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In an earlier paper (5) a description was given in set-theoretic terms of the
semigroup generated by the idempotents of a full transformation semigroup
fTx, one of the results being that if X is finite then every element of 3~x that is
not bijective is expressible as a product of idempotents. In view of this it was
natural to ask whether by analogy every singular square matrix is expressible
as a product of idempotent matrices. This is indeed the case, as was shown by
J. A. Erdos (2). Magill (6) has considered products of idempotents in the
semigroup of all continuous self-maps of a topological space X, but a comparable
characterization of products of idempotents in this case appears to be extremely
difficult, and no solution is available yet.

In this paper I consider the semigroup 0x of order-preserving mappings of a
totally ordered set X. In the finite case, where we may assume that <9X is the
set of order-preserving mappings of {1, 2, ..., n}, the answer to our question is
easy: every element of <SX is expressible as a product of idempotents in @x.
It is also possible to obtain formulae (in terms of | X |) for the number of elements
in 0x and the number of idempotents in 0x.

The most natural case to consider next is where X has order-type a>, but
here the situation is much more difficult. The result in §3 refers not to <9X itself
but to a subsemigroup 3SX consisting of increasing mappings a for which the
sets j a " 1 (ye Xai) are bounded in size.

1. Finite sets
The principal result of this section is

Theorem 1.1. If X is a finite totally ordered set, then every element of the
semigroup <PX of order-preserving mappings of X into itself is expressible as a
product of idempotents in 0x.

Let us assume throughout that X = {1, 2, ... ,«}.
As in (5), we define Z(a), for a in 0X, to be X\Xa, and refer to | Z(a)| as the

defect of a. The result follows from Lemmas 1.2 and 1.3 below, since the
unique element of defect zero in <9X is an idempotent. The lemmas in fact
imply the stronger result that every element of <SX other than the identical
mapping is expressible as a product of idempotents of defect 1.
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224 J. M. HOWIE

Lemma 1.2. An element of <9X of defect greater than 1 is expressible as a
product of idempotents of defect 1 and a single element of defect 1.

Lemma 1.3. An element of 6X of defect 1 is expressible as a product of
idempotents of defect 1.

The proofs of these lemmas are inductive in nature. First, it is clear that
Lemma 1.2 will follow if we establish the following rather more technical
result.

Lemma 1.4. Ifae&x has defect k>\ then there exist an integer r 2> 1 and
idempotents e1, e2, ..., er e <PX of defect 1 such that

a = elpe2...zr,
where /? has defect k—\.

To prove this, consider an element a of defect k (> 1) and let

P(,oi) = {yeXa: | ̂ a"1 | ^ 2};

•P(a) # 0 since a is not one-one. Let

da = min {| z-p \: ze Z(cc),p e P(a)};

da 2: 1 since Z(a)nP(a) = 0. We shall prove Lemma 1.4 by induction on

First, if da = 1 we can assume without essential loss of generality that there
exists p in P(a) for which p + le Z(<x). [The other case, where p — le Z{a), can
be treated analogously.] Let q = max {xe l : xa. = p}. Sincepa~l contains
more than one element, there exists q' ^ q— 1 such that q'a = p. Hence

p = q'cc ^ (q- l)a £ qtx = p,

and so (q- l)a = p. The mapping e: X->Z defined by

qe = q— 1, xe = x (x i= q)

is an idempotent of defect 1 in Ox. If we define /?: Z-*^ by

then j? e 0x, | Z(j5)| = | Z(oc)| - 1 = &-1, and a = ej?.
If da> 1 we can suppose without essential loss of generality that there exists

z e Z(a) such that

2 + l , . . . , z H - l ^ « W . z+daeP(a).
Then (z+l)a-1 consists of a single element / (say), and (f+l)a = z+2. If
y: A'-̂ A'is defined by

ty = z, xy = XOL (x ¥> t),

then yeOx and | Z(y)| = | Z(a)| = k. Also z+1 e Z(y), z+dx e P(y) and so
dy = da-l. Iff/: X-vA'is defined by

zn = z+l, xn = x (x ^ z),

then ^ is an idempotent of defect 1 in 0x, and yr\ = a.
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If we suppose inductively that there exist idempotents e1,e2, •••, es of defect
1 in <SX such that y = eiPe2...es, where ft has defect k— 1, it now follows that

a = EiPs2...esn.

This completes the proof of Lemma 1.4 and thus Lemma 1.2 is established.
To prove Lemma 1.3, let us first define (as in (5)) the shift sa of an element

a in 0x to be the cardinal of the set S(a) = {x e X: xcc # x}. If sa = 1 then a
is an idempotent of defect 1. To see this, let us write S(a) = {«}. If x # u
then xcc = xa2 = x; on the other hand ucc / u and so MCC2 = ua. Thus a is
idempotent, and, since the range of a includes every element of X except w,
the defect must be 1.

In view of this, Lemma 1.3 will follow if we establish

Lemma 1.5. If a (e <9X) has defect 1 and ifsa > 1 then there exists an idempotent
e of defect 1 in <BX and an element fi of defect 1 in 0x such that a = e/? and

Sfi = Sa-\.

Proof. If a has defect 1 then there is a unique u in X such that wa = (u + l)a.
(The two elements of X with the same image must be adjacent since a is order-
preserving.) Suppose that Z(a) = {v}. If u<v, then

xa = x (x ^ u),

xa = x—l (u+l ^ x ^ v),

xa. = x (x ^ t>+l);
if « ^ v, then

xa = x+l (v ^ x ^ u),

xa = x (x ^ M + 1 ) .

If « < v we define e: X-+X and 0: Z-»Z by

(w+l)e = w, xe = x ( X # M + 1 ) ,

(W+1)J5 = M + 1 , xfi = x<x ( x ^ w + 1 ) ;

then e and )S are both in <SX and of defect 1, e is an idempotent, sf = sa— 1,
and a = e/?.

If « ^ v then the desired result is obtained if we define e: X-*X and

MS = M + 1 , X8 = X (X # M),

M/? = M, X/? = xa (x # M).

The proof of Theorem 1.1 is now complete.

2. Combinatorial results
It is well-known (and indeed obvious) that the full transformation semigroup

on a set X of n elements has order n". The number of idempotents in &~x is not
E.M.S.—p
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so obvious, and has been investigated by Harris (3), Harris and Schoenfeld (4)
and Tainiter (8).

The first result of this section is

Theorem 2.1. If \ X\ = n then \(9X\--

Proof. As before, we may assume that X = {1, 2, ..., n). If a e <SX then

1 g la ^ 2a %, ... g no. g n.

For r = 1, ..., n— 1, define gr(a), the gap of a at r, by

also, let0o(a) = la—1, grB(a) = n—nct. Clearly

t <?,(«) = « - l - (2.2)
r = 0

Notice that a is completely specified by the («+l)-tuple (<70(
a)> •••>0n(a)) °f

non-negative integers, and that any («+l)-tuple of non-negative integers satis-
fying condition (2.2) defines an a in Qx.

Now, the number of ways of arranging n noughts and n — 1 crosses is

(2«-l)! =f2n-l\
«!(«-!)! V"-1/

Each such arrangement is uniquely associated with an a in <9X if we take -
as the number of initial crosses, gr(ci) (r = 1, ...,« — 1) as the number of crosses
between the rth and the (r+l)th nought, and gn(a) as the number of final
crosses. The result of the theorem follows.

Remark. Dr. J. Hunter has suggested an elegant alternative approach to the
last part of this argument, based on the observation that

(x0, ..., xn): xr ^ 0, jT xr = « -
r = 0

is the coefficient of x"'1 in ( l -x)~( n + 1 ) .

Theorem 2.3. If\X\ = n then the number of idempotents in <9X is

Proof. The first step is to write

# i ) = <j>M + <t>i(n) +... + ten), (2.4)
where <f>r(ri) is the number of idempotents e in <PX for which le = r. Ifle = r
then re = r and so in fact

le = 2e = ... = re = r.
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If we denote by Ar the set of idempotents in 6X for which le = r (so that
| Ar | = <t>r(ri)), we can express Ar as a disjoint union

Ar = Arr\jArtr+lKj...\jArn, (2.5)

where Arr+k (k = 0, ..., n — r— 1) is the set of idempotents in 6X for which

le = ... = re = ... = {r+k)e = r, (r + k+l)e>r,

and where 4̂(._ „ comprises the single element n for which

\t] = . . . = nt] = r.

An element e in /4r,r+fc (A: ¥= n—r) does in fact possess the stronger property
that

(r+k+l)e ^ r + k+\,

for none of the elements r + 1 , ..., r+A: are mapped identically by e and so they
cannot belong to its range. It follows that e maps the set {r+k+l, ...,«} in
an order-preserving fashion into itself. Moreover, a mapping

_ / l 2 ... r + k r+k+l ... n
\r r ... r (r + /c + l)oc ... ncc

in which {(r + k+l)cc, ...,na] £ {r+k+l, ...,«} will be an idempotent in &x

if and only if the mapping

f r+k+l ... n
... net)

is an idempotent in &{r+k+1 „,. Thus

K , r + * | = <S>in-r-k) (fc = 0 n-r-l).

Since \Ar B| = 1, it now follows from (2.5) that

Substituting this in (2.4) we obtain that

from which it readily follows that, for all n S 3,

- 2 ) = 0.

If we make the direct observation that 0(1) = 1, 0(2) = 3, it now follows by
elementary methods (see for example (1)) that
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The alternative formula given in the theorem follows from this by the binomial
theorem.f

Remark. The number of idempotents of defect 1 is found by observing
{a) that there are « — 1 choices of the unique element u for which ua. = («+ l)a,
and (b) that to each such choice of u there correspond two idempotents e, r\
(say) where

we = (w+l)e = u, un = (u+l)ri = w+1.

Thus there are 2n —2 idempotents of defect 1 and so, by virtue of the remarks
immediately following the statement of Theorem 1.1, the semigroup <SX is
generated by 2«— 1 idempotents, namely the In —2 idempotents of defect 1 and
the single idempotent of defect zero.

3. Sets of order-type co
The most natural case to consider next is where the set X has order-type <w,

so that effectively we may identify X with the set N = {1, 2, 3, ...} of natural
numbers. Here the problem of describing the elements of 0X that are expressible
as products of idempotents is vastly more difficult and I have as yet been unable
to solve it. A partial result may serve to indicate the complexity of the situation.

If a e <5X, let us call the subsets xa.~l (x e Xa) of X the components of a;
they are the classes of the equivalence relation

n* = {(*> y) e Xx X: xa = ya],
and are convex subsets C of X, in the sense that whenever x, ye C with x<y
then ze C for every z such that x ^ z ^ y. A component will be called trivial
if it consists of a single element. We shall use the standard notation X/nx for
the set of components of a.

Let S8X be the subset of <9X consisting of all increasing mappings for which
the components are finite and bounded in size. If a e 3&x, let us denote

sup {| xa"1 |: xeXtx}
by c(a).

Lemma 3.1. 3§x is a subsemigroup of 0x.

Proof. If a, fS e 38x then, for every x in X,

xa.fi-x = ((x<x)P-xa.)+(xoi-x) ^ 0

and so aj? is increasing. Also, for every y in Xa.fi,

yiocP)'1 = (J za"1 (a disjoint union)
zeyp-^nXx

t Dr. D. Monk has pointed out (in a letter to me) that the formula in Theorem 2.3 appears
in a paper (7) by Mullin and Stanton as the number of " spanning trees " of a graph consisting
of/J+1 vertices vi, ..., vn, va, where v( is joined to v(+i (i = 1, ..., n— 1) and each of vi, ..., vn
is joined to vm. The connection between this number and the number of idempotents in <SX
is not hard to establish.

Dr. Monk also points out that the numbers <f>(n) are alternate Fibonacci numbers:
</>(n) = Fzn, where Fi = F2 = 1 and Fn = F,.i+Fa.2 (« ^ 3).
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and so

Thus 38X is closed under multiplication.
It is possible to give a description of the subsemigroup generated by the

idempotents of 3§x, but some definitions are necessary before the theorem can
be stated.

First, let us say that a is narrow if the set {xa—x: xeX} ot non-negative
integers is bounded. If C = ca~l = {x, x+l, ..., x+k} is a component of a,
let us denote c—{x+k) by a(C), and let us call C a shifting component if c(C) > 0.
If a is narrow, then {u{C): C e X/na} is bounded; let us denote

sup{ff(C): CeX/n,}

by b(a). Conversely, if {<r(C): C e X/na} is bounded, with supremum b(a),
then a is narrow, since for every x i n Z (lying in some component C, say),

xa-x g ff(C) + | C | ^ b(a) + c(a).

Notice that if a e 88x then a is idempotent if and only if b(a) = 0.
An element

I' C C C
a=\c c c\ct c2 c3

of 3SX will be called neat if there exists a non-negative integer n such that for
every shifting component Ct of a one or more of the components

is non-trivial. The smallest n with this property will be denoted by «(a). If
there are no shifting components (which is the case if and only if a is idempotent),
we define «(a) = 0.

We note that an element a of $ttx offinite shift is both narrow and neat. The
former is obvious; to see the latter, observe that a must either be idempotent
or must have a last shifting component C; = {..., x}. Since xa ^ x+l and
since (x+l)a>xa, it follows that (x+l)a 2: x+2. The component Ci+l by
assumption does not shift and so must be non-trivial. It now follows that every
shifting component of a is a bounded distance below a non-trivial component.

Remark. If a(e 3SX) is both narrow and neat and has infinite shift, then a
has infinitely many non-trivial components, for otherwise all components from
a certain point on would have to be trivial, and infinitely many of them (in fact
all of them) would be shifting components. This would contradict the assump-
tion of neatness. Thus, in the terminology of (5), a has infinite collapse.

, It is also the case that a has infinite defect. If not, then from some point
on there are no gaps in Xa: more precisely, there exists n such that

{xa: x 2: ri} = {y: y ^ na}.
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If net. — n = k (^ 0) then by virtue of the lack of gaps in Xa. we have that
0 ^ xa.—x ^ k for every x is n. If k = 0 we have an immediate contradiction
to the assumption that a has infinite shift. If k ^ 1 then, since a is neat, there
exists a non-trivial component C = {TM, w+1, ...} of a whose members are
greater than n. Since ma—m ^ k it follows that

hence ya—y ^ k — 1 for every y §: m +1. We have seen that there are infinitely
many non-trivial components of a, and each one of them effects a decrease of at
least one in the value of xa—x beyond that point. Eventually we find a natural
number p such that za — z = 0 for all z ^ p, which contradicts the hypothesis
that a has infinite shift.

To summarize, we have observed that elements of infinite shift that are both
neat and narrow have infinite defect and collapse, and so, by Theorem III of
(5), are expressible as products of idempotents, provided we take no account of
the ordering ofX. We shall see shortly that it is possible to express such elements
as products of order-preserving idempotents.

Some examples may serve to clarify the concepts introduced above. If
(2m-l)a = 2ma = 2m (m = 1, 2, ...)

then a is neat but not narrow. If

„ fm + 2 for m = 1,4, 9,16, ...
\m + l otherwise,

then P has infinite shift, defect and collapse and is narrow, but is not neat. If

fm + 2 i f m s 3 (mod 4)my = < . ., . v '\m + \ otherwise,
then y is both narrow and neat, with

b(y) = 1, n(y) = 2.
Theorem 3.2. An element of the semigroup 88x is expressible as a product of

idempotents in &x if and only if it is both narrow and neat.

Proof. We show first that the subset Jf x of 8SX consisting of those elements
that are both narrow and neat is a subsemigroup. Certainly, if a and /? are
narrow then

xafi — x = ((xa)/? — xa) + (xa — x)

and so {xafi — x: x e X) is bounded.
Suppose now that

C2 ...\ „ (Dx D2
Cl C2

are both neat. Writing a/? as
<EX E2

e2
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let us consider a shifting component Ej of a/?. Since ;:„ c nap.t the component
Ej is a union of components of a. It must moreover be a " convex " union in
the sense that if CpcEj, Cq<=.Ej wi th /xg , then CrcEj for all r such that
p ;£ r ^ q. The following lemma is relevant.

Lemma 3.3. Let Ct, E} be shifting components of a., afi respectively, such that
Cl £ Ej, Ci+1 $ Ej. If, for some n ^ 0, the component C( + n + 1 o/ a is non-
trivial, then at least one of the components EJ+i, ..., EJ+n+l ofafi is non-trivial.

Proof. The component C,+n+1 is contained in some (necessarily non-trivial)
component Er of ajS. Since

Er«p = (Cj+n+1a)0 £ (Ci+1a^>(Cja)i3 = E/xfi,
we must have r>j. Also, since components of a/? are convex unions of com-
ponents of a, we must have r ^ j+n +1. Thus the lemma is proved.

We have chosen a shifting component E} of a/?. Let Ct be the component of
a with the property that Ct c .E, and Ci+1 $ £,, and let us denote the largest
element of Ct by x. Certainly xafi >x. If xa > x then C{ is a shifting component
and the neatness of a allows us to assume that Cj + n + 1 is non-trivial for some
n :g n(a). Lemma 3.3 now implies that there is a non-trivial component
EJ+k+1 of a/?, with

0 g H « ^ n(a).
It is, however, also possible to have xa = x (with xfi>x), and this case

proves much more troublesome. The element x lies in some component Dp

of /?, and it is convenient to separate two cases:

In case (i) we must have (x+l)tx>x+l, since (x+l)cc = x+l would imply
that

= xp = xajS

and so x+leEj contrary to hypothesis. Thus the component CJ+1 (which
contains x +1) is either non-trivial or is a shifting component of a. If it is non-
trivial then it is contained in EJ+1, a necessarily non-trivial component of aft.
If C;+1 is trivial, then either EJ+1 is non-trivial, or Ci + 1 = EJ+l and so
Q+2 $ Ej+i' In the latter case Lemma 3.3 applies and the general conclusion
for case (i) is that there is a non-trivial component EJ+k+i, where k ^ 0 and
where at worst

k g n(a) + l.

In case (ii) x is the greatest element of Dp and so Dp is a shifting component;
hence by neatness of /? there is a non-trivial component

£p+,n+i = {y,

of p with w g n(fi). Let us in fact assume that we have chosen m as small as
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possible, so that the components Dp+l, ..., Dp+m are all trivial. It follows
that

y-x = \Dp+1\ + ... + \Dp+m\ + l = m + l.

If there is no shifting or non-trivial component of a between x and y, then

C, = {...,*}, Ci+1

where xa. = x, (x+l)<x = x+l, ...,y<x = y. If (y+l)<x = y+1 then

and so {y, y+l} is all or part of a non-trivial component of a/?. Otherwise
(y+l)a>y+l and so the component Ci + m + 2 of a is either non-trivial or shifting
(or both). If it is non-trivial then it is part of a non-trivial component of a/?.
The very worst that can happen is that Ci+m+2 and all the components

Ej + U •••> Ej+m + 2 ( = Q + m + 2)

are trivial. But in this case the lemma applies, and there must be a non-trivial
component Ej+k+1, where

k ^ m+2+n(«) £[n(<x)+n(fi)+2.

The general conclusion is that a/? is neat and that

Remark. The upper bound n(a)+n(fi)+2 can be attained. For example,
if

_ (l 2 3 4 5 6 7 8 ..A (l 2 3 4 5 6 7 8 ..A
a ~ \ 1 2 3 5 6 7 7 8 .../ P~ \2 3 4 4 5 6 7 8 .../

are elements of finite shift (in which x<x = xfi = x for all x>S), then

A 2 3 4 5 6 7 8 ..A
a ^ ~ V 2 3 4 5 6 7 7 8 . . . /

and it is easy to see that «(a) = n(J3) = 1, while w(a/J) = 4.

To complete the proof of Theorem 3.2 we must show that every element
which is both narrow and neat is expressible as a product of idempotents. As
a preliminary, let us define two mappings, f, g from 33x into itself. If

( c c c \

Li 1̂ 2 O-l . . . 11 2 3 I
C l C 2 C 3 " • /

is in 33X we define af: X-+X by
^(a/) = xi f° r everY * i° Q (' = 1. 2, ...),

where JC( is the greatest element of Ct. Notice that a/is an idempotent in 0§x,
and that af = a if and only if a is idempotent.
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Next, we define ccg: Ar-»A''by

y(ag) = ct if y e C1\{x1},

y(ag) = c(_! if y e C,\{xi} and y g c,-!,

y(ccg) = ct if ye Cj\{x,} and y > c,_ t .

It is easy to see that <xg e 3dx and that

fefXeg) = a. (3.4)

For example, if

/ l 2 3 4 5 6 7 8 ..A „ ..
y = ( , 4 4 4 5 8 8 8 9 . . . ; (3"5)

is defined by
: = 1 (mod 4)

then

x+2 i fx = 2 (mod 4)

x + 1 otherwise,

f_(l 2 3 4 5 6 7 8 ..A _ (l 2 3 4 5 6 7 8 9 ...\1
yJ~\3 3 3 4 7 7 7 8 .../' W ~ \4 4 4 5 5 8 8 9 9 .../J

If a is idempotent then c( = x( (i = 1, 2, ...) and so j e C( (/> 1) implies
that -y>xj_1 = Cj.!. Thus y(ug) = c( for every y in Cf and for every i (including
i = 1), and so ag = a. Conversely, if a.g = a then for each ;' ^ 2 we must have
y>ci_1 for every y in Ct. In particular,

from which it follows that cf_! = Xj-!. Thus a is idempotent.
In summary, we have shown that a is idempotent if and only if a/ = ag = a.
For a given element a in 08x we now define two sequences

a0, a,,a2, ... and eu e2, e3, ...

by setting <x0 = « and

er = ar-i/> a, = ar_i0 (r = l,2,...).
By virtue of (3.4) we have

a,_! =6raP
and so

a = e1e2...£raP (r = 1, 2,...),

where e^ ..., e, are idempotents. We shall show that if a is narrow and neat
then a, is idempotent for some sufliciently large r.

Since
Zee = Xxt = Xix2 = ... = {<?!, c2, . . .},
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we can, for each k ^ 1, establish a natural one-one correspondence between
the set of components of ak and that of a, whereby the component Cp) = cp^l

of <xk corresponds to the component Cf = c.a"1 of a.
Since (for each i ^ 1) the component C\l) = CjaJ"1 contains xt and may

contain some elements of Ci+1, we certainly have that

(3.6)
where (as before) CT(C,) is the difference between the image of C, and the largest
member of C,-. In particular,

a(C4
(1)) = 0 if ff(Ci) = 0.

If we make a further assumption we can obtain a strict inequality in (3.6).
Precisely, if o-(C,)>0 and ifCi+l is non-trivial, then

(r(C<1>)<a(CI.). (3.7)
To see this, observe that

C, = {..., x,}, C,+1 = {x, + l, x,+2, . . .} .

Now ct>Xi by assumption and sox f + l ^ ct. It follows by the definition of
at that (x(+ l)a = ct and so

The inequality (3.7) follows, since certainly

[As an example of this, consider the component C2 = {4} of the y in (3.5),
where C ^ = {4, 5}, a(C2) = 1, o(C^) = 0.]

A repetition of the same argument establishes the following lemma, in
which C\o), C , ^ are to be interpreted as Ch Ci + 1 respectively.

Lemma 3.8. For every k ^ 0,

The inequality is strict provided (T(C|*')>0 and C|+\ is non-trivial.

As a consequence of this lemma, we have that if a is narrow then so are
al 5a2, ..., and

fc(cc) ^ i f a ) ^ % 2 ) ^ .... (3.9)
If cr(C,)>0 and Ci+1 is trivial, then if a is neat there is a non-trivial com-

ponent C,+ n + 1 where 1 ^ n ^ n(a). Here we have

In fact all the components Ci+1, ..., Ci+n must shift; for cf ^ xf+1 by assump-
tion and so

cI+1 ^ cf+l ^ x, + 2;
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thus C1 + 1 shifts, and the same argument can be applied repeatedly to show that
Cj + 2 , .... C i + n all shift. Thus ci+n ^ *j + w + l and so ( X j + n + l ) ^ = cj+B.
The component C\^}n of ax thus contains at least one element besides x(+n and
so is non-trivial.

Applying this argument in general, we obtain the following lemma, which
holds for every k ^ 0.

Lemma 3.10. / / <r(Cp>)>0, if C$u ..., C$a are trivial, and if C\k]a+1 is
non-trivial (« ^ 1), then o(C?+1)) = o(C\k)) and C\k++

n
l) is non-trivial.

A final lemma is

Lemma 3.11. If a. is neat, then every uk is neat, and

n(a) ^ n(aj) ^ n(a2) ^ ....

Proof. It is enough to show that n(a) ^ «(at). To show that a is neat we
consider an arbitrary shifting component C}1* of a t . Certainly Cf is a shifting
component of a, by (3.6). If C i + 1 is trivial, Lemma 3.10 implies that C$n is
a non-trivial component of a1( with 1 :g n ^ n(a). If C i + 1 is non-trivial,
however, the lemma gives no useful information, and it is possible that
is trivial.

In this case, since C,(1) shifts it follows that Cj\\ shifts; hence C i + 1 shifts
by virtue of (3.6). We are supposing that a is neat, and so for some n such
that 0 ^ n ^ n(oc) the component Ci+n+2 is non-trivial. If n ^ 1 Lemma
3.10 implies that C\\\+1 is non-trivial. The case n = 0 cannot in fact arise,
since if C1 + 2 were non-trivial then C^Vi would, by the argument used to establish
(3.7), be non-trivial, and we are assuming that this is not the case.

To summarize, we have shown that for all shifting components C[1} of a1;

at least one of the components

is non-trivial. Hence a.v is neat and n(aj) ^ n(a).
It is now a consequence of Lemmas 3.8 and 3.10 that if k ^ «(a) + 1 then

for all components Cf such that <r(C,-)>0. But n(<xk) g n(<x) and so if

k ^ 2(/i(a)+l)

we obtain by a repetition of the same argument that

for all components Cf such that CT(C,)>1. Eventually we find that, for all

ff(C[fc)) = 0 for i = 1,2,...,

and so at is idempotent.
This completes the proof of Theorem 3.2.
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