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Zeroes of partial sums of the zeta-function

David J. Platt and Timothy S. Trudgian

Abstract

This article considers the positive integers N for which ζN (s) =
∑N

n=1 n
−s has zeroes in the

half-plane <(s) > 1. Building on earlier results, we show that there are no zeroes for 1 6 N 6 18
and for N = 20, 21, 28. For all other N there are infinitely many such zeroes.

1. Introduction

The Riemann zeta-function is defined as ζ(s) =
∑∞
n=1 n

−s for <(s) > 1. Throughout this
article we write the complex variable s as s = σ + it with σ and t real, and consider N to
be a natural number. Truncation of the zeta-function gives the partial sum ζN (s) = 1 + 2−s

+ . . . + N−s. One may study these partial sums in the hope of deducing some information
about ζ(s). For a comprehensive treatment of these ideas, we refer the reader to [5] and [6].

Turán [16] showed that the Riemann hypothesis would follow if for all N sufficiently large
ζN (s) had no zeroes in σ > 1. Let ψN be the supremum over all values of σ for which ζN (s) = 0.
Montgomery [9] showed that for all N sufficiently large,

ψN = 1 +

(
4

π
− 1− o(1)

)
log logN

logN
,

where the constant 4/π−1 is best possible. Therefore, for N sufficiently large, ζN (s) has zeroes
in σ > 1.

Monach [8] made this explicit: for all N > 30 there are zeroes in σ > 1. His proof was in two
parts: an analytic argument for N > 549, 798 and a computational proof for 30 < N < 549, 798.
The latter proof is contained in [8, Lemma 3.14, pp. 134–135]. Monach’s work can be combined
with the results of Turán and Spira to give Table 1 below.

Indeed, van de Lune and te Riele [17] actually computed some zeroes of ζN (s) for N =
19, 22–27, 29–35, 37–41, 47. Adapting Bohr’s theorems on values assumed by Dirichlet series,
Spira [14, Theorem 3] (see also [15, p. 163]) showed that if ζN (s) has one zero in σ > 1, then
it has infinitely many such zeroes.

Therefore, all that remains is to investigate whether, for

N ∈ {10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 28}, (1.1)

ζN (s) has zeroes in σ > 1. We find that there are no zeroes for each of these values of N .
Combining this with Table 1, one proves the following theorem.

Theorem 1.1. For 1 6 N 6 18 and N = 20, 21, 28 there are no zeroes of ζN (s) in the region
σ > 1; for all other positive N there are infinitely many such zeroes.
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Table 1. Zeroes of ζN (s) in σ > 1 for various values of N .

Range of N Are there zeroes of ζN (s) in <(s) > 1?

1–5 No, [16, pp. 7–8]

6–9 No, [13, p. 550] and [15, Table II, § 4]

19 Yes, [15, Table III, § 4]

22–27 Yes, [15, Table III, § 4]

29–50 Yes, [15, Table III, § 4]

>51 Yes, [8, Theorem 3.8]

2. Numerical computation

2.1. Interval arithmetic

Almost all real numbers are not exactly representable by any finite-precision, floating-point
system such as the 64-bit IEEE implementation available on most modern processors. Thus,
any computation involving such a floating-point system will, unless we are very lucky, only
produce an approximation to the true result. One way of managing this is to use interval
arithmetic (see, for example, [10] for a good introduction). Instead of storing a floating-point
number that is an approximation to the value we want, we store an interval bracketed by two
floating-point numbers that contains the true value.

Interval arithmetic has been used to manage the accumulation of round-off and truncation
errors. In this paper, we exploit the technique to get zero-free regions rigorously. As an example,
consider the function f : R→ R defined by

f(x) = x2 − 4x+ 3.

Suppose we wish to demonstrate that f has no zeroes for x ∈ [4, 5]. Then we can compute

f([4, 5]) = [16, 25]− [16, 20] + 3 = [−1, 12].

Since this is inconclusive, we try again, but this time with the interval split in two. We have

f([4, 4.5]) = [16, 20.25]− [16, 18] + 3 = [1, 7.25]

and

f([4.5, 5]) = [20.25, 25]− [18, 20] + 3 = [3.25, 10]

and we have our result†.

2.2. Description of algorithm

We first note that we need not search in all of σ > 1 to find zeroes of ζN (s). Spira
[13, Theorem 1] proved that all zeroes of ζN (s) must have real part less than 1.85; this was
sharpened in [3, Theorem 3.1] to 1.73. We therefore need only consider σ ∈ (1, 1.73]. We can
improve this for some values of N , but, as we shall see in § 2.3, this is more than sufficient for
our purposes.

†Note that if we had written f(x) = (x− 1)(x− 3), then f [4, 5] = [3, 4] · [1, 2] = [3, 8], which is the ‘correct’
result. This sensitivity is common in expressions involving intervals.
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Let us consider the case N = 28. Let p denote a prime and let θp = t log p. Hence, we have

ζ(σ + it) = 1 +
exp(−iθ2)

2σ
+

exp(−iθ3)

3σ
+

exp(−i2θ2)

4σ
+ . . .+

exp(−i(2θ2 + θ7))

28σ

and we will now write ζ28(σ, θ2, . . . , θ23) for ζ28(σ + it) under such a change of variables.
It would appear that we need to examine the space σ ∈ (1, 1.73], θp ∈ [0, 2π) for p 6 23,

for zeroes. In fact, we can do considerably better. First, we observe that θ17, θ19 and θ23 only
appear once in the sum. Call the sum without those three terms ζ28′(σ, θ2, . . . , θ13). Then ζ28
cannot have a zero if there is no σ, θ2, . . . , θ13 such that

|ζ28′(σ, θ2, . . . , θ13)| 6 17−σ + 19−σ + 23−σ.

We can go further. The θ11 and θ13 terms only appear on their own or in conjunction with
θ2. We write a = 11−σ, b = 22−σ, c = 13−σ and d = 26−σ. Then a little high-school geometry
(the cosine rule to be precise) tells us that∣∣∣∣exp(−iθ11)

11σ
+

exp(−i(θ11 + θ2))

22−σ

∣∣∣∣ 6√a2 + b2 + 2ab cos θ2

and ∣∣∣∣exp(−iθ13)

13σ
+

exp(−i(θ13 + θ2))

26−σ

∣∣∣∣ 6√c2 + d2 + 2cd cos θ2.

Call ζ28′′(σ, θ2, θ3, θ5, θ7) the result obtained by removing the n = 11, 13, 22 and 26 terms
from ζ28′ . With a, b, c and d as above, define

f(σ, θ2) = 17−σ + 19−σ + 23−σ +
√
a2 + b2 + 2ab cos θ2 +

√
c2 + d2 + 2cd cos θ2.

Then ζ28 cannot have a zero if there is no σ, θ2, . . . , θ7 such that

|ζ28′′(σ, θ2, θ3, θ5, θ7)| 6 f(σ, θ2).

Our algorithm is as follows. Divide σ, θ2, θ3, θ5 and θ7 into small intervals that cover
[1, 1.73] and [0, 2π]4, respectively. We refer to any choice of five such intervals as a ‘box’. Push
all possible boxes onto the stack. While the stack is not empty, pop off a box and compute
an interval z containing |ζ28′′ | for that box. Compute an interval containing f(σ, θ2). If the
interval z− f(σ, θ2) is wholly positive, then that box did not contain any zeroes, so discard it.
If the interval is wholly negative, then terminate with failure†. If the interval straddles zero,
then divide the box into 16 smaller boxes by halving the intervals for the θp, and push these
new boxes onto the stack.

2.3. Details of the implementation

We implemented this algorithm in ‘C++’ using our own double-precision interval package
written in assembler. This exploits an idea of Lambov [7] to make efficient use of the SSE
instruction set of modern processors and uses CRMLIB [11] to implement the transcendental
functions.

We divided the interval for σ into 16 sub-intervals [1 + (2n − 1) · 2−16, 1 + (2n+1 − 1) · 2−16]
for 0 6 n 6 15. Therefore, the first interval checked was σ = [1, 1 + 2−16] and the last‡ was

†We believe that this condition indicates the presence of infinitely many zeroes. We are grateful to a referee
for suggesting a means by which one might seek to establish this, based on [2, 4, 12]. However, the weaker
statement is sufficient for our purposes and we do not pursue this line of thought further.

‡Note that this covered a wider interval than was strictly necessary.
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σ = [3/2 − 2−16, 2 − 2−16]. Each of these intervals for σ was handled by a single core of a
compute node of the University of Bristol’s Bluecrystal Phase III cluster [1]§. Within a single
core, the intervals for θ2, θ3, θ5 and θ7 were initially divided into 16, 8, 4 and 2 sub-intervals,
respectively, for a total of 1024 boxes. Since θ2 contributed to more terms than the other
variables, it made sense to start with a narrower search here: this seemed to work well in
practice.

Table 2 shows the data for N = 28 and σ ∈ [1, 1 + 2−16]. At each iteration, a box could
result in 16 new boxes; at first this is what we see. We see that after the second iteration, the
remaining search space decreases dramatically.

Table 2. Number of boxes at each iteration for N = 28 and σ ∈ [1, 1 + 2−16].

Iteration Number of boxes Coverage (%)

1 1 024 100
2 16 256 99.2
3 45 920 17.5
4 118 560 2.83
5 170 048 0.25
6 195 920 0.018
7 212 960 0.0012
8 82 016 0.000030

We ran this algorithm for those N in (1.1) and in every case confirmed that ζN (s) has no
zeroes for σ > 1. Checking each N took much less than a minute of elapsed time using 16
cores, with N = 21 taking the longest at 30 s.

Acknowledgements. We are grateful to Andrew Booker with whom we discussed several
aspects of this problem and to the referees for their careful reading of the manuscript.
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