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Strong Asymptotics of Hermite–Padé
Approximants for Angelesco Systems

Maxim L. Yattselev

Abstract. In this work type II Hermite–Padé approximants for a vector of Cauchy transforms of
smooth Jacobi-type densities are considered. It is assumed that densities are supported on mutually
disjoint intervals (an Angelesco system with complex weights). _e formulae of strong asymptotics
are derived for any ray sequence of multi-indices.

1 Introduction

Let f⃗ = ( f1 , . . . , fp), p ∈ N, be a vector of germs of holomorphic functions at inûnity.
Given a multi-index n⃗ ∈ Np , Hermite–Padé approximant to f⃗ associated with n⃗, is a
vector of rational functions

(1.1) [n⃗]⃗f ∶= (P(1)
n⃗ /Qn⃗ , . . . , P(p)

n⃗ /Qn⃗)
such that

(1.2)
⎧⎪⎪⎨⎪⎪⎩

deg(Qn⃗) = ∣n⃗∣ ∶= n1 + ⋅ ⋅ ⋅ + np ,
R(i)

n⃗ (z) ∶= (Qn⃗ f i − P(i)
n⃗ )(z) = O(z−(n i+1)) as z →∞, i ∈ {1, . . . , p}.

It is quite simple to see that [n⃗]⃗f always exists, since (1.2) can be rewritten as a linear
system that has more unknowns than equations with coeõcients coming from the
Laurent expansions of f i ’s at inûnity. Hence, Qn⃗ is never identically zero, and, in
what follows, we normalize Qn⃗ to be monic.

_e vector f⃗ is called an Angelesco system if

(1.3) f i(z) = ∫
dσi(t)
t − z

, i ∈ {1, . . . , p},

where σi ’s are positive measures on the real line with mutually disjoint convex hulls
of their supports; i.e., [a j , b j] ∩ [ak , bk] = ∅ for j /= k, where [a i , b i] is the small-
est interval containing supp(σi). Hermite–Padé approximants to such systems were
initially considered by Angelesco [1] and later by Nikishin [22,23]. _e beauty of sys-
tem (1.3) is that Qn⃗ , the denominator of [n⃗]⃗f , turns out to be a multiple orthogonal
polynomial satisfying

∫ Qn⃗(x)xkdσi(x) = 0, k ∈ {0, . . . , n i − 1}, i ∈ {1, . . . , p}.
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When p = 1, Hermite–Padé approximant [n⃗]⃗f specializes to the diagonal Padé
approximant, quite o�en denoted by [n/n] f . It was shown by Markov [19] that if f
is of the form (1.3) (now called aMarkov function), then [n/n] f converge to f locally
uniformly outside of [a, b]. Moreover, if σ is a regular measure in the sense of Stahl
and Totik [28, Sec. 3.1] (in particular, σ ′ > 0 almost everywhere on [a, b] implies
regularity), then (see [28, _m. 3.1.1 and 6.1.6]) it holds that

(1.4)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
n→∞

n−1 log∣ f − [n/n] f ∣ = −2(ℓ − Vω),

lim
n→∞

n−1 log ∣Qn ∣ = −Vω

locally uniformly inC∖[a, b], where Vω(z) ∶= − ∫ log ∣z− t∣dω(t) is the logarithmic
potential of ω, while the measure ω and the constant ℓ are the unique solutions of the
min/max problem:

(1.5) ℓ ∶= min
x∈[a ,b]

Vω(x) = max
ν∈M1(a ,b)

min
x∈[a ,b]

V ν(x),

where Mc(a, b) is the collection of all positive Borel measures of mass c supported
on [a, b]. In fact, it also holds that ω is the equilibrium distribution and ℓ is the Robin’s
constant for the interval [a, b]. _at is, ω is the unique measure on [a, b] that solves
the energy minimization problem:

(1.6) I[ω] = min
ν∈M1(a ,b)

I[ν], ℓ = I[ω],

where I[ν] ∶= − ∫ ∫ log ∣z − t∣dν(t)dν(z) = ∫ V νdν is the logarithmic energy of ν (for
the notions of logarithmic potential theory we use [26, 27] as primary references).

It easily follows from (1.5), (1.6), and properties of the superharmonic functions
that

(1.7)
⎧⎪⎪⎨⎪⎪⎩

ℓ − Vω ≡ 0 on [a, b],
ℓ − Vω > 0 in C ∖ [a, b].

Hence, the diagonal Padé approximants [n/n] f do indeed converge to f locally uni-
formly in C ∖ [a, b].

_e above results were extended by Gonchar and Rakhmanov [14] to Hermite–
Padé approximants for Angelesco systems when multi-indices are such that

(1.8) n i = c i ∣n⃗∣ + o( ∣n⃗∣) , c⃗ = (c1 , . . . , cp) ∈ (0, 1)p , ∣c⃗∣ = 1,

as ∣n⃗∣ → ∞, and the measures σi satisfy σ ′i > 0 almost everywhere on [a i , b i], i ∈
{1, . . . , p}. _e formulae for the errors of approximation are similar in appearance
to (1.4) with measures coming not from a scalar but from a vector minimum energy
problem. To describe it, deûne

M c⃗({a i , b i}p
1 ) ∶= { ν⃗ = (ν1 , . . . , νp) ∶ ν i ∈ Mc i (a i , b i), i ∈ {1, . . . , p}} .

_en it is known that there exists the unique vector of measures ω⃗ ∈ M c⃗({a i , b i}p
1 )

such that

(1.9) I[ω⃗] = min
ν∈M c⃗({a i ,b i}

p
1 )

I[ν⃗], I[ν⃗] ∶=
p
∑
i=1

(2I[ν i] +∑
k/=i

I[ν i , νk]) ,
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where I[ν i , νk] ∶= − ∫ ∫ log ∣z− t∣dν i(t)dνk(z). _e measures ω i might no longer be
supported on the whole intervals [a i , b i] (the so-called pushing eòect), but in general
it holds that

(1.10) supp(ω i) = [a c⃗ , i , b c⃗ , i] ⊆ [a i , b i], i ∈ {1, . . . , p}.

Let W ν⃗ be a function on ⋃p
i=1[a i , b i] such that its restriction to [a i , b i] is equal to

V ν i+ν , where ν = ∑p
i=1 ν i is a probability measure such that ν∣[a i ,b i] = ν i . Exactly

as in (1.5), the equilibrium vector measure ω⃗ can be characterized by the following
property. If

(1.11) min
x∈[a i ,b i]

W ν⃗(x) ≥ min
x∈[a i ,b i]

W ω⃗(x) =∶ ℓ i

simultaneously for all i ∈ {1, . . . , p} for some ν⃗ ∈ M c⃗({a i , b i}p
1 ) , then ν⃗ = ω⃗.

Having all the deûnitions at hand, we can formulate the main result of [14], which
states that

(1.12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
∣n⃗∣→∞

∣n⃗∣−1 log ∣ f i − P(i)
n⃗ /Qn⃗ ∣ = −( ℓ i − Vω i+ω) , i ∈ {1, . . . , p},

lim
∣n⃗∣→∞

∣n⃗∣−1 log ∣Qn⃗ ∣ = −Vω ,

locally uniformly in C ∖ ⋃p
i=1[a i , b i]1. Even though (1.12) looks exactly like (1.4), the

convergence properties of the approximants are not as straightforward. Indeed, it is
a direct consequence of the pushing eòect ([a c⃗ , i , b c⃗ , i] ⊊ [a i , b i]), when it occurs, of
course, that the ûrst relation in (1.7) is replaced now by

(1.13)
⎧⎪⎪⎨⎪⎪⎩

ℓ i − Vω i+ω ≡ 0 on [a c⃗ , i , b c⃗ , i],
ℓ i − Vω i+ω < 0 on [a i , b i] ∖ [a c⃗ , i , b c⃗ , i].

Further, set

(1.14)
⎧⎪⎪⎨⎪⎪⎩

D+i ∶= { z ∶ ℓ i − Vω i+ω(z) > 0} ,
D−i ∶= { z ∶ ℓ i − Vω i+ω(z) < 0} .

a1 = a~c,1 b~c,1 b1 a2 = a~c,2 b2 = b~c,2

D�
1

Figure 1: Schematic representation of the pushing eòect in the case of 2 intervals (in Proposi-
tion 2.3 we shall show that this is the only possible situation for pushing eòect in the case of 2
intervals; this is also explained in [14]). _e shaded region is the divergence domain D−1 while
D−2 = ∅.

1(1.12) is consistent with (1.4) when p = 1, since in this case I[ν⃗] = 2I[ν1], ℓ1 = 2ℓ, andVω1+ω
= 2Vω .
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Properties of the logarithmic potentials immediately imply that D+i is an unbounded
domain. _is is exactly the domain in which the approximants P(i)

n⃗ /Qn⃗ converge to f i
locally uniformly, while D−i is a bounded open set on which the approximants diverge
to inûnity. _is set can be empty or not. _e latter situation necessarily happens when
[a c⃗ , i , b c⃗ , i] ⊊ [a i , b i], as can be clearly seen from the second line in (1.13); however,
the pushing eòect is not necessary for the divergence set to exist.

_e result of Gonchar and Rakhmanov (1.12) belongs to the realm of the so-called
weak asymptotics as to distinguish from strong asymptotics, in which one establishes
the existence of and identiûes the limits

(1.15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
∣n⃗∣→∞

( log ∣ f i − P(i)
n⃗ /Qn⃗ ∣ + ∣n⃗∣( ℓ i − Vω i+ω)) ,

lim
∣n⃗∣→∞

( log ∣Qn⃗ ∣ + ∣n⃗∣Vω) .

Not surprisingly, the ûrst result completely answering the previous question was ob-
tained for Padé approximants (p = 1) by Szegő. He proved that limit (1.15) takes place
exactly when σ ′ satisûes ∫ log σ ′dω > −∞, which is now known as a Szegő condition.2
_e analog of the Szegő theorem for true Hermite–Padé approximants was proved
by Aptekarev [2] when p = 2 and the multi-indices are diagonal (n⃗ = (n, n)) with
indications how one could carry the approach to any p > 1. A rigorous proof for any
p and diagonal multi-indices was completed by Aptekarev and Lysov [4] for systems
f⃗ of Markov functions generated by cyclic graphs (the so called generalized Nikishin
systems), of which Angelesco systems are a particular example. _e restriction on the
measures σi is more stringent in [4], as it is required that

(1.16) σ ′i (x) = h i(x)(x − a i)α i (b i − x)β i , α i , β i > −1,

and h i be holomorphic and non-vanishing in some neighborhood of [a i , b i].
From the approximation theory point of view it is not natural to require the mea-

sures σi to be positive (as well as to be supported on the real line, but we shall not dwell
on this point here). In the case of Padé approximants it was Nuttall [24] who proved
the existence of and identiûed the limit in (1.15) for the set up (1.3) and (1.16) with
α = β = −1/2 and h being Hölder continuous, non-vanishing, and complex-valued
on [a, b]. _e proof of Szegő’s theorem for any parameters α, β > −1, and h complex-
valued, holomorphic, and non-vanishing around [a, b] follows from Aptekarev [3]
(this result was not the main focus of [3]; there, weighed approximation on one-arc
S-contours was considered), and the condition of holomorphy of h was relaxed by
Baratchart and the author in [5], where h is taken from a fractional Sobolev space
that depends on the parameters α, β (again, the main focus of [5] was weighted (mul-
tipoint) Padé approximation on one-arc S-contours). _e goal of this work is to ex-
tend the results of [4] to Angelesco systems with complex weights and Hermite–Padé
approximants corresponding to multi-indices as in (1.8).

2_e word “completely” is slightly abused here as it was later realized by [31] that one can add any
singular measure to σ ′(t)dt, the absolutely continuous part, without changing (1.15).
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2 Main Results

From now on, we ûx a system of mutually disjoint intervals {[a i , b i]}p
i=1 and a vector

c⃗ ∈ (0, 1)p such that ∣c⃗∣ = 1. We further denote by

ω⃗ = (ω1 , . . . ,ωp), ω ∶=
p
∑
i=1

ω i , supp(ω i) = [a c⃗ , i , b c⃗ , i] ⊆ [a i , b i],

the equilibrium vector measure minimizing the energy functional (1.9).
To describe the forthcoming results we need a (p + 1)-sheeted compact Riemann

surface, sayR, that we realize in the following way. Take p+ 1 copies ofC. Cut one of
them along the union⋃p

i=1 [ a c⃗ , i , b c⃗ , i] , which henceforth is denoted byR(0). Each of
the remaining copies cut along only one interval [a c⃗ , i , b c⃗ , i] so that no two copies have
the same cut and denote them byR(i). To form R, takeR(i) and glue the banks of
the cut [a c⃗ , i , b c⃗ , i] crosswise to the banks of the corresponding cut on R(0).

It can be easily veriûed that the constructed Riemann surface has genus 0. Denote
by π the natural projection from R to C. We denote by z ,w , x , e generic points on
R with natural projections z,w , x , e. We also employ the notation z(i) for a point
on R(i) with π(z(i)) = z. _is notation is well deûned everywhere outside of the
cycles ∆i ∶= R(0) ∩R(i). Clearly, π(∆i) = [a c⃗ , i , b c⃗ , i]. It will also be convenient to
denote by a c⃗ , i and b c⃗ , i the branch points ofR with respective projections a c⃗ , i and
b c⃗ , i , i ∈ {1, . . . , p}.

Unfortunately, to be able to handle general multi-indices of form (1.8), one Rie-
mann surface is not suõcient. Let n⃗ ∈ Np . Denote by

ω⃗n⃗ = (ωn⃗ ,1 , . . . ,ωn⃗ ,p), ωn⃗ ∶=
p
∑
i=1

ωn⃗ , i , supp(ωn⃗ , i) = [ an⃗ , i , bn⃗ , i] ⊆ [a i , b i],

the equilibrium vector measure minimizing the energy functional (1.9), where c⃗ is re-
placed by the vector (n1/∣n⃗∣, . . . , np/∣n⃗∣) . _e surfaceRn⃗ is deûned absolutely anal-
ogously to R. _e notation ∆n⃗ , i , a n⃗ , i , and b n⃗ , i , i ∈ {1, . . . , p} is self-evident now.

Since eachRn⃗ has genus zero, one can arbitrarily prescribe zero/pole multisets of
rational functions on Rn⃗ as long as the multisets have the same cardinality. _us,
given a multi-index n⃗, we shall denote by Φn⃗ a rational function on Rn⃗ that is non-
zero and ûnite everywhere on Rn⃗ ∖ ⋃p

k=0{∞(k)}, has a pole of order ∣n⃗∣ at ∞(0), a
zero of multiplicity n i at each∞(i), and satisûes

(2.1)
p
∏
k=0

Φn⃗(z(k)) ≡ 1.

Normalization (2.1) is possible, since the function log∏p
k=0 ∣Φn⃗(z(k))∣ extends to a

harmonic function on C which has a well-deûned limit at inûnity. Hence, it is con-
stant. _erefore, if (2.1) holds at one point, it holds throughout C. _e importance of
the function Φn⃗ to our analysis lies in the following proposition.
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Proposition 2.1 With the above notation, it holds that

1
∣n⃗∣ log

∣Φn⃗(z)∣ =
⎧⎪⎪⎨⎪⎪⎩

−Vω n⃗(z) + 1
p+1 ∑

p
k=1 ℓn⃗ ,k , z ∈R(0)

n⃗ ,
Vω n⃗ , i (z) − ℓn⃗ , i + 1

p+1 ∑
p
k=1 ℓn⃗ ,k , z ∈R(i)

n⃗ , i ∈ {1, . . . , p}.

If a sequence { n⃗} satisûes (1.8), then the measures ωn⃗ converge to ω in the weak∗ topol-
ogy of measures as ∣n⃗∣ → ∞ (in particular, this implies that ℓn⃗ , i → ℓ i , an⃗ , i → a c⃗ , i , and
bn⃗ , i → b c⃗ , i). Moreover, it holds that Vω n⃗ , i → Vω i uniformly on compact subsets of C
for each i ∈ {1, . . . , p}.

It immediately follows from Proposition 2.1 that

(2.2) 1
∣n⃗∣ log∣

Φn⃗(z(i))
Φn⃗(z(0))

∣ = Vω n⃗ , i+ω n⃗(z) − ℓn⃗ , i = Vω i+ω(z) − ℓ i + o(1)

uniformly on compact subsets of C as ∣n⃗∣ → ∞ for each i ∈ {1, . . . , p}.
_e following corollary is an elementary consequence of Proposition 2.1. It de-

scribes the assumption with which (1.8), o�en replaced when strong asymptotics are
discussed (most o�en k⃗ = (1, . . . , 1)).

Corollary 2.2 Let k⃗ ∈ Np . If c⃗ = ( k1/∣k⃗∣, . . . , kp/∣k⃗∣) and n⃗ = nk⃗, n ∈ N, then
ω⃗n⃗ = ω⃗ and Φn⃗ = Φn

⃗k .

Proposition 2.1 allows us to recover ∣Φn⃗ ∣ via the vector equilibrium measure ω⃗n⃗ .
In order to do it for the function Φn⃗ itself, let us deûne hn⃗ on Rn⃗ by the rule

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

hn⃗( z(0)) ∶= ∫
dωn⃗(x)
z − x

, z ∈ C ∖
p
⋃
i=1

[an⃗ , i , bn⃗ , i],

hn⃗( z(i)) ∶= ∫
dωn⃗ , i(x)
x − z

, z ∈ C ∖ [an⃗ , i , bn⃗ , i], i ∈ {1, . . . , p}.

We further deûne the function h on R exactly as in (2.3) with ω⃗n⃗ replaced by ω⃗. For
brevity, we also denote by γn⃗ , i (resp. γ i) the Jordan arc belonging toR(0)

n⃗ (resp.R(0))
such that π(γn⃗ , i) = [bn⃗ , i , an⃗ , i+1] (resp. π(γ i) = [b c⃗ , i , a c⃗ , i+1]), i ∈ {1, . . . , p − 1}.

Proposition 2.3 _e function hn⃗ is a rational function onRn⃗ that has a simple zero
at each∞(k), k ∈ {0, . . . , p}, a single simple zero, say z n⃗ , i , on each γn⃗ , i , i ∈ {1, . . . , p−
1}, a simple pole3 at each {a n⃗ , i , b n⃗ , i}p

i=1, and is otherwise non-vanishing and ûnite.
Moreover,

z n⃗ , i = b n⃗ , i ⇐⇒ bn⃗ , i ∈ ∂D−n⃗ , i and z n⃗ , i = a n⃗ , i+1 ⇐⇒ an⃗ , i+1 ∈ ∂D−n⃗ , i+1 ,
where the sets D−n⃗ , i are deûned as in (1.14). Absolutely analogous claims hold for h,R,
and γ i . Furthermore, it holds that

(2.4) Φn⃗(z) = exp{ ∣n⃗∣ ∫
z
hn⃗(x)dx} ,

where the initial bound for integration should be chosen so that (2.1) is satisûed. Finally,
if we set Rδ to beR with circular neighborhood of radius δ excised around each of its

3Of course, if z n⃗ , i coincides with either bn⃗ , i or an⃗ , i+1 , then it cancels the corresponding pole.
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branch points, then hn⃗ → h uniformly on Rδ for each δ > 0, where hn⃗ is carried over
to Rδ with the help of natural projections.

_us, knowing the logarithmic derivative of Φn⃗ , we can recover the vector equi-
librium measure ω⃗n⃗ by

dωn⃗(x) = (h(0)
n⃗− (x) − h(0)

n⃗+ (x)) dx
2πi

,

as follows from Privalov’s Lemma [25, Sec. III.2] (the above formula does not allow
us to recover ω⃗n⃗ via a purely geometric construction of Φn⃗ , as one needs to know the
intervals [an⃗ , i , bn⃗ , i] to constructRn⃗). We prove Propositions 2.1 and 2.3 in Section 5.

_e purpose of the following proposition is to identify the limits in (1.15), which
are nothing but appropriate generalizations of the classical Szegő function. In order
to do that we need to specify the conditions we place on the considered densities. In
what follows, it is assumed that

(2.5) ρ i(x) = ρr, i(x)ρs, i(x),
where ρr, i is the regular part; that is, it is holomorphic and non-vanishing in some
neighborhood of [a i , b i], and ρs, i is the singular part consisting of ûnitely many
Fisher–Hartwig singularities [8], i.e.,

(2.6) ρs, i(x) =
J i
∏
j=0

∣x − x i j ∣α i j
J i
∏
j=1

{ 1, x < x i j
β i j , x > x i j

}

where a i = x i0 < x i1 < ⋅ ⋅ ⋅ < x i J i−1 < x i J i = b i , α i j > −1, β i j ∈ C ∖ (−∞, 0]. In
what follows, we adopt the following convention: given a function F onR, we denote
by F(k) its pull-back from R(k) ∖ ∆k , k ∈ {0, . . . , p}. _at is, F(k)(z) ∶= F(z(k)),
z ∈ C ∖ [a c⃗ , i , b c⃗ , i].

Proposition 2.4 For each i ∈ {1, . . . , p}, let ρ i be of the form (2.5)–(2.6). Further, let

(2.7) w i(z) ∶=
√

(z − a c⃗ , i)(z − b c⃗ , i)

be the branch holomorphic outside of [ a c⃗ , i , b c⃗ , i] normalized so that w i(z)/z → 1 as
z → ∞. _en there exists the unique function S non-vanishing and holomorphic in
R ∖⋃p

i=1 ∆i such that

(2.8) S(i)
±

= S(0)
∓

( ρ iw i+) on (a c⃗ , i , b c⃗ , i) ∖ {x i j}J i
j=0 ,

i ∈ {1, . . . , p}, and that satisûes

(2.9) ∣S(0)(z)∣ ∼ ∣S(i)(z)∣−1 ∼ ∣z − e∣−(2α+1)/4 as z → e ∈ { a c⃗ , i , b c⃗ , i} ,

i ∈ {1, . . . , p}, where α = α i j if e = x i j and α = 0 otherwise;

(2.10) ∣S(0)(z)∣ ∼ ∣S(i)(z)∣−1 ∼ ∣z − x i j ∣−(α i j±arg(β i j)/π)/2

as z → x i j ∈ ( a c⃗ , i , b c⃗ , i) , ± Im(z) > 0,

i ∈ {1, . . . , p}; and∏p
k=0 S

(k)(z) ≡ 1.
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We prove Proposition 2.4 in Section 6. Finally, we are ready to formulate our main
result.

_eorem 2.5 Let f⃗ = ( f1 , . . . , fp) be a vector of functions given by

(2.11) f i(z) =
1

2πi ∫[a i ,b i]

ρ i(x)
x − z

dx , z ∈ C ∖ [a i , b i],

for a system of mutually disjoint intervals {[a i , b i]}p
i=1, where the functions ρ i are of

the form (2.5)–(2.6), i ∈ {1, . . . , p}. Given c⃗ ∈ (0, 1)p such that ∣c⃗∣ = 1 and a sequence of
multi-indices {n⃗} satisfying (1.8), let [n⃗]⃗f be the corresponding Hermite–Padé approx-
imant (1.1)–(1.2). _en

Qn⃗ = Cn⃗[ 1 + o(1)](SΦn⃗)(0) ,

R(i)
n⃗ = Cn⃗[ 1 + o(1)](SΦn⃗)(i)/w i , i ∈ {1, . . . , p},

locally uniformly in C ∖⋃p
i=1[a i , b i], where the functions Φn⃗ are as in Proposition 2.1,

the functions S and w i are as in Proposition 2.4, and limz→∞ Cn⃗(SΦn⃗)(0)(z)z−∣n⃗∣ = 1.
In particular, deg(Qn⃗) = ∣n⃗∣ for all ∣n⃗∣ large enough.

_eorem 2.5 is proved in Section 8. It follows immediately from (1.2), (1.14), and
(2.2) that

f i −
P(i)
n⃗
Qn⃗

= 1 + o(1)
w i

(SΦn⃗)(i)
(SΦn⃗)(0)

is geometrically small locally uniformly in D+i and is geometrically big locally uni-
formly in D−i whenever the latter is non-empty.

3 Riemann–Hilbert Approach

Toprove_eorem2.5we use the extension tomultiple orthogonal polynomials [29] of
the by now classical approach of Fokas, Its, and Kitaev [11, 12] connecting orthogonal
polynomials to matrix Riemann–Hilbert problems. _e RH problem is then analyzed
via the non-linear steepest descent method of Dei� and Zhou [10].

_e Riemann–Hilbert approach of Fokas, Its, and Kitaev lies in the following. As-
sume that the multi-index n⃗ = (n1 , . . . , np) is such that

(3.1) deg(Qn⃗) = ∣n⃗∣ and R(i)
n⃗−e⃗ i (z) ∼ z−n i as z →∞, i ∈ {1, . . . , p},

where all the entries of the vector e⃗ i are zero except for the i-th one, which is 1. Set

(3.2) Y ∶=

⎛
⎜⎜⎜⎜⎜
⎝

Qn⃗ R(1)
n⃗ ⋅ ⋅ ⋅ R(p)

n⃗

mn⃗ ,1Qn⃗−e⃗1 mn⃗ ,1R(1)
n⃗−e⃗1 ⋅ ⋅ ⋅ mn⃗ ,1R(p)

n⃗−e⃗1
⋮ ⋮ ⋱ ⋮

mn⃗ ,pQn⃗−e⃗p mn⃗ ,pR(1)
n⃗−e⃗p ⋅ ⋅ ⋅ mn⃗ ,pR(p)

n⃗−e⃗p

⎞
⎟⎟⎟⎟⎟
⎠

,

where mn⃗ , i , i ∈ {1, . . . , p}, is a constant such that

lim
z→∞

mn⃗ , iR(i)
n⃗−e⃗ i (z)z

n i = 1.
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To capture the block structure of many matrices appearing below, let us introduce
transformations Ti , i ∈ {1, . . . , p}, that act on 2 × 2 matrices:

Ti (
e11 e12
e21 e22

) ∶= e11E1,1 + e12E1, i+1 + e21E i+1,1 + e22E i+1, i+1 + ∑
j/=1, i+1

E j j ,

where E jk is the matrix with all zero entries except for the ( j, k)-th one, which is 1. It
can be easily checked that Ti(AB) = Ti(A)Ti(B) for any 2 × 2 matrices A, B.

_e matrix-valued function Y solves the following Riemann–Hilbert problem
(RHP-Y):
(a) Y is analytic inC∖⋃p

i=1[a i , b i] and limz→∞ Y(z)z−σ(n⃗) = I, where I is the iden-
tity matrix and σ(n⃗) ∶= diag(∣n⃗∣,−n1 , . . . ,−np);

(b) Y has continuous traces on each (a i , b i) ∖ {x i j} that satisfy Y+ = Y−Ti( 1 ρ i
0 1 ) ;

(c) the entries of the (i + 1)-st column of Y behave like O(ψα i j(z − x i j)) as z → x i j ,
j ∈ {0, . . . , J i}, while the remaining entries stay bounded, where

ψα(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣z∣α , if α < 0,
log ∣z∣, if α = 0,
1, if α > 0.

_e property RHP-Y(a) follows immediately from (1.2) and (3.1). _e property
RHP-Y(b) is due to the equality

R(i)
n⃗+ − R(i)

n⃗− = Qn⃗ ( f i+ − f i−) = Qn⃗ρ i on (a i , b i),
which in itself is a consequence of (1.2), (2.11), and the Sokhotski–Plemelj formulae
[13, Section 4.2]. Finally, RHP-Y(c) follows from the local analysis of Cauchy integrals
in [13, Section 8.1].
Conversely, if Y is a solution of RHP-Y , then it follows from RHP-Y(b) and the

normalization at inûnity in RHP-Y(a) that [Y]1,1 is a polynomial of degree exactly
∣n⃗∣. It further follows from RHP-Y(b) that [Y]1, i+1, i ∈ {1, . . . , p}, is holomorphic
outside of [a i , b i], vanishes at inûnity with order n i + 1, and satisûes

[Y]1, i+1+ − [Y]1, i+1− = [Y]1,1ρ i on (a i , b i) ∖ {x i j}.
Combining this with RHP-Y(c), we see that [Y]1, i+1 is the Cauchy integral of [Y]1,1ρ i
on [a i , b i]. Furthermore, from the order of vanishing at inûnity, one can easily in-
fer that [Y]1,1(x) is orthogonal to x j , j ∈ {0, . . . , n i − 1}, with respect to ρ i(x)dx.
Hence, [Y]1,1 = Qn⃗ , [Y]1, i+1 = R(i)

n⃗ , and (3.1) holds. Other rows of Y can be analyzed
analogously. Altogether, the following proposition takes place.

Proposition 3.1 If a solution ofRHP-Y exists, then it is unique. Moreover, in this case
it is given by (3.2) where Qn⃗ and R(i)

n⃗−e⃗ i satisfy (3.1). Conversely, if (3.1) is fulûlled, then
(3.2) solves RHP-Y .

4 Model Riemann–Hilbert Problems

It is known that to analyze RHP-Y via steepest descentmethod ofDei� and Zhou, one
needs to construct local solutions around each singular point of the functions ρ i and
the endpoints of the support of each component of the vector equilibrium measure,
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see Section 9. In this section, we present all thesemodel RHproblems. Inwhat follows
we use the notation σ3 ∶= ( 1 0

0 −1 ) .

4.1 Singular Points of the Weights

_e RH problem RHP-Φα ,β stated below will be needed in Section 9.2 for the analy-
sis around Fisher–Hartwig singularities at the points {x i j} (see (2.6)) that belong to
(a c⃗ , i , b c⃗ , i); see (1.10).
Below, we always assume that the real line as well as its subintervals are oriented

from le� to right. Further, we set

(4.1) I± ∶= { z ∶ arg(z) = ±2π/3} , J± ∶= { z ∶ arg(z) = ±π/3} ,
where the rays I± are oriented towards the origin and the rays J± are oriented away
from the origin. Put

Σ(Φα ,β) ∶= I+ ∪ I− ∪ J+ ∪ J− ∪ (−∞,∞)
and consider the following Riemann–Hilbert problem: given

α > −1 and β ∈ C ∖ (−∞, 0],
ûnd a matrix-valued function Φα ,β such that
(a) Φα ,β is holomorphic in C ∖ Σ(Φα ,β);
(b) Φα ,β has continuous traces on Σ(Φα ,β) ∖ {0} that satisfy

Φα ,β+ = Φα ,β−

⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 0 β
−β−1 0 ) on (0,∞),

and

Φα ,β+ = Φα ,β−

⎧⎪⎪⎨⎪⎪⎩

( 1 0
e±απi 1 ) on I±,

( 1 0
1/β 1 ) on J±;

(c) as ζ → 0, it holds that

Φα ,β(ζ) = O(∣ζ ∣
α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2

∣ζ ∣α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2) and Φα ,β(ζ) = O(1 log ∣ζ ∣
1 log ∣ζ ∣)

when α /= 0 and α = 0, respectively;
(d) Φα ,β has the following behavior near∞:

Φα ,β(ζ) = ( I +O(ζ−1))(iζ)log βσ3/2πiB± exp{∓iζσ3/2}, ± Im(ζ) > 0,

uniformly inC∖Σ(Φα ,β), where (iζ)log β/2πi has a branch cut along (0,∞) (ob-
serve also that (iζ)log β/2πi

−
= β(iζ)log β/2πi

+
on (0,∞)) and

B+ ∶= (β
−1/2 0
0 e−απi/2) β

σ3 eαπiσ3 , B− ∶= B+ (0 −1
1 0

) .

_e solution of RHP-Φα ,β can be written explicitly with the help of con�uent hy-
pergeometric functions. It was done ûrst in [30] for the case β = 1, then in [20, 21]
for β ∈ (0,∞), and, in [8] for α ± log β/πi /∈ {−2,−4, . . .} (of course, in all the cases
α > −1; parameters α j and β j in [8] correspond to α/2 and i log β/2π above). To be
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more precise, one needs to take Φα ,ββσ3/4 multiply it by e−απiσ3/2 in the ûrst quad-
rant, by eαπiσ3/2 in the fourth quadrant, and then rotate the whole picture by π/2 to
get the corresponding problem in [8].

4.2 Hard Edge

_e following RH problem will be used in Section 9.3 to construct local parametrices
around those endpoints of the intervals [a c⃗ , i , b c⃗ , i] (see (1.10)), that do not belong to
the boundary of the corresponding divergence domain; see (1.14).

Given α > −1, ûnd a matrix-valued function Ψα such that
(a) Ψα is holomorphic in C ∖ (I+ ∪ I− ∪ (−∞, 0]);
(b) Ψα has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψα+ = Ψα−

⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 1 0
e±πiα 1 ) on I±;

(c) as ζ → 0, it holds that

Ψα(ζ) = O(∣ζ ∣
α/2 ∣ζ ∣α/2

∣ζ ∣α/2 ∣ζ ∣α/2) and Ψα(ζ) = O(log ∣ζ ∣ log ∣ζ ∣
log ∣ζ ∣ log ∣ζ ∣)

when α < 0 and α = 0, respectively, and

Ψα(ζ) = O(∣ζ ∣
α/2 ∣ζ ∣−α/2

∣ζ ∣α/2 ∣ζ ∣−α/2) and Ψα(ζ) = O(∣ζ ∣
−α/2 ∣ζ ∣−α/2

∣ζ ∣−α/2 ∣ζ ∣−α/2)

when α > 0, for ∣ arg(ζ)∣ < 2π/3 and 2π/3 < ∣ arg(ζ)∣ < π, respectively;
(d) Ψα has the following behavior near∞:

Ψα(ζ) =
ζ−σ3/4
√

2
(1 i
i 1)( I +O(ζ−1/2)) exp{2ζ 1/2σ3}

uniformly in C ∖ (I+ ∪ I− ∪ (−∞, 0]).
_e solution of this Riemann–Hilbert problem was constructed explicitly in [18] with
the help of modiûed Bessel and Hankel functions.

4.3 Soft-Type Edge

_e ûnal model RH problem we need, RHP-Ψα ,β , will be applied in Sections 9.4 and
9.5 to build local parametrices around those endpoints of the intervals [a c⃗ , i , b c⃗ , i],
see (1.10), that do belong to the boundary of the corresponding divergence domain,
see (1.14).

It is convenient to denote the consecutive sectors of C ∖ ((−∞,∞) ∪ I− ∪ I+) by
Ω1, Ω2, Ω3, andΩ4, startingwith the one containing the ûrst quadrant and continuing
counter clockwise. Given α ∈ R and β ∈ C ∖ (−∞, 0), we are looking for a matrix-
valued function Ψα ,β such that the following hold:
(a) Ψα ,β is holomorphic in C ∖ ( I+ ∪ I− ∪ (−∞,∞)) .
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(b) Ψα ,β has continuous traces on I+ ∪ I− ∪ (−∞, 0) ∪ (0,∞) that satisfy

Ψα ,β+ = Ψα ,β−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 1 0
e±iπα 1 ) on I± ,

( 1 β
0 1 ) on (0,∞).

(c) As ζ → 0, it holds that
Ψα ,β(ζ) = E(ζ)Sα ,β(ζ)A j , ζ ∈ Ω j ,

where E is a holomorphic matrix function,

A3 = A4 (
1 0

e−απi 1) , A4 = A1 (
1 −β
0 1 ) , A1 = A2 (

1 0
eαπi 1) ,

and

A2 =
⎛
⎜
⎝

1
2 cos(απ/2)

1−βeαπi

1−eαπi
1

2 cos(απ/2)
β−eαπi

1−eαπi

−eαπi/2 e−απi/2

⎞
⎟
⎠
, Sα ,β(ζ) = ζασ3/2

when α is not an integer,

A2 =
⎛
⎝

1
2 e
απi/2 1

2 e
−απi/2

−eαπi/2 e−απi/2

⎞
⎠
, Sα ,β(ζ) =

⎛
⎝
ζα/2 1−β

2πi ζ
α/2 log ζ

0 ζ−α/2
⎞
⎠

when α is an even integer,

A2 =
⎛
⎝

0 e−απi/2

−eαπi/2 e−απi/2

⎞
⎠
, Sα ,β(ζ) =

⎛
⎝
ζα/2 1+β

2πi ζ
α/2 log ζ

0 ζ−α/2
⎞
⎠

when α is an odd integer.
(d) Ψα ,β has the following behavior near∞:

Ψα ,β(ζ ; s) = ( I +O(ζ−1)) ζ
−σ3/4
√

2
(1 i
i 1) exp{−

2
3
(ζ + s)3/2σ3}

uniformly in C ∖ ( I+ ∪ I− ∪ (−∞,∞)) .
Besides RHP-Ψα ,β , we also need RHP-Ψ̃α ,β obtained from RHP-Ψα ,β by replac-

ing RHP-Ψα ,β(d) with the following:
(d̃) Ψ̃α ,β has the following behavior near∞:

Ψ̃α ,β(ζ ; s) = ( I +O(ζ−1)) ζ
−σ3/4
√

2
(1 i
i 1) exp{−(

2
3
ζ3/2 + sζ 1/2)σ3} .

_e problems RHP-Ψα ,β and RHP-Ψ̃α ,β are simultaneously uniquely solvable, and
the solutions are connected by

Ψ̃α ,β(ζ ; s) = ( 1 0
is2/4 1)Ψα ,β(ζ ; s),

as follows from the estimate
2
3
(ζ + s)3/2 − ( 2

3
ζ3/2 + sζ 1/2) = ( 1 +O( s/ζ)) s2

4ζ 1/2
as ζ →∞.
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When α = 0, β = 1, and s = 0, the above Riemann–Hilbert problem is well known
[9] and is solved using Airy functions. When β = 1, the solvability of this problem for
all s ∈ R was shown in [15] with further properties investigated in [16] (RHP-Ψ̃α ,β is
associated with a solution of Painlevé XXXIV equation). _e solvability of the case
α = 0, β ∈ C ∖ (−∞, 0), and s ∈ R was obtained in [32]. _e latter case appeared in
[6] as well. More generally, the following theorem holds.

_eorem 4.1 Given α ∈ R and β ∈ C ∖ (−∞, 0), the RH-problems RHP-Ψα ,β , and
therefore RHP-Ψ̃α ,β , is uniquely solvable for all s ∈ R. Moreover, assuming β /= 0, it
holds that

(4.2) Ψα ,β(ζ ; s) =
ζ−σ3/4
√

2
(1 i
i 1)

⎛
⎝
I +O(

¿
ÁÁÀ∣s∣ + 1

∣ζ ∣ + 1
)
⎞
⎠
exp{−2

3
(ζ + s)3/2σ3}

uniformly for ζ ∈ C∖( I+∪I−∪(−∞,∞)) and s ∈ (−∞,∞), and it also holds uniformly
for s ∈ [0,∞) when β = 0; furthermore, we have that

(4.3) Ψ̃α ,0(ζ ; s) =
ζ−σ3/4
√

2
(1 i
i 1)

⎛
⎝
I +O(

¿
ÁÁÀ∣s∣ + 1

∣ζ ∣ + 1
)
⎞
⎠
exp{−( 2

3
ζ3/2 + sζ 1/2)σ3}

uniformly for ζ ∈ C ∖ ( I+ ∪ I− ∪ (−∞, 0]) and s ∈ (−∞, 0].

_eorem 4.1 is proved in Section 10.

5 Geometry

In this section we prove Propositions 2.1 and 2.3.

5.1 Proof of Proposition 2.1

Set
O±

i ∶= { z ∶ Re(z) ∈ ( an⃗ , i , bn⃗ , i) and ± Im(z) > 0} .
Since the measures ωn⃗ , i are supported on the real line, (1.13) and the Schwarz re�ec-
tion principle yield that the function

⎧⎪⎪⎨⎪⎪⎩

ℓn⃗ , i − Vω n⃗+ω n⃗ , i (z), z ∈ O+

i ,
Vω n⃗+ω n⃗ , i (z) − ℓn⃗ , i , z ∈ O−

i ,

is harmonic across (an⃗ , i , bn⃗ , i). As the support ofωn⃗−ωn⃗ , i is disjoint from [an⃗ , i , bn⃗ , i],
the function ℓn⃗ , i + Vω n⃗−ω n⃗ , i is harmonic across (an⃗ , i , bn⃗ , i) as well. By taking the
diòerence of these two functions, we see that

⎧⎪⎪⎨⎪⎪⎩

−2Vω n⃗(z), z ∈ O+

i ,
2Vω n⃗ , i (z) − 2ℓn⃗ , i , z ∈ O−

i ,

is harmonic in the same vertical strip. _us, the function

(5.1) Hn⃗(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

−Vω n⃗(z) + 1
p+1 ∑

p
k=1 ℓn⃗ ,k , z ∈R(0)

n⃗ ,
Vω n⃗ , i (z) − ℓn⃗ , i + 1

p+1 ∑
p
k=1 ℓn⃗ ,k , z ∈R(i)

n⃗ , i ∈ {1, . . . , p},
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is harmonic on Rn⃗ ∖ ⋃p
k=0 {∞(k)} . Since V ν(z) = −∣ν∣ log ∣z∣ + O(1) as z → ∞, we

get that the diòerence ∣n⃗∣−1 log ∣Φn⃗(z)∣−Hn⃗(z) is harmonic on the whole surfaceRn⃗
and is therefore a constant. Since ∑p

k=0 Hn⃗(z(k)) ≡ 0 and Φn⃗ is normalized so that
(2.1) holds, the ûrst claim of the proposition follows.

Let ν⃗ be a weak∗ limit point of {ω⃗n⃗}. Since {n⃗} satisûes (1.8), it holds that ν⃗ ∈
M c⃗({a i , b i}p

i=1). _us, if we show that I[ω⃗] ≥ I[ν⃗], then ν⃗ = ω⃗ by (1.9). To this
end, let αn⃗ , i be positive constants such that ∣αn⃗ , iω i ∣ = n i/∣n⃗∣, i ∈ {1, . . . , p}. By (1.8),
αn⃗ , i → 1 as ∣n⃗∣ → ∞. Set ν⃗n⃗ ∶= (αn⃗ ,1ω1 , . . . , αn⃗ ,pωp). _en it follows from (1.9) applied
for the vector (n1/∣n⃗∣, . . . , np/∣n⃗∣) that

I[ ω⃗] = lim
∣n⃗∣→∞

I[ ν⃗n⃗] ≥ lim inf
∣n⃗∣→∞

I[ ω⃗n⃗] .

Furthermore, the very deûnition of the weak∗ convergence implies that

lim
∣n⃗∣→∞

I[ωn⃗ , j ,ωn⃗ ,k] = I[ν j , νk]

for j /= k as supp (ωn⃗ , j) ∩ supp (ωn⃗ ,k) = ∅ in this case. It also follows from the
Principle of Descent [27, _m. I.6.8] that

lim inf
∣n⃗∣→∞

I[ωn⃗ , i] ≥ I[ν i].

Altogether,
I[ ω⃗] ≥ lim inf

∣n⃗∣→∞
I[ ω⃗n⃗] ≥ I[ ν⃗] ,

which proves the claim about weak∗ convergence of measures.
Weak∗ convergence of measures implies convergence of minima of the corre-

sponding potentials [14]. Hence, (1.11) yields that ℓn⃗ , i → ℓ i for all i ∈ {1, . . . , p}.
Moreover, weak∗ convergence also implies locally uniform convergence of Vω n⃗ , i to
Vω i in C ∖ [ a c⃗ , i , b c⃗ , i] (there is no convergence at inûnity as, in general, ∣ωn⃗ , i ∣ /= ∣ω i ∣
for given n⃗). _us, it remains to show that the convergence of the potentials is uniform
on compact subsets of C.
First, let K be a continuum such that a c⃗ , i , b c⃗ , i ∉ K and either Im(z) ≥ 0 for all

z ∈ K or Im(z) ≤ 0 for all z ∈ K (it can intersect (a c⃗ , i , b c⃗ , i)). _en there exists a
unique continuum K(i) such that π(K(i)) = K and K(i) ∩R(i) /= ∅. Further, let U
be a neighborhood of K such that a c⃗ , i , b c⃗ , i ∉ U . Denote by U(i) the neighborhood
of K(i) such that π(U(i)) = U . Since an⃗ , i → a c⃗ , i and bn⃗ , i → b c⃗ , i as ∣n⃗∣ → ∞, we can
analogously deûne K(i)

n⃗ and U(i)
n⃗ on Rn⃗ . By deûnition,

Vω n⃗ , i
∣K = Hn⃗∣K(i)n⃗

+ ℓn⃗ , i −
1

p + 1

p
∑
j=1

ℓn⃗ , j ,

Vω i
∣K = H

∣K(i) + ℓ i −
1

p + 1

p
∑
j=1

ℓ j ,

where H is deûned on R exactly as Hn⃗ was deûned on Rn⃗ . Hence, to show that
Vω n⃗ , i converges to Vω i uniformly on K it is enough to show that the pull backs of
Hn⃗ from U(i)

n⃗ to U converge locally uniformly to the pull back of H. We do know
that such a convergence takes place locally uniformly on U ∩ {Im(z) > 0} and U ∩
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{Im(z) < 0}. _e full claim will follow from Harnack’s theorem if we show that
the pull backs of Hn⃗ , which are harmonic in U , form a uniformly bounded family
there. _e latter is true, since each H(k)

n⃗ converges to H(k) on any Jordan curve J
that encloses⋃p

i=1[a i , b i]. Hence, the moduli ∣Hn⃗ ∣ are bounded on the li� of J toRn⃗
and the bound is independent of n⃗. _e maximum principle propagates this estimate
through the region ofRn⃗ containing U(i)

n⃗ and bounded by the li� of J.
Assume now that K is a continuum that contains one of the points {a c⃗ , i , b c⃗ , i},

say b c⃗ , i for deûniteness. It is suõcient to assume that K is contained in a disk, say U ,
centered at the b c⃗ , i of radius small enough so that no other point from⋃p

j=1{a c⃗ , j , b c⃗ , j}
belongs to U . We can deûne K(i) and K(i)

n⃗ analogously to the previous case. Let U(i)

andU(i)
n⃗ be the circular neighborhoods of b c⃗ , i and b n⃗ , i , respectively, with the natural

projection U (clearly, they cover U twice). Let V be a disk centered at the origin of
radius smaller than the one of U , but large enough so that the translation of V to b c⃗ , i
still contains K. _en the functions

ϕn⃗(z) = (z + bn⃗ , i)2 and ϕ(z) = (z + b c⃗ , i)2

provide one-to-one correspondents between V and some subdomains of U(i)
n⃗ and

U(i), respectively. _ese subdomains still contain K(i)
n⃗ and K(i). Since bn⃗ , i → b c⃗ , i as

∣n⃗∣ → ∞, we can establish exactly as above that Hn⃗ ○ϕn⃗ converges to H○ϕ locally uni-
formly in V , which again yields that Vω n⃗ , i converges to Vω i uniformly on K. Clearly,
the considered cases are suõcient to establish the uniform convergence on compact
subsets of C.

5.2 Proof of Proposition 2.3

Observe that

h(0)
n⃗ (z) = ∫

dωn⃗(x)
z − x

= −2∂zVω n⃗(z) = 2∣n⃗∣−1∂z log∣Φ(0)
n⃗ (z)∣

= ∣n⃗∣−1(Φ(0)
n⃗ (z)) ′/Φ(0)

n⃗ (z)

by Proposition 2.1 and direct computation, where 2∂z ∶= ∂x − i∂y . Clearly, analogous
formulae hold for h(i)

n⃗ . _at is, hn⃗ is the logarithmic derivative of Φn⃗ , in particular,
(2.4) holds. _erefore, hn⃗ is holomorphic around each point ofRn⃗ ∖ {a n⃗ , i , b n⃗ , i}p

i=1
and clearly has a simple zero at each∞(k), k ∈ {0, . . . , p}. SinceRn⃗ has square root
branching at each ramiûcation point, Φ(0)

n⃗ has Puiseux expansion in non-negative
powers of 1/2 at each of them. Hence, h(0)

n⃗ has such an expansion as well, and the
smallest exponent is −1/2. _us, hn⃗ has at most a simple pole at each {a n⃗ , i , b n⃗ , i}p

i=1
and, in particular, is a rational function on Rn⃗ .

_e number of zeros and poles, including multiplicities, of a rational function
should be the same. _erefore, hn⃗ has at most 2p and at least p + 1 poles (the lower
bound comes from the number of zeros at “inûnities”) and at most p− 1 “ûnite” zeros.
Let us now show that each of p− 1 arcs γn⃗ , i contains exactly one of those “ûnite” zeros
(we slightly abuse the notion of a zero here, since a simple zero at the endpoint means
cancellation of the corresponding pole). Clearly, this is equivalent to showing that
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h(0)
n⃗ has a single simple zero in each gap [bn⃗ , i , an⃗ , i+1] (again, a “zero” at the endpoint

means that h(0)
n⃗ is locally bounded there).

Assume to the contrary that there is at least one gap, say [bn⃗ , j , an⃗ , j+1], without
a zero. _en h(0)

n⃗ would be inûnite at both endpoints bn⃗ , j , an⃗ , j+1. However, since
ωn⃗ is a positive measure, the very deûnition (2.3) yields that h(0)

n⃗ is decreasing on
(bn⃗ , j , an⃗ , j+1). _e latter is possible only if

(5.2) lim
x→b n⃗ , j

h(0)
n⃗ (x) = − lim

x→a n⃗ , j+1
h(0)
n⃗ (x) = ∞.

As h(0)
n⃗ is continuous on (bn⃗ , j , an⃗ , j+1), it must vanish there. Since there are exactly

p − 1 gaps and p − 1 “free” zeros, this contradiction proves the claim.
Let us now show the correspondence between occurrence of the zeros at the end-

points of the gaps and the fact that divergence domains are touching the support. To
this end, notice that (2.4) combined with (2.2) yields that

(5.3) ℓn⃗ , i − Vω n⃗ , i+ω n⃗(x) = ∫
x

b n⃗ , i
(h(0)

n⃗ − h(i)
n⃗ )(y)dy.

If the zero of h(0)
n⃗ on [bn⃗ , i , an⃗ , i+1] does not coincide with bn⃗ , i , then

h(0)
n⃗ (y) = cn⃗( y − bn⃗ , i)

−1/2 +O(1),

h(i)
n⃗ (y) = −cn⃗( y − bn⃗ , i)

−1/2 +O(1)

for y − bn⃗ , i > 0 and small enough, where cn⃗ > 0, see (5.2). Hence,

(5.4) ℓn⃗ , i − Vω n⃗ , i+ω n⃗(x) = 4cn⃗(x − bn⃗ , i)1/2 +O( ∣x − bn⃗ , i ∣3/2) > 0

for x − bn⃗ , i > 0 and small enough. On the other hand, if the zero coincides with bn⃗ , i ,
then

h(0)
n⃗ (y) = c̃n⃗ − c′n⃗(y − bn⃗ , i)1/2 +O( ∣y − bn⃗ , i ∣) ,

h(i)
n⃗ (y) = c̃n⃗ + c′n⃗(y − bn⃗ , i)1/2 +O( ∣y − bn⃗ , i ∣)

for y − bn⃗ , i > 0 and small enough, where c′n⃗ > 0 (recall that h(0)
n⃗ is a decreasing

function in each gap). _erefore,

(5.5) ℓn⃗ , i − Vω n⃗ , i+ω n⃗(x) = −(4c′n⃗/3)(x − bn⃗ , i)
3/2 +O( ∣x − bn⃗ , i ∣

5/2) < 0

for x − bn⃗ , i > 0 and small enough. _us, if the zero from [bn⃗ , i , an⃗ , i+1] coincides with
bn⃗ , i , then bn⃗ , i ∈ ∂D−n⃗ , i and if it does not, then bn⃗ , i ∉ ∂D−n⃗ , i , see (1.14). As the analysis
near an⃗ , i can be completed similarly, this ûnishes the proof of the claim.

Now let Hn⃗ be deûned by (5.1) and H be deûned analogously on R. We have
shown during the course of the proof of Proposition 2.1 that Hn⃗ → H uniformly on
Rδ , where Hn⃗ is carried over to Rδ with the help of natural projections. Since hn⃗ =
2∂zHn⃗ and h = 2∂zH, we get that hn⃗ → h uniformly on Rδ . _is implies that h is a
rational function onR. _e claim about zero/pole distribution of h follows from the
analogous statement for hn⃗ and analysis similar to (5.3)–(5.5).
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6 Szegő Function

_is section is devoted to the proof of Proposition 2.4. Let z ,w ∈R. Denote by Ωz ,w
the unique abelian diòerential of the third kind, which is holomorphic onR∖{z ,w}
and has simple poles at z and w of respective residues +1 and −1. Deûne

(6.1) Cz ∶= pΩz ,w −
p
∑
i=1

Ωz i ,w ,

where π−1(z) = {z , z1 , . . . , z p} for each z that is not a projection of a branch point of
R. _e diòerential Cz does not depend on the choice of w as it is simply the normal-
ized third kind diòerential with p + 1 simple poles at z , z1 , . . . , z p having respective
residues p,−1, . . . ,−1.
For each x ∈ ∆i , which is not a branch point ofR, we shall denote by x∗ a point on

∆i having the same canonical projection, i.e., π(x) = π(x∗). When x ∈ ∆i is a branch
point of the surface, we simply set x∗ = x. Let λ be a Hölder continuous function on
∆ ∶= ⋃p

i=1 ∆i . Deûne

(6.2) Λ(z) ∶= 1
2(p + 1)πi ∮∆

λCz , z ∈R ∖ π−1(π(∆)) .

_e function Λ is holomorphic in the domain of its deûnition. Further, if z → x ∈ ∆±,
then z j → x∗ ∈ ∆∓ for some j ∈ {1, . . . , p} and

Λ+(x) − Λ−(x) =
pλ(x) + λ(x∗)

p + 1
,

according to [33, Eq. (2.8)]. On the other hand, if z → x̃ /∈ ∆, while z j → x ∈ ∆± and
zk → x∗ ∈ ∆∓ for some j, k ∈ {1, . . . , p}, then

Λ+( x̃) − Λ−( x̃) = λ(x∗) − λ(x)
p + 1

.

_us, if we additionally require that λ(x) = λ(x∗), then Λ is a holomorphic function
in R ∖ ∆ such that

(6.3) Λ+(x) − Λ−(x) = λ(x), x ∈ ∆.

It also can be readily veriûed using (6.1) and (6.2) that

(6.4) Λ(z) +
p
∑
i=1

Λ(z i) ≡ 0 on R.

_e above construction works for discontinuous functions as well. Moreover, it
is known that the continuity of Λ±, in fact, Hölder continuity, depends on Hölder
continuity of λ only locally. _at is, if λ is Hölder continuous on some open subarc
of ∆, so are the traces Λ± on this subarc irrespective of the smoothness of λ on the
remaining part of ∆. To capture the behavior of Λ around the points where λ is not
continuous, we deûne a local approximation to theCauchy diòerentialCz . To this end,
ûx i ∈ {1, . . . , p} and denote by U a connected annular neighborhood of ∆i disjoint
from other ∆ j such that every point in π(U) has exactly two preimages (except for
the branch points, of course). Write U+ ∪U− = U ∖ ∆, where U+ ∩U− = ∅, U± are
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connected and partially bounded by ∆±i . Set w̃ i(z) ∶= ±w i(z), z ∈ U±, where w i is
given by (2.7). _en w̃ i is holomorphic in U . Further, put

Ω̃z(x) ∶=
1
2
w̃ i(x) + w̃ i(z)

x − z
dx

w̃ i(x)
,

which is a holomorphic diòerential onU ∖{z} that has a simple pole at z with residue
1. _en the diòerence Cz− pΩ̃z+Ω̃z i is a holomorphic diòerential inU , and therefore
the function Λ − Λ̃ is holomorphic U , where

Λ̃(z) ∶= 1
2(p + 1)πi ∮∆ i

λ( pΩ̃z − Ω̃z∗)

and z∗ /= z is a point in U such that π(z) = π(z∗). _us, understanding the local
behavior of Λ is suõcient to study Λ̃. Since w̃ i(z∗) = −w̃ i(z) for z ∈ U , andw i−(x) =
−w i+(x) for x ∈ (a c⃗ , i , b c⃗ , i), it holds for λ(x) = λ(x) that

(6.5) Λ̃(z) = w̃ i(z)
2πi ∫

∆ i

λ(x)
w i+(x)

dx
x − z

, z ∈ U ∖ ∆.

_e ûrst type of singularities we are interested in is of the form

(6.6) λ(x) = α log ∣x − x0∣ , x ∈ ∆i ,

where x0 ∈ [a c⃗ , i , b c⃗ , i]. Carefully tracing the implications of [13, Sec. I.8.5–6] to the
integrals of the form (6.5) and (6.6), we get that

(6.7) Λ̃(z) = ±α
2
log(z − x0) +O(1), U± ∋ z → x0 .

_e second type of the singular behavior we want to consider is given by

(6.8) λ(x) = (log β)χx0(x), x ∈ ∆i ,

where x0 ∈ (a c⃗ , i , b c⃗ , i) and χx0 is the characteristic function of [x0 , b c⃗ , i]. It follows
from the analysis in [13, Sec. I.8.6] that

(6.9)
⎧⎪⎪⎨⎪⎪⎩

Λ̃( z(0)) = ∓ log β
2πi log(z − x0) +O(1),

Λ̃( z(i)) = ± log β
2πi log(z − x0) +O(1),

z → x0 , ± Im(z) > 0.

Now, let the functions ρ i be of the form (2.5)–(2.6). Set

λρ(x) ∶= − log ( ρ i(x)w i+(x)) , x ∈ ∆i .

By using the identityw i+(x) = i∣w i(x)∣ and the explicit expressions (2.6), we can then
write

λρ(x) = − log ( iρr, i(x)) −
J i
∑
i=0

(α i j log ∣x − x i j ∣ + log β i j χx i j(x))

− (1/2) log ∣x − a c⃗ , i ∣ − (1/2) log ∣x − b c⃗ , i ∣.
Clearly, the singular behavior of λρ is precisely of the form (6.6) and (6.8). Deûne Λρ
as in (6.2) and set S ∶= exp{Λρ}. _en (2.8) is a consequence of (6.3), since

(S(i)
±

/S(0)
∓

)(x) = exp{(Λρ− − Λρ+)(x)} .
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Moreover, (2.9) and (2.10) clearly follow from (6.7) and (6.9). Finally, the last claim
of the proposition follows from (6.4).

7 Auxiliary Results

Below we prove auxiliary estimates (7.2) and (7.3) that will be needed in Section 8.4 to
ûnish the proof of _eorem 2.5. _ey are presented here in a separate section, as the
arguments used to prove them are disconnected from the techniques of the steepest
descent method employed in Section 8.

Let x ,w ∈ R be such that x is not a branch point ofR. _ere exists a unique, up
to multiplicative normalization, rational function on R, say Ψ, with a simple pole at
x, a simple zero at w, and otherwise non-vanishing and ûnite. For uniqueness, we
normalize Ψ(z) = z+{holomorphic part} around x if x is a point above inûnity, and
Ψ(z) = (z − x)−1 + {holomorphic part} around x otherwise.

Let x n⃗ ,w n⃗ ∈Rn⃗ be such that they have the same canonical projections and belong
to the sheets with the same labels as x ,w, respectively, when the latter are not branch
points of R (points on ⋃p

i=1 ∆i need to be identiûed with the sequences of points
convergent to them to set up the correspondence). Ifw is a branch point, we setw n⃗ to
be the branch point ofRn⃗ whose projection converges to or coincides with the one
of w. We deûne Ψn⃗ to be a similarly normalized rational function on Rn⃗ with a pole
at x n⃗ and a zero at w n⃗ .
As the statement of Proposition 2.3, letRδ be the subsets ofR obtained by remov-

ing circular neighborhoods of radius δ around each branch point. We assume that δ
is small enough so that x ∈ Rδ and w ∈ Rδ when w is not a branch point. Using
natural projections we can redeûne Ψn⃗ as a function on Rδ . Naturally, it will have a
pole at x and a zero at w if the latter belong to Rδ . _en, regarding Ψn⃗ as a function
on Rδ , we have that

(7.1) Ψn⃗ = [ 1 + o(1)]Ψ

uniformly on Rδ as ∣n⃗∣ → ∞. Indeed, assume ûrst that w ∈ Rδ . Let Ux ⊂ Rδ be
a circular neighborhood of x such that w ∉ Ux . Observe that Ψ is a univalent func-
tion on R. _us, by applying Koebe’s 1/4 theorem to 1/Ψ, we see that ∣Ψ∣ < C on
∂Ux for some constant C > 0 that depends only on the radius of Ux . Moreover, the
maximum modulus principle implies that ∣Ψ∣ < C on R ∖ Ux . Clearly, absolutely
analogous considerations apply to Ψn⃗ on Rn⃗ , and the constant C remains the same.
Hence, the ratio Ψn⃗/Ψ is a holomorphic function on Rδ such that ∣Ψn⃗/Ψ∣ < C/C̃
by the maximum modulus principle, where 0 < C̃ ≤ minR∖Rδ ∣Ψ∣, and this constant
can be chosen independently of δ. Picking a discrete sequence δn → 0 and using
the diagonal argument as well as the normal family argument, we see that any sub-
sequence of {Ψn⃗/Ψ} contains a subsequence convergent to a function holomorphic
on R ∖ ⋃p

i=1{a c⃗ , i , b c⃗ , i}. Moreover, this function is necessarily bounded around the
branch points and therefore holomorphically extends to the entire Riemann surface
R. _us, this function must be a constant and the normalization at x yields that this
constant is 1. _is completes the proof of (7.1) in the casew ∈Rδ . Whenw is a branch
point, the ûrst half of the above considerations yields that {Ψ − Ψn⃗} is a family of
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holomorphic function onRδ with uniformly and independently of δ bounded mod-
uli. _erefore, the same argument yields that Ψn⃗ = Ψ + o(1) uniformly on Rδ . As Ψ
is non-vanishing in Rδ , this estimate implies (7.1).

Let Υn⃗ , i (resp. Υi), i ∈ {1, . . . , p}, be rational functions on Rn⃗ (resp. R) with a
simple pole at ∞(i), a simple zero at ∞(0), otherwise non-vanishing and ûnite, and
normalized so Υ(i)

n⃗ , i (z)/z → 1 as z →∞. _en (7.1) immediately yields

(7.2) Υn⃗ , i = [ 1 + o(1)]Υi

uniformly on each Rδ as ∣n⃗∣ → ∞.
Further, let Ωn⃗

z ,w be the unique abelian diòerential of the third kind that is holo-
morphic onRn⃗ ∖ {z ,w} and has simple poles at z and w with respective residues +1
and −1. It is known that such a diòerential can be written as Ωn⃗

z ,w(x) = Ψn⃗
z ,w(x)dx,

where Ψn⃗
z ,w is the unique rational function on Rn⃗ with a double zero at each ∞(k),

k ∈ {0, . . . , p}, a simple pole at each ⋃p
i=1{a n⃗ , i , b n⃗ , i}, simple poles at z and w, other-

wise non-vanishing and ûnite, and normalized to have residue 1 at z. Writing 1/Ψn⃗
z ,w

as a product of terms with one zero and one pole and applying (7.1) to these factors,
we see that

Ψn⃗
z ,w = [ 1 + o(1)]Ψz ,w

uniformly on eachRδ as ∣n⃗∣ → ∞, where Ωz ,w(x) = Ψz ,w(x)dx is the corresponding
diòerential on R. _en, deûning Λn⃗ via analogs of (6.1) and (6.2) for Rn⃗ , we get
that Λn⃗(z) = Λ(z) + o(1) uniformly in R ∖N for each neighborhood N of ⋃p

i=1 ∆.
_erefore, if we deûne Sn⃗ on Rn⃗ exactly as S was deûned on R and consider Sn⃗ as
function on R ∖N, then

(7.3) Sn⃗ = [ 1 + o(1)]S

uniformly there. Moreover, Sn⃗ obeys all the conclusions of Proposition 2.4 with re-
spect to Rn⃗ .

8 Non-linear Steepest Descent Analysis

In this section we prove _eorem 2.5 with some technical details relegated to Sec-
tion 9.

8.1 Opening of the Lenses

Since we shall use these sets quite o�en, put

(8.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E c⃗ ∶=
p
⋃
i=1

{a c⃗ , i , b c⃗ , i},

Ein ∶=
p
⋃
i=1

({x i j} ∩ (a c⃗ , i , b c⃗ , i)) ,

Eout ∶=
p
⋃
i=1

{x i j ∶ x i j /∈ [a c⃗ , i , b c⃗ , i] and α i j ≤ 0} .
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_at is, Ein consists of the singular points x i j that belong to the support of ω⃗ (Fisher–
Hartwig singularities), and Eout consists of those singular points outside of the sup-
port for which the densities ρ i are unbounded.

To proceed with the factorization of the jump matrices in RHP-Y(b), we need to
construct the so-called “lens” around⋃p

i=1[a i , b i]. To this end, given e ∈ Eout∪Ein∪E c⃗ ,
letUe be a disk centered at e. We assume that the radii of these disks are small enough
so that U e1 ∩U e2 = ∅ for e1 /= e2. We also assume that U e ⊂ D−i when e ∈ Eout. Now,
let e0 , e1 be the j-th pair of two consecutive points from (Ein ∪ E c⃗) ∩ [a c⃗ , i , b c⃗ , i]. We
choose arcs Γ±i j incident with e0 and e1 and lying in the upper (+) and lower (−) half-
planes in the following way: if ek ∈ E c⃗ , then it should hold that

ζek(Γ±i j ∩Uek) ⊂ I± ,

where the rays I± are deûned in (4.1) and ζek is a certain conformal function in Uek
constructed further below in (9.5) or (9.11) (depending on the considered case); if
ek ∈ Ein, it should hold that

ζek(Γ±i j+k−1 ∩Uek) ⊂ I± and ζek(Γ±i j+k ∩Uek) ⊂ J± ,

where ζek is a conformal function in Uek constructed further below in (9.1) and the
rays J± are also deûned in (4.1). OutsideUe0∪Ue1 we choose Γ±i j to be segments joining
the corresponding points on ∂Ue0 and ∂Ue1 ; see Figure 2. We further set Γ±i ∶= ⋃ j Γ±i j .

Since the geometry of the problem might depend on each particular index n⃗ (and
not only on c⃗), we construct in a similar fashion arcs Γ±n⃗ , i j and Γ±n⃗ , i , where this time
the maps ζek are replaced by ζn⃗ ,ek ; see (9.2), (9.6), (9.12), or (9.16). As we show later
in (9.3), the arcs Γ±n⃗ , i converge to Γ±i in Hausdorò metric. Finally, we denote by Ω±

n⃗ , i j
the domains delimited by Γ±n⃗ , i j and [an⃗ , i , bn⃗ , i], and set Ω±

n⃗ , i ∶= ⋃ j Ω±

n⃗ , i j .

�+
i1

��
i1

�+
~n,i1

��
~n,i1

�+
ij

��
ij

�+
~n,ij

��
~n,ij

ai bib~c,ib~n,i

xi1

Figure 2: _e arcs Γ±i j and Γ±n⃗ , i j in the case where there is at least one point in Ein, bn⃗ , i < b c⃗ , i < b i ,
and b i ∈ Eout .

Fix Γ±n⃗ , i l with endpoints e1 < e2. _ere exists an index k such that x i j ≤ e1 for
j < k and x i j ≥ e2 for j ≥ k. _en it follows from (2.5) and (2.6) that the function ρ i
holomorphically extends to Ω±

n⃗ , i l by

ρ i(z) ∶= ρr, i(z)∏
j<k
β i j∏

j<k
(z − x i j)α i j ∏

j≥k
(x i j − z)α i j ,
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where (z − x i j)α i j is holomorphic oò (−∞, x i j] and (x i j − z)α i j is holomorphic oò
[x i j ,∞). Using these extensions, set

(8.2) X ∶= Y
⎧⎪⎪⎨⎪⎪⎩

Ti( 1 0
∓1/ρ i 1 ) in Ω±

n⃗ , i ,
I otherwise,

where Y is a matrix-function that solves RHP-Y (if it exists). It can be readily veriûed
that X solves the following Riemann–Hilbert problem (RHP-X):
(a) X is analytic in C ∖⋃p

i=1([a i , b i] ∪ Γ+n⃗ , i ∪ Γ−n⃗ , i) and limz→∞ X(z)z−σ(n⃗) = I;
(b) X has continuous traces on ⋃p

i=1((a i , b i) ∪ Γ+n⃗ , i ∪ Γ−n⃗ , i) that satisfy

X+ = X−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ti( 0 ρ i
−1/ρ i 0 ) on [a c⃗ , i , b c⃗ , i],

Ti( 1 ρ i
0 1 ) on (a i , b i) ∖ [a c⃗ , i , b c⃗ , i],

Ti( 1 0
1/ρ i 1 ) on Γ+n⃗ , i ∪ Γ−n⃗ , i ;

(c) X has the following behavior near e ∈ E c⃗ ∪ Ein ∪ Eout:
● if e ∈ Eout, i.e., e = x i j for some ûxed pair of indices (i , j), then X satisûes

RHP-Y(c) with Y replaced by X;
● if e ∈ E c⃗ ∖ {x i j}, then all the entries of X are bounded at e;
● if e ∈ Ein or e ∈ E c⃗ ∩ {x i j}, then X satisûes RHP-Y(c) with Y replaced by X

outside of Ω+

n⃗ , i ∪Ω−

n⃗ , i , while inside it behaves exactly as in RHP-Y(c) when
α i j < 0, the entries of the ûrst and (i + 1)-st column behave likeO(ψ0(z− x i j))
and the rest of the entries are bounded when α i j = 0, and the entries of the ûrst
column behave like O(ψ−α i j(z − x i j)) and the rest of the entries are bounded
when α i j > 0.

Due to the block structure of the jumps in RHP-Y(b), [5, Lemma 17] can be carried
over word for word to the present case to prove the following lemma.

Lemma 8.1 RHP-X is solvable if and only if RHP-Y is solvable. When solutions of
RHP-X and RHP-Y exist, they are unique and connected by (8.2).

8.2 Auxiliary Parametrices

To solve RHP-X, we construct parametrices that asymptotically describe the behavior
of X away from and around each point in Ein ∪ Eout ∪ E c⃗ . To this end, we construct a
matrix-valued function N that solves the following Riemann–Hilbert problem (RHP-
N):
(a) N is analytic in C ∖⋃p

i=1[an⃗ , i , bn⃗ , i] and limz→∞ N(z)z−σ(n⃗) = I;
(b) N has continuous traces on (an⃗ , i , bn⃗ , i)∖{x i j} that satisfy N+ = N−Ti( 0 ρ i

−1/ρ i 0 ) .
Let Φn⃗ be the functions from Proposition 2.1 while Sn⃗ and Υn⃗ , i , i ∈ {1, . . . , p}, be

the functions introduced in Section 7. Set

(8.3) N ∶= CMD,
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where D ∶= diag(Φ(0)
n⃗ , . . . , Φ(p)

n⃗ ), C ∶= diag(Cn⃗ ,0 , . . . ,Cn⃗ ,p) with the constant Cn⃗ ,k
deûned by

(8.4)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
z→∞

Cn⃗ ,0(Sn⃗Φn⃗)(0)(z)z−∣n⃗∣ = 1

lim
z→∞

Cn⃗ , i(Sn⃗Φn⃗)(i)(z)zn i = 1, i ∈ {1, . . . , p},

and the matrix M is given by

M ∶=
⎛
⎜⎜⎜⎜
⎝

S(0)
n⃗ S(1)

n⃗ /wn⃗ ,1 ⋅ ⋅ ⋅ S(p)
n⃗ /wn⃗ ,p

(Sn⃗Υn⃗ ,1)(0) (Sn⃗Υn⃗ ,1)(1)/wn⃗ ,1 ⋅ ⋅ ⋅ (Sn⃗Υn⃗ ,1)(p)/wn⃗ ,p
⋮ ⋮ ⋱ ⋮

(Sn⃗Υn⃗ ,p)(0) (Sn⃗Υn⃗ ,p)(1)/wn⃗ ,1 ⋅ ⋅ ⋅ (Sn⃗Υn⃗ ,p)(p)/wn⃗ ,p

⎞
⎟⎟⎟⎟
⎠
.

_en (8.3) solves RHP-N . Indeed, RHP-N(a) follows immediately from the analytic-
ity properties of Sn⃗ , Υn⃗ , i , andΦn⃗ as well as from (8.4). Observe that themultiplication
by Ti( 0 ρ i

−1/ρ i 0 ) on the right replaces the ûrst column by the (i + 1)-st one multiplied
by ρ i , while (i + 1)-st column is replaced by the ûrst one multiplied by −1/ρ i . Hence,
RHP-N(b) follows from the analog of (2.8) for Sn⃗ and the fact that any rational func-
tion Ψ on Rn⃗ satisûes Ψ(0)

±
= Ψ(i)

∓
on (an⃗ , i , bn⃗ , i).

Since the jump matrices in RHP-N(b) have determinant 1, det(N) is a holomor-
phic function in C ∖ ⋃i { an⃗ , i , bn⃗ , i} and det(N)(∞) = 1. Moreover, it follows from
the analogs of (2.9) and (2.10) for Sn⃗ that each entry of the ûrst column of N behaves
like

O( ∣z − e∣−(2α+1)/4) and O( ∣z − x i j ∣−(α i j∓arg(β i j)/π)/2)
for e ∈ {an⃗ , i , bn⃗ , i} (α = α i j if e = x i j and α = 0 otherwise) and for x i j ∈ (an⃗ , i , bn⃗ , i)
(± Im(z) > 0), respectively, the entries of the (i + 1)-st column behave like

O( ∣z − e∣(2α−1)/4) and O( ∣z − x i j ∣(α i j∓arg(β i j)/π)/2)
there, and the rest of the entries are bounded. _us, the determinant has at most
square root singularities at these points and therefore is a bounded entire function.
_at is, det(N) ≡ 1 as follows from the normalization at inûnity.
Further, for each e ∈ Ein ∪ Eout ∪ E c⃗ , we want to solve RHP-X locally in Ue . _at

is, we are seeking a solution of the following RHP-Pe :
(a,b,c) Pe satisûes RHP-X(a,b,c) within Ue ;
(d) Pe = M(I +O(εe ,n⃗))D uniformly on ∂Ue ∖ ([a i , b i] ∪ ⋃p

i=1 Γ
+

n⃗ , i ∪ Γ−n⃗ , i), where
0 < εe ,n⃗ → 0 as ∣n⃗∣ → ∞.
Since the construction of Pe solving RHP-Pe is rather lengthy, it is carried out

separately in Section 9 further below.

8.3 Final R-H Problem

Denote by Ωn⃗ , i j the domain delimited by Γ+n⃗ , i j and Γ−n⃗ , i j (in particular, Ω±

n⃗ , i j ⊂ Ωn⃗ , i j).
Set Ωn⃗ ∶= ⋃i j Ωn⃗ , i j and U ∶= ⋃e∈Ein∪Eout∪E c⃗ Ue . Deûne

Σn⃗ ∶= ∂U ∪ [
p
⋃
i=1

(Γ+n⃗ , i ∪ Γ−n⃗ , i) ∖U] ∪ [
p
⋃
i=1

[a i , b i] ∖ (U ∪Ωn⃗)] .
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Moreover, we deûne Σ by replacing Γ±n⃗ , i with Γ±i in the deûnition of Σn⃗ ; see Figure 3.
Given matrices N and Pe , e ∈ Ein ∪ Eout ∪ E c⃗ , from the previous section, consider the

⌃

⌃~n ⌃
⌃~nai bib~c,ib~n,ixi1

Uai
Uxi1

Ub~c,i Ubi

Figure 3: Contours Σ (black and blue lines) and Σn⃗ (black and red lines).

following Riemann–Hilbert Problem (RHP-Z):
(a) Z is a holomorphic matrix function in C ∖ Σn⃗ and Z(∞) = I;
(b) Z has continuous traces on Σn⃗ that satisfy

Z+ = Z−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MDTi( 1 0
1/ρ i 1 )(MD)−1 on (Γ+n⃗ , i ∪ Γ−n⃗ , i) ∖U ,

MDTi( 1 ρ i
0 1 )(MD)−1 on [a i , b i] ∖ (U ∪Ωn⃗),

Pe(MD)−1 on ∂Ue .
_en the following lemma takes place.

Lemma 8.2 _e solution of RHP-Z exists for all ∣n⃗∣ large enough and satisûes
(8.5) Z = I +O( εn⃗)

uniformly in C, where εn⃗ = mine εe ,n⃗ .

Proof Analyticity of ρ i yields that Z can be analytically continued to be holomor-
phic outside of Σ. To do that one simply needs to multiply Z by the ûrst jump matrix
in RHP-Z(b) or its inverse (the jump matrices have determinate 1 and are therefore
invertible). We shall show that the jump matrices are locally uniformly geometrically
small inD+i . _is would imply that the new problem is solvable if and only if the initial
problem is solvable and the bound (8.5) remains valid regardless the contour. Hence,
in what follows we shall consider RHP-Z on Σ rather than on Σn⃗ .

It was shown in Section 8.2 that det(N) ≡ 1. Moreover, it follows from (2.1) that
det(D) ≡ 1 while the equality∏p

k=0 S
(k)
n⃗ ≡ 1 and (8.4) imply that det(C) ≡ 1. Hence,

det(M) ≡ 1 and it follows from RHP-Pe(d), (7.3), and (7.2) that
Pe(MD)−1 = I +MO(εe ,n⃗)M−1 = I +O(εe ,n⃗)

holds uniformly on each ∂Ue . On the other hand, it holds on Γ±i ∖U that

MDTi( 1 0
1/ρ i 1 )(MD)−1 = I + 1

ρ i

Φ(i)
n⃗

Φ(0)
n⃗

ME i+1,1M−1 = I +O(C−∣n⃗∣i )

for some constant C i > 1 by (1.14), (2.2), and Proposition 2.1. Analogously, we get that

MDTi( 1 ρ i
0 1 )(MD)−1 = I + ρ i

Φ(0)
n⃗

Φ(i)
n⃗

ME1, i+1M−1 = I +O(C̃−∣n⃗∣i )
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on [a i , b i]∖(U ∪Ωn⃗) for some C̃ i > 1 by (2.2) and (1.13). _at is, all the jumpmatrices
for Z asymptotically behave like I +O( εn⃗) (as will be clear in Section 9, the decay of
εn⃗ is of power type and not exponential). _e conclusion of the lemma follows from
the same argument as in [7, Corollary 7.108].

8.4 Proof of Theorem 2.5

Let Z be the solution of RHP-Z granted by Lemma 8.2, let Pe be solutions of RHP-Pe ,
and let N = CMD be the matrix constructed in (8.3). _en it can be easily checked
that

X = CZ
⎧⎪⎪⎨⎪⎪⎩

MD in C ∖ (U ∪⋃[a c⃗ , ib c⃗ , i]) ,
Pe in Ue , e ∈ Eout ∪ Ein ∪ E c⃗ ,

solves RHP-X for all ∣n⃗∣ large enough. Given a closed set K in C ∖ ⋃p
i=1[a i , b i], we

can always shrink the lens so that K ⊂ C ∖ (U ∪Ωn⃗) . In this case, Y = X on K by
Lemma 8.1. Write the ûrst row of Z as (1 + υn⃗ ,0 , υn⃗ ,1 , . . . , υn⃗ ,p). _en the (1, j + 1)-st
entry of ZM is equal to

( 1 + υn⃗ ,0 +
p
∑
i=1

υn⃗ , iΥ( j)
n⃗ , i )S( j)

n⃗ /wn⃗ , j = ( 1 +O(εn⃗))S( j)
n⃗ /wn⃗ , j

by Lemma 8.2 and (7.2), where wn⃗ ,0 ≡ 1. _erefore, it follows from Proposition 3.1
that

Qn⃗ = Cn⃗ ,0[ 1 +O(εn⃗)](Sn⃗Φn⃗)(0) ,

R( j)
n⃗ = Cn⃗ ,0[ 1 +O(εn⃗)](Sn⃗Φn⃗)( j)/wn⃗ , j .

_eorem 2.5 now follows from (7.3), since Cn⃗ ,0 = (1 + o(1))Cn⃗ , again by (7.3) and
wn⃗ , j → w j uniformly on K.

9 Local Riemann–Hilbert Analysis

_e goal of this section is to construct solutions to RHP-Pe .

9.1 Local Parametrices Around Points in Eout

Let e ∈ Eout; see (8.1). A solution of RHP-Pe is given by

Pe ∶= MTi (1 CiΦ(0)
n⃗ /Φ(i)

n⃗
0 1

)D, where Ci(z) ∶=
1

2πi ∫[a i ,b i]

ρ i(x)
x − z

dx .

Indeed, since the matrices M and D are holomorphic in Ue , and Ci has a jump only
across (a i , b i) ∩Ue , the matrix above satisûes RHP-Pe(a). As (C+i −C−i )(x) = ρ i(x)
for x ∈ (a i , b i) ∖ {x i j}, RHP-Pe(b) follows. RHP-Pe(c) is a consequence of the fact
that ∣Ci(z)(z− x i j)−α i j ∣ is bounded in the vicinity of x i j for α i j < 0 ([13, Sec. 8.3]). Fi-
nally, RHP-Pe(d) is easily deduced from the inclusion U e ⊂ D−i (see (2.2) and (1.13)).
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9.2 Local Parametrices Around Points in Ein

_e construction below of local parametrices around Fisher–Hartwig singularities is
well known [8, 20, 21, 30].

9.2.1 Conformal Maps

Since h is a rational function onR, it holds that h(0)
±

= h(i)
∓

on (a c⃗ , i , b c⃗ , i)∩Ue . _en

(9.1) ζe(z) ∶= sgn ( Im(z)) i∫
z

e
(h(0) − h(i))(x)dx , Im(z) /= 0,

extends to a conformal function in Ue vanishing at e. Deûne ζn⃗ ,e exactly as in (9.1)
with h replaced by hn⃗ . _en it holds that

(9.2) ζn⃗ ,e(z) =
sgn ( Im(z)) i

∣n⃗∣ log(Φ(0)
n⃗ (z)/Φ(i)

n⃗ (z)) , Im(z) /= 0,

by (2.4). It follows from (2.2) and (1.13) that ζn⃗ ,e is real on (a c⃗ , i , b c⃗ , i)∩Ue . Moreover,
since Ue ∖ (a c⃗ , i , b c⃗ , i) ⊂ D+i , ζn⃗ ,e maps upper half-plane into the upper half-plane. In
particular, ζn⃗ ,e(x) > 0 for x ∈ ( e , b c⃗ , i) ∩Ue . Observe also that

(9.3) ζn⃗ ,e → ζe
holds uniformly on U e by (2.2), since (2.2) is the statement about convergence of the
imaginary parts of ζn⃗ ,e to the imaginary part of ζe .

9.2.2 Matrix Pe

It follows from the way we extended ρ i into Ω±

n⃗ , i that we can write

ρ i(z) = ρr,e(z)
⎧⎪⎪⎨⎪⎪⎩

(e − z)α , Re(z) < e ,
β(z − e)α , Re(z) > e ,

where ρr,e(x) is a holomorphic and non-vanishing function in Ue . Deûne re by

re(z) ∶=
√

ρr,e(z)(z − e)α/2 ,
where the square root is principal. _en re is a holomorphic and non-vanishing func-
tion in Ue ∖ {x ∶ x < e} that satisûes

(9.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

re+(x)re−(x) = ρ i(x), x ∈ {x ∶ x < e} ∩Ue ,

r2e(z) = ρ i(z)e±πiα , z ∈ Γ±n⃗ , i j ∩Ue ,

r2e(x) = β−1ρ i(x), (Γ+n⃗ , i j+1 ∪ Γ−n⃗ , i j+1 ∪ {x ∶ x > e}) ∩Ue .

It is a straightforward computation using (9.4) and (9.2) to verify that RHP-Pe is
solved by

Pe ∶= EeTi(Φα ,β( ∣n⃗∣ζn⃗ ,e) r−σ3
e (Φ(0)

n⃗ /Φ(i)
n⃗ )−σ3/2)D,

where Φα ,β is the solution of RHP-Φα ,β ; see Section 4.1, and the holomorphic pref-
actor Ee chosen below to fulûll RHP-Pe(d).

https://doi.org/10.4153/CJM-2015-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-043-3


Strong Asymptotics of Hermite–Padé Approximants for Angelesco Systems 1185

9.2.3 Holomorphic Prefactor Ee

It follows from the properties of the branch of (iζ)log βσ3/2πi that

(iζ)log βσ3/2πi
+

B+ = (iζ)log βσ3/2πi
−

B−
⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 0 β
−1/β 0 ) on (0,∞),

and it is holomorphic in C ∖ (−∞,∞). _erefore, it follows from RHP-N(b) that

Ee ∶= MTi((i∣n⃗∣ζn⃗ ,e)log βσ3/2πiB±r−σ3
e )−1 , ± Im(z) > 0,

is holomorphic in Ue ∖ {e}. Since ∣re(z)∣ ∼ ∣z − e∣α/2 and ∣ζ log β/2πi∣ ∼ ∣ζ ∣arg(β)/2π ,
Ee is in fact holomorphic in Ue as claimed. Clearly, in this case it holds that εn⃗ ,e =
∣n⃗∣∣ arg(β)∣/π−1.

9.3 Hard Edge

In this section we assume that e ∈ E c⃗ and e /∈ ∂D−i .

9.3.1 Conformal Maps

It follows from Proposition 2.3 that b c⃗ , i = bn⃗ , i = b i or a c⃗ , i = an⃗ , i = a i for all ∣n⃗∣ large
in this case. Deûne

(9.5) ζe(z) ∶= ( 1
4 ∫

z

e
(h(0) − h(i))(x)dx)

2
, z ∈ Ue .

Since h(0)
±

= h(i)
∓

on (a i , b i) ∩Ue , ζe is holomorphic in Ue . Moreover, since h has a
pole at e (the corresponding branch point ofR), ζe has a simple zero at e. _us, we
can choose Ue small enough so that ζe is conformal in U e .
Deûne ζn⃗ ,e as in (9.5) with h replaced by hn⃗ . _e functions ζn⃗ ,e form a family of

holomorphic functions inUe , all having a simple zero at e. Moreover, (2.4) yields that

(9.6) ζn⃗ ,e(z) = ( 1
4∣n⃗∣ log

(Φ(0)
n⃗ /Φ(i)

n⃗ ))
2
, z ∈ Ue ,

which, together with (1.14) and (2.2), implies that ζn⃗ ,e(x) is positive for
x ∈ (R ∖ [a i , b i]) ∩Ue

and is negative x ∈ (a i , b i) ∩Ue (this also can be seen from (5.3) and (5.4)).
Considering hn⃗ and h as deûned on the same doubly circular neighborhood of e

and recalling that their ratio converges to 1 on its boundary, we see that it converges to 1
uniformly throughout the neighborhood. _e latter implies that (9.3) holds uniformly
on U e . In particular, the functions ζn⃗ ,e are conformal in U e for all n⃗ large.

9.3.2 Matrix Pe

In this case, we can write

(9.7) ρ i(z) = ρr,e(z)
⎧⎪⎪⎨⎪⎪⎩

(e − z)α , e = b i ,
(z − e)α , e = a i ,
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where ρr,e is non-vanishing and holomorphic in Ue , α > −1, and the α-roots are
principal. Set

(9.8) re(z) ∶=
√

ρr,e(z)
⎧⎪⎪⎨⎪⎪⎩

(z − e)α/2 , e = b i ,
(e − z)α/2 , e = a i ,

where the branches are again principal. _en re is a holomorphic and non-vanishing
function in Ue ∖ [a i , b i] and satisûes

(9.9)
⎧⎪⎪⎨⎪⎪⎩

re+(x)re−(x) = ρ i(x), x ∈ (a i , b i),
r2e(z) = ρ i(z)e±πiα , z ∈ Γ±n⃗ , i ∩Ue .

_en (9.6) and (9.9) imply that RHP-Pe is solved by

Pe ∶= EeTi(Ψe( ∣n⃗∣2ζn⃗ ,e) r−σ3
e (Φ(0)

n⃗ /Φ(i)
n⃗ )−σ3/2)D,

whereΨe ∶= Ψα when e = b i andΨe ∶= σ3Ψασ3 when e = a i , andΨα solves RHP-Ψα
(see Section 4.2), while Ee is a holomorphic prefactor chosen so that RHP-Pe(d) is
fulûlled.

9.3.3 Holomorphic Prefactor Ee

As ζ 1/4
+

= iζ 1/4
−
, it can be easily checked that

ζ−σ3/4
+√

2
( 1 ±i
±i 1 ) = ζ−σ3/4

−√
2

( 1 ±i
±i 1 )( 0 ±1

∓1 0 )

on (−∞, 0). _en RHP-N(b) implies that

(9.10) Ee ∶= MTi(
(∣n⃗∣2ζn⃗ ,e)−σ3/4

√
2

( 1 ±i
±i 1 ) r−σ3

e )
−1

is holomorphic around in Ue ∖{e}, where the sign + is used around e = b i , while the
sign − is used around e = a i . Since ∣re(z)∣ ∼ ∣z − e∣α/2, Ee is in fact holomorphic in
Ue as desired. Clearly, εn⃗ ,e = ∣n⃗∣−1 in this case.

9.4 Soft-Type Edge I

Below, we assume that e ∈ E c⃗ and bn⃗ , i ∈ ∂D−n⃗ , i or an⃗ , i ∈ ∂D−n⃗ , i .

9.4.1 Conformal Maps

By the condition of this section, it holds that e ∈ ∂D−i . Deûne

(9.11) ζe(z) ∶= (− 3
4 ∫

z

e
(h(0) − h(i))(x)dx)

2/3
, z ∈ Ue .

Further, deûne ζn⃗ ,e exactly as ζe only with h replaced by hn⃗ and e replaced by bn⃗ , i if
e = b c⃗ , i and by an⃗ , i if e = a c⃗ , i . It follows from (2.4) that

(9.12) ζn⃗ ,e(z) = (− 3
4∣n⃗∣ log

(Φ(0)
n⃗ (z)/Φ(i)

n⃗ (z)))
2/3
, z ∈ Ue .
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Analysis in (5.3) and (5.5) yields that these functions are conformal in U e (make the
radius smaller if necessary), are positive on (R ∖ [an⃗ , i , bn⃗ , i]) ∩ Ue and negative on
( an⃗ , i , bn⃗ , i) ∩Ue . Moreover, (9.3) holds as well.

9.4.2 Matrix Pe

If e = x i j for some j ∈ {1, . . . , J i − 1}, set α ∶= α i j and β ∶= β i j when e = b c⃗ , i or
β ∶= 1/β i j when e = a c⃗ , i (see (2.6)). If e /∈ {x i j}J i−1

j=1 and e ∈ (a i , b i), set α = 0 and
β = 1; if e = a i , set α = α i0 and β = 0; if e = b i , set α = α i J i and β = 0. It follows from
the way we extended ρ i into Ω±

n⃗ , i that

ρ i(z) = ρr,e(z)
⎧⎪⎪⎨⎪⎪⎩

(e − z)α , e = b c⃗ , i ,
(z − e)α , e = a c⃗ , i ,

for Re(z) ∈ ( a c⃗ , i , b c⃗ , i) and

ρ i(z) = βρr,e(z)
⎧⎪⎪⎨⎪⎪⎩

(z − e)α , e = b c⃗ , i ,
(e − z)α , e = a c⃗ , i ,

for Re(z) /∈ [a c⃗ , i , b c⃗ , i], where all the branches are principal. Deûne re by (9.8) with b i
and a i replaced by b c⃗ , i and a c⃗ , i . _en re is a holomorphic and non-vanishing function
in Ue ∖ [a c⃗ , i , b c⃗ , i] that satisûes

(9.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

re+(x)re−(x) = ρ i(x), x ∈ ( a c⃗ , i , b c⃗ , i) ∩Ue ,

r2e(z) = ρ i(z)e±πiα , z ∈ Γ±n⃗ , i ∩Ue ,

r2e(x) = β−1ρ i(x), (R ∖ (a c⃗ , i , b c⃗ , i)) ∩Ue .

_en one can check using (9.13) and (9.12) that RHP-Pe is solved by

Pe ∶= EeTi(Ψe( ∣n⃗∣2/3( ζn⃗ ,e − ζn⃗ ,e(e))) r−σ3
e (Φ(0)

n⃗ /Φ(i)
n⃗ )−σ3/2)D,

where Ψe ∶= Ψα ,β( ⋅ ; sn⃗) when e = b c⃗ , i and Ψe ∶= σ3Ψα ,β( ⋅ ; sn⃗)σ3 when e = a c⃗ , i ,
Ψα ,β( ⋅ ; s) solves RHP-Ψα ,β (see Section 4.3),

sn⃗ ∶= ∣n⃗∣2/3ζn⃗ ,e(e),

and Ee is a holomorphic prefactor chosen so RHP-Pe(d) is satisûed.

9.4.3 Holomorphic Prefactor Ee

If sn⃗ = 0, then Ee is given by (9.10) with ∣n⃗∣2 replaced by ∣n⃗∣2/3. In this case we have by
_eorem 4.1 that εn⃗ ,e = ∣n⃗∣−1/3.

If sn⃗ > 0, then (9.10) is no longer applicable, as the matrix M has the jump only
across (an⃗ , i , bn⃗ , i)while r−σ3

e is discontinuous across (a c⃗ , i , b c⃗ , i)∩Ue where bn⃗ , i < b c⃗ , i
or an⃗ , i > a c⃗ , i . Observe that

re+(x) = re−(x)eαπi , x ∈ ((a c⃗ , i , b c⃗ , i) ∖ (an⃗ , i , bn⃗ , i)) ∩Ue .
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_erefore, deûne

Gα(ζ) ∶= exp{−πiα
√
ζ 1
2πi ∫

1

0

1√
x
dx
x − ζ

} , ζ ∈ C ∖ (−∞, 1].

It is quite easy to see that

Gα+Gα− ≡ 1 on (−∞, 0),
Gα− = Gα+πiα on (0, 1).

Moreover, from the theory of singular integrals [13, Sec. 8.3] we know that Gα is
bounded around the origin and behaves like ∣ζ − 1∣−α/2 around 1. _en it can be
checked using the above properties that the matrix function

Ee ∶= MTi(
(∣n⃗∣2/3ζn⃗ ,e)−σ3/4

√
2

( 1 ±i
±i 1 )(Gα ○ ( ζn⃗ ,e/ζn⃗ ,e(e)) re)

−σ3)
−1

is holomorphic in Ue . With such Ee it holds that

Pe = MTi(G−σ3
α ○ ( ζn⃗ ,e/ζn⃗ ,e(e))( I +O(εn⃗ ,e)))D

uniformly on ∂Ue ∖ ((a i , b i) ∪ Γ+n⃗ , i ∪ Γ−n⃗ , i), where

(9.14) εn⃗ ,e = max{ ∣ζn⃗ ,e(e)∣1/2 , ∣n⃗∣−1/3} ,

according to_eorem 4.1. To see that RHP-Pe(d) is fulûlled, it only remains to notice
that Gα(ζ) = 1 +O(ζ−1/2) as ζ →∞ uniformly in C ∖ (−∞, 1].

If sn⃗ < 0, we need to modify (9.10) again, because M still has its jump over
(an⃗ , i , bn⃗ , i) while re over (a c⃗ , i , b c⃗ , i), where bn⃗ , i > b c⃗ , i or an⃗ , i < a c⃗ , i . Deûne

(9.15) Fβ(ζ) ∶= β1/2( i + (ζ − 1)1/2

i − (ζ − 1)1/2 )
log β/2πi

, ζ ∈ C ∖ (−∞, 1].

_is function is holomorphic in the domain of its deûnition, tends to 1 as ζ →∞, and
satisûes

Fβ+(x)Fβ−(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ (−∞, 0),
β, x ∈ (0, 1).

Indeed, the function (i +
√
ζ − 1)/(i −

√
ζ − 1) maps the complement of (−∞, 1] to

the lower half-plane; its traces on (−∞, 1) are reciprocal to each other, are positive on
(0, 1), and are negative on (−∞, 0). _e stated properties now easily follow if we take
the principal branch of log β/2πi root of this function. _en

Ee ∶= MTi
⎛
⎝
(∣n⃗∣2/3ζn⃗ ,e)−σ3/4

√
2

( 1 ±i
±i 1 )(Fβ ○ (

ζn⃗ ,e(e) − ζn⃗ ,e
ζn⃗ ,e(e)

) re)
−σ3⎞

⎠

−1

is holomorphic in Ue ∖ {e}. Since ∣re(z)∣ ∼ ∣z − e∣α/2 as z → e, one can deduce as
before that Ee is holomorphic in Ue . Moreover, exactly as in the case sn⃗ > 0, we get
that RHP-Pe holds with εn⃗ ,e given by (9.14), since Fβ(ζ) = 1 +O( ζ−1/2) as ζ →∞.
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9.5 Soft-Type Edge II

Let e ∈ E c⃗ , e ∈ ∂D−i , but bn⃗ , i /∈ ∂D−n⃗ , i or an⃗ , i /∈ ∂D−n⃗ , i . In this case it necessarily holds
that bn⃗ , i = b c⃗ , i = b i or an⃗ , i = a c⃗ , i = a i .

9.5.1 Conformal Maps

By Proposition 2.3, h is bounded at e (the corresponding branch point ofR), while
hn⃗ has a simple pole at e (this time e is a branch point of Rn⃗ , but it has the same
projection e) and a simple zero z n⃗ , i or z n⃗ , i−1 that approaches e. Hence, we can write

− 3
4 ∫

z

e
(h(0)

n⃗ − h(i)
n⃗ )(x)dx =

√
z − e(z − e − єn⃗) fn⃗(z),

where 0 ≤ єn⃗ → 0 as ∣n⃗∣ → ∞ and fn⃗ is non-vanishing in some neighborhood of e and
is positive on the real line within this neighborhood (one can factor out

√
z − e, as the

square of the le�-hand side is holomorphic exactly as in (9.5) and (9.6)). _en there
exist functions ζn⃗ ,e , conformal in Ue , vanishing at e, real on R ∩Ue , and positive for
x > e in Ue such that

(9.16) − 3
4 ∫

z

e
(h(0)

n⃗ − h(i)
n⃗ )(x)dx = ζ3/2

n⃗ ,e (z) − ζn⃗ ,e(e + єn⃗)ζ 1/2n⃗ ,e(z).

Moreover, (9.3) holds, where ζe is deûned by (9.11), and the le�-hand side of (9.16) is
equal to the right-hand side of (9.12). Indeed, consider the equation

(9.17) u(z; є)(u(z; є) − p) 2 = g(z; є), g(z; є) ∶= z(z − є)2 f (z; є),
where p is a parameter, f (z; є) is positive on the real line in some neighborhood of
zero, and g1/3(z; 0) is conformal in this neighborhood. _e solution of (9.17) is given
by

(9.18) u(z; є) = 2p + v1/3(z; є) + p2v−1/3(z; є),
where v(z; є) is the branch satisfying v1/3(0; є) = −p of

(9.19) v(z; є) = g(z; є) − p3 +
√

g(z; є)( g(z; є) − 2p3) .
Choose p so that

(9.20) 2p3 = max
x∈[0,є]

g(x; є).

Conformality of g1/3(z; 0) implies that there exists the unique xє > є such that

g(x; є)(g(x; є) − 2p3) < 0, x ∈ (0, xє) ∖ {є},
g(x; є)(g(x; є) − 2p3) > 0, x > xє ,

for all є small enough. _en we can see from (9.19) that

(9.21) ∣v±(x; є)∣2 = ( g(x; є) − p3)2 − g(x; є)( g(x; є) − 2p3) = p6

for x ∈ [0, xє]. Moreover, it holds that

(9.22) v+(x; є) = p2v−1
−
(x; є), x ∈ [0, xє].
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Finally, observe that the conformality of g1/3(z; 0) yields that the change of the argu-
ment of v+(x; є) is 3π when x changes between 0 and xє . Hence, v1/3(z; є) is holo-
morphic oò [0, є], and its traces on [0, є] map this interval onto the circle centered at
the origin of radius p by (9.21). _is together with (9.22) implies that u(z; є) given by
(9.18) is conformal in some neighborhood of the origin and u(0; є) = 0. _us, ζn⃗ ,e in
(9.16) is given by

ζn⃗ ,e(z) = u(z − e; єn⃗),
where u(z; є) is the solution given by (9.18) of (9.17) with f (z; є) ∶= f 2n⃗ (z − e) and the
parameter p chosen as in (9.20).

9.5.2 Matrix Pe

Clearly, formulae (9.7) and (9.8) remain valid in this case. _en (9.9) and (9.16) imply
that the solution of RHP-Pe is given by

Pe ∶= EeTi(Ψe( ∣n⃗∣2/3ζn⃗ ,e) r−σ3
e (Φ(0)

n⃗ /Φ(i)
n⃗ )−σ3/2)D,

where Ee is given by (9.10) with ∣n⃗∣2 replaced by ∣n⃗∣2/3, Ψe = Ψ̃α ,0( ⋅ ; sn⃗) when e = b i
and Ψe = σ3Ψ̃α ,0( ⋅ ; sn⃗)σ3 when e = a i ,

sn⃗ ∶= −∣n⃗∣2/3ζn⃗ ,e(e + єn⃗),
and Ψ̃α ,β is the solution of RHP-Ψ̃α ,β ; see Section 4.3. In this case, it holds by _eo-
rem 4.1 that

εn⃗ ,e = max{ ζ 1/2n⃗ ,e(e + єn⃗), ∣n⃗∣−1/3} .

10 Model Riemann–Hilbert Problem RHP-Ψα,β

In this section we prove_eorem 4.1.

10.1 Uniqueness and Existence

_e ûrst claim of the theorem can be obtained by literally repeating the steps of [32,
Lemma 1] with e2θ+ and e2θ− in [32, Eq. (59)] and [32, Eq. (67)] replaced by eπiα+2θ+

and e−πiα−2θ− , respectively (the behavior in [32, Eq. (62)] changes as it depends on α
now, but the trace of N onR is still integrable and therefore [32, Eq. (63)] still holds).
_e fact that only the zero function solves [32, Eq. (67)] (now, with non-zero α) was,
in fact, proved in [15, Eq. (2.27)–(2.29)].

10.2 Asymptotics of RHP-Ψα ,β for s > 0

It is known thatO(η−1) is uniform for s on compact subsets of the real line [15]. _us,
we only need to prove (4.2) for s large.

10.2.1 Renormalized RHP-Ψα ,β

Set Î± ∶= {η ∶ arg(η+ 1) = ±2π/3} and let Ω̂ j , j ∈ {1, 2, 3, 4}, be the domains compris-
ing C ∖ ((−∞,∞) ∪ Î+ ∪ Î−) , numbered counter-clockwise and so that Ω̂1 contains
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the ûrst quadrant. Deûne

g(η) = 2
3
(η + 1)3/2 , η ∈ C ∖ (−∞,−1],

to be the principal branch and for convenience set τ ∶= s3/2. Let

(10.1) Ψ̂α ,β(η; τ) = sσ3/4Ψα ,β(sη; s)
⎧⎪⎪⎨⎪⎪⎩

I in Ω1 ∪Ω4 ∪ Ω̂2 ∪ Ω̂3,
( 1 0
±e±απi 1 ) in Ω2 ∖ Ω̂2, Ω3 ∖ Ω̂3,

where the sign + is used in Ω2 ∖ Ω̂2 and the sign − in Ω3 ∖ Ω̂3. _en Ψ̂α ,β solves the
following Riemann–Hilbert problem (RHP-Ψ̂α ,β):
(a) Ψ̂α ,β is holomorphic in C ∖ (Î+ ∪ Î− ∪ (−∞,∞));
(b) Ψ̂α ,β has continuous traces on Î+ ∪ Î− ∪ (−∞,−1) ∪ (−1, 0) ∪ (0,∞) that satisfy

Ψ̂α ,β+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ψ̂α ,β−( 0 1
−1 0 ) on (−∞,−1),

Ψ̂α ,β−( eαπi 1
0 e−απi ) on (−1, 0),

Ψ̂α ,β−( 1 β
0 1 ) on (0,∞),

Ψ̂α ,β−( 1 0
e±απi 1 ) on Î±;

(c) as η → 0, it holds that

Ψ̂α ,β(η; τ) = Ê(η)Sα ,β(η)A j , η ∈ Ω̂ j , j ∈ {1, 4},
where Ê is holomorphic, and Sα ,β , A1, and A4 are the same as in RHP-Ψα ,β(c);

(d) Ψ̂α ,β has the following behavior near∞:

Ψ̂α ,β(η; τ) = ( I +O(η−1)) η
−σ3/4
√

2
(1 i
i 1) e

−τg(η)σ3

uniformly in C ∖ (Î+ ∪ Î− ∪ (−∞,∞)).

10.2.2 Global Parametrix

Let

Ψ̂
(∞)(η; τ) ∶= ( 1 0

αi 1)
(η + 1)−σ3/4

√
2

(1 i
i 1)( (η + 1)1/2 + 1

(η + 1)1/2 − 1
)
−ασ3/2

e−τg(η)σ3

=∶ F(∞)(τ)e−τg(η)σ3 .
_en, as is explained in [16, Section 2.4.1], this matrix-valued function solves the fol-
lowing Riemann–Hilbert problem:

(a) Ψ̂
(∞)

is holomorphic in C ∖ (−∞, 0];
(b) Ψ̂

(∞)

has continuous traces on (−∞,−1) ∪ (−1, 0) that satisfy

Ψ̂
(∞)

+
= Ψ̂

(∞)

−

⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞,−1),
eαπiσ3 on (−1, 0),

(c) as η → 0 it holds that Ψ̂
(∞)(η; τ) = Ê(∞)(η)ηασ3/2, where Ê(∞)

is holomorphic
and non-vanishing around zero;

https://doi.org/10.4153/CJM-2015-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-043-3


1192 M. Yattselev

(d) Ψ̂
(∞)

satisûes RHP-Ψ̂α ,β(d) uniformly inC∖(−∞; 0] and the termO(η−1) does
not depend on τ.

Notice that F(∞) has the same jumps as Ψ̂
(∞)

.

10.2.3 Local Parametrix Around −1

_e solution ΨAi ∶= Ψ0,1( ⋅ ; 0) is known explicitly and is constructed with the help of
the Airy function and its derivative [9]. Set

Ψ̂
(−1)(η; τ) ∶= Ê(−1)(η)ΨAi( s(η + 1)) e±απiσ3/2 , ± Im(η) > 0,

where Ê(−1)
is holomorphic around −1 and is given by

Ê(−1)(η) ∶= F(∞)(η)( (s(η + 1))−σ3/4
√

2
(1 i
i 1) e

±απiσ3/2)
−1

, ± Im(η) > 0.

Let U−1 be the disk of radius 1/4 centered at −1 with boundary oriented counter-
clockwise. _en it is shown in [16, Section 2.4.2] that Ψ̂

(−1)
satisûes

(a) Ψ̂
(−1)

is holomorphic in U−1 ∖ ( Î+ ∪ Î− ∪ (−∞,∞)) ;

(b) Ψ̂
(−1)

has continuous traces on U−1 ∩ ( Î+ ∪ Î− ∪ (−∞,∞)) that satisfy RHP-
Ψ̂α ,β(b);

(c) it holds that

Ψ̂
(−1)(η; τ) = F(∞)(η)( I +O(τ−1)) e−τg(η)σ3

as τ →∞, uniformly for η ∈ ∂U−1 ∖ (Î+ ∪ Î− ∪ (−∞,∞)).

10.2.4 Local Parametrix Around 0

Deûne

Ψ̂
(0)(η; τ) ∶= Ê(0)(η)Sα ,β(τ)

⎧⎪⎪⎨⎪⎪⎩

A1 , Im(η) > 0,
A4 , Im(η) < 0,

where Sα ,β and A j are the same as in RHP-Ψα ,β(c) and

Ê(0)(η) ∶= Ψ̂
(∞)(η; τ)η−ασ3/2 ([A1]−1

11 0
0 [A1]−1

22
) ,

which is a holomorphic function around the origin by the properties of Ψ̂
(∞)

. Let
U0 be the disk of radius 1/4 centered at 0 with boundary oriented counter-clockwise.
_en Ψ̂

(0)
possesses the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 ∖ (−1/4, 1/4);
(b) Ψ̂

(0)
has continuous traces on (−1/4, 0) ∪ (0, 1/4) that satisfy RHP-Ψ̂α ,β(b);

(c) Ψ̂
(0)

satisûes RHP-Ψ̂α ,β(c) with Ê replaced by Ê(0)
;

(d) it holds that

Ψ̂
(0)(η; τ) = F(∞)(η)( I +O(e−cτ)) e−τg(η)σ3
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as τ →∞ for some c > 0, uniformly for η ∈ ∂U0 ∖ {−1/4, 1/4}.
Indeed, properties (a,b,c) easily follow from RHP-Ψ̂α ,β(b,c) and the holomorphy of
Ê(0)

. To get (d), write [Sα ,β]12(η) = ηα/2κ(η), where

κ(η) = 0, κ(η) = 1 − β
2πi

log η, or κ(η) = 1 + β
2πi

log η

depending on whether α is not an integer, an even integer, or an odd integer. Recall
also that A1 and A4 are upper triangular matrices and [A1]i i = [A4]i i for i ∈ {1, 2}.
_en

Ψ̂
(0)(η; τ) = F(∞)(η)e−τg(η)σ3 ([A j]−1

11 0
0 [A j]−1

22
)(1 κ(η)

0 1 )A j

= F(∞)(η)(1 e−2τg(η)([A j]22κ(η) + [A j]12)/[A j]11
0 1 ) e−τg(η)σ3 ,

fromwhich property (d) can be easily deduced as τ > 0 andRe(g(η)) > 0 for η ∈ ∂U0.

10.2.5 Asymptotics of RHP-Ψα ,β

Denote by

Σ(Rα ,β) ∶= ∂U−1 ∪ ∂U0 ∪ ((Î− ∪ Î+ ∪ (−1,∞)) ∩ (C ∖ (U−1 ∪U0))) ,

and let Σ○(Rα ,β) be Σ(Rα ,β) with the points of self-intersection removed. Put

Rα ,β(η; τ) ∶= Ψ̂α ,β(η; τ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ̂
(−1)(η; τ)−1 , η ∈ U−1 ,

Ψ̂
(0)(η; τ)−1 , η ∈ U0 ,

Ψ̂
(∞)(η; τ)−1 , η ∈ C ∖ (U0 ∪U−1) .

_en Rα ,β has the following properties:
(a) Rα ,β is holomorphic in C ∖ Σ(Rα ,β);
(b) Rα ,β has continuous traces on Σ○(Rα ,β) that satisfy R(0)

α ,β+ ∶= R(0)
α ,β−(I +O(τ−1))

as τ →∞;
(c) it holds that Rα ,β(η; τ) = I +O(η−1) as η →∞ uniformly in C ∖ Σ(Rα ,β).

Property (a) follows from the facts that Ψ̂
(e)

has the same jumps as Ψ̂α ,β in Ue ,
e ∈ {−1, 0}, Ψ̂(∞)

has the same jump across (−∞,−1) as Ψ̂α ,β , and Ψ̂
(0)

has the
same local behavior around 0 as Ψ̂α ,β . Property (c) follows easily from the fact that
both Ψ̂

(∞)

and Ψ̂α ,β satisfy RHP-Ψ̂α ,β(d). Property (b) on ∂Ue , e ∈ {−1, 0}, is the
consequence of the fact

R−1
α ,β−Rα ,β+ = Ψ̂

(∞)

Ψ̂
(e)−1 = I + F(∞)O(τ−1)F(∞)−1 .
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Finally, on the rest of Σ(Rα ,β) it holds that

Rα ,β+ = Rα ,β−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I + F(∞)

−
( 0 e−2τg

0 0 )F(∞)−1
+

on (−3/4,−1/4),
I + F(∞)( 0 βe−2τg

0 0
)F(∞)−1 on (1/4,∞),

I + F(∞)( 0 0
e±απi e2τg 0 )F

(∞)−1 on Î± ∖U−1 .

As g(η) > 0 for η ∈ (−1,∞) and g(η) < 0 for η ∈ Î±, the last part of property (b)
follows. Given (a,b,c) it is by now standard to conclude that

Rα ,β(η; τ) = I +O( 1
τ(1 + ∣η∣))

as τ →∞ uniformly for η ∈ C ∖ Σ(Rα ,β). _us,

Ψ̂α ,β(η; τ) =
η−σ3/4
√

2
( I +O( 1

τ
√

1 + ∣η∣
))( I +O(η−1/2)) (1 i

i 1) e
−τg(η)σ3

= η
−σ3/4
√

2
( I +O(η−1/2)) (1 i

i 1) e
−τg(η)σ3

(10.2)

as η →∞ uniformly for η ∈ C∖Σ(Rα ,β) and τ large. Estimate (4.2) now follows from
(10.1).

10.3 Asymptotics of RHP-Ψα ,β for s < 0

In this section we assume that β /= 0 and deûne

log β = log ∣β∣ + i arg(β), arg(β) ∈ (−π, π).

Again, we only need to prove (4.2) when s → −∞.

10.3.1 Renormalized RHP-Ψα ,β

Set Ĵ± to be two Jordan arcs connecting 0 and 1, oriented from 0 to 1, and lying in the
ûrst (+) and the fourth (−) quadrants. Denote further by Ω± the domains delimited
by Ĵ± and [0, 1]. Deûne

g(η) = 2
3
(η − 1)3/2 , η ∈ C ∖ (−∞, 1],

to be the principal branch and set for convenience τ ∶= (−s)3/2. Let

(10.3) Ψ̂α ,β(η; τ) = (−s)σ3/4Ψα ,β(−sη; s)
⎧⎪⎪⎨⎪⎪⎩

( 1 0
∓1/β 1 ) in Ω± ,

I otherwise.

Put for brevity Σ(Ψ̂α ,β) ∶= I+∪I−∪(−∞,∞)∪ Ĵ+∪ Ĵ−. _en Ψ̂α ,β solves the following
Riemann–Hilbert problem (RHP-Ψ̂α ,β):
(a) Ψ̂α ,β is holomorphic in C ∖ Σ(Ψ̂α ,β);
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(b) Ψ̂α ,β has continuous traces on Σ(Ψ̂α ,β) ∖ {0, 1} that satisfy

Ψ̂α ,β+ = Ψ̂α ,β−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 0 β
−1/β 0 ) on (0, 1),

( 1 β
0 1 ) on (1,∞),

and

Ψ̂α ,β+ = Ψ̂α ,β−

⎧⎪⎪⎨⎪⎪⎩

( 1 0
1/β 1 ) on Ĵ±,

( 1 0
e±απi 1 ) on I±;

(c) as η → 0, it holds that

Ψ̂α ,β(η; τ) = O(∣ζ ∣
α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2

∣ζ ∣α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2) and Ψ̂α ,β(η; τ) = O(1 log ∣ζ ∣
1 log ∣ζ ∣)

when α /= 0 and α = 0, respectively;
(d) Ψ̂α ,β has the following behavior near∞:

Ψ̂α ,β(η; τ) = ( I +O(η−1)) η
−σ3/4
√

2
(1 i
i 1) e

−τg(η)σ3

uniformly in C ∖ ( I+ ∪ I− ∪ (−∞,∞)) .

10.3.2 Global Parametrix

Set Ψ̂
(∞)(η; τ) ∶= F(∞)(η)e−τg(η)σ3 , where

F(∞)(η) ∶= ( 1 0
− 1

πi log β 1)
(η − 1)−σ3/4

√
2

(1 i
i 1) F

−σ3
β (η)

and the function Fβ is given by (9.15). Now, it is a straightforward veriûcation to see
that
(a) Ψ̂

(∞)

is holomorphic in C ∖ (−∞, 1];
(b) Ψ̂

(∞)

has continuous traces on (−∞, 1) that satisfy

Ψ̂
(∞)

+
= Ψ̂

(∞)

−

⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 0 β
−1/β 0 ) on (0, 1);

(c) Ψ̂
(∞)

satisûes RHP-Ψ̂α ,β(d) uniformly inC∖(−∞; 1], and the termO(η−1) does
not depend on τ.

Again, notice that Ψ̂
(∞)

and F(∞) satisfy the same jump relations.

10.3.3 Local Parametrix Around 1

Denote by U1 the disk centered at 1 of radius 1/4 with boundary oriented counter-
clockwise. Choose arcs Ĵ± so that {η − 1 ∶ η ∈ Ĵ± ∩ U1} ⊂ I± . As before, let ΨAi =
Ψ0,1( ⋅ ; 0). Set

Ψ̂
(1)(η; τ) ∶= Ê(1)(η)ΨAi( − s(η − 1))β−σ3/2 ,
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where Ê(1)
is holomorphic around 1 and is given by

Ê(1)(η) ∶= F(∞)(η)(
( − s(η − 1))−σ3/4

√
2

(1 i
i 1) β

−σ3/2)
−1

.

_en it can be checked that Ψ̂
(1)

satisûes
(a) Ψ̂

(1)
is holomorphic in U1 ∖ Σ(Ψ̂α ,β);

(b) Ψ̂
(1)

has continuous traces on U1 ∩ Σ(Ψ̂α ,β) that satisfy RHP-Ψ̂α ,β(b);
(c) it holds that

Ψ̂
(1)(η; τ) = F(∞)(η)( I +O(τ−1)) e−τg(η)σ3 ,

as τ →∞, uniformly for η ∈ ∂U1 ∖ Σ(Ψ̂α ,β).

10.3.4 Local Parametrix Around 0

Denote byU0 the disk centered at 0 of radius 1/4whose boundary is oriented counter-
clockwise. Let

m(η) ∶= 3 ∓ 2ig(η), ± Im(η) > 0.
_en m is conformal inU0,m(0) = 0, andm(x) > 0 for x ∈ (0, 1/4). Choose the arcs
Ĵ± so that m( Ĵ±) ⊂ J±. Deûne

Ψ̂
(0)(η; τ) ∶= Ê(0)(η)D(Φα ,β(τm(η))) ,

where Φα ,β is the solution of RHP-Φα ,β , D(Φα ,β(τm)) is a holomorphic deforma-
tion ofΦα ,β(τm) that moves the jumps from (τm)−1(I±) to I±, and Ê

(0)
is holomor-

phic around 0 and is given by

(10.4) Ê(0)(η) ∶= F(∞)(η)( e−3τiσ3/2( iτm(η)) log βσ3/2πiB±)
−1

(the constant matrices B± were also deûned in RHP-Φα ,β). To see that E(0) is indeed
holomorphic, recall that

B+ = B− ( 0 1
−1 0) and (ix)log β/2πi

−
= β(ix)log β/2πi

+

for x > 0, which implies that the function in parenthesis in (10.4) has the same jump
as F(∞) on (−1/4, 1/4). Observe further that

B±e∓iτm(η)σ3/2 = e3τiσ3/2B±e−τg(η)σ3 , ± Im(η) > 0.

_erefore, it follows from RHP-Φα ,β(d) that

Ψ̂
(0)(η; τ) = F(∞)(η)( e−3τiσ3/2( iτm(η)) log βσ3/2πiB±)

−1
( I +O(τ−1))×

× ( e−3τiσ3/2( iτm(η)) log βσ3/2πiB±) e−τg(η)σ3 .

Finally, notice that

∣τlog β/2πi∣ = τarg(β)/2π , arg(β) ∈ (−π, π).
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_us, Ψ̂
(0)

has the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 ∖ Σ(Ψ̂α ,β);
(b) Ψ̂

(0)
satisûes RHP-Ψ̂α ,β(b) on Σ(Ψ̂α ,β) ∩U0;

(c) Ψ̂
(0)

satisûes RHP-Ψ̂α ,β(c) within U0 (by RHP-Φα ,β(c));
(d) it holds that

Ψ̂
(0)(η; τ) = F(∞)(η)( I +O(τarg(β)/π−1)) e−τg(η)σ3

as τ →∞ uniformly on ∂U0 ∖ Σ(Ψ̂α ,β).

10.3.5 Asymptotics of RHP-Ψα ,β

Deûne

Rα ,β(η; τ) ∶= Ψ̂α ,β(η; τ)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ψ̂
(0)(η; τ)−1 , η ∈ U0 ,

Ψ̂
(1)(η; τ)−1 , η ∈ U1 ,

Ψ̂
(∞)(η; τ)−1 , η ∈ C ∖ (U0 ∪U 1) .

Notice that the jumps of Rα ,β across Ĵ± ∖ (U0 ∪U 1) are equal to

I + F(∞)−1 ( 0 0
e2τg 0) F

(∞) .

Since Re(g) < 0 there, we get exactly as in the case s > 0 that

Rα ,β(η; τ) = I +O( 1
τ1−arg(β)/π(1 + ∣η∣))

as τ →∞ uniformly for η ∈ C∖(∂U0 ∪ ∂U1 ∪(Σ(Ψ̂α ,β)∖(U0 ∪U 1))). Hence, (10.2)
still holds and therefore (4.2) follows from (10.3).

10.4 Asymptotics of RHP-Ψ̃α ,β

Below, we assume that β = 0. As before, we only need to prove (4.3) when s → −∞.

10.4.1 Renormalized RHP-Ψ̃α ,β

Deûne

g(η) = 2
3
η1/2(η − 1), η ∈ C ∖ (−∞, 1],

to be the principal branch and for convenience set τ ∶= (−s)3/2. Let

(10.5) Ψ̂α(η; τ) = (−s)σ3/4Ψ̃α ,0(−sη; s).

_en Ψ̂α solves the following Riemann–Hilbert problem (RHP-Ψ̂α ,β):
(a) Ψ̂α is holomorphic in C ∖ ( I+ ∪ I− ∪ (−∞, 0]) ;
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(b) Ψ̂α has continuous traces on I+ ∪ I− ∪ (−∞, 0) that satisfy

Ψ̂α+ = Ψ̂α−

⎧⎪⎪⎨⎪⎪⎩

( 0 1
−1 0 ) on (−∞, 0),

( 1 0
e±απi 1 ) on I±;

(c) as η → 0 it holds that

Ψ̂α(η; τ) = O(∣ζ ∣
α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2

∣ζ ∣α/2 ∣ζ ∣α/2 + ∣ζ ∣−α/2) and Ψ̂α(η; τ) = O(1 log ∣ζ ∣
1 log ∣ζ ∣)

when α /= 0 and α = 0, respectively;
(d) Ψ̂α has the following behavior near∞:

Ψ̂α(η; τ) = (I +O(η−1))η
−σ3/4
√

2
(1 i
i 1) e

−τg(η)σ3

uniformly in C ∖ (I+ ∪ I− ∪ (−∞,∞)).

10.4.2 Global Parametrix

Set

Ψ̂
(∞)(η; τ) ∶= η

−σ3/4
√

2
(1 i
i 1) e

−τg(η)σ3 =∶ F(∞)(η)e−τg(η)σ3 .

It is a straightforward veriûcation to see that

(a) Ψ̂
(∞)

is holomorphic in C ∖ (−∞, 0];
(b) Ψ̂

(∞)

has continuous traces on (−∞, 0) that satisfy Ψ̂
(∞)

+
= Ψ̂

(∞)

−
( 0 1
−1 0 ) ;

(c) Ψ̂
(∞)

satisûes RHP-Ψ̂α(d) with O(η−1) ≡ 0.

10.4.3 Local Parametrix Around 0

Denote byU0 the disk centered at 0 of small enough radius so that g2(η) is conformal
in U0. Notice that g2(x) > 0 for {x > 0} ∩U0. Deûne

Ψ̂
(0)(η; τ) ∶= Ê(0)(η)D(Ψα((τg(η)/2)2)) ,

where Ψα is the solution of RHP-Ψα , D(Ψα((τg/2)2)) is a holomorphic deforma-
tion of Ψα((τg/2)2) that moves the jumps from (τ2g2/4)−1(I±) to I±, and Ê

(0)
is

holomorphic around 0 and is given by

Ê(0)(η) ∶= F(∞)(η)D(F(∞)−1((τg/2)2)) .

Clearly, Ψ̂
(0)

has the following properties:

(a) Ψ̂
(0)

is holomorphic in U0 ∖ (I+ ∪ I− ∪ (−∞,∞));
(b) Ψ̂

(0)
satisûes RHP-Ψ̂α(b) on (I+ ∪ I− ∪ (−∞,∞)) ∩U0;

(c) Ψ̂
(0)

satisûes RHP-Ψ̂α(c) within U0 (by RHP-Ψα(c));
(d) it holds that Ψ̂

(0)(η; τ) = F(∞)(η)( I + O(τ−1)) e−τg(η)σ3 as τ → ∞ uniformly
on ∂U0 ∖ (I+ ∪ I− ∪ (−∞,∞)).
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10.4.4 Asymptotics of RHP-Ψ̃α ,β

Deûne

Rα(η; τ) ∶= Ψ̂α(η; τ)
⎧⎪⎪⎨⎪⎪⎩

Ψ̂
(0)(η; τ)−1 , η ∈ U0 ,

Ψ̂
(∞)(η; τ)−1 , η ∈ C ∖U0 .

Exactly as before, we have that

Rα(η; τ) = I +O( 1
τ(1 + ∣η∣))

as τ →∞ uniformly for η ∈ C ∖ (∂U0 ∪ ((I+ ∪ I− ∪ (−∞,∞)) ∖U0)). Hence, (4.3)
follows from (10.5).
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