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Abstract

Let R be a semiprime ring with extended centroid C and with maximal right ring of quotients Qmr(R).
Let d: R→ Qmr(R) be an additive map and b ∈ Qmr(R). An additive map δ: R→ Qmr(R) is called a (left)
b-generalized derivation with associated map d if δ(xy) = δ(x)y + bxd(y) for all x, y ∈ R. This gives a
unified viewpoint of derivations, generalized derivations and generalized σ-derivations with an X-inner
automorphism σ. We give a complete characterization of b-generalized derivations of R having nilpotent
values of bounded index. This extends several known results in the literature.
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1. Results

Throughout the paper, unless specially stated, R is always a semiprime ring with
Martindale symmetric ring of quotients Qs(R). We let Qmr(R) (respectively Qml(R))
denote the maximal right (respectively left) ring of quotients of R. It is known that
R ⊆ Qs(R) ⊆ Qmr(R). The overrings Qs(R) and Qmr(R) of R are semiprime rings with
the same center C, which is a regular self-injective ring. The ring C is called the
extended centroid of R. Also, R is a prime ring if and only if C is a field. We refer the
reader to the book [1] for details.

An additive map d : R→ R is called a derivation if d(xy) = d(x)y + xd(y) for all
x, y ∈ R. For b ∈ R, we let ad(b) denote the map x 7→ [b, x] := bx − xb for x ∈ R.
Clearly, ad(b) is a derivation of R, which is called the inner derivation of R induced
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by the element b. It is known that any derivation d of R can be uniquely extended
to a derivation of Qmr(R). A derivation d : R→ R is called X-inner if its extension to
Qmr(R) is inner. In this case, it is easy to check that d = ad(q) for some q ∈ Qs(R). An
additive map δ : R→ R is called a generalized derivation if there exists a derivation d
of R such that δ(xy) = δ(x)y + xd(y) for all x, y ∈ R (see [2, 14, 18]). The derivation d
is uniquely determined by δ, and is called the associated derivation of δ.

Let σ be an automorphism of R. An additive map δ : R→ R is called a (right) σ-
derivation if δ(xy) = xδ(y) + δ(x)σ(y) for x, y ∈ R. Basic examples of σ-derivations
are derivations and σ − 1. Given b ∈ R, the map x 7→ xb − bσ(x) for x ∈ R obviously
defines a σ-derivation, which is called the inner σ-derivation induced by b. It is clear
that any σ-derivation of R can be uniquely extended to a σ-derivation of Qmr(R). In
[21], Lee and Liu gave a common generalization of both generalized derivations and
σ-derivations. An additive map g : R→ R is called a right generalized σ-derivation
if there exists an additive map δ : R→ R such that g(xy) = xg(y) + δ(x)σ(y) for all
x, y ∈ R. It is clear that δ is uniquely determined by the map g. The additive map δ is
called the associated map of g. Our present study is motivated by the following results.

Let d : R→ R be a derivation, δ : R→ R a generalized derivation, g : R→ R a right
generalized σ-derivation, and n a fixed positive integer. Also, the rings R in (4)–(6)
are prime.

(1) Suppose that d(x)n = 0 for all x ∈ R. Then d = 0 (see [10, 12, 13]).
(2) Let λ be a left ideal of R. Suppose that d(x)n = 0 for all x ∈ λ. Then λd(λ) = 0

(see [16, Theorem 6]).
(3) Suppose that δ(x)n = 0 for all x ∈ R. Then δ = 0 (see [18, Theorem 5]).
(4) Suppose that δ(x)n = 0 for all x ∈ ρ, a right ideal of R. Then there exist

b, c ∈ Qmr(R) and β ∈ C such that δ(x) = bx − xc for all x ∈ R and (b − β)ρ =

0 = (c − β)ρ (see [18, Theorem 6]).
(5) Suppose that g(x)n = 0 for all x ∈ R. Then g = 0 (see [21, Theorem 2.7]).
(6) Let a, b, q ∈ Qmr(R). Suppose that (aδ(qx) − bx)n = 0 for all x ∈ R. Then either

aδ(q) − b = 0 = aq or there exist a0, b0 ∈ Qmr(R) and µ ∈ C such that δ(x) =

a0x + xb0 for x ∈ R and aa0q − b = −b0aq = µaq.

Let us consider a special case of (5). Suppose that the extension of σ to Qml(R)
is inner; that is, there exists a unit u ∈ Qml(R) such that σ(x) = uxu−1 for x ∈ R. Let
δ be the associated map of g. Then g(xy) = xg(y) + d(x)yu−1 for all x, y ∈ R, where
d(x) := δ(x)u for x ∈ R. Notice that d : R→ Qml(R). See [3, 4] for the Lie ideal case.

In (6), let d : R→ R be the associated derivation of δ; that is, δ(xy) = δ(x)y + xd(y)
for x, y ∈ R. We let δ̃(x) := aδ(qx) − bx for x ∈ R. Then δ̃(x) = aqd(x) + (aδ(q) − b)x
for x ∈ R. A direct computation shows that δ̃(xy) = δ̃(x)y + (aq)xd(y) for x, y ∈ R.
Since d can be uniquely extended to Qmr(R), so can δ̃. In view of [17, Theorem 3]
(or see Fact 1.5 below), R and Qmr(R) satisfy the same differential identities. Thus,
δ̃(x)n = 0 for all x ∈ Qmr(R).
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Motivated by the results (1)–(6) above, we give the following definition.

Definition 1.1. (1) Let d : R→ Qmr(R) be an additive map and b ∈ Qmr(R). An additive
map δ : R→ Qmr(R) is called a (left) b-generalized derivation with associated map d
if δ(xy) = δ(x)y + bxd(y) for all x, y ∈ R.

(2) Let d : R→ Qml(R) be an additive map and b ∈ Qml(R). An additive map
δ : R→ Qml(R) is called a right b-generalized derivation with associated map d if
δ(xy) = xδ(y) + d(x)yb for all x, y ∈ R.

Clearly, a generalized derivation is a 1-generalized derivation and a right
generalizedσ-derivation is a right u−1-generalized derivation ifσ(x) = uxu−1 for x ∈ R,
where u is a unit in Qml(R). For a, b, c ∈ Qmr(R), the map x 7→ ax + bxc for x ∈ R is a
left b-generalized derivation. Analogously, for a, b, c ∈ Qml(R), the map x 7→ xa + bxc
for x ∈ R is a right c-generalized derivation. We note that left or right b-generalized
derivations appear canonically in [7, Theorems 1.1 and 1.3]. The goal of the paper
is to give a complete characterization of b-generalized derivations having nilpotent
values of bounded index. By symmetry, it suffices to deal with one of left and right
b-generalized derivations. For simplicity of notation, a b-generalized derivation
always means a left b-generalized derivation.

To state the main theorem of the paper, we have to recall some basic properties of
idempotents of C. We write B for the set of all idempotents of C. The set B forms a
Boolean algebra with respect to the operations e +̇ h := e + h − 2eh and e · h := eh for
all e, h ∈ B. It is complete with respect to the partial order e ≤ h (defined by eh = e)
in the sense that any subset S of B has a supremum

∨
S and an infimum

∧
S . Given

a subset S of Qmr(R), we define E[S ] to be the infimum of e ∈ B such that ex = x
for all x ∈ S . If S = {b}, we write E[b] instead of E[S ] for simplicity. Note that,
for a, b ∈ Qmr(R), aRb = 0 if and only if E[a]E[b] = 0. By the characterization, it is
easy to see that if a b-generalized derivation δ has associated maps d and d′, then
E[b]d(x) = E[b]d′(x) for all x ∈ R. We refer the reader to the book [1] for details.

We are now in a position to state the main theorems of the paper.

Theorem 1.2. Let R be a semiprime ring, b ∈ Qmr(R), and let δ : R→ Qmr(R) be a b-
generalized derivation with associated map d. Suppose that δ(x)n = 0 for all x ∈ R,
where n is a positive integer. Then there exists q ∈ Qmr(R) such that E[b]d(x) = [q, x]
for x ∈ R, δ(x) = −bxq for x ∈ R, and qb = 0.

By symmetry, we also have the following result whose proof parallels that of
Theorem 1.2.

Theorem 1.3. Let R be a semiprime ring, b ∈ Qml(R), and let δ : R→ Qml(R) be a right
b-generalized derivation with associated map d. Suppose that δ(x)n = 0 for all x ∈ R,
where n is a positive integer. Then there exists q ∈ Qml(R) such that E[b]d(x) = [q, x]
for x ∈ R, δ(x) = qxb for x ∈ R, and bq = 0.

Let I be an ideal of R. By the semiprimeness of R, the left annihilator of I
in R coincides with the right annihilator of I in R. The ideal I is called dense if
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its left annihilator in R is zero. We write C{X1, X2, . . .} for the free algebra over
C in noncommutative indeterminates X1, X2, . . . and Qmr(R) ∗C C{X1, X2, . . .} for the
free product of the C-algebras Qmr(R) and C{X1, X2, . . .}. Let f (Xi) ∈ Qmr(R) ∗C
C{X1, X2, . . .} and T be a subring of Qmr(R). We say that f is a GPI (that is, a
generalized polynomial identity) of T if f (xi) = 0 for all xi ∈ T . By a derivation word
∆, we mean that ∆ is of the form d1d2 · · · ds, where each di is either a derivation
of Qmr(R) or the identity map of Qmr(R). By a differential polynomial f (X∆ j

i ), we
mean that all ∆ j are derivation words and f (Zi j) is a generalized polynomial in
noncommutative indeterminates Zi j. The differential polynomial f (X∆ j

i ) is called a
differential identity of T if f (x∆ j

i ) = 0 for all xi ∈ T . We will use the following facts in
the proofs below.

Fact 1.4. Let I be a dense ideal of R. Then I and Qmr(R) satisfy the same GPIs
with coefficients in Qmr(R) (see [1, Theorem 6.4.1] for a semiprime ring R and [6,
Theorem 2] for a prime ring R).

Fact 1.5. Let I be a dense ideal of R. Then I and Qmr(R) satisfy the same differential
identities with coefficients in Qmr(R) (see [17, Theorem 3]).

Fact 1.6. Let ρ be a right ideal of R and a ∈ Qmr(R). Suppose that (ax)n = 0 for all
x ∈ ρ. Then aρ = 0 (see Fact 1.4 and [11, Lemma 1.1]).

Fact 1.7. Let φ : I → Qmr(R) be a right R-module map, where I is a dense ideal of R.
Then there exists a ∈ Qmr(R) such that φ(x) = ax for all x ∈ I (see [19, Lemma 2.1]
with the same proof by replacing ‘a nonzero ideal in a prime ring’ with ‘a dense ideal
in a semiprime ring’).

Fact 1.8. Let d : R→ Qmr(R) be a derivation. Then d can be uniquely extended to a
derivation from Qmr(R) to itself (see, for instance, [17, Lemma 2]).

2. The prime case

We begin with the following key result.

Proposition 2.1. Let R be a prime ring, a, b, c ∈ R, and n a positive integer. Suppose
that (ax + bxc)n = 0 for all x ∈ R. Then there exists β ∈ C such that a = βb and
(c + β)b = 0.

A prime ring R is called a GPI-ring if it satisfies a nontrivial (that is, nonzero)
generalized polynomial with coefficients in Qmr(R). The prime ring R is called
centrally closed if R = RC. In particular, the prime ring Qmr(R) is centrally closed.
The following lemma is a special case of [24, Theorem 1]. Since the proof below is
neat and self-contained, we give its proof here for the convenience of the reader. We
also remark that Chang proved the following lemma with the extra assumption that b
is invertible in R (see [5, Lemma 2.1]).
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Lemma 2.2. Let R be a prime ring, a, b, c ∈ R, and n a positive integer. Suppose that
(b(ax + xc))n = 0 for all x ∈ R. Then there exists β ∈ C such that b(a − β) = 0 and
(c + β)b = 0.

Proof. Suppose first that R is not a GPI-ring. This implies that (b(aX + Xc))n is a
trivial generalized polynomial. In particular, ba and b are dependent over C. That is,
b(a − β) = 0 for some β ∈ C. Thus,

0 = (c + β)(b(ax + xc))nbx

= (c + β)(b((a − β)x + x(c + β)))nbx = ((c + β)bx)n+1 (2.1)

for all x ∈ R. In view of Fact 1.6, (c + β)b = 0.
Suppose next that R is a GPI-ring. It follows from Fact 1.4 that

(b(ax + xc))n = 0 (2.2)

for all x ∈ RC. Let F denote the algebraic closure of C if C is an infinite field and
let F = C if C is a finite field. Then (2.2) holds for all x ∈ R̃ (see [22, Lemma 2.3]),
where R̃ := RC ⊗C F. In view of [8, Theorem 3.5], R̃ is a centrally closed prime F-
algebra. By [23, Theorem 3], R̃ is a primitive ring with a minimal idempotent e such
that eR̃e = Fe. Hence, there exists a left vector space V over F such that R̃ acts densely
on FV .

Given v ∈ V , we claim that v(ba) and vb are dependent over F. Suppose not; then
there exists x ∈ R̃ such that v(ba)x = v and vbx = 0. Then 0 = v(b(ax + xc))n = v, which
is a contradiction. This proves the claim.

If dimF Vb ≥ 2, it is routine to prove that there exists β̃ ∈ C such that ba = β̃b; that
is, b(a − β̃) = 0. Thus, by (2.1) we have (c + β̃)b = 0. Suppose next that dimF Vb = 1.
Choose v0 ∈ V such that Vb = Fv0b. Write v0ba = γ̃v0b for some γ̃ ∈ F. Let v ∈ V .
Then vb = α̃v0b for some α̃ ∈ F. Then vba = α̃v0ba = α̃ γ̃v0b = γ̃vb.

In either case, there exists β̃ ∈ F such that ba = β̃b. Choose a basis µ0, µ1, . . . for
F over C, where µ0 = 1, and write β̃ = βµ0 + β1µ1 + · · · , where β, β1, . . . ∈ C. Then
ba = βa. That is, b(a − β) = 0. It follows from (2.1) that (c + β)b = 0. �

Proof of Proposition 2.1. It follows from Fact 1.4 that

(ax + bxc)n = 0 (2.3)

for all x ∈ Qmr(R). We claim that a ∈ bQmr(R). Clearly, we may assume a , 0.
Suppose that R is not a GPI-ring. Then a and b are dependent over C. In particular,

a ∈ bQmr(R), as asserted. Suppose next that R is a GPI-ring. In this case, Qmr(R) is
also a prime GPI-ring (see Fact 1.4). Since Qmr(R) is a centrally closed prime ring,
it follows from [23, Theorem 3] that Qmr(R) is a primitive ring with nonzero socle.
Write H := soc(Qmr(R)), the socle of Qmr(R). Note that H is a regular ring (see [9]);
that is, for any w ∈ H, wzw = w for some z ∈ H. For z ∈ H, we write `H(z) for the left
annihilator of z in H; that is, `H(z) = {x ∈ H | xz = 0}.
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We first consider the case that a, b ∈ H. Let w ∈ `H(b). By (2.3),

0 = w(a(xw) + b(xw)c)nax = (wax)n+1

for all x ∈ Qmr(R). In view of Fact 1.6, wa = 0. That is, w ∈ `H(a). Up to now, we have
proved that `H(b) ⊆ `H(a)

Since a, b ∈ H, there exist u, v ∈ H such that aua = a and bvb = b. Set f := au and
g := bv. Then f , g are idempotents. Then `H(g) ⊆ `H( f ); that is, H(1 − g) ⊆ H(1 − f ).
So (1 − g) f = 0. Then a = f a = g f a = bv f a ∈ bH, as asserted.

For the general case, let w ∈ H. We see that (awx + bwxc)n = 0 for all x ∈ Qmr(R).
Since aw, bw ∈ H, the first case implies that aw ∈ bwH. Write aw = bwt for some
t ∈ H, depending on w. Replacing x by wx in (2.3),

(bw(tx + xc))n = (a(wx) + b(wx)c)n = 0

for all x ∈ Qmr(R). By Lemma 2.2, there exists βw ∈ C, depending on w, such that
bw(t − βw) = 0. That is, aw = βwbw for w ∈ H.

Fix an idempotent e0 ∈ H such that ae0 , 0. Then ae0 = βbe0 for some β ∈ C. Let
f be an idempotent of H. Then a f = β f b f for some β f ∈ C. We claim that β f = β if
a f , 0. Indeed, there exists h = h2 ∈ H such that e0H + f H = hH and ah = βhbh for
some βh ∈ C. Note that he0 = e0 and h f = f . Thus,

ae0 = ahe0 = βhbhe0 = βhbe0,

implying that βh = β. Similarly, βh = β f and so β = β f . Thus, (a − βb) f = 0 if a f , 0.
Let f = f 2 ∈ H with a f = 0. We claim that b f = 0. By Litoff’s theorem [9], there

exists an idempotent h ∈ H such that e0, f ∈ hHh. If ah = 0 then ae0 = ahe0 = 0, which
is a contradiction. Thus, neither ah nor a(h − f ) is zero. Note that h − f is an
idempotent. Then

ah = βbh and a(h − f ) = βb(h − f ).

This implies that βb f = 0, so b f = 0 follows. Up to now, we have proved that
(a − βb) f = 0 for any idempotent f ∈ H with a f = 0.

In either case, (a − βb) f = 0 for any idempotent f ∈ H. Since H is a regular ring,
(a − βb)H = 0 and so a = βb. Rewrite (2.3) as (bx(c + β))n = 0 for all x ∈ Qmr(R). So
(x(c + β)b)n+1 = 0 for all x ∈ Qmr(R). By Fact 1.6, (c + β)b = 0 follows. �

The following characterizes b-generalized derivations of semiprime rings.

Theorem 2.3. Let R be a semiprime ring, b ∈ Qmr(R), and let δ : R→ Qmr(R) be
a b-generalized derivation with associated map d. Then E[b]d : R→ Qmr(R) is a
derivation and there exists b̃ ∈ Qmr(R) such that δ(x) = bd(x) + b̃x for all x ∈ R.

Proof. Expanding δ((xy)z) and δ(x(yz)) respectively, we see that

bx(d(yz) − yd(z) − d(y)z) = 0
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for all x, y, z ∈ R. The semiprimeness of R implies that E[b]d(yz) = yE[b]d(z) +

E[b]d(y)z for all y, z ∈ R; that is, E[b]d : R→ Qmr(R) is a derivation. Let µ : R→
Qmr(R) be the map defined by µ(x) = bd(x) for x ∈ R. Then

µ(xy) = bE[b]d(xy) = bE[b]d(x)y + bxE[b]d(y)
= bd(x)y + bxd(y) = µ(x)y + bxd(y)

for all x, y ∈ R. Thus, we have (δ − µ)(xy) = (δ − µ)(x)y for all x, y ∈ R. In view of
Fact 1.7, there exists b̃ ∈ Qmr(R) such that δ(x) = bd(x) + b̃x for all x ∈ R. �

Theorem 2.4. Let R be a prime ring, b ∈ Qmr(R), and let δ : R→ Qmr(R) be a nonzero
b-generalized derivation with associated map d. Suppose that δ(x)n = 0 for all x ∈ R,
where n is a positive integer. Then there exists q ∈ Qmr(R) such that d = ad(q),
δ(x) = −bxq for x ∈ R, and qb = 0.

Proof. In view of Theorem 2.3, there exists b̃ ∈ Qmr(R) such that δ(x) = bd(x) + b̃x for
all x ∈ R. By assumption,

(bd(x) + b̃x)n = 0 (2.4)

for all x ∈ R. By Fact 1.8, d can be uniquely extended to a derivation from Qmr(R) to
itself, also denoted by d. In view of Fact 1.5, (2.4) holds for all x ∈ Qmr(R). Note that
Qmr(Qmr(R)) = Qmr(R).

Suppose first that d is X-outer. In view of [15, Theorem 2], (by + b̃x)n = 0 for
all x, y ∈ Qmr(R). Then b = 0 = b̃ (see Fact 1.6). This implies that δ = 0, which is a
contradiction. Thus, d is X-inner. Then there exists q′ ∈ Qmr(R) such that d(x) = [q′, x]
for x ∈ R. Since R and Qmr(R) satisfy the same GPIs (see Fact 1.4), we rewrite (2.4) as

((bq′ + b̃)x − bxq′)n = 0

for all x ∈ Qmr(R). In view of Proposition 2.1, there exists µ ∈ C such that bq′ + b̃ = µb
and (q′ − µ)b = 0. Let q := q′ − µ. Then d = ad(q), bq = −b̃ and qb = 0. Therefore,

δ(x) = bd(x) + b̃x = b(qx − xq) − bqx = −bxq for x ∈ R,

as asserted. �

3. Proof of Theorem 1.2

Let R be a semiprime ring with extended centroid C. We call {eν | ν ∈ Λ} ⊆ B an
orthogonal subset if eνeµ = 0 for ν , µ and a dense subset of B if

∑
ν∈Λ eνC is an

essential ideal of C. The ring Qmr(R) is orthogonally complete in the following sense:
Given any dense orthogonal subset {eν | ν ∈ Λ} of B, Qmr(R) is ring-isomorphic to the
direct product

∏
ν∈Λ Qmr(R)eν via the map

x 7→ 〈xeν〉 ∈
∏
ν∈Λ

Qmr(R)eν for x ∈ Qmr(R).
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Therefore, given any subset {aν ∈ Qmr(R) | ν ∈ Λ}, there exists a unique a ∈ Qmr(R)
such that a 7→ 〈aνeν〉. The element a is written as

∑⊥
ν∈Λ aνeν and is characterized by the

property that aeν = aνeν for all ν ∈ Λ. A subset T of Qmr(R) is called orthogonally
complete if 0 ∈ T and

∑⊥
ν∈Λ aνeν ∈ T for any dense orthogonal subset {eν | ν ∈ Λ}

of B and any subset {aν | ν ∈ Λ} ⊆ T . Denote by Spec(B) the set of all maximal
ideals of the complete Boolean algebra B. Let T be a subset of Qmr(R). The
intersection of all orthogonally complete subsets of Qmr(R) containing T is called the
orthogonal completion of T and is denoted by T̂ . In view of [1, Proposition 3.1.14 and
Corollary 3.1.15], R̂ is a subring of Qmr(R) and

R̂ =

{∑⊥

α∈Λ
xαeα | {eα | α ∈ Λ} is a dense orthogonal subset

of B and xα ∈ R for all α ∈ Λ

}
.

Moreover, R̂ ∩ mQmr(R) is a prime ideal of R̂ for all m ∈ Spec(B) (see
[1, Theorem 3.2.15]).

Proposition 3.1. A derivation d : Qmr(R) → Qmr(R) is X-inner if and only if
d : Qmr(R)/mQmr(R)→ Qmr(R)/mQmr(R) is X-inner for any m ∈ Spec(B).

The proof of Proposition 3.1 is the same as that of [20, Proposition 2.2]. Let
m ∈ Spec(B). It is known that mQmr(R) is a prime ideal of Qmr(R). We use the

notations: Qmr(R) = Qmr(R)/mQmr(R), C = C + mQmr(R)/mQmr(R), and R̂ = R̂ +

mQmr(R)/mQmr(R). Then both Qmr(R) and R̂ are prime rings having the same
extended centroid C (see [1]). Keeping these notations we have the following.

Lemma 3.2. Let v, x ∈ Qmr(R). Suppose that x ∈ Cv for any m ∈ Spec(B), where
z := z + mQmr(R) for z ∈ Qmr(R). Then x ∈ Cv.

Proof. Consider the set Σ = {e ∈ B | ex ∈ Cv}. We see that if e ≤ f ∈ Σ then e ∈ Σ. Also,
if e, f ∈ Σ are orthogonal then clearly e+̇ f ∈ Σ. This means that Σ is an ideal of the
complete Boolean algebra B. If 1 ∈ Σ then x ∈ Cv, as asserted. Suppose on the contrary
that 1 < Σ. By Zorn’s lemma, there exists m ∈ Spec(B) such that Σ ⊆ m. We work in
Qmr(R)/mQmr(R). Since x ∈ Cv, there exists a ∈ Cv such that x = a. Therefore, ex = ea
for some e ∈ B \m. Note that ea ∈ Cv, implying e ∈ Σ. This is a contradiction. �

The next theorem extends Proposition 2.1 to the semiprime case.

Theorem 3.3. Let R be a semiprime ring, a, b, c ∈ R, and n a positive integer. Suppose
that (ax + bxc)n = 0 for all x ∈ R. Then there exists β ∈ C such that a = βb and
(c + β)b = 0.

Proof. By Fact 1.4, (ax + bxc)n = 0 for all x ∈ Qmr(R). Let m ∈ Spec(B). Working in
Qmr(R)/mQmr(R), we see that (a x + b x c)n = 0 for all x ∈ Qmr(R)/mQmr(R). In view
of Proposition 2.1, a ∈ C b. Since m ∈ Spec(B) is arbitrary, it follows from Lemma 3.2
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that a ∈ Cb. Write a = βb for some β ∈ C. Then (bx(c + β))n = 0 for all x ∈ R. By
Fact 1.6, (c + β)b = 0 follows, as asserted. �

Lemma 3.4. Theorem 1.2 holds if E[b] = 1.

Proof. Since E[b] = 1, it follows from Theorem 2.3 that d : R→ Qmr(R) is a derivation.
By Fact 1.8, d can be uniquely extended to a derivation d̃ : Qmr(R)→ Qmr(R). Clearly,

d̃
(∑⊥

ν∈Λ
xνeν

)
=

∑⊥

ν∈Λ
d(xν)eν,

where xν ∈ R. We claim that δ can be also uniquely extended to a b-generalized
derivation of R̂, say δ̃, with associated map d̃ : R̂→ Qmr(R), by defining

δ̃
(∑⊥

ν∈Λ
xνeν

)
=

∑⊥

ν∈Λ
δ(xν)eν,

where xν ∈ R. Indeed, let
∑⊥
ν∈Λ xνeν = 0, where xν ∈ R. Then xνeν = 0 for any ν. Fix

an xν. Choose a dense ideal I of R such that xνI ∪ eνI ⊆ R. Note that d(yeν) = d̃(yeν) =

d̃(y)eν = d(y)eν for y ∈ I since d̃ is a derivation. Thus,

0 = δ(xν(yeν))n = (δ(xν)yeν + bxνd(yeν))n = (δ(xν)yeν)n,

implying that (δ(xν)eνy)n = 0 for all y ∈ I. Fact 1.4 implies that (δ(xν)eνy)n = 0 for all
y ∈ Qmr(R). By Fact 1.6, δ(xν)eν = 0. So

∑⊥
ν∈Λ δ(xν)eν = 0. This proves that δ̃ is well

defined. It is routine to check that δ̃ is an additive map.
We claim that δ̃ : R̂→ Qmr(R) is a b-generalized derivation with associated map d̃.

Indeed, let x̃, ỹ ∈ R̂. Write

x̃ =
∑⊥

ν∈Λ
xνeν and ỹ =

∑⊥

ν∈Λ
yνeν,

where xν, yν ∈ R. Then x̃̃y =
∑⊥
ν∈Λ(xνyν)eν and

δ̃( x̃ ỹ ) =
∑⊥

ν∈Λ
δ(xνyν)eν

=
∑⊥

ν∈Λ
(δ(xν)yν + bxνd(yν))eν

=

(∑⊥

ν∈Λ
δ(xν)eν

)(∑⊥

ν∈Λ
yνeν

)
+ b

(∑⊥

ν∈Λ
xνeν

)(∑⊥

ν∈Λ
d(yν)eν

)
= δ̃( x̃ )̃y + bx̃d̃( ỹ ),

as asserted.
Let m ∈ Spec(B). Clearly, d̃(mR̂) ⊆mQmr(R) since d̃ is a derivation. We claim that

δ̃(mR̂) ⊆ mQmr(R). Let x ∈ mR̂. Then xe = 0 for some e ∈ B \m. Applying the same
argument as in the first paragraph, we see that δ̃(x)e = 0. Thus δ̃(x) ∈ mQmr(R). This
proves our claim.

Thus, δ̃ and d̃ canonically induce the maps δ̃m : R̂/mR̂→ Qmr(R)/mQmr(R) and
d̃m : R̂/mR̂→ Qmr(R)/mQmr(R), where

δ̃m(x̃) := δ̃( x̃ ) and d̃m(x̃) := d̃( x̃ )
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for x̃ = x̃ + mR̂, where x̃ ∈ R̂. Note that Qmr(R)/mQmr(R) ⊆ Qmr(R̂/mR̂). It is clear
that δ̃m is a b-generalized derivation with associated map d̃m. Note that b , 0 since
E[b] = 1.

We work in the prime ring R̂/mR̂ with extended centroid C(:= C + mR̂/mR̂).
Let x̃ = x̃ + mR̂ ∈ R̂/mR̂, where x̃ ∈ R̂. Write x̃ =

∑⊥
ν∈Λ xνeν, where xν ∈ R. Then

δ̃(x̃) =
∑⊥
ν∈Λ δ(xν)eν and

δ̃m( x̃ )n = δ̃( x̃ )
n

=

(∑⊥

ν∈Λ
δ(xν)eν

)n
=

∑⊥

ν∈Λ
δ(xν)neν = 0.

In view of Theorem 2.4, the derivation d̃m is X-inner. It follows from Proposition 3.1
that d̃ is X-inner. Thus, d̃ = ad(q′) for some q′ ∈ Qmr(R). Moreover, in view of
Theorem 2.4, for any m ∈ Spec(B) we have q′ b = q′b ∈ C b. By Lemma 3.2, q′b = βb
for some β ∈ C. Set q := q′ − β. Then d = ad(q) and qb = 0.

Let x, y ∈ R. Then

δ(xy) = δ(x)y + bxd(y) = δ(x)y + bx(qy − yq),

implying that
δ(xy) + bxyq = (δ(x) + bxq)y.

By Fact 1.7, there exists w ∈ Qmr(R) such that δ(x) = −bxq + wx for all x ∈ R. Thus,
(wx − bxq)n = 0 for all x ∈ R and hence for all x ∈ Qmr(R) (see Fact 1.4). In view
of Theorem 3.3, there exists µ ∈ C such that w = µb and (q − µ)b = 0. Thus, by the
fact that qb = 0, we see that µ = 0 and w = 0. That is, δ(x) = −bxq for all x ∈ R, as
asserted. �

Proof of Theorem 1.2. Let e := E[b], δ1(x) := eδ(x) and d1(x) := ed(x) for x ∈ R.
Then (1 − e)δ(xy) = (1 − e)δ(x)y for all x, y ∈ R. By Fact 1.7, there exists w ∈ Qmr(R)
such that (1 − e)δ(x) = wx for all x ∈ R. But (wx)n = 0 for all x ∈ R. This implies that
w = 0; that is, (1 − e)δ(x) = 0 for all x ∈ R.

Note that δ1 : R→ Qmr(R) , d1 : R→ Qmr(R), and δ1(xy) = δ1(x)y + bxd1(y) for
all x, y ∈ R. Applying the same argument given in the proof of Lemma 3.4, d1 is a
derivation and can be uniquely extended to a derivation d̃1 : R̂→ Qmr(R) by defining

d̃1

(∑⊥

ν∈Λ
xνeν

)
=

∑⊥

ν∈Λ
(ed(xν))eν, where xν ∈ R.

On the other hand, δ1 can be extended to a map δ̃1 : R̂→ Qmr(R) by defining

δ̃1

(∑⊥

ν∈Λ
xνeν

)
=

∑⊥

ν∈Λ
(eδ(xν))eν, where xν ∈ R.

Note that d̃1(eR̂) ⊆ eQmr(R) and δ̃1(eR̂) ⊆ eQmr(R). Working on eQmr(R),

δ̃1(xy) = δ̃1(x)y + bxd̃1(y)

for all x, y ∈ eR̂. Note that Qmr(eR̂) = eQmr(R) and that (δ̃1(x))n = 0 for all x ∈ eR̂. Since
E[b] = e and the extended centroid of eR̂ is equal to eC, it follows from Lemma 3.4 that
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there exists q ∈ eQmr(R) such that ed(x) = [q, x] for x ∈ eR̂, eδ(x) = −bxq for x ∈ eR̂,
and qb = 0.

Choose a dense ideal I of R such that (1 − e)I ⊆ R. Let x, y, z ∈ I. Then

δ(x(1 − e)y) = δ(x)(1 − e)y + bxd((1 − e)y)
= bxed((1 − e)y) = bx(ed(y) − ed(e)y − ed(y)) = 0,

since δ(x)(1 − e) = 0 and ed is a derivation on Qmr(R). So δ((1 − e)I2) = 0. Let x ∈ I2.
Then

δ(x) = eδ(x) = eδ(ex + (1 − e)x) = eδ(ex) = −b(ex)q = −bxq.

Up to now, we have proved that δ(x) = −bxq for x ∈ I2. Let y ∈ R and x ∈ I2. We notice
that ed(x) = ed(ex) = e[q, ex] = [q, x]. Then yx ∈ I2 and

−byxq = δ(yx) = δ(y)x + byd(x) = δ(y)x + byed(x) = δ(y)x + by[q, x],

implying that (δ(y) + byq)x = 0. That is, (δ(y) + byq)I2 = 0 and so δ(y) = −byq, as
asserted. �

References
[1] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities,

Monographs and Textbooks in Pure and Applied Mathematics, 196 (Marcel Dekker, Inc, New
York, 1996).
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