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AMALGAMATED PRODUCTS
AND THE HOWSON PROPERTY

ILYA KAPOVICH

AssTRACT.  We show that if A is atorsion-free word hyperbolic group which be-
longs to class (Q), that is al finitely generated subgroups of A are quasiconvex in A,
then any maximal cyclic subgroup U of A isaBurnssubgroup of A. This, in particular,
impliesthat if BisaHowson group (that isthe intersection of any two finitely generated
subgroups is finitely generated) then Axy B, (A,t | U' = V) are also Howson groups.
Finitely generated free groups, fundamental groups of closed hyperbolic surfaces and
some interesting 3-manifold groups are known to belong to class (Q) and our theorem
appliesto them. We also describe alarge class of word hyperbolic groups which are not
Howson.

0. Introduction. Recall that a group G is said to have the Howson property, that
is G is a Howson group, if the intersection of any two finitely generated subgroups of
G isfinitely generated. In [2] B. Baumslag showed that the class of Howson groupsis
closed under taking free products. A. Karras and D. Solitar showed (see [12], [13]) that
an amalgamated free product of two Howson groups along afinite subgroup is Howson
and an HNN-extension of aHowson group over afinite subgroup is Howson. The results
of R. Burns[4], [5] and D. Cohen[8] provide a set of sufficient conditions which ensure
that an amal gamated free product (or an HNN-extension) of two groupswith the Howson
property again has the Howson property.

Namely, R. Burns and D. Cohen prove the following (see[8]).

ProPOSITION 0.1. (@) Let A and B be Howson groups. Then G = A xy B has the
Howson property if U is a Burns subgroup of A (see the definition below) and HN U is
finitely generated for any finitely generated subgroup H of G.

(b) Let AbeaHowson groupand U, V beisomorphic subgroupsof A.

Then the HNN-extension G = (A,t | U' = V) has the Howson property if U, V are
Burns subgroup of A and H N U isfinitely generated for any finitely generated subgroup
H of G.

A subgroup U of agroup Ais called a Burns subgroup [8], if it has aleft transversal
T suchthat 1 € T and the following conditions are satisfied:
(i) thereisafinitesubset F of U such that
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(ii) for any finitely generated subgroup H of G and any a € G thereisafinite subset
F, of U such that

aH C TFy(HNU).

In [4] R. Burns showed that maximal cyclic subgroups of finitely generated free
groups are Burns. Thus Proposition 0.1 obviously appliesif B isaHowson group, Aisa
finitely generated free group and U, V are maximal cyclic subgroupsof A. In particular,
thisimpliesthat fuchian groupsand, more generally, most one-relator groups, which arise
as cyclic amalgamations or HNN-extensions of free groups, have the Howson property
(see[4], [5], [6] and [8]). Finite subgroups are aways Burns and so the class of Howson
groups is closed under amalgamations and HNN-extensions along finite subgroups (see
(41, [5], [8], [12], [13]).

The purpose of this paper isto clarify the geometric meaning of the notion of aBurns
subgroup and to show that there is a large class of groups (which contains all finitely
generated free groups and fundamental groups of closed hyperbolic surfaces) such that
for any group in this classall maximal cyclic subgroupsare Burns. Thuswe push further
the applicability of Proposition 0.1. Namely, we say that agroup G belongsto class (Q)
if Gisword hyperbolic in the sense of M. Gromov and any finitely generated subgroup
of G is quasiconvex in G (see definitions of word hyperbolic groups and quasiconvex
subgroupsin Section 1). It isnot hard to see ([19]) that finitely generated free groupslie
in class (Q).

The notion of quasiconvexity corresponds to geometrical finiteness for classical hy-
perbolic groups (see [21]). The results of G. Swarup [21] and C. Rittet [17] imply that
fundamental groups of closed hyperbalic surfaceslie in class (Q). Moreover, it follows
from the results of W. Thurston and G. Swarup (see [21]) that if G is atorsion-free ge-
ometrically finite Kleinian group without parabolics whose limit set is not the whole
sphere & then G lies in (Q). Thus class (Q) is fairly large and it seems that “ proba-
bilistically” almost all word hyperbolic groups lie in (Q) since the property of having
non-quasi convex finitely generated subgroups appearsto be quite rare and abnormal. As
wewill seein Section 1 all groupsin (Q) have the Howson property.

In this paper we prove the following

THEOREM 0.2. Let G be atorsion-free group in (Q). Then any maximal cyclic sub-
group of GisBurnsin G.

COROLLARY 0.3. Let A be atorsion-free group in (Q) and U be a maximal cyclic
subgroup of A. Let B be any Howson group. Then G = Axy B hasthe Howson property.

COROLLARY 0.4. Let Abeatorsion-freegroup in (Q) and U, V be maximal cyclic
subgroupsof A. Thenthe HNN-extension G = (A, t | U' = V) hasthe Howson property.

Corollaries 0.3 and 0.4 follow immediately from Proposition 0.1 and Theorem 0.2.
Theorem 0.2 combined with Theorem 1 of [8] also imply the following
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COROLLARY 0.5. Let Abeatorsion free group from (Q) and U be a maximal cyclic
subgroupof Aand A # U. Let G = Axy B,U # Bor G = (At | U' = V). If afinitely
generated subgroup H of G contains an infinite subgroup normal in G then H hasfinite
indexin G.

D. Moldavansky [15] proved that if G isadirect product of afree group of rank 2 and
an infinite cyclic group then G is not Howson. In [6] R. Burns and A. Brunner gener-
alized this result to show that any extension of a free group of finite rank by an infinite
cyclic group does not have the Howson property. Asit follows from the recent results of
M. Bestvinaand M. Feighn [3], there are word hyperbolic groupswhich arisein thisway
and thus are not Howson. However, the first example of aword hyperbolic group without
the Howson property was provided by W. Jaco and B. Evans [11, Section V.19] whose
resultsimply that if G isthe fundamental group of aclosed hyperbolic 3-manifold fiber-
ing over acircle then it does not have the Howson property. Later H. Short [19] showed
how to obtain word hyperbolic groups without the Howson property using the construc-
tion of E. Rips [18] of small cancellation groups with infinite finitely generated normal
subgroups of infinite index. Recall that asE. Rips provedin [18], if Qisany finitely pre-
sented group then one can construct a C(7)-small cancellation group G (which therefore
will beword hyperbolic [20] such that thereis afinitely generated subgroup K of G with
the property that K isnormal inGand G/K = Q. H. Short [19] observed that if onestarts
with agroup Q without the Howson property then the same effect can be reproduced in
G. Indeed, let X and Y be finite subsets of Q such that the group L = gp(X) Ngp(Y) is not
finitely generated. Choose finite subsets X’ and Y’ of G which map onto the sets X and
Y respectively. Put L = gp(K, X’) N gp(K,Y’). Thentheimage of L’ in Q isequal to L
and therefore L’ is not finitely generated. However, K is finitely generated and therefore
gp(K, X’) and gp(K, Y’) are also finitely generated. Thus G does not have the Howson
property.

The following statement, which will be proved in Section 3, shows that one can drop
the requirement that Q be non-Howson and gives a uniform proof of not being How-
son for amuch larger class of word hyperbolic groups (including the 3-manifold groups
mentioned above).

THEOREM 0.6. Suppose we have a short exact sequence
1-K—-G—0Q—1

where G isa subgroup of atorsion-freeword hyperbolic group G, K isfinitely generated
and infinite and Q has an element of infinite order. Then G does not have the Howson

property

G. A. Swarup [21] conjectured that afinitely presented subgroup K of aword hyper-
bolic group G is not quasiconvex in G if and only if it has infinite index in its virtual
normalizer Nk = {g € G ‘ [K:K N gKg™| < oo,|gKg™:K N gKg™ < oo} and
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observed that the conjecture holds for Kleinian groups. In light of this conjecture The-
orem 0.6 seems to indicate that a torsion free word hyperbolic group is Howson if and
only if it belongsto class (Q).

| am grateful to my advisor Gilbert Baumslag for encouragement and to Lisa Carbone
for teaching me how to draw pictures using the computer.

1. Word hyperbolic groupsand their quasiconvex subgroups. This paper con-
tains only a brief discussion about word hyperbolic groups and their quasiconvex sub-
groups. For details the reader is referred to [1], [10], [7], [9] and [21].
Let G be a group generated by a finite set X. We denote the X-length of an element
g € G by Ix(g). The Cayley graph of G with respect to X is denoted by I' (G, X) and the
word metric onT (G, X) isdenoted by dx. If wisaword in X, we denotethe corresponding
element of G by w.
If A isageodesic triangle in a metric space (M, d) with vertices X, y, z and geodesic
sides[x, Y], [X Y], [V, Z] then there are unique points p, g, r on the sides[x, y],[x, 7 and
[y, Z] accordingly such that d(x,p) = d(x,q), d(z,q) = d(zr) and d(y,p) = d(y,r).
The points p, g, r are called the vertices of the inscribed triangle in the triangle A. A
triangle A as above is called é-slim if for any points a, b on [x,y] and [X, Z] such that
d(x,a) = d(x,b) < d(x,p) = d(x,q) we haved(a,b) < § and the symmetric condition
holdsfor y and z
A group G iscalled word hyperbolicif for some (for any) finite generating set X of G
thereis 5 such that all geodesic trianglesin (I'(G, X), dx ) are -slim.
Recall (see[1] for details) that if G isaword hyperbolic group and A is a subgroup of
G, Aiscalled quasiconvexin G if any of the following equivalent conditionsis satisfied:
(a) for some(any)finite generating set X of Gthereisane > 0 suchthat any geodesic
[a1, a2] inthe Cayley graph ' (G, X) joining pointsa;, a; € Aiscontained in the
e-neighborhood of A;

(b) Aisfinitely generated and for some (any) finite generating set Y of A and some
(any) finite generating set X of G thereisalinear function F(y) = By such that

dv(ag, &) < F(dx(as, @), a1,a €A

We will list some of the important properties of quasiconvex subgroups of word hy-
perbolic groups.

PrOPOSITION 1.1 (SEE [1]). Let G be aword hyperbolic group.

(a) If Aisaquasiconvex subgroup of G then Aisword hyperbolic (in particular Ais
finitely generated and finitely presented);

(b) if Aand B are quasiconvexin G then AN B isquasiconvexin G;

(c) if Cisacyclic or finite subgroup of G then C is quasiconvexin G;

(d) if A< B < Gand|B:Al < oo then Aisquasiconvexin G if and only if B is
quasiconvexin G.

(e) ifA <G, ¢ € Aut(G) then Aisquasiconvexin Gif and onlyif ¢(A) isquasiconvex
inG;
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(f) if Aisa quasiconvex subgroup of G, X and Y are finite generating sets of G and
Athen thereise > 0 such that for any dy-geodesic word W, for any dx-geodesic
word wwithw = W and for eachinitial segment u of wthereisaninitial segment
U of W such that dy(, U) < .

A word hyperbolic group G is said to belong to class (Q) if all its finitely generated
subgroups are quasiconvex. It is now clear from Proposition 1.1(a)(b) that such a group
has the Howson property.

PrROOF OF THEOREM 0.2.  Amalgams of word hyperbolic groups along their quasi-
convex subgroups were studied in [10], [7], [16], [3], [14] and other works. Our main
reference hereisthe paper of G. Baumslag, S. Gersten, M. Shapiro and H. Short [7]. One
of the particular advantages of their approach is that, given a word hyperbolic group G
with a finite generating set X and a quasiconvex subgroup C, they construct a good left
transversal for Cin G.

LEMMA 2.1. Let G beaword hyperbolic group and C be a malnormal quasiconvex
subgroup of G that is for every g € G — C we have gCg1 N C = {1}. Fix a finite
generating set Z for C and a finite generating set X, containing Z, for G.

Then thereis a constant K > 1 suchthat if g € G — C is a shortest (with respect to
the word metric dx) element in the coset gC then for any ¢ € C the element cgis at most
K away (in the word metric dy) from any shortest element h in the coset cgC.

ProOOF. Leté > 1 beaninteger suchthat all geodesic trianglesin the Cayley graph
(G, X) are6-slim. Since C isquasiconvex in G, by Proposition 1.1(f) thereisan integer
e > 1 such that for any dz-geodesic word W over Z, for any dx-geodesic word w repre-
senting W and for any initial segment w; of w there is an initial segment W, of W such
that dx(Wr, W) < e.

Let N be the total number of dy-geodesic words of length at most 2¢ + 26 + 4. Put
K = 200(N + 1)(e + 6 + 100). Supposeg, hand careasin LemmaZ2.1 and c; € Cissuch
that cg = hcy. We claim that ¢; is short, namely Ix(cp) < K.

Suppose, on the contrary, Ix(c1) > K. Let u, v, y, y1 and w be dx-geodesic repre-
sentatives of g, h, ¢, ¢; and cg and let Y, Y1 be dz-geodesic representatives of ¢ and c;.
Consider ageodesic quadrilateral in I'(G, X) with sidesy, u, v and y; which corresponds
to the relation cg = hc; (see Figure 1). The geodesic triangles yuw—! and vy;w—? are
6-slim. Let the pointsn, t, sand p, r, g be the vertices of the their inscribed triangles as it
isshownin Figure 1.

Notice that dx(h, q) = dx(h,r) <6 +¢€ + 2. Indeed, if dx(h,q) = dx(h,r) >6+e+2
then there is a vertex z on Y; such that dx(r,z) < e + 1. But in this case dx(1,z) <
dx(1,q) +6+e+1 < dx(1,q)+dx(g, h) = dx(1, h) what contradicts our assumption that
hisshortest in hC.

Weclaimthat dx (1, p) < dx(1,s). Indeed, supposedx(1, p) > dx(1, s) asitisshownin
Figure1. Butinthiscasedx(p, cg) = dx(r,cg) = I(y1)—dx(r,h) > K—§—e—2 > 26+e+1
since we already know that dy(r,h) < 6 + ¢ + 2 and we assumed I(y;) > K. There exist
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FIGURE 1

apoint pp on u and avertex z on Y; such that dx(po,p) < é and dx(r,z) < e +1(see
Figure 2). Therefore dx(c, z) < dx(C, po) +26 +¢+1 < dx(C, po) +dx(Po, cg) = dx(c, cg)
what contradicts our assumptionsthat g is shortest in gC.

FIGURE 2

It is now easy to see that dx(s,cg) = dx(t,cg) < 26 + ¢ + 1. Indeed, suppose that
dx(s, cg) > 20 + € + 1 and that we have a situation as shown in Figure 2. Then thereisa
point s; ony; andavertex z; on Yy suchthat dy(s, s1) < 6 anddx(s, zs) < e+1. Therefore
dx(c,z5) < dx(c,t)+25 +e+1 < dx(c,t) +dx(t, cg) = dx(c, cg) what contradicts the fact
that g is shortest in gC.

Thus we have established that dx(h,q) = dx(h,r) < 6 +e+ 2, dx(1,p) < dx(1,9)
and dx(s, cg) = dx(t,cg) < 25 +¢ + 1. Thisimplies that dx(p,s) > I(y1) — dx(h,r) —
dx(s,cg) — 26 > 100(N + 1)(e + 6 + 100). Therefore there is a sequence of vertices
f1,f2, ..., fne1 ON'W between p and ssuch that dx(fi, fj) = 10(6 +¢ +2)|i —j|. Thenfor any
i =1,2,...,N+1lthereisavertex z onY and avertex d; on Y1 suchthat dx(fi, z) < 6+e+1
and dx(fi,d) < 6 + e+ 1. Moreover, fori # j wehavez # z andz # d; since
dx(z,z) > d(fi,f)) —6 —e —1 > Oand dx(di,dj) > d(fi,fj)) —6 —e —1 > 0. Thus
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dx(z, di) < 2(6 +¢+2) for eachi. By the choice of N there aretwo distinct indicesi < j
suchthat z 'd; = 7z 'd; = x € G asitisshownin Figure 3. Then x(d;) *dx ' = 7 'z
and so x € Csince Cismanormal in G. But in this case g € C which contradicts our
assumptions. Lemma 2.1 is proved.

cg = hcy

FIGURE 3

LEMMA 2.2. Let G be atorsion-free word hyperbolic group and C = (c) be a max-
imal cyclic subgroup of G. Let H be a quasiconvex subgroup of G and a € G. Suppose
further that H N C = {1}. Fix afinite generating set B of H and a finite generating set
X, containing ¢, of G. Put Z = {c}.

Thereisaninteger M > 1 such that for any h € H if ah = gc¥, whereg is a shortest
(with respect to the word metric dx) element in ahC, then |k| < M.

PrROOF. Wefix ady-geodesic representative for each element of B. Thisallowsusto
think about any word W over B asa path in the Cayley graph I' (G, X). For the remainder
of the proof the phrase “a vertex on W’ will always refer to a vertex representing an
initial segment of W as a B-word. Likewise, the phrase “an initial segment of W’ will
always refer to an initial segment of W as a B-word.

First, observe that C is malnormal and quasiconvex in G since G is torsion-free and
so the normalizer of C is cyclic (see [1], [14]). Let 6 > 1 be an integer such that all
geodesic triangles in the Cayley graph I' (G, X) are ¢-slim. Since C is quasiconvex in G,
by Proposition 1.1(f) there is an integer e > 1 such that for any dz-geodesic word W
over Z, for any dy-geodesic word w representing W and for any initial segment wy of W
there is an initial segment W; of W such that dy(wr, W;) < e. Let u, be a dy-geodesic
representative of a. Since geodesic triangles in I'(G, X) are 6-slim, for any dx-geodesic
word u and a dy-geodesic representative w of au for any initial segment w; of wthereis
an initial segment u; of u such that dy(Wr, aty) < 2I(u,) + 6.

Also, because H is quasiconvex in G, Proposition 1.1(f) implies that there is an inte-
ger e; > 1 such that for any dg-geodesic word W over B, for any dx-geodesic word w
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representing W and for any initial segment wy of w there is an initial segment W, of W
such that dx(Wl,Wl) < €.

Put N to bethetotal number of dx-geodesic wordsof length at most 26+¢; +21(ug) +e+2.
Thesubgroup Cisquasiconvexin G (Proposition 1.1(c)) and sothereisaninteger K; > 1
such that for any integer n

|n| < Kllx(Cn).

Put M = 1000(N + 1)Ky1(8 + € + €1 + I(Ua) + 10). Suppose h € H and ah = gc*
where |k| > M and g is shortest in ahC. We assume that k > 0 and it will be seen from
the proof that the case k < 0 is completely analogous. Let u, v, y, w be dx-geodesic
representatives of h, g, ¢ and ah = gc¥. Let Y = c* be a dz-geodesic representative of
ckand let U be adg-geodesic representative of h. Consider now a geodesic quadrilateral
with the sides uy, u, v and y as shown in Figure 4. Denote by p, r, g the vertices of the
inscribed triangle in the geodesic triangle with the sidesw, y and v. As in the proof of
Lemma 2.1 we conclude that dy(q, g) = dx(r,g) < é + ¢ + 2 because otherwise g is not
shortest in gC. Since |k| > M, dx(r, gc) > 50(N + 1)(§ + € + ¢ +1(u,) + 10), and so there
isasequenceof verticesfy, ..., fn+1 Ony betweenr and gc such that

d(fi, ) = 10(5 + ¢ + €1 +I(ua) + 10)|i — .

ahy

FIGURE 4

Thenforeachi = 1,2,...,N+1thereisapoint di onwwith dx(fi, d;) < 4. Moreover,
as we noticed before, for eachi = 1,2,...,N + 1 there is a point ¢ on u such that
dx(di,e) < 2l(uy) + 6. Furthermore, for eachi = 1,2,...,N + 1 thereisavertex ah; on
U, hj € H, suchthat dx(g,ah;)) < e; +1. Thusdx(fi,ah)) < 26 +¢; +2I(uy) + 1. So for
i # ] hi # h; becausein this case

dx(ahy, ahy) > 10(5 + e +e1 +1(Ua) + 10)[i —j| — 2(25 + €3 + 2I(uz) +1) > 0.
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On the other hand for eachi = 1,2,...,N+ 1 thereis kj, 0 < k < k such that
dx(fi, gc%) < e+1. Inparticular if i # j then dy(gck, gc¥) > 10(6 +e +e1 +1(ua) + 10)|i —
jl —2—2¢ >0andsok # k. Thereforeforeachi =1,2,...,N+1

dx(ahi, gc) < 25+ + 21(Ua) + 1+ € + 1.

By the choiceof N thereare somedistincti, j, i < j suchthat h*a gt = ha*gch
= X € G. Thisimpliesthat xc“~%x~1 = bwhereb = h7th; € H,b # 1. Putb; = hth e
H. Then x = b;c8*. We conclude that byl —*ck—K kb7t = b and so

¢~k = by bby.
This contradicts our assumptionthat H N C = {1}. Lemma 2.2 is proved.

COROLLARY 2.3. Let G be a torsion-free word hyperbolic group and C = (c) be
a maximal cyclic subgroup of G. Let a be an element of G and H be a quasiconvex
subgroup of G. Let B be a finite generating set for H and X be a finite generating set for
G containing c. Fix a lexicographic order on X.

Put T to be the set of all dyx-geodesic words u such that if v is another dx-geodesic
word with the property uC = VC then either u is shorter than vor I(u) = I(v) and uis
lexicographically smaller than v. (Notice that T contains the empty word e representing
1).

Then thereis a finite subset C; of C such that

aH C TC,(HNC).

PrROOF. If HNC = {1} thenput C; = {c* | —M < k < M} where M is a constant
provided by Lemma2.2. Thenby Lemma2.2aH C TC;.

Suppose now that H N C # {1}. Then H N C hasfiniteindex nin C. Put C; = {c* |
—n < k < n}. Thus, obviously,

aH C TCy(CNH).

This completesthe proof of Corollary 2.3.

COROLLARY 2.4 (THEOREM 0.2). Let G be atorsion free group from class (Q) and
C = (c) bea maximal cyclic subgroup of G. Then C is a Burns subgroup of G.

ProoF. Thisfollowsimmediately from Corollary 2.3 and Lemma 2.1.
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2. Groupswhich do not have the Howson property.

THEOREM 3.1 (THEOREM 0.6). Suppose we have a short exact sequence
1-K—-G—Q—1

where G isa subgroup of atorsion-freeword hyperbolic group G, K isfinitely generated
and infinite, and Q has an element of infinite order. Then G does not have the Howson

property.

PrROOF. We may assumethat K is asubgroup of G. Let s be an element of G which
projects to an element of infinite order in Q.

SinceK isaninfinite subgroup of atorsion-freeword hyperbolicgroup, it followsfrom
[9, Chapter 8, Theorem 37] that K has an element f of infinite order. Clearly f does not
commutewith ssince otherwise somepower of swouldlieinacyclic subgroup generated
by f (see[1], [14]) which contradicts our choice of s. Thus by [10, Theorem 5.3.E] there
is some power t = s" of s, n # 0 and some power k = f™ of f, m = 0 such that t and k
generate a free subgroup of rank 2 in G. Denoteit by H = sgp(t, k).

We claim that Hy = H N K is not finitely generated. Indeed, if ki = t~'kt', i # 0 and
ko = kthensgp({ki | i € Z} C Ho. On the other hand if w(t, k) € Ho then the exponent
sumof tinwisequal to 0 since no nonzero power of tliesin K and K isnormal in G. Thus
w(t, k) can be rewritten asaword over {k; | i € Z}. ThereforeHo = sgp({ki | i € Z}.

It is not hard to see that Hy is actually free on the generators {ki | i € Z}. Indeed,
if v(k_y;,...,kn) isanontrivial relation between these generators then it translates into
a nontrivial relation between t and k. This is impossible since H is free on t, k. Thus
Ho = HNK isnot finitely generated and therefore G does not have the Howson property.
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