas73], which in
the l 6= p situation was proved by Vignéras in [Vig89b] (see Theorem 23 and Proposition 24).
When this is not the case, we can suppose that in fact ρss = 1⊕ | · | and we go by case-by-case
analysis of the possible forms of π(ρ) as described in [EH] after Proposition 5.2.1 and in [Hel12].
The representations π(ρ) which appear are mostly extensions of four kinds of representations
(and some combinations of them): the trivial representation 1, | · | ◦ det, the Steinberg St, and
π(1) of Vignéras (see [Vig89b]).

(1) Suppose 0→ π(1)→ π(ρ)→ 1→ 0. In this case l ≡ −1 mod p. Let Γ0(p) = {( a bc d ) ∈
GL2(Zp)|c ≡ 0 mod p, a ≡ d ≡ 1 mod p}. Then we have a long exact sequence associated with
higher invariants by Γ0(p):

0→ π(ρ)Γ0(p)
→ 1→ R1π(1)Γ0(p)

as π(1)Γ0(p) = 0 by [Vig89b, Proposition 24]. We conclude by observing that R1π(1)Γ0(p) = 0
because |Γ0(p)| = p∞ and l 6 ||Γ0(p)| by our assumption.

(2) In the same way we deal with the situation when π(ρ) is an extension of | · | ◦det by π(1)
with the same assumption on l.

(3) When l ≡ −1 mod p, it is also possible to have 0→ π(1)→ π(ρ)→ 1 ⊕ | · | ◦ det→ 0.
Look at GL2(Zp)-invariants. The associated long exact sequence is

0→ π(ρ)GL2(Zp)
→ (1⊕ | · | ◦ det)GL2(Zp)

→ R1π(1)GL2(Zp) = Ext1
GL2(Fp)(1, π(1)).

Let us denote by E the extension of 1 by π(1) which we get from 0→ π(1)→ π(ρ)→ 1⊕|· |◦det
→ 0. The last map in the above exact sequence is explicit:

(1⊕ | · | ◦ det)GL2(Zp)
→ Ext1

GL2(Fp)(1, π(1))

(a, b) 7→ (a+ b)E ,
and we see that it gives a line in Ext1

GL2(Fp)(1, π(1)) and hence the kernel, i.e. π(ρ)GL2(Zp), is

one-dimensional as (1⊕ | · | ◦ det)GL2(Zp) has dimension 2.
(4) The last non-banal case with which we have to deal is the case when p is odd, l ≡ 1 mod p

and we have an extension
0→ St→ π(ρ)→ 1→ 0.

In this case Ext1
GL2(Qp)(1, St) is two-dimensional (see [Hel12, Lemma 4.2]). We look at the

reduction map
Ext1

GL2(Qp)(1,St)→ Ext1
GL2(Fp)(1,St).

Let us denote by E the image of the class [π(ρ)] of π(ρ) in Ext1
GL2(Fp)(1, St) under the above

reduction. We have two cases to consider. Suppose firstly that E = 0. Then we claim that
K = GL2(Zp) works. Indeed we have in this case

0→ π(ρ)K → 1K → Ext1
K(1, St)

and, as the image of 1K in Ext1
K(1, St) is E , we finish by assumption.
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Now let us suppose that E 6= 0. Then we claim that the Iwahori subgroup K = I works. We
have

0→ StK → π(ρ)K → 1K → Ext1
K(1, St).

The image of 1K in Ext1
K(1,St) is non-zero by assumption, because Ext1

GL2(Zp)(1,St) ↪→ Ext1
K(1,

St). Hence π(ρ)K is isomorphic to StK , which is of dimension 1.
(5) We remark that there is also the so-called banal case when l is not congruent to ±1

modulo p. In this case, there are two situations to consider. In the first one π(ρ) = St⊗| · | ◦ det
and we can take K = I, the Iwahori subgroup. In the second one π(ρ) is the unique non-split
extension of | · | ◦ det by St⊗| · | ◦ det. Because Ext1

GL2(Fp)(1,St) = 0 as we are in the banal case,

we conclude as above that K = GL2(Zp) works. 2

6. The fundamental representation

Following the original Deligne approach to the non-abelian Lubin–Tate theory, we define the
local fundamental representation. Using it, we refine the Lubin–Tate side of the injections we
have considered. Then we recall Emerton’s results on the cohomology of the tower of modular
curves, yielding by a comparison an information on the local fundamental representation. Our
arguments are similar to those given in [Del73].

6.1 Cohomology of the supersingular tube
We have introduced, in § 2.3, the set ∆, spaces LT∆/Km

=
∐
δ∈∆/Km

LTδ and we have obtained
a description of the supersingular tube

X(Npm)ss ' LT∆/Km
×D×(Q) GL2(Apf )/K(N).

Definition 6.1. Define the fundamental representation by

Ĥ1
LT,c,F̄p

= lim−→
m

H1
c (LT∆/Km

, F̄p).

Similarly we introduce the fundamental representation without support denoting it by Ĥ1
LT,F̄p

.

From the description of supersingular points, we have

H1
c (X(Npm)ss, F̄p) =H1

c (LT∆/Km
×D×(Q) GL2(Apf )/K(N), F̄p)

= {f : D×(Q)\GL2(Apf )/K(N)→ H1
c (LT∆/Km

, F̄p)}.

We take the direct limit:

lim−→
m

H1
c (X(Npm)ss, F̄p) ' {f : D×(Q)\GL2(Apf )/K(N)→ lim−→

m

H1
c (LT∆/Km

, F̄p)}.

Take the limit over N to obtain

Ĥ1
ss,c,F̄p

' {f : D×(Q)\GL2(Apf )→ Ĥ1
LT,F̄p

}
' {f : D×(Q)\D×(Af )→ Ĥ1

LT,c,F̄p
}D×(Qp)

' ({f : D×(Q)\D×(Af )→ F̄p} ⊗F̄p
Ĥ1

LT,c,F̄p
)D
×(Qp).

Let
F = {f : D×(Q)\D×(Af )→ F̄p}
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where f are locally constant functions, then

Ĥ1
ss,c,F̄p

' (F⊗F̄p
Ĥ1

LT,c,F̄p
)D
×(Qp). (1)

We get a similar result for the cohomology without support

Ĥ1
ss,F̄p

' (F⊗F̄p
Ĥ1

LT,F̄p
)D
×(Qp).

6.2 Emerton’s results
We recall Emerton’s results on the completed cohomology of modular curves. Remark that we are
using implicitly the comparison theorem for étale cohomology of a scheme and its analytification
which is proved in [Ber95a].

Let us fix a finite set of primes Σ = Σ0 ∪ {p}. Let KΣ =
∏
l 6∈ΣKl where Kl = GL2(Zl) and

choose an open, compact subgroup KΣ0 of
∏
l∈Σ0

GL2(Zl). Let ρ̄ : GQ → GL2(F̄p) be an odd,
irreducible, continuous representation unramified outside Σ. Remark that by Serre’s conjecture
(see [Kha06]) ρ̄ is modular. Let us denote by m the maximal ideal in the Hecke algebra T(KΣ0)

which corresponds to ρ̄. We write also ρ̄|GQp
= Ind

GQ
GQ

p2
α, where α can be considered as a character

of Q×
p2 by the local class field theory. For the definitions, see [Eme11, § 5].

Theorem 6.2 (Emerton). We have an isomorphism

Ĥ1
F̄p

[m]K
Σ ' π ⊗F̄p

πΣ0(ρ̄)⊗F̄p
ρ̄

where π is a representation of GL2(Qp) associated to ρ̄ by the mod p local Langlands

correspondence and πΣ0(ρ̄) is a representation GL2(AΣ0
f ) associated to ρ̄ by the modified local

Langlands correspondence mod l for l ∈ Σ0 (see [EH]).

Proof. This theorem is proved in [Eme11, Proposition 6.1.20]. In this proposition Emerton
assumes that p > 2 (which we do as well) and that [Eme11, Conjecture 6.1.9] holds for ρ̄.
Observe that in our case ρ̄ satisfies Conjecture 6.1.9, because it is irreducible and hence by
[Eme11, Theorem 6.2.13] it satisfies Conjecture 6.1.6 which implies Conjecture 6.1.9 (see [Eme11,
Remark 6.1.11]). 2

We remark that we can always find ρ̄ which satisfies the theorem above and which at p is
isomorphic to our fixed irreducible Galois representation ρ̄p (see below).

6.3 Comparison

We will use results of Emerton to describe a part of Ĥ1
ss,F̄p

. We start by comparing mod p Hecke

algebras for GL2 and for D×. On F, after taking KΣ-invariants, there is an action of a Hecke
algebra. For l 6∈ Σ, we have a Hecke operator Tl acting on functions of D×(Af ) by

Tl(f)(x) = f(xg) +
l−1∑
i=0

f(xgi)

where g = ( l 0
0 1 ) and gi = ( 1 0

i l ) are both considered as elements of D×(Af ) having 1 at places
different from l. Let us denote by TD(KΣ0) the (completed) Hecke algebra, which is the free
O-algebra spanned by the operators Tl and Sl for all l 6∈ Σ, where Sl = [KΣ0K

Σ($ 0
0 $)KΣ0K

Σ].
By the results of Serre (see letter to Tate from [Ser96]), systems of eigenvalues for (Tl) of TD(KΣ0)
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on F are in bijection with systems of eigenvalues for (Tl) of T(KΣ0) coming from mod p modular
forms. This allows us to identify maximal ideals of TD(KΣ0) with those of T(KΣ0), and in what
follows we will make no distinction between them.

Let ρ̄p be the local Galois representation associated to a supersingular representation π of
GL2(Qp) by the mod p Langlands correspondence. We assume that there exists a representation
ρ̄ : GQ → GL2(F̄p) which is odd, irreducible, continuous, unramified outside a finite set Σ =
Σ0 ∪ {p}, and such that ρ̄|GQp

= ρ̄p. This is always the case as we may see from the description
of the reductions of Galois representations associated to modular forms; see the introduction
to [Bre03b] for a discussion (especially Conjecture 1.5) and compare it with the main result of
[BG13].

Let us denote by m the maximal ideal in the Hecke algebra T(KΣ0) corresponding to ρ̄.
Results of Emerton apply to ρ̄ because we have assumed that ρ̄p is irreducible. We denote by
Km,Σ0 an open compact subgroup of

∏
l∈Σ0

GL2(Zl) for which πΣ0(ρ̄)Km,Σ0 is a one-dimensional

vector space (new vectors). We put Km = Km,Σ0K
Σ and we define

σm = F[m]Km .

This is a representation of D×(Qp). We remark that Breuil and Diamond in [BD14] also define a
representation of D×(Qp) which serves as a model for a local representation which should appear
conjecturally at the place p in the local-global compatibility of the Buzzard–Diamond–Jarvis
conjecture (see the next section for a discussion). Their construction is different from our and
uses ‘types’ instead of new vectors.

Let us look again at our cohomology groups. Taking Km-invariants, which commute with
D×(Qp)-invariants, we get

(Ĥ1
ss,F̄p

)Km ' (FKm ⊗F̄p
Ĥ1

LT,F̄p
)D
×(Qp).

Let us define the dual σ∨m = HomF̄p
(σm, F̄p). It is not necessarily a smooth representation. Taking

[m]-part we get

(Ĥ1
ss,F̄p

[m])Km ' (σm ⊗F̄p
Ĥ1

LT,F̄p
)D
×(Qp) =: Ĥ1

LT,F̄p
[σ∨m].

Thus, by the results proven earlier, we have

π ⊗F̄p
ρ̄ ' (Ĥ1

F̄p
[m])Km

(π) ↪→ (Ĥ1
ss,F̄p

[m])Km ' Ĥ1
LT,F̄p

[σ∨m],

and we arrive at the following theorem.

Theorem 6.3. We have a GL2(Qp)×GQp-equivariant injection:

π ⊗F̄p
ρ̄ ↪→ Ĥ1

LT,F̄p
[σ∨m].

We will strengthen this result after proving additional facts about σm. It is also possible to
obtain the analogous result in the p-adic setting. Details will appear elsewhere.

6.4 The mod p Jacquet–Langlands correspondence
We have defined above

σm = F[m]Km .

This is a mod p representation of D×(Qp) which is one of our candidates for the mod p Jacquet–
Langlands correspondence we search for. We will analyse this representation more carefully in
the next section, getting a result about its socle. The question we do not answer here is whether
this local representation is independent of the Hecke ideal m and, if yes, how to construct it by
local means. We make a natural conjecture.
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Conjecture 6.4. Let m and m′ be two maximal ideals of the Hecke algebra, which correspond

to Galois representations ρ̄ and ρ̄′ such that ρ̄p ' ρ̄′p. Then we have a D×(Qp)-equivariant

isomorphism

σm ' σm′ .

This conjecture is natural in view of the fact that σm should play a role of the mod p Jacquet–

Langlands correspondence and it should depend only on a local data. In fact, this conjecture

follows from the local-global compatibility part of the Buzzard–Diamond–Jarvis conjecture (see

[BDJ10, Conjecture 4.7]).

Conjecture 6.5. We have a D×(A)-equivariant isomorphism

F[m] ' σ ⊗ πp(ρ̄)

where σ is a D×(Qp)-representation which depends only on ρ̄p, where ρ̄ is the Galois

representation associated to m.

The conjecture of Buzzard–Diamond–Jarvis would be proved if one could show the existence

of an analogue of the Colmez functor in the context of quaternion algebras. Then, the methods

of Emerton from [Eme11] could be applied to give a proof. We come back to the discussion of

the mod p Jacquet–Langlands correspondence at the end of the next section.

7. Representations of quaternion algebras: mod p theory

In this section we analyse more carefully mod p representations of quaternion algebras, especially

representations σm defined in the preceding section. We also define a naive mod p Jacquet–

Langlands correspondence.

7.1 Naive mod p Jacquet–Langlands correspondence

By the work of Vignéras (see [Vig89a]), we know that all irreducible representations of D× are

of dimension 1 or 2 and are either:

(1) a character of D×(Qp); or

(2) of the form IndD
×

O×DQ×
p2
α where α is a character of Q×

p2 .

Let ρ̄p be the mod p two-dimensional irreducible Galois representation which corresponds to

the supersingular representation π of GL2(Qp) by the mod p local Langlands correspondence.

As we have mentioned earlier, it is of the form Ind
GQp

GQ
p2

(ωr2 · sgn)⊗ χ where χ is a character and

r ∈ {1, . . . , p}.
Definition 7.1. The naive mod p Jacquet–Langlands correspondence is

Ind
GQp

GQ
p2

(ωr2 · sgn)⊗ χ 7→ IndD
×

O×DQp2
(ωr2)⊗ χ

where ωr2 is treated as a character of Qp2 by the local class field theory and χ is considered

both as a character of GQp and D×(Qp). This gives a bijection between two-dimensional

representations of GQp and two-dimensional representations of D×(Qp). Similar correspondence

holds for characters.
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We remark that one may also would like to call this the naive mod p Langlands
correspondence for D×(Qp). We get the Jacquet–Langlands correspondence in the usual sense,
when we compose it with the mod p local Langlands correspondence for GL2(Qp).

Let α : Qp2 → F̄×p be a character. We denote by ρ(α) the representation of GQp obtained by
the local class field theory and an induction. We denote by σ(α) the D×(Qp)-representation

IndD
×

O×DQp2
(α). We remark that we also could define the naive mod p Jacquet–Langlands

correspondence as

ρ(α) 7→ σ(α)

but we have chosen our normalisation with a twist by sgn to have the same condition on
determinants as for the classical l-adic Jacquet–Langlands correspondence.

7.2 Quaternionic forms
Let D be the quaternion algebra over Q, ramified at p and at ∞. Let K be a finite extension of
Qp with ring of integers O and a uniformiser $. Define

F = lim−→
K

H0(D×(Q)\D×(Af )/K, F̄p),

FO = lim−→
K

H0(D×(Q)\D×(Af )/K,O).

Define also FK = FO ⊗O K. We can make similar definitions for other Fp or Zp-algebras (for
example for finite extensions of Fp or for Z̄p in FZ̄p

which we will use in the text).
Recall that we have fixed a finite set Σ = Σ0 ∪ {p} and chosen an open, compact subgroup

KΣ0 of
∏
l∈Σ0

GL2(Zl). On each of the above spaces, after taking KΣ-invariants, there is an

action of the Hecke algebra TD(KΣ0). Recall also that we have defined ρ̄ : GQ → GL2(F̄p) an
odd, irreducible, continuous representation unramified outside Σ and we have denoted by m the
maximal ideal in T(KΣ0) (or in TD(KΣ0)) which corresponds to ρ̄. We write

ρ̄|GQp
= ρ(α)

where α can be considered as a character of Q×
p2 by the local class field theory.

Proposition 7.2. Take an open, compact subgroup Kp of D×(Qp) and choose KΣ0 to be an

open, compact subgroup of
∏
l∈Σ0

GL2(Zl) such that KpKΣ0K
Σ is neat. Then F

KΣ0
KΣ

m is injective
as a smooth representation of Kp.

We do not define the notion of neatness for which we refer to [Pin90, § 0.6]. We only need
this condition to ensure that Kp acts freely as in the proof below. Any sufficiently small open
compact subgroup is neat.

Proof. Let M be any smooth finitely generated representation of Kp. We have

FKΣ0
KΣ

= lim−→
K′p

FK′pKΣ0
KΣ

where K ′p ⊂ Kp runs over sufficiently small, normal open subgroups of O×D, so that K ′p acts

trivially on M . We can associate to M a local system M on D×(Q)\D×(Af )/KΣ0K
Σ. Because

Kp acts freely on D×(Q)\D×(Af )/KΣ0K
Σ by the assumption of neatness, we can descend
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this system to each D×(Q)\D×(Af )/K ′pKΣ0K
Σ, where K ′p is as above. Moreover on each

D×(Q)\D×(Af )/K ′pKΣ0K
Σ, M is a constant local system and hence

HomKp
(M,FKΣ0

KΣ

) ' lim−→
K′p

HomKp
(M,FK′pKΣ0

KΣ

) ' lim−→
K′p

(FK′pKΣ0
KΣ

(M∨))Kp ' FK×p KΣ0
KΣ

(M∨)

where F(M∨) = H0(D×(Q)\D×(Af ),M∨). Because FKpKΣ0
KΣ

(M∨) is an exact functor (there
is no H1), we get the result. 2

We will now start to analyse socles of quaternionic forms F
KΣ0

KΣ

m . Let us start with the
following lemma.

Lemma 7.3. Let β be a finite-dimensional F̄p-representation of O×D. We have HomO×D
(β∨,FKp

m ) '
FKp

m {β}, where FKp

m {β} is the space of automorphic functions D(Q)\D(Af )/Kp
→ β.

Proof. The isomorphism is given by an explicit map. See [EGH11, Lemma 7.4.3]. 2

Proposition 7.4. The only irreducible F̄p-representations of D×(Qp) which appear as

submodules in F
KΣ0

KΣ

m are isomorphic to σ∨ = σ(α)∨.

Proof. Observe that the only irreducible F̄p-representations of O×D which can appear in the
O×D-socle of FKp

m are duals of the Serre weights of ρ̄. This follows from the lemma above and the
definition of being modular, i.e. ρ̄ is modular of weight β (where β is a representation of O×D)
if and only if there exists an open compact subset U of D×(Af ) such that FU

m{β} 6= 0. By the
lemma, this is equivalent to HomO×D

(β∨,FU
m) 6= 0 which holds if and only if β∨ ∈ socO×DFU

m . Now

the result follows from [Kha01, Theorem 7], as the only possible weights which can appear in
the socle are α∨ and (αp)∨. Hence the D×(Qp)-socle contains only σ(α)∨. 2

As a corollary we also get the [m]-isotypic analogue of the above.

Corollary 7.5. The only irreducible representations which appear as submodules in
FKΣ0

KΣ
[m] are isomorphic to σ∨ = σ(α)∨.

We are now ready to strengthen the theorem which has appeared before.

Theorem 7.6. The representation σ ⊗ π ⊗ ρ̄ appears as a subquotient in Ĥ1
LT,F̄p

.

Proof. This follows from Theorem 6.3, i.e.

π ⊗ ρ̄ ↪→ Ĥ1
LT,F̄p

[σ∨m],

and the fact that the only irreducible D×(Qp)-representation which appears as a quotient of σ∨m
is σ. 2

We remark that if
n = dimF̄p

HomD×(Qp)(σ(α)∨,FKΣ0
KΣ

[m])

then one conjectures that n = 1 (even in the more general setting, see [Bre14, § 8]).
Before moving further, let us recall a (conjectural) structure theorem of Breuil and Diamond

for our D×(Qp)-representations, which shows that our candidate for the mod p Jacquet–
Langlands correspondence defined above is of entirely different nature than the one with complex
coefficients. The proof of the following result is conditional on the local-global compatibility part
of the Buzzard–Diamond–Jarvis conjecture. See [BD14] for details.

1450

https://doi.org/10.1112/S0010437X14008008 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14008008


On mod p non-abelian Lubin–Tate theory for GL2(Qp)

Proposition 7.7. The D×(Qp)-representation FKΣ0
KΣ

[m] is of infinite length.

Proof. We give a sketch of the proof, which is contained in [BD14, Corollary 3.2.4]. Firstly

observe that it is enough to prove that FKΣ0
KΣ

[m] is of infinite dimension over F̄p, because a
representation of finite length will be also of finite dimension as D× is compact modulo centre.
Suppose now that we have an automorphic form π such that the reduction of its associated
Galois representation ρ̄π is isomorphic to ρ̄ and πKΣ0

KΣ 6= 0. Then there is a lattice Λπ =

F
KΣ0

KΣ

Z̄p
∩πKΣ0

KΣ
inside πKΣ0

KΣ
. Its reduction Λ̄π = Λπ⊗Z̄p

F̄p lies in FKΣ0
KΣ

[m] so it is enough

to prove that we can find automorphic representations π as above with πKΣ0
KΣ

of arbitrarily
high dimension. This is done by explicit computations of possible lifts in [BD14]. 2

This proposition indicates that Ĥ1
LT,F̄p

is a non-admissible smooth representation.

7.3 Non-admissibility

Proposition 7.8. The GL2(Qp)-representations Ĥ1
ss,F̄p

and Ĥ2
Xord,F̄p

are non-admissible smooth

F̄p-representations.

Proof. If one of them would be admissible, then also the second would because of the exact
sequence

Ĥ1
Xord,F̄p

→ Ĥ1
F̄p
→ Ĥ1

ss,F̄p
→ Ĥ2

Xord,F̄p
→ Ĥ2

F̄p
.

It is enough to prove that Ĥ1
ss,F̄p

is non-admissible, or even that Ĥ1
LT,F̄p

is non-admissible. Let us

look at the Hochschild–Serre spectral sequence for the Iwahori level I of the Lubin–Tate tower

H i(I, Ĥj
LT,F̄p

)⇒ H i+j
LT,I,F̄p

where we have denoted by H i+j
LT,I,F̄p

the fundamental representation at I-level. Now observe that if

Ĥ1
LT,F̄p

were admissible, then H0(I, Ĥ1
LT,F̄p

) would be of finite dimension. Because H1(I, Ĥ0
LT,F̄p

)

is of finite dimension (as Ĥ0
LT,F̄p

is), this would mean that H1
LT,I,F̄p

is finite dimensional. However,

geometrically the Lubin–Tate tower at level I is an annulus (this is a standard fact, one can
prove it by methods of § 8.1), and hence H1

LT,I,F̄p
has to be of infinite dimension (see [Ber93,

Remark 6.4.2]). This contradiction finishes the proof. 2

Corollary 7.9. The GL2(Qp)-representation Ĥ1
LT,F̄p

is a non-admissible smooth F̄p-
representation.

Proof. The corollary follows from the Proposition 7.8. 2

7.4 On mod p Jacquet–Langlands correspondence

We come once again to the discussion of the mod p Jacquet–Langlands correspondence. Note
that there are three possible candidates for the correspondence which appear in our work:

(1) the two-dimensional irreducible representation σ of D×(Qp) defined by the naive mod p
Jacquet–Langlands correspondence;

(2) the representation σm defined by global means and depending a priori on a maximal
Hecke ideal m. It is of infinite length as a representation of D×(Qp) and contains σ∨ in its socle;

1451

https://doi.org/10.1112/S0010437X14008008 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14008008


P. Chojecki

(3) the representation defined via the cohomology

σLT = HomGQp×GL2(Qp)(ρ̄⊗F̄p
π, Ĥ1

LT,F̄p
).

By the results above, it contains σ as a subquotient.

In the l-adic setting, we can define representations of D×(Qp) in the similar way and it is
known that σLT ' σ∨m. Moreover σm in the l-adic setting is two-dimensional (at least in the
moderately ramified case). This is not the case in the mod p setting as we have shown that
representations of candidates (1) and (2) are different (one is two-dimensional, the other is
infinite-dimensional). The natural definition of the mod p correspondence seems to be σLT and
it is also natural to ask whether one has σLT ' σ∨m for each appropriate m as considered before.

8. Cohomology with compact support

In this section we will discuss what happens when we consider the cohomology with compact
support. Our basic result is negative and it states that the first cohomology group with
compact support of the fundamental representation Ĥ1

LT,c,F̄p
does not contain any supersingular

representation of GL2(Qp) as a subrepresentation. This surprising result, which is very different
from the situation known in the l-adic setting where l 6= p, leads to a similar exact sequence as
we have considered for cohomology without support, but this time, we get that π⊗ ρ̄ is contained
in the H1 of the ordinary locus.

8.1 Geometry at pro-p Iwahori level

Let K(1) =
( 1+pZp pZp

pZp 1+pZp

)
and let I(1) =

( 1+pZp Zp

pZp 1+pZp

)
be the pro-p Iwahori subgroup. We let

MLT,K(1) = Spf RK(1),

MLT,I(1) = Spf RI(1)

be the formal models for the Lubin–Tate space at levels K(1) and I(1) respectively. We will
compute RI(1) explicitly. This is also done in a more general setting in the work of Haines and
Rapoport (see [HR12, Corollary 3.4.3]), but here we give a short and elementary argument.

We know that RI(1) = R
I(1)
K(1) and hence we can use the explicit description of RK(1) by

Yoshida to get the result (see [Yos10, Proposition 3.5]). Let W = W (F̄p) be the Witt vectors of
F̄p. There is a surjection W [[X̃1, X̃2]]� RK(1) which maps X̃i to Xi where Xi (i = 1, 2) are local
parameters for RK(1) which form a Fp-basis of mRK(1)

[p] = {x ∈ mRK(1)
|[p](x) = 0}, where [p] is

explained below. We will find parameters for RI(1) = R
I(1)
K(1). Observe that for b ∈ Fp we have

(see [Yos10, ch. 3]) (
1 b
0 1

)
X1 = X1,(

1 b
0 1

)
X2 = [b]X1 +Σ X2

where +Σ is the addition on the universal deformation of the unique formal group over F̄p of
height two and [.] gives the structure of multiplication by elements of W on the same universal
deformation Σ. See [Yos10, ch. 3] for details. We see that X2 is not invariant under I(1) and
hence we define X ′2 =

∏
b∈Fp

([b]X1 +ΣX2) which is. We claim that (X1, X
′
2) are local parameters

for RI(1). Indeed if z belongs to RI(1) = R
I(1)
K(1) then we may write it as z = P (X1)+X2Q(X1, X2),
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where P ∈ W [[X1]] and Q ∈ W [[X1, X2]]. As P (X1) is invariant under I(1), we see that also

X2Q(X1, X2) has to be invariant under I(1). Because of the action of ( 1 b
0 1 ) on X2 described above

and the fact that RK(1) is a regular local ring hence factorial, we see that X ′2 divides X2Q(X1, X2)

(we use here the fact that [b]X1 +ΣX2 and [b′]X1 +ΣX2 are not associated for b 6= b′; this follows

from [Str08, Proposition 4.2]). This leads to z = P (X1) + X ′2Q
′(X1, X2) for some Q′ which is

I(1)-invariant and hence we conclude by induction and the fact that polynomials are dense in

formal series (look at z modulo powers of the maximal ideal mRI(1)
).

Let us observe that for a ∈ F×p we have, for i = 1, 2, that [a]Xi = uXi, where u is a unit

in RK(1). Let us now look at the relation defining RK(1) inside W [[X̃1, X̃2]] which appears in

[Yos10, Proposition 3.5]. We have

p = u
∏

(a1,a2)∈F2
p\{0,0}

([a1]X1 +Σ [a2]X2)

where u is some unit in RK(1). Let us write a ∼ b whenever a = ub for some unit u in RK(1).
Thus we have

p∼
∏

(a1,a2)∈F2
p\{0,0}

([a1]X1 +Σ [a2]X2) ∼
( ∏
a1∈F×p

[a1]X1

)( ∏
a1∈Fp

∏
a2∈F×p

[a2]([a1/a2]X1 +Σ X2)

)

∼
( ∏
a1∈F×p

[a1]X1

)( ∏
a2∈F×p

X ′2

)
∼ (X1X

′
2)p−1.

Hence we have p = u′(X1X
′
2)p−1 for some unit u′ in RK(1) a priori, but we can see that u′ is

in fact a unit in RI(1). Because W [[X,Y ]] is a complete local ring with an algebraically closed

residue field there exists a (p− 1)th root of u′, and hence we can write p = (X ′1X
′′
2 )p−1. We want

to conclude that this is the only relation in RI(1) which means that there exists a surjection

B = W [[X̃ ′1, X̃
′′
2 ]]� RI(1)

with kernel f = (X̃ ′1X̃
′′
2 )p−1− p. First of all, observe that RI(1) and B/fB are regular local rings

of dimension 2 with a surjection B/fB � RI(1). We claim that this map has to be necessarily an

injection also. Indeed, this holds for any surjective morphism A� R of regular local rings of the

same dimension by using the fact that for a regular local ring we have gr•mA
A ' SymmA/m

2
A.

This yields an isomorphism at the graded level which lifts to the level of rings. All in all, we

conclude that the following proposition is true.

Proposition 8.1. We have

RI(1) 'W [[X,Y ]]/((XY )p−1 − p).

This means that MLT,I(1) is made of p − 1 copies of an open annulus in P1 after a base

change to W [ p−1
√
p][1/p]:

RI(1) ⊗W W [ p−1
√
p][1/p] '

p−1∏
i=1

W [[X,Y ]][1/p]/(XY − p−1
√
p · ζip−1).
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8.2 Cohomology at pro-p Iwahori level
We compute H1

c (MLT,I(1), F̄p) (we will omit F̄p from the notation in what follows). Let A be an
open annulus in P1. We can write a long exact sequence

0→ H0
c (A)→ H0(P1)→ H0(P1\A)→ H1

c (A)→ H1(P1).

We know that

H1(P1) = H0
c (A) = 0,

dimF̄p
H0(P1) = 1,

dimF̄p
H0(P1\A) = 2,

and hence it follows that
dimF̄p

H1
c (A) = 1.

Because geometrically MLT,I(1) is made of p− 1 copies of A, we have

dimF̄p
H1
c (MLT,I(1)) = p− 1.

Let H = HGL2(I(1)) = F̄p[I(1)\GL2(Qp)/I(1)] be the mod p Hecke algebra at the pro-p Iwahori
level. Let I be the Iwahori subgroup of GL2(Zp). We look at the action of F̄p[I/I(1)] ' F̄p[(F×p )2]
on the cohomology. We know by [Str08] that it acts by determinant on connected components
of MLT,K(1) and hence on connected components of MLT,I(1) so we have a decomposition of
H1
c (MLT,I(1)) into p− 1 pieces of dimension 1:

H1
c (MLT,I(1)) =

⊕
χ:F×p→F̄×p

H1
c (MLT,I(1))χ

where H1
c (MLT,I(1))χ is the part of H1

c (MLT,I(1)) on which F̄p[(F×p )2] acts through χ ◦ det.

8.3 Vanishing result

We will now prove that the supersingular representation π does not appear in Ĥ1
LT,c,F̄p

. First of

all, remark that it is enough to prove that the H-module πI(1) does not appear in (Ĥ1
LT,c,F̄p

)I(1),

because the functor π 7→ πI(1) induces a bijection between supersingular representations and
supersingular Hecke modules (see [Vig04]). We have the Hochschild–Serre spectral sequence (see
Appendix A)

H i(I(1), Ĥj
LT,c,F̄p

)⇒ H i+j
LT,c,I(1),F̄p

where we have denoted by H i+j
LT,c,I(1),F̄p

the fundamental representation at I(1)-level. This gives

a long exact sequence

0→ H1(I(1), Ĥ0
LT,c,F̄p

)→ H1
LT,c,I(1),F̄p

→ (Ĥ1
LT,c,F̄p

)I(1)
→ H2(I(1), Ĥ0

LT,c,F̄p
).

Because Ĥ0
LT,c,F̄p

= 0 as H0
c (MLT, F̄p) = 0 we have an H-equivariant isomorphism

H1
LT,c,I(1),F̄p

' (Ĥ1
LT,c,F̄p

)I(1).

This means that if πI(1) appears in (Ĥ1
LT,c,F̄p

)I(1) then it appears also in H1
LT,c,I(1),F̄p

. However,

because H1
LT,c,I(1),F̄p

consists of multiple copies of H1
c (MLT,I(1), F̄p), it is enough to show that
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πI(1) does not appear in H1
c (MLT,I(1), F̄p). To prove it, it suffices to show that no supersingular

H-module appear in H1
c (MLT,I(1), F̄p). Let M be any supersingular H-module. Then we know

that it is two-dimensional and of the form M2(0, z, ω) as in [Vig04, § 3.2], where ω is a character
of I/I(1). If we write I/I(1) = F×p × F×p and ω = η1 ⊗ η2 then M = (η1 ⊗ η2) ⊕ (η2 ⊗ η1) as a
I/I(1)-module. If M appears in H1

c (MLT,I(1), F̄p), then I/I(1) acts on M by determinant and
hence η1 = η2. This would mean that H1

c (MLT,I(1))η1 is at least two-dimensional, which is a

contradiction. All in all, we conclude that πI(1) does not appear in (Ĥ1
LT,c,F̄p

)I(1) and hence we

have the following theorem.

Theorem 8.2. The supersingular representation π does not appear in Ĥ1
LT,c,F̄p

.

We could rephrase it also as
Ĥ1

LT,c,F̄p,(π) = 0.

Remark 8.3. Observe that the above proof does not use in any particular form the fact that
we are working with GL2(Qp), besides the fact that the functor π 7→ πI(1) induces a bijection
between supersingular representations and supersingularH-modules. Apart from that, the results
of Vignéras and Yoshida holds for GL2(F ) as well, where F is a finite extension Qp and show that
there are no supersingular modules in the cohomology with compact support of the Lubin–Tate
tower at the pro-p Iwahori level. This leads to the conclusion that supersingular representations
of GL2(F ) attached to these supersingular modules by the construction of Pas̆kūnas (see [Pas04])
do not appear in the cohomology with compact support of the Lubin–Tate tower at infinite level.
We remark that, contrary to F = Qp case, those supersingular representations constructed by
Pas̆kūnas do not conjecturally give all the supersingular representations of GL2(F ).

The above theorem gives us, when combined with the exact sequence for the supersingular
locus, an appearance of the mod p local Langlands correspondence in the cohomology of the
ordinary locus (in contrast with the mod l situation).

Corollary 8.4. We have an GL2(Qp)×GQp-equivariant injection

π ⊗ ρ̄ ↪→ Ĥ1
ord,F̄p

.

Moreover, this vanishing result can be used in the study of non-admissibility and in the
description of the cohomology of certain Shimura curves.

8.4 Non-admissibility
We will now show that our cohomology groups are non-admissible representations of GL2(Qp).
We start with the following proposition.

Proposition 8.5. The GL2(Qp)-representations Ĥ2
ss,c,F̄p

and Ĥ1
ord,F̄p

are non-admissible smooth

F̄p-representations.

Proof. If one of them would be admissible, then also the second would because of the exact
sequence

Ĥ1
ss,c,F̄p

→ Ĥ1
F̄p
→ Ĥ1

ord,F̄p
→ Ĥ2

ss,c,F̄p
→ Ĥ2

F̄p
.

But we know that Ĥ1
ord,F̄p

is an induced representation

IndGL2

B(∞)

(⊕
a

Ĥ1
a,∞,F̄p

)
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so if it were admissible, then the localisation of it at π would have to vanish. This is not possible
by the corollary above. 2

Corollary 8.6. The GL2(Qp)-representation Ĥ2
LT,c,F̄p

is a non-admissible smooth F̄p-
representation.

Proof. The corollary follows from the Proposition 8.5. 2

8.5 Cohomology of Shimura curves

We will briefly sketch another consequence of vanishing of Ĥ1
LT,c,F̄p,(π)

. First of all, it implies that

H1
c (MLT, F̄p)(π) vanishes because Ĥ1

LT,c,F̄p,(π)
is just a sum of copies of H1

c (MLT)(π). Now recall

the Faltings isomorphism (see [Far08]) which gives us

H1
c (MLT, F̄p)(π) = H1

c (MDr, F̄p)(π) = 0

whereMDr is the Drinfeld tower at infinity (see [Dat12] for details). We have a spectral sequence
coming from the p-adic uniformisation of the Shimura curve Sh associated to the algebraic group
G′′ arising from the quaternion algebra over Q which is ramified precisely at p and some other
prime q:

Ep,q2 = ExtpGL2(Qp)(H
2−q
c (MDr,Kp , F̄p), C∞(G′(Q)\G′(A), F̄p)K

p
)⇒ Hp+q

c (ShanKpKp , F̄p)

where we have denoted by G′ the algebraic group arising from the quaternion algebra over Q
which is ramified precisely at q and ∞. For this, see [Far04] where it is proven for Q̄l but the
proof works also for F̄p (the proof is also contained in the [Dat06, Appendix B]).

Choose any non-Eisenstein maximal ideal n in the Hecke algebra of G′′ whose associated
Galois representation corresponds at p to the supersingular representation π we have chosen
before. Take the direct limit over Kp and localise the above spectral sequence at n to get

ExtpGL2(Qp)(H
2−q
c (MDr, F̄p)(π), C

∞(G′(Q)\G′(A), F̄p)K
p

n )⇒ Hp+q
c (ShanKp , F̄p)n.

The localisation of H2−q
c (MDr, F̄p) at π appears because C∞(G′(Q)\G′(A), F̄p)K

p

n is π-isotypic.
Using our vanishing result we get an interesting isomorphism

Ext1
GL2(Qp)(H

2
c (MDr, F̄p)(π), C

∞(G′(Q)\G′(A), F̄p)K
p

n ) ' H1
c (ShanKp , F̄p)n.

This can be possibly used to study the mod p cohomology of the Shimura curve Sh. We shall
treat this issue elsewhere.

9. Concluding remarks

Let us finish by giving some remarks and stating natural questions.

9.1 The l-adic case
Observe that our arguments work well also in the mod l 6= p setting and circumvent the use
of vanishing cycles. The idea of localisation at a supersingular (supercuspidal) representation
appears also in the work of Dat. See especially [Dat12] where the author discusses localisations
both for GLn and quaternion algebras and then uses it to describe the supercuspidal part of the
cohomology.

One might want also to see [Shi], which bears some resemblance to certain arguments we use.
Shin describes the mod l cohomology of Shimura varieties by using results of Dat about the mod
l cohomology of the Lubin–Tate tower. In our work, we start from global results of Emerton to
deduce from them statements about local objects.
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9.2 Beyond modular curves

The geometric arguments we have given also applies to Shimura curves considered by Carayol

in [Car86] and we can consider similar exact sequences relating the ordinary locus and the

supersingular locus in this setting. Nevertheless, in this case we cannot go on with arguments

as we do not have a definition of the mod p local Langlands correspondence for extensions of

Qp. In fact, such a construction seems a little bit problematic as might be seen from the work

of Breuil and Pas̆kūnas [BP12], where the authors show that there are much more automorphic

representations than Galois representations. The hope is that by looking at the cohomology of

the Lubin–Tate tower, one should be able to tell how the correspondence should look like. We

will pursue this subject in our subsequent work.

9.3 Adic spaces

We have chosen to work with Berkovich spaces, but one might as well wonder how the things

translate into the setting of adic spaces of Huber [Hub96]. In fact, everything that we have

considered can be rewritten in the language of adic spaces and we might consider the same long

exact sequences as above (though these exact sequences will be inversed due to the fact that

adic spaces behave like formal schemes). The main difference between those two contexts lies in

the ordinary locus which in the case of adic spaces will contain additional points which lie in the

closure of the ordinary locus from the setting of Berkovich spaces. Nevertheless, the cohomology

groups in both settings will be similar and we refer a reader to [Cho14] for details. Let us remark

also, that the comparison between mod p étale cohomology of a formal scheme and its (adic)

analytification is proved in [Hub96, Theorem 3.7.2].

9.4 Serre’s letters

Though it does not appear explicitly in our work (besides the comparison of Hecke algebras), we

were influenced by two letters written by Serre (see [Ser96]). It is there that in some sense appears

for the first time the modified mod l local Langlands correspondence which goes under the name

of the universal unramified representation (see the letter to Kazhdan). Indeed, if we were to

suppose that our global lift ρ̄ which we have used is actually unramified everywhere outside p,

then there is no need to recall either the modified mod l local Langlands correspondence or new

vectors, and we could formulate everything in the language of Serre.
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Appendix A. The Hochschild–Serre spectral sequence

In the body of the text we have used the unpublished manuscript of Berkovich [Ber95b] where,

among others, there appears the Hochschild–Serre spectral sequence for the cohomology with

compact support. For the sake of completeness, we will sketch a proof of existence of this spectral

sequence here. We thank Vladimir Berkovich for sending us his preprint.
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A.1 G-spaces
Recall that an analytic space (in the sense of Berkovich) is a k-analytic space over some
non-archimedean field k. Given two analytic spaces X and Y , let Mor(X,Y ) denote the set
of morphisms X → Y and let G(X) be the group of automorphisms of X. Berkovich defined in
[Ber94] a uniform space structure (and in particular, a topology) on Mor(X,Y ). Then, the group
G(X) has the topology induced from Mor(X,X). We say that the action of a topological group G
on an analytic space X is continuous if the induced homomorphism G→ G(X) is continuous. An
analytic space endowed with a continuous action of a topological group G will be called a G-space.
A G-equivariant morphism between two G-spaces will be called a G-morphism. The category of
analytic spaces is the category of pairs (X,G), where G is a topological group and X is a G-space.
We will denote this pair by X(G). A morphism between such spaces φ : X ′(G′)→ X(G) is a pair
consisting of a continuous homomorphism of topological groups νφ : G′→ G and a morphism of
analytic spaces φ : X ′→ X compatible with the homomorphism νφ. A G-morphism φ : X ′→ X
between G-spaces gives rise to a morphism φ : X ′(G)→ X(G) for which νφ is the identity map
on G. If X is a G-space then the action of G on X extends to a natural action of G on X(G)
for which νg(g

′) = gg′g−1, where νg is the morphism given by an element g ∈ G. For a G-space
X we have a morphism b : X → X(G) where X = X({1}).

A.2 Étale topology
Berkovich has defined the étale topology on analytic spaces and similarly we can define the étale
topology on G-analytic spaces. For a G-space X, let Et(X(G)) denote the category of étale
morphisms U(G) → X(G). The étale topology on X(G) is the Grothendieck topology on the
category Et(X(G)) with coverings of U(G)→ X(G) consisting of families (Ui(G)→ U(G))i∈I
such that (Ui → U)i∈I is a covering in the étale topology of X. We denote this site by X(G)et
and its corresponding topos by X(G)∼et. In a similar way, we can also introduce a quasi-étale site
X(G)qet and its topos.

We denote by ΓX(G) the functor of global sections on X(G)et, that is ΓX(G)(F ) = F (X(G)).
The higher direct images of ΓX(G) on the category of abelian sheaves will be denoted by F 7→
H i(X(G), F ). Let F be an étale abelian sheaf on X(G). The support of f ∈ F (X(G)) is the
(closed) set Supp(f) = {x ∈ X | fx 6= 0}, where fx is the image of f in Fx. The cohomology
groups with compact support are higher direct images of the functor F 7→ Γc,X(G)(F ) = {f ∈
F (X(G)) | Supp(f) is compact} and are denoted by F 7→ H i

c(X(G), F ). We consider also the
higher direct functor of F 7→ Γc,X{G}(F ) := lim−→Γc,X(N)(F ) whereN runs through open subgroups

of G which we will denote by F 7→ H i
c(X{G}, F ). We have H i

c(X{G}, F ) = lim−→H i
c(X(N), F ).

The proposition (that is, [Ber95b, Corollary 1.5.2]) we have used in the main text was the
following.

Proposition A.1. For any étale abelian sheaf F on X(G) there are canonical isomorphisms

H i
c(X{G}, F ) ' H i

c(X, b
∗F )

for i > 0. In particular, there is a spectral sequence

Ep,q2 = Hp(G,Hq
c (X, b∗F ))⇒ Hp+q

c (X(G), F ).

We have applied it to the Lubin–Tate tower X = lim
←−nMLT,n and G = I(1) the pro-p Iwahori

subgroup of GL2(Qp), by applying it to each MLT,n and taking direct limit in the spectral
sequence above (as X is not a Berkovich space we cannot put it directly in the spectral sequence).
We are using also the fact that we have an equivalence of topoi X(G)∼et ' (G\X)∼et, whenever
G\X exists and X → G\X is étale. This is so in our case, where G\X =MLT,I(1).
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Proof. We sketch the proof of this proposition. The case i = 0 follows from the fact that every
element of H0

c (X, b∗F ) is fixed by an open subgroup of G. Then the general case follows by
constructing the Godement resolution in our context. Namely, for a topological space I denote
by Top(I) the site on the category of local homeomorphisms J → I (with the evident topology).
Suppose we have a surjective map I → X : i 7→ xi. We endow I with the discrete topology
and we fix for each i ∈ I a geometric point x̄i over xi. This gives rise to a morphism of sites
ν : Top(I)→ X(G)et. For an étale abelian sheaf F on X(G), its Godement resolution C•(F ) is
constructed as follows.

(i) C0(F ) = ν∗ν
∗(F ) and let d−1 : F → C0(F ) be the adjunction map.

(ii) If m > 0, then put Cm+1(F ) = C0(coker dm−1), and let dm be the canonical map Cm(F )→
Cm+1(F ).

This construction is taken from SGA 4, Exp. XVII, where the following are shown to hold.

(a) Cm(F ) is a flabby sheaf.

(b) The functor F 7→ Cm(F ) is exact.

(c) The fibre of the complex C•(F ) at a point x ∈ X is a canonically split resolution of Fx.

Then Berkovich [Ber95b, Proposition 1.5.1] shows that for any F ∈ X(G)∼et and m > 0, the
sheaf b∗(Cm(F )) is soft on Xet, where we say that a sheaf F is soft on Xet (after [Ber94, ch. 3])
when it satisfies the following two conditions.

(1) For any x ∈ X, the stalk Fx is a flabby GalH(x) = Gal(H(x)/H(x))-module, where H(x)
is the complete field associated to x by the standard procedure.

(2) For any paracompact U étale over X, the restriction of F to the usual topology |U | of U
is a soft sheaf; that is, for any compact subset T ⊂ U , the map F(U)→ F(T ) is surjective.

Then one shows (see [Ber94, Lemma 3.2]) that we can compute the cohomology with soft
sheaves on Xet. Remark also that to prove the theorem it is enough to prove that F = b∗(C0(F ))
is soft, by the inductive definition of the Godement resolution. This is done by checking explicitly
the conditions (1) and (2) for such an F . We omit the computations. 2
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