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Periodic Solutions of Almost Linear
Volterra Integro-dynamic Equations on
Periodic Time Scales

Youssef N Raffoul

Abstract. Using Krasnoselskii’s fixed point theorem, we deduce the existence of periodic solutions of
nonlinear system of integro-dynamic equations on periodic time scales. These equations are studied
under a set of assumptions on the functions involved in the equations. The equations will be called
almost linear when these assumptions hold. The results of this paper are new for the continuous and
discrete time scales.

1 Introduction and Preliminaries

Consider the nonlinear, infinite delay, Volterra integro-dynamic equation on time
scales

(1.1) x∆(t) = a(t)h(x(t)) +

∫ t

−∞
C(t, s)g(x(s))∆s + p(t), t ∈ (−∞,∞).

We assume that the functions h, a, p, and g are continuous and that there exist
constants H, G and positive constants H∗, G∗ such that

|h(x)−Hx| ≤ H∗,(1.2)

and

|g(x)− Gx| ≤ G∗.(1.3)

Equation (1.1) will be called almost linear if (1.2) and (1.3) hold. Existence of peri-
odic solutions of Volterra-type nonlinear integro-differential and summation equa-
tions has been intensively investigated in the literature (see [5, 9] and references
therein). In recent years, time scales (closed nonempty subset of the real numbers R)
and time scale versions of well-known equations have gained much attention (e.g.,
[3, 4, 10, 11, 14]) since the introduction of the new derivative concept by S. Hilger.
This derivative (called ∆-derivative) gives the ordinary derivative if the time scale
(denoted T) is the set of reals R, and the forward difference operator if T = Z. Thus,
the need for obtaining separate results for discrete and continuous cases is avoided
by unifying them under the umbrella of time scale calculus. For a comprehensive
review of this topic we direct the reader to the monograph [4]. Since there are many
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Almost Linear Volterra Equations 175

time scales other than R and Z, the investigation of dynamic equations on time scales
yields a general theory. Among time scales, periodic ones deserve special interest,
since they enable researchers to develop a theory for the existence of periodic so-
lutions of dynamic equations on time scales (see for example [10, 11]). This paper
combines the known continuous and discrete cases with many other time scales that
are periodic. Thus the results of this paper are new for the continuous and discrete
cases.

In [1], the authors used the notion of degree theory in combination with Lya-
punov functionals and showed the existence of periodic solutions of system of
integro-dynamic equations on time scales without the requirement of (1.2) and (1.3).

For more on integro-differential equations, we refer to [6–8, 12, 13, 17–19].
For clarity, we restate the following definitions and introductory examples, which

can be found in [10]. Also, for the sake of brevity, we assume familiarity with the
basic properties of ∆-derivatives and ∆-integrals. For further details consult [4].

Definition 1.1 A time scale T is said to be periodic if there exists a P > 0 such that
t ± P ∈ T for all t ∈ T. If T 6= R, the smallest positive P is called the period of the
time scale.

Example 1.2 The following time scales are periodic:

(i) T = Z has period P = 1,
(ii) T = hZ has period P = h,
(iii) T = R,
(iv) T =

⋃∞
i=−∞[(2i − 1)h, 2ih], h > 0 has period P = 2h,

(v) T = {t = k− qm : k ∈ Z,m ∈ N0}, where 0 < q < 1 has period P = 1.

Remark 1.3 All periodic time scales are unbounded above and below.

Definition 1.4 Let T 6= R be a periodic time scale with period P. We say that the
function f : T→ R is periodic with period T if there exists a natural number n such
that T = nP, f (t ± T) = f (t) for all t ∈ T and T is the smallest number such that
f (t ± T) = f (t). If T = R, we say that f is periodic with period T > 0 if T is the
smallest positive number such that f (t ± T) = f (t) for all t ∈ T.

Define the forward jump operator σ by

σ(t) = inf{s > t : s ∈ T}

and the graininess function µ by µ(t) = σ(t) − t . A point t of a time scale is called
right scattered if σ(t) > t . Hereafter, we denote by xσ the composite function x ◦ σ.

Remark 1.5 If T is a periodic time scale with period P, then σ(t±nP) = σ(t)±nP.
Consequently, the graininess function µ satisfies µ(t±nP) = σ(t±nP)− (t±nP) =
σ(t)− t = µ(t) and so, is a periodic function with period P.

Let T be a periodic time scale with period P. Let T > 0 be fixed, and if T 6=
R, then T = nP for some n ∈ N. In the following, we present some preliminary
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material regarding the exponential function on time scales that we will need through
the remainder of the paper.

Definition 1.6 A function h : T → R is said to be regressive provided that
1 + µ(t)h(t) 6= 0 for all t ∈ Tκ. The set of all regressive rd-continuous functions
h : T→ R is denoted by R, while the set R+ is given by

R+ = {h ∈ R : 1 + µ(t)h(t) > 0 for all t ∈ T}.

Let h ∈ R and µ(t) 6= 0 for all t ∈ T. The exponential function on T is defined by

eh(t, s) = exp

(∫ t

s

1

µ(z)
Log(1 + µ(z)h(z)) ∆z

)
,

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also, the expo-
nential function y(t) = ep(t, s) is the solution to the initial value problem y∆ =
p(t)y, y(s) = 1. Other properties of the exponential function are given in the fol-
lowing lemma.

Lemma 1.7 ( [4, Theorem 2.36]) Let p, q ∈ R.

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii) 1
ep(t,s) = e	p(t, s), where	p(t) = − p(t)

1+µ(t)p(t) ;

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);

(vi)
(

1
ep( · ,s)

)∆
= − p(t)

eσp ( · ,s) .

2 Periodic Solutions

Let T be a periodic time scale with period P. Let T > 0 be fixed, and if T 6= R, then
T = nP for some n ∈ N. In this section we investigate the existence of a periodic
solution of (1.1) using Krasnoselskii’s fixed point theorem.

We start with a statement of Krasnoselskii’s fixed point theorem.

Theorem 2.1 (Krasnoselskii [17]) Let K be a closed, convex, non-empty subset of a
Banach space M. Suppose that A and B map K into M such that

(i) x, y ∈ K, implies Ax + By ∈ K;
(ii) A is continuous and AK is contained in a compact subset of M;
(iii) B is a contraction mapping.

Then there exists z ∈ K with z = Az + Bz.

The next lemma is essential to our next result. Its proof can be found in [11].

Lemma 2.2 Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖ = ‖x‖.
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Lemma 2.3 Let T be a periodic time scale with the period P. Suppose that
f : T× Tκ → R satisfies the assumptions of [4, Theorem 1.117], then[∫ t

t−T
f (t, s)∆s

]∆

= f (σ(t), t)− f (σ(t), t − T) +

∫ t

t−T
f ∆(t, s)∆s,

where T = n0P; n0 ∈ N is a positive constant.

Proof
Case 1: If σ(t − T) = t , then we have µ(t) = T = µ(t − T), and therefore from

[4, Theorem 1.117], we have∫ t

t−T
f ∆(t, s)∆s =

1

T

∫ σ(t)−T

t−T
µ(t) f ∆(t, s)∆s

=
1

T

∫ σ(t)−T

t−T

[
f (σ(t), s)− f (t, s)

]
∆s

=
µ(t − T)

T

[
f (σ(t), t − T)− f (t, t − T)

]
= f (σ(t), t − T)− f (t, t − T).

On the other hand, we find∫ t

t−T
f (t, s)∆s = µ(t − T) f (t, t − T) = T f (t, t − T),

and therefore,[∫ t

t−T
f (t, s)∆s

]∆

= T f ∆(t, t − T) = µ(t) f ∆(t, t − T)

= f (σ(t), σ(t − T))− f (t, t − T)

= f (σ(t), t)− f (σ(t), t − T) + f (σ(t), t − T)− f (t, t − T)

= f (σ(t), t)− f (σ(t), t − T) +

∫ t

t−T
f ∆(t, s)∆s.

Case 2: Let σ(t − T) 6= t . Then σ(t − T) should be less than t , since T > 0. Hence
there exists a number T0 between t − T and t such thatt − T < T0 < t. Thus,∫ t

t−T
f (t, s)∆s =

∫ T0

t−T
f (t, s)∆s +

∫ t

T0

f (t, s)∆s.

The proof is completed by making use of [4, Theorem 1.117].

In this section we assume that for all (t, s) ∈ T× T,

(2.1) sup
t∈T

∫ t

−∞
|C(t, s)| ∆s <∞.

We assume a ∈ R+. This implies that e	(Ha)(t, t − T) < 1. Suppose there exists a
constant T > 0 such that for t ∈ T, we have

(2.2) a(t + T) = a(t), p(t + T) = p(t), C(t + T, s + T) = C(t, s).
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Let M be the complete metric space of all continuous T-periodic functions
φ : (−∞,∞) → (−∞,∞) with the supremum metric. Then for any positive con-
stant m the set

(2.3) PT = { f ∈ M : ‖ f ‖ ≤ m}

is a closed convex subset of M.

Lemma 2.4 If x ∈ PT , then x is a solution of equation (1.1) if and only if

x(t) = [1−e	(Ha)(t, t−T)]−1

∫ t

t−T

[
Ha(u)xσ(u)+a(u)h(x(u))+k(u)

]
e	(Ha)(t, u)∆u,

where

k(t) = p(t) +

∫ t

−∞
C(t, s)

[
g(x(s))− Gx(s)

]
∆s +

∫ t

−∞
C(t, s)Gx(s)∆s.

Proof For convenience we put (1.1) in the form

(2.4) x∆(t) + Ha(t)xσ(t) = Ha(t)xσ(t) + a(t)h(x(t)) + p(t)

+

∫ t

−∞
C(t, s)

[
g(x(s))− Gx(s)

]
∆s +

∫ t

−∞
C(t, s)Gx(s)∆s.

Let

k(t) = p(t) +

∫ t

−∞
C(t, s)

[
g(x(s))− Gx(s)

]
∆s +

∫ t

−∞
C(t, s)Gx(s)∆s.

Then we may write (2.4) as

(2.5) x∆(t) + Ha(t)xσ(t) = Ha(t)xσ(t) + a(t)h(x(t)) + k(t).

Let x(t) ∈ PT and assume (2.2). Multiply both sides of (2.5) by eHa(t, 0) and then
integrate both sides from t − T to t to obtain

eHa(t, 0)x(t)− eHa(t − T, 0)x(t − T) =∫ t

t−T

[
Ha(u)xσ(u) + a(u)h(x(u)) + k(u)

]
eHa(u, 0)∆u.

Divide both sides of the above equation by eHa(t, 0) and use the fact that x(t − T) =
x(t) to obtain

x(t)[1− e	(Ha)(t, t − T)] =∫ t

t−T

[
Ha(u)xσ(u) + a(u)h(x(u)) + k(u)

]
e	(Ha)(t, u)∆u,

where we have used Lemma 1.7 to simplify the exponentials.
Since every step is reversible and by using Lemma 2.3, the converse holds.

https://doi.org/10.4153/CMB-2014-046-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-046-4


Almost Linear Volterra Equations 179

Define mappings A and B from PT into M as follows. For φ ∈ PT ,

(Aφ)(t) = [1− e	(Ha)(t, t−T)]−1
{ ∫ t

t−T
a(u)

[
h(φ(u)) + Hφσ(u)

]
e	(Ha)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
C(u, s)

[
g(φ(s))− Gφ(s)

]
∆s e	(Ha)(t, u)∆u

}
,

and for ψ ∈ PT

(Bψ)(t) = [1− e	(Ha)(t, t − T)]−1
{ ∫ t

t−T

∫ u

−∞
C(u, s)Gψ(s) ∆s e	(Ha)(t, u)∆u

+

∫ t

t−T
p(u)e	(Ha)(t, u)∆u

}
.

It can be easily verified that both (Aφ)(t) and (Bψ)(t) are T-periodic and continuous
in t . Assume

(2.6)

sup
t∈T

∣∣ [1− e	(Ha)(t, t − T)]−1
∣∣ ∫ t

t−T

∫ u

−∞
|C(u, s)|G∗|ψ(s)|∆s e	(Ha)(t, u)∆u

≤ α < 1,

and

(2.7) sup
t∈T

∣∣ [1− e	(Ha)(t, t − T)]−1
∣∣{ ∫ t

t−T
|a(u)|H∗e	(Ha)(t, u)∆u

+

∫ t

t−T

∫ u

−∞
G∗|C(u, s)|∆s e	(Ha)(t, u)∆u

}
≤ β <∞.

Choose the constant m of (2.3) satisfying

(2.8) sup
t∈T

∣∣ [1− e	(Ha)(t, t − T)]−1
∣∣ ∫ t

t−T
|p(u)|e	(Ha)(t, u)∆u + αm + β ≤ m.

Lemma 2.5 Assume (2.2), (2.6), and (2.8). Then map B is a contraction from PT

into PT .

Proof For φ ∈ PT ,

|(Bφ)(t)| ≤ m
∣∣ [1− e	(Ha)(t, t − T)]−1

∣∣ ∫ t

t−T

∫ u

−∞
|C(u, s)|G ds e	(Ha)(t, u)∆u

+
∣∣1− e	(Ha)(t, t − T)]−1

∣∣ ∫ t

t−T
|p(u)|e	(Ha)(t, u)∆u

≤ sup
t∈T

∣∣1− e	(Ha)(t, t − T)]−1
∣∣ ∫ t

t−T
|p(u)|e	(Ha)(t, u)∆u + αm < m.

For φ, ψ ∈ PT , we obtain

|(Bφ)(t)− (Bψ)(t)| ≤ α‖φ− ψ‖
using (2.6). This proves that B is a contraction mapping from PT into PT .
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Lemma 2.6 Assume (1.1), (1.2), (2.1), (2.2), (2.7), and (2.8). Then map A from PT

into PT is continuous, and APT is contained in a compact subset of M.

Proof For any φ ∈ PT , it follows from (2.7) and (2.8) that

(2.9) |(Aφ)(t)| ≤ β ≤ m.

So, A maps PT into PT , and the set {Aφ} for φ ∈ PT is uniformly bounded. To
show that A is a continuous map we let {φn} be any sequence of functions in PT with
‖φn − φ‖ → 0 as n→∞. Then one can easily verify that

‖Aφn − Aφ‖ → 0 as n→∞.

This proves that A is a continuous mapping.

It is trivial to show that |(Aφ)∆(t)| is bounded. This would show that the set
{Aφ} for φ ∈ PT is equicontinuous, by using (2.9). Therefore, by the Arzela–Ascoli
Theorem, APT is contained in a compact subset of M.

We are now ready to use Krasnoselskii’s fixed point theorem to show the existence
of a continuous T-periodic solution of (1.1).

Theorem 2.7 Suppose the assumptions of Lemmas 2.5 and 2.6 hold. Then (1.1) has
a continuous T-periodic solution.

Proof From φ, ψ ∈ PT , we get

|(Aφ)(t) + (Bψ)(t)|

≤ sup
t≥0

∣∣1− e	(Ha)(t, t − T)]−1
∣∣ ∫ t

t−T
|p(u)|e	(Ha)(t, u)∆u + αm + β

≤ m,

which proves that Aφ + Bψ ∈ PT .
Therefore, by Krasnoselskii’s theorem there exists a function x(t) in PT such that

x(t) = Ax(t) + Bx(t).

This proves that (1.1) has a continuous T-periodic solution x(t).
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