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Abstract

In a 1916 paper, Ramanujan studied the additive convolution Sa,b(n) of sum-of-divisors
functions σa(n) and σb(n), and proved an asymptotic formula for it when a and b are positive
odd integers. He also conjectured that his asymptotic formula should hold for all positive
real a and b. Ramanujan’s conjecture was subsequently proved by Ingham, and then by
Halberstam with a power saving error term.

In this paper, we give a new proof of Ramanujan’s conjecture that obtains lower order
terms in the asymptotics for most ranges of the parameters. We also describe a connection
to a counting problem in geometric topology that was studied in the second author’s thesis
and which served as our initial motivation in studying this sum.

1. Introduction

For any integer a, let σa(n) denote the sum of the ath powers of the divisors of n, that is,

σa(n) =
∑
d|n

da.

While the particular value of σa(n) depends crucially on the divisibility properties of n, there
are nevertheless many beautiful identities dating back to a 1916 paper of Ramanujan [18]
relating additive convolutions of some of these functions to others. For positive integers a
and b, let
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Sa,b(n) :=
n−1∑
k=1

σa(k)σb(n − k).

Perhaps the most well-known identity is

S3,3(n) = 1

120
σ7(n) + 1

120
σ3(n)

but Ramanujan establishes eight other exact identities of this type. He also establishes the
asymptotic identity

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n) − 1

2
ζ (−a)σb(n) + O

(
n

2
3 (a+b+1)

)
(1·1)

At the top of the second page of his paper, however, Ramanujan remarks, “It seems very
likely that (the main part of the asymptotic in (1·1)) is true for all positive (real) values
of a and b, but this I am at present unable to prove.” This less well known conjecture of
Ramanujan was established in 1927 by Ingham [9], and then with a power saving error term
in 1957 by Halberstam [6]. Halberstam later [7] proved that if both parameters are small,
in that they satisfy a + b < 1, then there is a secondary term given by a different expression
in this asymptotic formula. This formula does not, however, recover the secondary term in
Ramanujan’s formula (1·1), both owing to its different formulation and to the requirement
that a + b < 1.

In this paper we give another proof of the asymptotic in (1·1), improving upon the result
by establishing lower-order terms in the asymptotic for many ranges of the parameters that
recover Ramanujan’s secondary term. We begin with the following theorem on what is
typically the largest of these lower order terms.

THEOREM 1·1. If a and b are positive real numbers with b > a � 1, then

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n) + ζ (1 − a)ζ (b + 1)

(b + 1)ζ (b − a + 2)
naσb−a+1(n)

+ O(nb) + O
(

n
a+b

2 +1+ε
)

.

Notice that when a is an odd integer � 3, the secondary term in Theorem 1·1, which is
O
(
nb+1

)
, actually vanishes, so Theorem 1·1 is consistent with (1·1) (which requires both

parameters to be odd integers) but does not quite recover it. In fact, our proof shows that
there are typically many lower order terms in the asymptotic formula for Sa,b(n), of orders
O
(
nb+1−m

)
for non-negative integers 0 � m < (b − a)/2 + 7/4. All of these terms but that

of order O
(
nb
)

vanish if the smaller parameter a is an odd integer, and it is in fact this term
that recovers Ramanujan’s secondary term.

THEOREM 1·2. Let a and b be positive real numbers. If b − a > 3/2, then

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n)

+ ζ (1 − a)ζ (b + 1)

(b + 1)ζ (b − a + 2)
naσb−a+1(n) +

∑
0�m< b−a

2 − 3
4

Res(−m) + Oa,b,ε

(
n

a+b
2 + 3

4 +ε
)

,
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where Res(−m) is given explicitly by (4·7). It satisfies Res(−m) � nb−m in general, and if a
is an odd integer, then Res(0) = −(1/2)ζ (−a)σb(n) and Res(−m) = 0 for each m � 1.

In particular, when a � 3 is an odd integer and b > a + 3/2, Theorem 1·2 implies

Sa,b(n) =�(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n) − 1

2
ζ (−a)σb(n)

+ Oa,b,ε

(
n

a+b
2 + 3

4 +ε
)

,

recovering Ramanujan’s formula (1·1) but without requiring b to be an odd integer. Thus,
Theorem 1·2 recovers and expands on the asymptotic formula for Sa,b(n) available from the
theory of modular forms. We note that when b is also an odd integer, it was conjectured

by Ramanujan and proved by Deligne that the error term is of the form Oa,b,ε

(
n

a+b
2 + 1

2 +ε
)

.

This improved error term is available only when b is an odd integer, however; we discuss
possible improvements to the error term when b is not an odd integer in the final section of
this paper.

The core of the paper is Section 4, where we state and prove a theorem subsuming
Theorems 1·1 and 1·2. We first present in Section 3 a simple elementary proof of Rama-
nujan’s conjecture (with power saving error term) along similar lines as Halberstam [6].

Also in this paper, in Section 2 we describe a problem in geometric topology which ini-
tially motivated our interest in this problem. In brief, the additive convolution S1,2(n) appears
while counting primitive ramified degree n covers of the square torus (or in other words,
square-tiled surfaces with n squares) with two ramification points. These surfaces can be
classified according to their horizontal cylinder configurations. There are exactly four such
configurations, and knowing the asymptotic for S1,2(n), which already is difficult to find in
the literature, enables us to compute asymptotic proportions of two of these four horizontal
cylinder configurations.

2. Motivation from Geometric Topology

Our initial interest in studying additive convolutions of the kind Sa,b arose from a counting
problem in geometric topology. In order to describe succinctly where the additive convo-
lution appears we begin with a brief exposition on translation surfaces and their moduli
spaces.

2.1. Translation surfaces and their moduli spaces

A translation surface is a closed orientable surface obtained from the union of finitely
many Euclidean polygons {�1, . . . , �n} such that:

(i) the embedding of the polygons in R2 is fixed only up to translation;

(ii) the boundary of every polygon is oriented counterclockwise; and

(iii) for every 1 � j � n and for every oriented side sj of �j, there exist 1 � �� n and an
oriented side s� of �� so that sj and s� are parallel, of equal length and of opposite
orientation. The sides sj and s� are glued together by a parallel translation.
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��

Fig. 1. On the left, the two translation surfaces differ by a nontrivial rotation, so are not consid-
ered equivalent. On the right, the two translation surfaces are cut and paste equivalent. We omit
the orientation on the edges mentioned in the definition while representing the surfaces using
polygons.

Fig. 2. A translation surface formed by two pentagons whose opposite corresponding sides are
glued. This surface has genus 2 and lives in the stratum H(1, 1).

A few key things follow from the definition.

(i) The total angle around a vertex is 2π(k + 1) for some non-negative integer k. When
k > 0, we call the point a cone point.

(ii) We distinguish between two polygons one obtained from the other by a nontrivial
rotation. However, two polygons are “cut, parallel transport, and paste” equivalent.
For instance, consider Figure 1. Hence, translation surfaces come with a well defined
vertical direction.

Some basic examples of translation surfaces include an axis parallel square with opposite
sides identified to give a square torus and a regular octagon with opposite sides identified.
One can also take two regular n-gons with n odd and identify opposite corresponding sides
to form a translation surface. Consider Figure 2 for an example with n = 5. In general, the
polygons need not be regular.

Translation surfaces also admit an alternate definition via complex analysis. Viewing the
polygons as embedded in C, a translation surface has a complex structure with transition
functions given by translations. The globally defined 1-form dz on C then induces a globally
defined 1-form ω with zeroes exactly at the cone points. Hence, from the polygonal defini-
tion of a translation surface we obtain a pair (X, ω) where X is a Riemann surface and ω is
holomorphic 1-form. On the other hand, given such a pair (X, ω) one can also recover the
polygonal definition using a geodesic triangulation of X satisfying the appropriate properties
outlined in the polygonal definition. Therefore, a translation surface can also be thought of
as a pair (X, ω) of a Riemann surface X equipped with a holomorphic 1-form ω. See [14]
for a more precise formulation of the equivalence of these two definitions of translation
surfaces.
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The genus of a translation surface is given by the classical Gauss–Bonnet theorem which
relates the Euler characteristic of a surface with the total curvature. Since translation surfaces
are built out of Euclidean polygons, they are flat everywhere except the cone points, and the
Gauss–Bonnet theorem takes on a simpler form. Hence, a surface of genus g with m cone
points of angles 2π(α1 + 1), . . . , 2π(αm + 1) satisfies the relation

2g − 2 =
m∑

i=1

αi.

The angle data around the cone points can be recorded in a vector α = (α1, . . . , αm),
where m is the number of cone points and 2π(αi + 1) are the cone angles defined as above.
The collection of translation surfaces sharing the same angle data is called a stratum and is
denoted H(α).

For any α that is an integer partition of an even number, H(α) can be given the structure of
a complex orbifold. The main idea is that given (X, ω) ∈H(α1, . . . , αm), we can fix a basis
ρ1, . . . , ρ2g+m−1 for the first homology H1 (X, {P1, . . . , Pm} ; Z) relative to the cone points.
We can then get a map

H(α) →C2g+m−1 given by (X, ω) −→
(∫

ρ1

ω, . . . ,
∫

ρ2g+m−1

ω

)
. (2·1)

These are called periodcoordinates for H(α). The period coordinates serve as local coor-
dinates via which it can be shown, as in [13, 22, 23], that the strata are complex orbifolds
of dimension 2g + m − 1, where g is the genus of the translation surface with cone point
data (α1, . . . , αm). Kontsevich and Zorich [10] classified the connected components of H(α)
for all α. In particular, any H(α) can have at most 3 connected components. Moreover, any
stratum admits an SL2(R) action — given a translation surface built out of polygons {�i},
its image under A ∈ SL2(R) is simply the translation surface {A · �i} where A acts on the
polygons linearly.

2.2. Volume in H(α)

The period coordinates can also be used to define a volume form on H(α). Consider the
linear volume form on C2g+m−1, normalised so that the fundamental domain of the integer
lattice (Z+ iZ)2g+m−1 has volume 1. The pullback of this volume form under the period
map gives what is popularly called the Masur–Veech volume form on H(α). Furthermore,
this induces a volume form on H1(α), the set of translation surfaces in H(α) of area 1
(i.e. collections of surfaces with total Euclidean area of the polgyons 1). The measure of
H1(α) with respect to this induced volume form has been shown to be finite for any α,
independently by Masur [13] and Veech [22].

Twenty years after, Eskin and Okounkov [4] computed the volume of these strata, H1(α).
They counted a particular type of translation surfaces called square-tiled surfaces (STSs),
which are exactly those translation surfaces in which the polygons are axis parallel Euclidean
unit squares. Alternatively, they are exactly those translation surfaces (X, ω) such that their
image under the period map (2·1) is in (Z+ iZ)2g+m−1. In this manner, STSs have a lattice-
like structure in the space of translation surfaces and can be thought of as “integer points”
of strata. Topologically, STSs are also thought of as branched covers of the standard square-
torus with branching over exactly one point.
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The idea of the volume computation is motivated by the following simple case. To com-
pute the surface area of a body in Rn, one can consider a large dilate of the body by R > 1,
and count the integer points inside. Asymptotically, the number of such integer points would
be c · Rn since Rn is n-dimensional. The surface area of the body is then given by

d (c · Rn)

dR

∣∣∣∣
R=1

= cn.

To compute the volume of H1(α), one applies the same technique. Applying a homothety
to the codimension 1 subset H1(α) by n, we get the set of translation surfaces surfaces of
area n. The integer points within this dilated region in H(α) are STSs with at most n squares.
The asymptotics of this count then yields the volume of H1(α).

2.3. Connections to Number Theory

Using the volume computation heuristic described above, Zorich [25] computed the
volume of the first few strata by hands-on counting and obtained

vol(H1(∅)) = 2 · ζ (2); vol(H1(2)) = 3

4
· ζ (4); vol(H1(1, 1)) = 1

3
· ζ (4).

In general, Eskin and Okounkov [4] showed that the volume of H1(α) is given by

vol (H1(α)) = (|α| + 1) limD→∞ D−|α|−1 ∑D
d=1 Cd(α)

dim H(α)
,

where |α| =∑
αi, and the Cd are the coefficients of a certain generating function C(α) =∑∞

d=1 Cd(α)qd which they proved to be a quasimodular form, i.e, a polynomial in the
Eisenstein series Gk(q) for k = 2, 4, 6. Consequently, they showed that

vol(H1(α))

π2g
∈Q

for any stratum H(α) of genus g translation surfaces.
Since Eskin and Okounkov’s volume computations, various counting problems have

received much attention in the study of STSs, including the enumeration of primitive square-
tiled surfaces, i.e. those STSs whose covering of the square torus does not factor through
another STS. In some ways this problem is analogous to counting primitive vectors in Zn.

In 2006, Hubert and Lelievre [8] and McMullen [15] proved that primitive n-square STSs
in H(2) partition into at most two orbits under the linear action of SL2(Z) (induced by
the linear action of SL2(R)). Subsequently, Lelievre and Royer [12] obtained orbit-wise
counting of primitive n-square STSs for odd n in H(2). In the computation, they obtained
and used closed forms of sums of the type

Sk
1,1(n) =

∑
(a,b)∈N2

ka+b=n

σ1(a)σ1(b).

Note that S1
1,1 = S1,1 as defined above, the convolution of σ1 with itself. For k = 2, 4 and

n � 1, they obtained

S2
1,1(n) = 1

12
σ3(n) + 1

3
σ3

(n

2

)
− 1

8
nσ1(n) − 1

4
nσ1

(n

2

)
+ 1

24
σ1(n) + 1

24
σ1

(n

2

)
,
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Fig. 3. Examples of STSs in the four cylinder diagrams of H(1, 1), here named A, B, C, D. In
each surface, collections of edges with the same label are glued via translation. For instance, in
A, the 3 edges labelled p are glued to the 3 edges labelled p via translation to form a horizontal
cylinder. Hence, diagram A is characterised by having exactly one (maximal) horizontal cylinder.
Similarly, diagram D consists of STSs in H(1, 1) with exactly three horizontal cylinders while
diagram B and C consist of those with two horizontal cylinders but different gluing pattern.
Adding squares to vary the parameters p, q, r, j, k, l, m gives surfaces with different number of
squares in each of these cylinder diagrams.

S4
1,1(n) =

1

48
σ3(n) + 1

16
σ3

(n

2

)
+ 1

3
σ3

(n

4

)
− 1

16
nσ1(n) − 1

4
nσ1

(n

4

)
+ 1

24
σ1(n) + 1

24
σ1

(n

4

)
.

They were able to express these sums as linear combinations of sums of powers of divi-
sors using the fact that the spaces of quasimodular forms on congruence subgroups such
as M4[�0(4)] and M2[�0(2)] are finite dimensional. Notably, however, since the generating
functions for σa for a even are odd weight Eisenstein series, the analysis of the convolu-
tion of Sa,b for even a resists the theory of quasimodular forms, and hence we use alternate
methods to understand the asymptotics of such sums.

We now describe the specific problem in the enumeration of STSs that motivated us to
study Sa,b for even a.

Every STS can be viewed as a union of horizontal square-tiled cylinders glued together.
One way to analyse an STS in a given stratum is to categorise its horizontal cylinder
decomposition type, popularly termed cylinder diagram that describes how many horizontal
cylinders makes up the surface, and in what ways they are glued together.

In particular, STSs in H(1, 1) (translation surfaces of genus two with two cone points)
partition into exactly 4 cylinder diagrams. Figure 3 shows prototypical examples of surfaces
in the 4 cylinder diagrams named A, B, C and D in H(1, 1).

The counting problem in question is to enumerate, given a fixed n, the number of primitive
STSs in H(1, 1) in each of the four cylinder diagrams and find the individual asymptotic
densities of each them. For example, let the number of primitive n-square surfaces in H(1, 1)
with diagram D be D(n). The second author proved in [21] that
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D(n) = 1

6
n(n − 1)J2(n) − (

(μ · σ2) ∗ (S1,2)
)
(n),

where Jk(n) := nk ∏
p|n
(

1 − 1

pk

)
is the Jordan totient function of order k, μ is the Möbius

function and ∗ is Dirichlet convolution. Using Theorem 3·1, the second author proved

that surfaces with diagram D have asymptotic density 1 − ζ (2)ζ (3)

2ζ (5)
≈ 0.047. For similar

formulae and asymptotic densities concerning the other diagrams A, B and C, see [21,
theorem 1·1].

An analogous problem for the other genus two stratum H(2) was solved by Zmiaikou
[24]. Complete results for strata of genus 3 and above are not known although the density of
one cylinder surfaces (although not necessarily primitive) has been computed by Delecroix–
Goujard–Zograf–Zorich [2].

3. Proof of Theorem 3·1
For the reader’s convenience, we begin with a short proof of Ramanujan’s conjecture,

along similar lines to Halberstam [6]:

THEOREM 3·1. For any positive real numbers a and b, as n → ∞ there holds

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n) + O(na+b+β ( log n)κ ), (3·1)

where

β =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if a, b > 1,

1 − a if a � 1, b � 1,

1 − b if a � 1, b � 1,

1 − ab
b+a−ab + ε if a, b < 1,

and κ is 2 if a = b = 1, 1 if a = 1 and b 
= 1 or vice versa, and zero otherwise.

The theorem also holds if a and b are complex numbers with positive real part, in which
case replace a and b by their real parts everywhere in the error terms and inequalities.

We begin with two lemmas.

LEMMA 3·2. For any integer n and residue class k (mod m), we have

n−1∑
j=1

j≡k (mod m)

ja(n − j)b = na+b+1

m

�(a + 1)�(b + 1)

�(a + b + 2)
+ Oa,b

(
na+b

)
. (3·2)

Proof. (Sketch) As in [6], we rewrite the sum in (3·2) as na+b ∑r−1
j=0 f (α0 + jα), where

f (t) := ta(1 − t)b, for some α0 and r satisfying 0 � α0 < α and
∣∣r − α−1

∣∣< 1. After a change
of variables, we recognise this as a Riemann sum approximation to the integral defining the
beta function, yielding the result.
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LEMMA 3·3. We have, as a formal identity of Dirichlet series,

∞∑
n=1

∞∑
m=1

(m, n)=1

n−rm−s = ζ (r)ζ (s)

ζ (r + s)
.

Proof. This follows by rewriting the left-hand side as

∞∑
d=1

μ(d)
∞∑

u=1

∞∑
v=1

(du)−r(dv)−s =
∞∑

d=1

μ(d)d−r−s
∞∑

u=1

∞∑
v=1

u−rv−s.

Proof of Theorem 3·1. We rewrite Sa,b(n) in the form

Sa,b(n) =
n−1∑
k=1

σa(k)σb(n − k) =
n−1∑
d=1

d−a
n−1∑
e=1

e−b
n−1∑
k=1
d|k

e|n−k

ka(n − k)b. (3·3)

If (d, e) � n then the inner sum vanishes. Otherwise, the divisibility conditions are equivalent
to demanding that k ≡ k0 (mod (de/(d, e))) for some k0, and by Lemma 3·2 the inner sum
equals

na+b+1
(

de

(d, e)

)−1
�(a + 1)�(b + 1)

�(a + b + 2)
+ O

(
na+b

)
,

so that

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)
na+b+1

n−1∑
d,e=1
(d,e)|n

d−ae−b
(

(d, e)

de
+ O

(
n−1

))
. (3·4)

Assuming for now that a, b > 1, the error term of O
(
n−1

)
above contributes an error

bounded by

� na+b
n−1∑

d,e=1

d−ae−b � na+b. (3·5)

The sum in the main term of (3·4) is equal to

∑
w|n

w−a−b−1
n/w−1∑
i,j=1

(i,j)=1

i−a−1j−b−1

=
∑
w|n

w−a−b−1

⎛
⎜⎜⎝

∞∑
i,j=1

(i,j)=1

i−a−1j−b−1 + O

(( n

w

)− min (a,b)
)⎞⎟⎟⎠

=
∑
w|n

w−a−b−1
∞∑

i,j=1
(i,j)=1

i−a−1j−b−1 + O
(

n− min (a,b)
)

.
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By Lemma 3·3 the sum over i and j above is ζ (a + 1)ζ (b + 1)/ζ (a + b + 2), while the
sum over w may be identified as n−a−b−1σa+b+1(n). Assembling this in (3·4), we obtain
Theorem 1·1 with an error of O

(
na+b

)
in the case that a, b > 1.

If a � 1 and b � 1, then in (3·5) the error term is � na+b+1−a( log n)κ , where κ is 2 if
a = b = 1, 1 if a = 1 and b 
= 1 or vice versa, and zero otherwise. If a � 1 and b < 1, then
the error is similarly � na+b+1−b( log n)κ .

If instead a, b < 1, take the sum in (3·5) only through d � D and e � E, making an error
� na+bD1−aE1−b. Rewriting (3·3) in the form

n−1∑
k=1

O
(

na+b
)⎛⎝∑

d|k
d−a

⎞
⎠
⎛
⎝∑

e|n−k

e−b

⎞
⎠ , (3·6)

the contribution from d > D is O
(
na+b+1+εD−a

)
, and the contribution from e > E is

similarly O
(
na+b+1+εE−b

)
. We therefore make a total error

� na+b+1+ε max
(

n−1D1−aE1−b, D−a, E−b
)

.

Equating the parameters by choosing D = n
b

b+a−ab and E = n
a

b+a−ab , we obtain an error
term

� na+b+1+ε− ab
b+a−ab .

This yields Theorem 3·1 in the remaining cases.

4. Main theorem and proof

Again, for notational simplicity we assume that b and a are both real; if not, replace b and
a with Re(b) and Re(a) in all inequalities and error estimates. We also assume without loss
of generality that b � a (i.e., that Re(b) � Re(a) if these quantities are complex).

To motivate our strategy, in place of
∑n−1

k=1 σa(k)σb(n − k), consider the problem of esti-
mating the simpler sum

∑n−1
k=1 σa(k)(n − k)b. The factor (n − k)b appears to complicate

matters, but via the theory of Riesz means and Mellin transforms it may be interpreted as a
smoothing factor that helps in evaluating of the sum.

In particular, we have the following familiar formula.

LEMMA 4·1. We have, for any Dirichlet series
∑

k a(k)k−s and any complex number b
with Re(b) > 0, the formula

1

�(b + 1)

n∑
k=1

a(k)(n − k)b = 1

2π i

∫ (∑
a(k)k−s

) �(s)

�(s + b + 1)
ns+bds, (4·1)

where the contour is over any vertical line where the Dirichlet series converges uniformly
and absolutely.
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Proof. Switching the order of integration and summation, this reduces to the formula

1

2π i

∫
�(s)

�(s + b + 1)
tsds =

⎧⎨
⎩

0 if 0 < t < 1,

�(b + 1)−1 · (1 − t−1)b if t > 1,

for which see [5, 17.43.22]. (It may be proved by shifting the contour infinitely far to the
right or left as appropriate, and evaluating the sum of residues in the latter case.)

Our aim will be to first manipulate our sum into something resembling (4·1), where the
Dirichlet series

∑
a(k)k−s can be expressed in terms of zeta functions and therefore enjoys

analytic continuation to C. As is familiar in various analytic number theory contexts, this
will then allow us to shift the integral in (4·1) to the left.

Now, we have

Sa,b(n) =
n−1∑
k=1

σa(k)σb(n − k)

=
n−1∑
k=1

σa(k)

⎛
⎝∑

d|n−k

(
n − k

d

)b
⎞
⎠

=
∑
d�1

d−b
n−1∑
k=1

d|n−k

σa(k)(n − k)b

= �(b + 1)
∑
d�1

d−b 1

2π i

∫
(a+2)

⎛
⎜⎜⎝∑

k
d|n−k

σa(k)k−s

⎞
⎟⎟⎠ �(s)

�(s + b + 1)
nb+sds, (4·2)

where the integral is taken over the vertical line with Re(s) = a + 2.
For any real x > 0, let ζ (s, x) be the Hurwitz zeta function, defined for Re(s) > 1 by the

Dirichlet series

ζ (s, x) :=
∞∑

n=0

1

(n + x)s
.

We note that

∑
k≡n (mod d)

σa(k)

ks
=

∑
k1k2≡n (mod d)

ka
1

(k1k2)s

=
∑

1�e1,e2�d
e1e2≡n (mod d)

⎛
⎝∑

m1�0

1

(m1d + e1)s−a

⎞
⎠
⎛
⎝∑

m2�0

1

(m2d + e2)s

⎞
⎠

= 1

d2s−a

∑
1�e1,e2�d

e1e2≡n (mod d)

ζ (s − a, e1/d)ζ (s, e2/d).
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Thus, we conclude that

Sa,b(n) =
�(b + 1)

∑
d�1

da−b
∑

1�e1,e2�d
e1e2≡n (mod d)

1

2π i

∫
(a+2)

ζ (s − a, e1/d)ζ (s, e2/d)
�(s)

�(s + b + 1)
nb+sd−2s ds.

(4·3)

The main aim of this section is to prove the following theorem, essentially a restatement
of Theorems 1·1 and 1·2.

THEOREM 4·2. Let a and b be positive real numbers.
(i) If b − a > 3/2, then

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n)

+ ζ (1 − a)ζ (b + 1)

(b + 1)ζ (b − a + 2)
naσb−a+1(n) +

∑
0�m< b−a

2 − 3
4

Res(−m) + Oε

(
n

a+b
2 + 3

4 +ε
)

,

where Res(−m) denotes the residue of the integrand of (4·3) at s = −m, and is given
explicitly by (4·7). It satisfies Res(−m) � nb−m in general, and if a is an odd integer, then
Res(0) = −(1/2)ζ (−a)σb(n) and Res(−m) = 0 for each m � 1.

(ii) If max{a, 2 − a} < b � a + 3/2, then

Sa,b(n) = �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n)

+ ζ (1 − a)ζ (b + 1)

(b + 1)ζ (b − a + 2)
naσb−a+1(n) + O

(
n

a+b
2 +1+ε

)
.

After recalling some analytic facts about the Hurwitz zeta function, we begin by analysing
the poles and residues of the integrand. This constitutes an analysis of the main terms
provided in Theorem 4·2. We then bound the error terms in Theorem 4·2 by means of
the functional equation for Hurwitz zeta functions. This has the net effect of replacing
the summation of Hurwitz zeta functions by a Dirichlet series whose coefficients are cer-
tain Kloosterman sums. This also implicitly gives another evaluation of the residual terms
Res(−m).

Finally, we note that we can obtain the secondary term in a simpler fashion, with no
Kloosterman sums, when a > 1 and b > a + 2. We explain this in Section 4.4.

4.1. Properties of the Hurwitz zeta function

The following lemma recalls some basic properties of the Hurwitz zeta function. For
proofs, see [1].

LEMMA 4·3. For any real x > 0 and Re(s) > 1, the Hurwitz zeta function ζ (s, x) :=∑∞
n=0 (n + x)−s satisfies the following:

(i) (Analytic continuation) ζ (s, x) has analytic continuation to all of C, with a simple
pole at s = 1 with residue 1, and holomorphic elsewhere;
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(ii) (Functional equation) ζ (s, x) satisfies a functional equation, which for x = e/d
rational and Re(s) < 0 can be written

ζ (1 − s, e/d) = �(s)

(2π)s

⎛
⎝eπ is/2

∑
k�1

e−2π ike/d

ks
+ e−π is/2

∑
k�1

e2π ike/d

ks

⎞
⎠ ; (4·4)

(iii) (Evaluation at negative integers) For integer values k � 0, there is the special value

ζ (−k, x) = −1

k + 1
Bk+1(x), (4·5)

where Bk+1(x) denotes the degree k + 1 Bernoulli polynomial.

To estimate the values of ζ (s, x) inside the critical strip, we will use the approximate
functional equation, as proved in the following form by Miyagawa [16].

LEMMA 4·4. Assume s = σ + it for some 0 < σ < 1. Set T = √
2π(|t| + 1). Then for any

real x > 0,

ζ (s, x) =
∑

0�k�T

1

(k + x)s
+ �(1 − s)

(2π)1−s

⎡
⎣e

π i(1−s)
2

∑
k�T

e(−kx)

k1−s
+ e

−π i(1−s)
2

∑
k�T

e(kx)

k1−s

⎤
⎦+ O

(
t−

σ
2

)

+ O
(

t
σ−1

2

)
.

We also note the following consequence of Stirling’s formula.

LEMMA 4·5. For any b, we have

�(s)

�(1 + b + s)
�b (1 + |t|)−b−1.

4.2. Analysis of poles and residues

We now proceed with our analysis of the integral (4·3). For each e1, e2, the integrand has
right-most pole at s = a + 1, coming from the factor of ζ (s − a, e1/d), which has a simple
pole with residue 1. The sum of the residues is

�(a + 1)�(b + 1)

�(a + b + 2)

∑
d�1

na+b+1

da+b+2

∑
1�e1,e2�d

e1e2≡n (mod d)

ζ (a + 1, e2/d)

= �(a + 1)�(b + 1)

�(a + b + 2)

∑
d�1

na+b+1

db+1

∑
k�1

#{e1 (mod d) : ke1 ≡ n (mod d)}
ka+1

.

We then note that

#{e1 (mod d) : ke1 ≡ n (mod d)} =
⎧⎨
⎩

(k, d), if (k, d) | (d, n)

0, otherwise.
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Thus, write f := (k, d), and observe that we may assume f | n. So doing, and replacing d and
k by fd and fk, respectively, our expression for the residue at s = a + 1 becomes

�(a + 1)�(b + 1)

�(a + b + 2)

∑
f |n

na+b+1

f a+b+1

∑
d,k

(d,k)=1

1

db+1ka+1

= �(a + 1)�(b + 1)

�(a + b + 2)

ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n),

by Lemma 3·3.
Before turning to the residue of the pole at s = 1, we note one consequence of the above

argument. In particular, for any fixed n and b, in the identity proved above,

∑
d�1

na+b+1

da+b+2

∑
1�e1,e2�d

e1e2≡n (mod d)

ζ (a + 1, e2/d) = ζ (a + 1)ζ (b + 1)

ζ (a + b + 2)
σa+b+1(n), (4·6)

both sides define analytic functions of a for a > −b, a 
= 0. Thus, this expression must hold
for −b < a < 0, even though neither ζ (a + 1, x) nor ζ (a + 1) is defined via a convergent
Dirichet series in this region. This will be useful in evaluating the residue at s = 1, which we
now turn to.

Using (4·3) again, the pole at s = 1 is seen to be

�(b + 1)

�(b + 2)

∑
d�1

nb+1

db−a+2

∑
1�e1,e2�d

e1e2≡n (mod d)

ζ (1 − a, e1/d)

= na

b + 1

∑
d�1

nb−a+1

db−a+2

∑
1�e1,e2�d

e1e2≡n (mod d)

ζ (1 − a, e1/d).

Since we have assumed a < b, it follows that −a > −b, so by the identity (4·6), this
evaluates to

na

b + 1

ζ (1 − a)ζ (b + 1)

ζ (b − a + 2)
σb−a+1(n).

Finally, we evaluate the residue at s = −m, m � 0, arising from the gamma function. We
do so in general, but we only provide a clean simplification of the term when a is an odd
integer. The residues for other values of a do not seem to have a natural multiplicative
structure, for example, so we consider the case that a is odd to be the most interesting.

Using (4·3), the residue at s = −m is

(−1)mnb−m
(

b

m

)∑
d�1

da−b+2m
∑

1�e1,e2�d
e1e2≡n (mod d)

ζ (−m − a, e1/d)ζ (−m, e2/d). (4·7)
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When a is an integer, by the special value formula (4·5) the inner summation over e1, e2

in (4·7) becomes

1

(m + 1)(m + a + 1)

∑
1�e1,e2�d

e1e2≡n (mod d)

Bm+1(e2/d)Bm+a+1(e1/d).

For fixed d, the substitution (e1, e2) → (d − e1, d − e2) defines an involution on the set of
pairs (e1, e2) with e1, e2 
= d. Since Bk+1(1 − x) = (−1)k+1Bk+1(x), if a is odd, it follows for
such e1, e2 that

Bm+1

(d − e2

d

)
Bm+a+1

(d − e1

d

)
= −Bm+1

(e2

d

)
Bm+a+1

(e1

d

)
.

Consequently, when a is odd, the sum over e1, e2 with e1, e2 
= d cancels, and it remains to
consider only those pairs where one of e1 and e2 equals d. Given that e1 and e2 are restricted
to satisfy the congruence e1e2 ≡ n (mod d), such pairs arise only when d | n. In this case,
the summation over e1 and e2 in (4·7) collapses to

d∑
e1=1

ζ (−m − a, e1/d)ζ (−m) +
d∑

e2=1

ζ (−m, e2/d)ζ (−m − a) − ζ (−m − a)ζ (−m)

= d−m−aζ (−m − a)ζ (−m) + d−mζ (−m)ζ (−m − a) − ζ (−m)ζ (−m − a).

If m � 1, then, since a is odd, every term above is 0, and consequently the residue (4·7) is 0
as well. On the other hand, if m = 0, then the above expression simplifies to d−aζ (0)ζ (−a) =
−(d−a/2)ζ (−a). We then find for m = 0 that (4·7) evaluates to

−ζ (−a)

2

∑
d|n

nb

db
= −ζ (−a)

2
σb(n).

4.3. Error analysis via Kloosterman sums

Applying the functional equation (4·4) for both ζ (1 − s − a, e1/d) and ζ (1 − s, e2/d), we
will be led to consider exponential sums of the form

Sn(m, k; d) :=
∑

e1,e2 (mod d)
e1e2≡n (mod d)

e
(me1 + ke2

d

)
,

where we write e(x) := e2π ix for any real x. By relating these to classical Kloosterman sums
we obtain the following strong bound.

LEMMA 4·6. With notation as above, we have

Sn(m, k; d) �ε d1/2+ε(d, k)1/2(d, m)1/2

for any ε > 0.

Proof. Recall that the classical Kloosterman sums are defined by

K(a, b; q) := S1(a, b; q) =
∑

xy≡1 (mod q)

e

(
ax + by

q

)
.
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We begin by proving the identity

Sn(m, k; d) =
∑

f |(d,n,k)

f K(m, kn/f 2; d/f ).

For e1 as in the sum defining Sn(m, k; d), let f = (e1, d), and note that there are no terms
with f � (d, n). Write e1 = e′

1f , where (e′
1, d/f ) = 1. Let e′

2 be such that e′
1e′

2 ≡ 1 (mod d/f ),
so that the allowed values of e2 (mod d) are given by e2 = e′

2n/f + jd/f for 0 � j � f − 1.
Thus, we find

Sn(m, k; d) =
∑

f |(d,n)

∑
e′

1e′
2≡1

(
mod d

f

) e

(
me′

1f + kne′
2/f

d

) f −1∑
j=0

e

(
jk

f

)

=
∑

f |(d,n,k)

f
∑

e′
1e′

2≡1
(

mod d
f

) e

(
me′

1 + kne′
2/f 2

d/f

)

=
∑

f |(d,n,k)

f K
(

m, kn/f 2; d/f
)

,

as claimed.
Now apply the Weil bound |K(a, b; q)|� τ (q)q1/2gcd(a, b, q)1/2 to conclude

|Sn(m, k; d)|�
∑

f |(d,n,k)

d1/2f 1/2τ

(
d

f

)
gcd

(
m,

kn

f 2
,

d

f

)1/2

�ε d1/2+ε(d, k)1/2(d, m)1/2,

as desired.

We first assume that b > a + 3/2. We will shift the contour in (4·3) to the line Re(s) =
1 − δ for some δ > 1. Using Stirling’s formula, along the line Re(s) = 1 − δ for δ > 1, the
integrand in (4·3) is

�a,b,δ (1 + |t|)a−b+2δ−2
∑
d�1

nb+1−δ

db−a+2−2δ

∑
k,m�1

|Sn(m, k; d)| + |Sn(m, −k; d)|
mδkδ+a

.

The integral (4·3) thus converges absolutely on the line Re(s) = 1 − δ provided that
δ < (b − a + 1/2). This is compatible with the assumption that δ > 1 by the assumption
b > a + 3/2.

Using Lemma 4·6, the integral in (4·3), evaluated on the line Re(s) = 1 − δ, is

�a,b,δ,ε

∑
d�1

nb+1−δ

db−a+ 3
2 −2δ−ε

,

by the assumption that δ > 1. Since b > a + 3/2, we take δ = (b − a)/2 + 1/4 − ε and
conclude the integral is

�a,b,ε n
a+b

2 + 3
4 +ε

∑
d�1

1

d1+ε
�a,b,ε n

a+b
2 + 3

4 +ε .

Together with the analysis of the poles, this yields the first part of Theorem 4·2.
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Now, assume that b > max{a, 2 − a}. Our goal in this case is to show that the contour in
(4·3) may be shifted to the line Re(s) = σ for some 0 < σ < 1. This is equivalent to obtaining
sufficient cancellation in the series∑

d�1

da−b−2s
∑

1�e1,e2�d
e1e2≡n (mod d)

ζ (s − a, e1/d)ζ (s, e2/d) (4·8)

on the line Re(s) = σ . We shall find it convenient to assume that σ < a so that ζ (s − a, e1/d)
is related to an absolutely convergent Dirichlet series via the functional equation (4·4). For
ζ (s, e2/d), we do not have this luxury, so we instead invoke the approximate functional
equation of Lemma 4·4.

In principle, in applying the functional equation for ζ (s − a, e1/d) and the approximate
functional equation for ζ (s, e2/d), we are forced to consider six summations, corresponding
to pairing each of the two terms in (4·4) with the three terms in Lemma 4·4. However, the
two summations in (4·4) have the same shape as each other, as do the second and third
summations in Lemma 4·4. Consequently, it essentially suffices to consider only two types
of summation, corresponding to pairing the first term from Lemma 4·4 with a term from
(4·4) or pairing one of the latter two terms from Lemma 4·4 with a term from (4·4).

In the first of these two cases, where the first term of Lemma 4·4 for ζ (s, e2/d) is paired
with one of the terms in (4·4) for ζ (s − a, e1/s), we are led to consider series of the form

∑
d

1

db−a+2s

∑
1�e1,e2�d

e1e2≡n (mod d)

∑
0�k�T

∑
m�1

e
(me1

d

)
(k + e2/d)sm1+a−s

(4·9)

=
∑

d

1

db−a+s

∑
k�d(T+1)

∑
m�1

1

ksm1+a−s

∑
e1k≡n (mod d)

e
(me1

d

)
,

where, as in Lemma 4·4, we have set T = √
2π(1 + |t|). The exponential sum in (4·9) is

0 unless (d, k) | (n, d, m), in which case it is of absolute value (d, k). Thus, since we have
assumed Re(s) = σ < a, (4·9) is bounded by

∑
d�1

1

db−a+σ

∑
k�d(T+1)

∑
m�1

(d, k)

kσ m1+a−σ
�
∑
d�1

1

db−a+σ

∑
f |d

f 1−σ

(
Td

f

)1−σ

(4·10)

� T1−σ
∑
d�1

1

db−a+2σ−1−ε

� T1−σ

� (1 + |t|) 1−σ
2 ,

provided that σ > 1 − (b − a)/2. Since we have assumed b > 2 − a, there is some σ < a
for which this holds. Using Stirling’s formula, the additional factors in (4·4) as applied
to ζ (s − a, e1/d) coming from the gamma function and exponentials may be bounded

by O
(

(1 + |t|)a−σ+ 1
2

)
. Altogether, the contribution to (4·8) from the first term in the

approximate functional equation for ζ (s, e2/d) is seen to be O
(

(1 + |t|)a− 3σ
2 +1

)
.
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We now consider the second type of summation, arising from the second and third terms
in the approximate functional equation. In particular, we are led to estimate

∑
d

1

db−a+2s

∑
m�1

∑
k�T

1

k1−sma+1−s

∑
1�e1,e2�d

e1e2≡n (mod d)

e

(±me1 ± ke2

d

)
(4·11)

=
∑

d

1

db−a+2s

∑
m�1

∑
k�T

Sn( ± m, ±k; d)

k1−sma+1−s
.

We appeal to Lemma 4·6 to conclude that (4·11) is bounded by

∑
d�1

1

db−a+2σ

∑
m�1

∑
k�T

d1/2+ε(m, d)1/2(k, d)1/2

k1−σ ma+1−σ
�
∑
d�1

1

db−a+2σ−1/2−ε

∑
f |d

f σ− 1
2

(
T

f

)σ

(4·12)

� Tσ
∑
d�1

1

db−a+2σ−1/2−ε

� Tσ

� (1 + |t|) σ
2 .

Once again, the additional factors in (4·4) are of size O((1 + |t|)a−σ+ 1
2 , while those in

Lemma 4·4 are seen to be O((1 + |t|) 1
2 −σ ). We thus find that terms arising from the sec-

ond and third summations in Lemma 4·4 contribute an amount that is O
(

(1 + |t|)a− 3σ
2 +1

)
to (4·8), matching the contribution from those terms arising from the first summation in
Lemma 4·4. The error terms in Lemma 4·4 contribute a smaller amount, and we conclude
that on the line Re(s) = σ ,∑

d�1

da−b−2s
∑

1�e1,e2�d
e1e2≡n (mod d)

ζ (s − a, e1/d)ζ (s, e2/d) � (1 + |t|)a− 3σ
2 +1, (4·13)

provided that 1 − (b − a)/2 < σ < a.
Thus, estimating the quotient of gamma factors by Lemma 4·5, the integrand in (4·3)

is Oa,b,σ

(
nb+σ (1 + |t|)a−b− 3σ

2

)
. The integral therefore converges absolutely on the line

Re(s) = 1 − (b − a)/2 + ε for any ε > 0. This yields the second part of the theorem when
max{a, 2 − a} < b � a + 3/2.

4.4. A simpler version of the error analysis

We present an alternative treatment of the error that avoids the complications of the last
section, obtaining a weaker error term of o

(
nb+1

)
for some ranges of the parameters. In

particular, we assume that a > 1 and b > a + 2.
Shift the contour in (4·3) to Re(s) = 1 − ε for small ε > 0. We have ζ (s − a, e1/d) �

(1 + |t|)a− 1
2 +ε by the functional equation and Stirling’s formula; we have ζ (s, e2/d) � (1 +

|t|)ε · (e2/d)−1 by the convexity bound, with the term (e2/d)−1 arising from the first term
(e2/d)−s of ζ (s, e2/d); and we again use Lemma 4·5 to estimate the quotient of gamma
functions.
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We conclude that the integrand is

�
∑
d�1

nb+1−ε

db−a−1−2ε
(1 + |t|)a−b− 3

2 +2ε .

This yields an error term of O(nb+1−ε) provided that the sum over d and the integral over t
converge. These conditions are satisfied for some ε > 0 if b − a > 2.

5. Possible improvements

As made clear in the discussion surrounding Lemma 4·6, the error term in Theorem 1·2 is
controlled by sums of Kloosterman sums K(r, s; q), where q denotes the modulus. The Weil
bound implies that K(r, s; q) � q1/2+ε , and this is a key ingredient in the proof. However, it
is expected that much greater cancellation holds on average. We expect that if the estimate
K(r, s; q) � qθ+ε holds on average for some 0 � θ � 1/2, then the error term in Theorem 1·2
may be improved to O

(
n

a+b
2 + 1+θ

2 +ε
)

. Assuming a conjecture of Selberg [19], the value

θ = 0 is likely admissible, and this would yield a Ramanujan–Deligne quality error term in
Theorem 1·2. Using work of Deshouillers and Iwaniec [3] on sums of Kloosterman sums,
we speculate it may be possible to improve the error in Theorem 1·2, perhaps to the level

O
(

n
a+b

2 + 7
12 +ε

)
. Alternatively, Shparlinski suggested to us that his work with Zhang [20] on

cancellation amongst Kloosterman sums to prime moduli could be readily generalised to the
composite case without difficulty, again leading to possible improvements. We leave these
questions for future work.

Finally, as P. Humphries pointed out to us, these questions can also be addressed via
the spectral theory of automorphic forms. We refer to Kuznetsov [11] and Motohashi [17]
for some related results along these lines, including a treatment by Motohashi of the case
a = b = 0. Humphries suggested to us that these techniques may be able to address complex
a and b in greater generality, and again we leave this question for future work.
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