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AMALGAMATED PRODUCTS
AND THE HOWSON PROPERTY

ILYA KAPOVICH

ABSTRACT. We show that if A is a torsion-free word hyperbolic group which be-
longs to class (Q), that is all finitely generated subgroups of A are quasiconvex in A,
then any maximal cyclic subgroup U of A is a Burns subgroup of A. This, in particular,
implies that if B is a Howson group (that is the intersection of any two finitely generated
subgroups is finitely generated) then A ŁU B, hA, t j Ut

≥ Vi are also Howson groups.
Finitely generated free groups, fundamental groups of closed hyperbolic surfaces and
some interesting 3-manifold groups are known to belong to class (Q) and our theorem
applies to them. We also describe a large class of word hyperbolic groups which are not
Howson.

0. Introduction. Recall that a group G is said to have the Howson property, that
is G is a Howson group, if the intersection of any two finitely generated subgroups of
G is finitely generated. In [2] B. Baumslag showed that the class of Howson groups is
closed under taking free products. A. Karras and D. Solitar showed (see [12], [13]) that
an amalgamated free product of two Howson groups along a finite subgroup is Howson
and an HNN-extension of a Howson group over a finite subgroup is Howson. The results
of R. Burns [4], [5] and D. Cohen [8] provide a set of sufficient conditions which ensure
that an amalgamated free product (or an HNN-extension) of two groups with the Howson
property again has the Howson property.

Namely, R. Burns and D. Cohen prove the following (see [8]).

PROPOSITION 0.1. (a) Let A and B be Howson groups. Then G ≥ A ŁU B has the
Howson property if U is a Burns subgroup of A (see the definition below) and H \U is
finitely generated for any finitely generated subgroup H of G.

(b) Let A be a Howson group and U, V be isomorphic subgroups of A.
Then the HNN-extension G ≥ hA, t j Ut ≥ Vi has the Howson property if U, V are

Burns subgroup of A and H\U is finitely generated for any finitely generated subgroup
H of G.

A subgroup U of a group A is called a Burns subgroup [8], if it has a left transversal
T such that 1 2 T and the following conditions are satisfied:

(i) there is a finite subset F of U such that

U(T � 1) ² TF;
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(ii) for any finitely generated subgroup H of G and any a 2 G there is a finite subset
F1 of U such that

aH ² TF1(H \U).

In [4] R. Burns showed that maximal cyclic subgroups of finitely generated free
groups are Burns. Thus Proposition 0.1 obviously applies if B is a Howson group, A is a
finitely generated free group and U, V are maximal cyclic subgroups of A. In particular,
this implies that fuchian groups and, more generally, most one-relator groups, which arise
as cyclic amalgamations or HNN-extensions of free groups, have the Howson property
(see [4], [5], [6] and [8]). Finite subgroups are always Burns and so the class of Howson
groups is closed under amalgamations and HNN-extensions along finite subgroups (see
[4], [5], [8], [12], [13]).

The purpose of this paper is to clarify the geometric meaning of the notion of a Burns
subgroup and to show that there is a large class of groups (which contains all finitely
generated free groups and fundamental groups of closed hyperbolic surfaces) such that
for any group in this class all maximal cyclic subgroups are Burns. Thus we push further
the applicability of Proposition 0.1. Namely, we say that a group G belongs to class (Q)
if G is word hyperbolic in the sense of M. Gromov and any finitely generated subgroup
of G is quasiconvex in G (see definitions of word hyperbolic groups and quasiconvex
subgroups in Section 1). It is not hard to see ([19]) that finitely generated free groups lie
in class (Q).

The notion of quasiconvexity corresponds to geometrical finiteness for classical hy-
perbolic groups (see [21]). The results of G. Swarup [21] and C. Pittet [17] imply that
fundamental groups of closed hyperbolic surfaces lie in class (Q). Moreover, it follows
from the results of W. Thurston and G. Swarup (see [21]) that if G is a torsion-free ge-
ometrically finite Kleinian group without parabolics whose limit set is not the whole
sphere S2 then G lies in (Q). Thus class (Q) is fairly large and it seems that “proba-
bilistically” almost all word hyperbolic groups lie in (Q) since the property of having
non-quasiconvex finitely generated subgroups appears to be quite rare and abnormal. As
we will see in Section 1 all groups in (Q) have the Howson property.

In this paper we prove the following

THEOREM 0.2. Let G be a torsion-free group in (Q). Then any maximal cyclic sub-
group of G is Burns in G.

COROLLARY 0.3. Let A be a torsion-free group in (Q) and U be a maximal cyclic
subgroup of A. Let B be any Howson group. Then G ≥ AŁU B has the Howson property.

COROLLARY 0.4. Let A be a torsion-free group in (Q) and U, V be maximal cyclic
subgroups of A. Then the HNN-extension G ≥ hA, t j Ut ≥ Vi has the Howson property.

Corollaries 0.3 and 0.4 follow immediately from Proposition 0.1 and Theorem 0.2.
Theorem 0.2 combined with Theorem 1 of [8] also imply the following
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COROLLARY 0.5. Let A be a torsion free group from (Q) and U be a maximal cyclic
subgroup of A and A Â≥ U. Let G ≥ A ŁU B, U Â≥ B or G ≥ hA, t j Ut ≥ Vi. If a finitely
generated subgroup H of G contains an infinite subgroup normal in G then H has finite
index in G.

D. Moldavansky [15] proved that if G is a direct product of a free group of rank 2 and
an infinite cyclic group then G is not Howson. In [6] R. Burns and A. Brunner gener-
alized this result to show that any extension of a free group of finite rank by an infinite
cyclic group does not have the Howson property. As it follows from the recent results of
M. Bestvina and M. Feighn [3], there are word hyperbolic groups which arise in this way
and thus are not Howson. However, the first example of a word hyperbolic group without
the Howson property was provided by W. Jaco and B. Evans [11, Section V.19] whose
results imply that if G is the fundamental group of a closed hyperbolic 3-manifold fiber-
ing over a circle then it does not have the Howson property. Later H. Short [19] showed
how to obtain word hyperbolic groups without the Howson property using the construc-
tion of E. Rips [18] of small cancellation groups with infinite finitely generated normal
subgroups of infinite index. Recall that as E. Rips proved in [18], if Q is any finitely pre-
sented group then one can construct a C(7)-small cancellation group G (which therefore
will be word hyperbolic [20] such that there is a finitely generated subgroup K of G with
the property that K is normal in G and GÛK ≥ Q. H. Short [19] observed that if one starts
with a group Q without the Howson property then the same effect can be reproduced in
G. Indeed, let X and Y be finite subsets of Q such that the group L ≥ gp(X)\gp(Y) is not
finitely generated. Choose finite subsets X0 and Y0 of G which map onto the sets X and
Y respectively. Put L0 ≥ gp(K, X0) \ gp(K, Y0). Then the image of L0 in Q is equal to L
and therefore L0 is not finitely generated. However, K is finitely generated and therefore
gp(K, X0) and gp(K, Y0) are also finitely generated. Thus G does not have the Howson
property.

The following statement, which will be proved in Section 3, shows that one can drop
the requirement that Q be non-Howson and gives a uniform proof of not being How-
son for a much larger class of word hyperbolic groups (including the 3-manifold groups
mentioned above).

THEOREM 0.6. Suppose we have a short exact sequence

1 ! K ! G ! Q ! 1

where G is a subgroup of a torsion-free word hyperbolic group G1, K is finitely generated
and infinite and Q has an element of infinite order. Then G does not have the Howson
property

G. A. Swarup [21] conjectured that a finitely presented subgroup K of a word hyper-
bolic group G is not quasiconvex in G if and only if it has infinite index in its virtual
normalizer NK ≥

n
g 2 G

þþþ jK: K \ gKg�1j Ú 1, jgKg�1: K \ gKg�1j Ú 1
o

and
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observed that the conjecture holds for Kleinian groups. In light of this conjecture The-
orem 0.6 seems to indicate that a torsion free word hyperbolic group is Howson if and
only if it belongs to class (Q).

I am grateful to my advisor Gilbert Baumslag for encouragement and to Lisa Carbone
for teaching me how to draw pictures using the computer.

1. Word hyperbolic groups and their quasiconvex subgroups. This paper con-
tains only a brief discussion about word hyperbolic groups and their quasiconvex sub-
groups. For details the reader is referred to [1], [10], [7], [9] and [21].

Let G be a group generated by a finite set X. We denote the X-length of an element
g 2 G by lX(g). The Cayley graph of G with respect to X is denoted by Γ(G, X) and the
word metric on Γ(G, X) is denoted by dX. If w is a word in X, we denote the corresponding
element of G by w̄.

If ∆ is a geodesic triangle in a metric space (M, d) with vertices x, y, z and geodesic
sides [x, y], [x, y], [y, z] then there are unique points p, q, r on the sides [x, y], [x, z] and
[y, z] accordingly such that d(x, p) ≥ d(x, q), d(z, q) ≥ d(z, r) and d(y, p) ≥ d(y, r).
The points p, q, r are called the vertices of the inscribed triangle in the triangle ∆. A
triangle ∆ as above is called é-slim if for any points a, b on [x, y] and [x, z] such that
d(x, a) ≥ d(x, b) � d(x, p) ≥ d(x, q) we have d(a, b) � é and the symmetric condition
holds for y and z.

A group G is called word hyperbolic if for some (for any) finite generating set X of G
there is é such that all geodesic triangles in

�
Γ(G, X), dX

�
are é-slim.

Recall (see [1] for details) that if G is a word hyperbolic group and A is a subgroup of
G, A is called quasiconvex in G if any of the following equivalent conditions is satisfied:

(a) for some (any) finite generating set X of G there is an è Ù 0 such that any geodesic
[a1, a2] in the Cayley graph Γ(G, X) joining points a1, a2 2 A is contained in the
è-neighborhood of A;

(b) A is finitely generated and for some (any) finite generating set Y of A and some
(any) finite generating set X of G there is a linear function F(y) ≥ By such that

dY(a1, a2) � F
�
dX(a1, a2)

�
, a1, a2 2 A.

We will list some of the important properties of quasiconvex subgroups of word hy-
perbolic groups.

PROPOSITION 1.1 (SEE [1]). Let G be a word hyperbolic group.
(a) If A is a quasiconvex subgroup of G then A is word hyperbolic (in particular A is

finitely generated and finitely presented);
(b) if A and B are quasiconvex in G then A \ B is quasiconvex in G;
(c) if C is a cyclic or finite subgroup of G then C is quasiconvex in G;
(d) if A � B � G and jB: Aj Ú 1 then A is quasiconvex in G if and only if B is

quasiconvex in G.
(e) if A � G,û 2 Aut(G) then A is quasiconvex in G if and only ifû(A) is quasiconvex

in G;

https://doi.org/10.4153/CMB-1997-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-039-3


334 ILYA KAPOVICH

(f) if A is a quasiconvex subgroup of G, X and Y are finite generating sets of G and
A then there is è Ù 0 such that for any dY-geodesic word W, for any dX-geodesic
word w with w̄ ≥ W̄ and for each initial segment u of w there is an initial segment
U of W such that dX(ū, Ū) � è.

A word hyperbolic group G is said to belong to class (Q) if all its finitely generated
subgroups are quasiconvex. It is now clear from Proposition 1.1(a)(b) that such a group
has the Howson property.

PROOF OF THEOREM 0.2. Amalgams of word hyperbolic groups along their quasi-
convex subgroups were studied in [10], [7], [16], [3], [14] and other works. Our main
reference here is the paper of G. Baumslag, S. Gersten, M. Shapiro and H. Short [7]. One
of the particular advantages of their approach is that, given a word hyperbolic group G
with a finite generating set X and a quasiconvex subgroup C, they construct a good left
transversal for C in G.

LEMMA 2.1. Let G be a word hyperbolic group and C be a malnormal quasiconvex
subgroup of G that is for every g 2 G � C we have gCg�1 \ C ≥ f1g. Fix a finite
generating set Z for C and a finite generating set X, containing Z, for G.

Then there is a constant K Ù 1 such that if g 2 G � C is a shortest (with respect to
the word metric dX) element in the coset gC then for any c 2 C the element cg is at most
K away (in the word metric dX) from any shortest element h in the coset cgC.

PROOF. Let é Ù 1 be an integer such that all geodesic triangles in the Cayley graph
Γ(G, X) are é-slim. Since C is quasiconvex in G, by Proposition 1.1(f) there is an integer
è Ù 1 such that for any dZ-geodesic word W over Z, for any dX-geodesic word w repre-
senting W̄ and for any initial segment w1 of w there is an initial segment W1 of W such
that dX(w1, W1) � è.

Let N be the total number of dX-geodesic words of length at most 2è + 2é + 4. Put
K ≥ 200(N + 1)(è + é + 100). Suppose g, h and c are as in Lemma 2.1 and c1 2 C is such
that cg ≥ hc1. We claim that c1 is short, namely lX(c1) � K.

Suppose, on the contrary, lX(c1) Ù K. Let u, v, y, y1 and w be dX-geodesic repre-
sentatives of g, h, c, c1 and cg and let Y, Y1 be dZ-geodesic representatives of c and c1.
Consider a geodesic quadrilateral in Γ(G, X) with sides y, u, v and y1 which corresponds
to the relation cg ≥ hc1 (see Figure 1). The geodesic triangles yuw�1 and vy1w�1 are
é-slim. Let the points n, t, s and p, r, q be the vertices of the their inscribed triangles as it
is shown in Figure 1.

Notice that dX(h, q) ≥ dX(h, r) � é + è + 2. Indeed, if dX(h, q) ≥ dX(h, r) Ù é + è + 2
then there is a vertex zr on Y1 such that dX(r, zr) � è + 1. But in this case dX(1, zr) �
dX(1, q) + é + è + 1 Ú dX(1, q) + dX(q, h) ≥ dX(1, h) what contradicts our assumption that
h is shortest in hC.

We claim that dX(1, p) Ú dX(1, s). Indeed, suppose dX(1, p) ½ dX(1, s) as it is shown in
Figure 1. But in this case dX(p, cg) ≥ dX(r, cg) ≥ l(y1)�dX(r, h) Ù K�é�è�2 Ù 2é+è+1
since we already know that dX(r, h) � é + è + 2 and we assumed l(y1) Ù K. There exist
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FIGURE 1

a point p0 on u and a vertex zr on Y1 such that dX(p0, p) � é and dX(r, zr) � è + 1 (see
Figure 2). Therefore dX(c, zr) � dX(c, p0) + 2é+ è+ 1 Ú dX(c, p0) + dX(p0, cg) ≥ dX(c, cg)
what contradicts our assumptions that g is shortest in gC.

Figure 2

Y
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FIGURE 2

It is now easy to see that dX(s, cg) ≥ dX(t, cg) � 2é + è + 1. Indeed, suppose that
dX(s, cg) Ù 2é + è + 1 and that we have a situation as shown in Figure 2. Then there is a
point s1 on y1 and a vertex zs on Y1 such that dX(s, s1) � é and dX(s1, zs) � è+1. Therefore
dX(c, zs) � dX(c, t) + 2é+ è+ 1 Ú dX(c, t) + dX(t, cg) ≥ dX(c, cg) what contradicts the fact
that g is shortest in gC.

Thus we have established that dX(h, q) ≥ dX(h, r) � é + è + 2, dX(1, p) Ú dX(1, s)
and dX(s, cg) ≥ dX(t, cg) � 2é + è + 1. This implies that dX(p, s) Ù l(y1) � dX(h, r) �
dX(s, cg) � 2é Ù 100(N + 1)(è + é + 100). Therefore there is a sequence of vertices
f1, f2, . . . , fN+1 on w between p and s such that dX(fi , fj) ≥ 10(é+ è+ 2)ji� jj. Then for any
i ≥ 1, 2, . . . , N+1 there is a vertex zi on Y and a vertex di on Y1 such that dX(fi, zi) � é+è+1
and dX(fi , di) � é + è + 1. Moreover, for i Â≥ j we have zi Â≥ zj and zi Â≥ dj since
dX(zi, zj) ½ d(fi, fj) � é � è � 1 Ù 0 and dX(di, dj) ½ d(fi, fj) � é � è � 1 Ù 0. Thus
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dX(zi, di) � 2(é + è + 2) for each i. By the choice of N there are two distinct indices i Ú j
such that z�1

i di ≥ z�1
j dj ≥ x 2 G as it is shown in Figure 3. Then x(di)�1djx�1 ≥ z�1

i zj

and so x 2 C since C is malnormal in G. But in this case g 2 C which contradicts our
assumptions. Lemma 2.1 is proved.

i

Y
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c t u cg ≥ hc1
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FIGURE 3

LEMMA 2.2. Let G be a torsion-free word hyperbolic group and C ≥ hci be a max-
imal cyclic subgroup of G. Let H be a quasiconvex subgroup of G and a 2 G. Suppose
further that H \ C ≥ f1g. Fix a finite generating set B of H and a finite generating set
X, containing c, of G. Put Z ≥ fcg.

There is an integer M Ù 1 such that for any h 2 H if ah ≥ gck, where g is a shortest
(with respect to the word metric dX) element in ahC, then jkj � M.

PROOF. We fix a dX-geodesic representative for each element of B. This allows us to
think about any word W over B as a path in the Cayley graph Γ(G, X). For the remainder
of the proof the phrase “a vertex on W” will always refer to a vertex representing an
initial segment of W as a B-word. Likewise, the phrase “an initial segment of W” will
always refer to an initial segment of W as a B-word.

First, observe that C is malnormal and quasiconvex in G since G is torsion-free and
so the normalizer of C is cyclic (see [1], [14]). Let é Ù 1 be an integer such that all
geodesic triangles in the Cayley graph Γ(G, X) are é-slim. Since C is quasiconvex in G,
by Proposition 1.1(f) there is an integer è Ù 1 such that for any dZ-geodesic word W
over Z, for any dX-geodesic word w representing W̄ and for any initial segment w1 of W
there is an initial segment W1 of W such that dX(w1, W1) � è. Let ua be a dX-geodesic
representative of a. Since geodesic triangles in Γ(G, X) are é-slim, for any dX-geodesic
word u and a dX-geodesic representative w of aū for any initial segment w1 of w there is
an initial segment u1 of u such that dX(w1, au1) � 2l(ua) + é.

Also, because H is quasiconvex in G, Proposition 1.1(f) implies that there is an inte-
ger è1 Ù 1 such that for any dB-geodesic word W over B, for any dX-geodesic word w
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representing W̄ and for any initial segment w1 of w there is an initial segment W1 of W
such that dX(w1, W1) � è1.

Put N to be the total number of dX-geodesic words of length at most 2é+è1+2l(ua)+è+2.
The subgroup C is quasiconvexin G (Proposition 1.1(c)) and so there is an integer K1 Ù 1
such that for any integer n

jnj � K1lX(cn).

Put M ≥ 1000(N + 1)K1

�
é + è + è1 + l(ua) + 10

�
. Suppose h 2 H and ah ≥ gck

where jkj Ù M and g is shortest in ahC. We assume that k Ù 0 and it will be seen from
the proof that the case k Ú 0 is completely analogous. Let u, v, y, w be dX-geodesic
representatives of h, g, ck and ah ≥ gck. Let Y ≥ ck be a dZ-geodesic representative of
ck and let U be a dB-geodesic representative of h. Consider now a geodesic quadrilateral
with the sides ua, u, v and y as shown in Figure 4. Denote by p, r, q the vertices of the
inscribed triangle in the geodesic triangle with the sides w, y and v. As in the proof of
Lemma 2.1 we conclude that dX(q, g) ≥ dX(r, g) � é + è + 2 because otherwise g is not
shortest in gC. Since jkj Ù M, dX(r, gc) Ù 50(N + 1)(é + è + è1 + l(ua) + 10), and so there
is a sequence of vertices f1, . . . , fN+1 on y between r and gc such that

dX(fi, fj) ≥ 10(é + è + è1 + l(ua) + 10)ji � jj.

k

U

a

ua

ahi

ahj

ah ≥ gck

di

dj

u
ei

ej

p
fi

fj

Yy

gckj

gcki

r
w

1 v
q h

FIGURE 4

Then for each i ≥ 1, 2, . . . , N +1 there is a point di on w with dX(fi, di) � é. Moreover,
as we noticed before, for each i ≥ 1, 2, . . . , N + 1 there is a point ei on u such that
dX(di, ei) � 2l(ua) + é. Furthermore, for each i ≥ 1, 2, . . . , N + 1 there is a vertex ahi on
U, hi 2 H, such that dX(ei, ahi) � è1 + 1. Thus dX(fi, ahi) � 2é + è1 + 2l(ua) + 1. So for
i Â≥ j hi Â≥ hj because in this case

dX(ahi, ahj) ½ 10
�
é + è + è1 + l(ua) + 10

�
ji � jj � 2

�
2é + è1 + 2l(ua) + 1

�
Ù 0.
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On the other hand for each i ≥ 1, 2, . . . , N + 1 there is ki, 0 � ki � k such that
dX(fi, gcki ) � è+ 1. In particular if i Â≥ j then dX(gcki , gckj ) ½ 10(é+ è+ è1 + l(ua) + 10)ji�
jj � 2� 2è Ù 0 and so ki Â≥ kj. Therefore for each i ≥ 1, 2, . . . , N + 1

dX(ahi, gcki ) � 2é + è1 + 2l(ua) + 1 + è + 1.

By the choice of N there are some distinct i, j, i Ú j such that h�1
i a�1gcki ≥ h�1

j a�1gckj

≥ x 2 G. This implies that xcki�kj x�1 ≥ b where b ≥ h�1
i hj 2 H, b Â≥ 1. Put b1 ≥ h�1

j h 2
H. Then x ≥ b1ckj�k. We conclude that b1ckj�kcki�kj ck�kj b�1

1 ≥ b and so

cki�kj ≥ b�1
1 bb1.

This contradicts our assumption that H \ C ≥ f1g. Lemma 2.2 is proved.

COROLLARY 2.3. Let G be a torsion-free word hyperbolic group and C ≥ hci be
a maximal cyclic subgroup of G. Let a be an element of G and H be a quasiconvex
subgroup of G. Let B be a finite generating set for H and X be a finite generating set for
G containing c. Fix a lexicographic order on X.

Put T to be the set of all dX-geodesic words u such that if v is another dX-geodesic
word with the property ūC ≥ v̄C then either u is shorter than v or l(u) ≥ l(v) and u is
lexicographically smaller than v. (Notice that T contains the empty word e representing
1).

Then there is a finite subset C1 of C such that

aH ² T̄C1(H \ C).

PROOF. If H \ C ≥ f1g then put C1 ≥ fck j �M � k � Mg where M is a constant
provided by Lemma 2.2. Then by Lemma 2.2 aH ² T̄C1.

Suppose now that H \ C Â≥ f1g. Then H \ C has finite index n in C. Put C1 ≥ fck j
�n � k � ng. Thus, obviously,

aH ² T̄C1(C \H).

This completes the proof of Corollary 2.3.

COROLLARY 2.4 (THEOREM 0.2). Let G be a torsion free group from class (Q) and
C ≥ hci be a maximal cyclic subgroup of G. Then C is a Burns subgroup of G.

PROOF. This follows immediately from Corollary 2.3 and Lemma 2.1.
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2. Groups which do not have the Howson property.

THEOREM 3.1 (THEOREM 0.6). Suppose we have a short exact sequence

1 ! K ! G ! Q ! 1

where G is a subgroup of a torsion-free word hyperbolic group G1, K is finitely generated
and infinite, and Q has an element of infinite order. Then G does not have the Howson
property.

PROOF. We may assume that K is a subgroup of G. Let s be an element of G which
projects to an element of infinite order in Q.

Since K is an infinite subgroup of a torsion-free word hyperbolic group, it follows from
[9, Chapter 8, Theorem 37] that K has an element f of infinite order. Clearly f does not
commute with s since otherwise some power of s would lie in a cyclic subgroup generated
by f (see [1], [14]) which contradicts our choice of s. Thus by [10, Theorem 5.3.E] there
is some power t ≥ sn of s, n Â≥ 0 and some power k ≥ f m of f , m Â≥ 0 such that t and k
generate a free subgroup of rank 2 in G. Denote it by H ≥ s gp(t, k).

We claim that H0 ≥ H \ K is not finitely generated. Indeed, if ki ≥ t�ikti, i Â≥ 0 and
k0 ≥ k then s gp(fki j i 2 Zg ² H0. On the other hand if w(t, k) 2 H0 then the exponent
sum of t in w is equal to 0 since no nonzero power of t lies in K and K is normal in G. Thus
w(t, k) can be rewritten as a word over fki j i 2 Zg. Therefore H0 ≥ s gp(fki j i 2 Zg.

It is not hard to see that H0 is actually free on the generators fki j i 2 Zg. Indeed,
if v(k

�N, . . . , kN) is a nontrivial relation between these generators then it translates into
a nontrivial relation between t and k. This is impossible since H is free on t, k. Thus
H0 ≥ H\K is not finitely generated and therefore G does not have the Howson property.
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