
Appendix H

Pion electroproduction

Much can be said about the amplitude for pion electroproduction from
the nucleon, N(e, e′ π)N, on general grounds. This is the first inelastic
process one encounters in scattering electrons from protons or neutrons.
The development in this appendix follows [Fu58, Wa68, Pr69, Wa84].
The pioneering work on the photoproduction process was carried out by
CGLN [Ch57]. Other important early references on pion electroproduction
include [De61, Za66, Vi67, Ad68, Pr70].

The kinematic situation is shown in Fig. 13.1; here particle X is now
a pion. The laboratory cross section is given in terms of the covariant
matrix elements of the current in Eq. (13.41) by Eq. (13.47). The angular
distribution of the pions in the C-M system is given in terms of the
helicity amplitudes by Eq. (13.68). With a transition to the L–S basis, and
unobserved polarizations, the angular distribution takes the form in Eqs.
(13.71, F.13). Here for the nucleon Jπ = 1/2+ and for pseudoscalar pions
η = η1η2ηX = −1.

From Lorentz invariance, the S-matrix for the process N(e, e′ π)N in the
one-photon-exchange approximation can be written as

Sfi = − (2π)4

Ω
iδ(4)(k1 + p1 − k2 − p2 − q)

(
m2

2ωqE1E2Ω3

)1/2

Tfi

Tfi = 4πα[iū(k2)γμu(k1)]
1

k2
Jμ

Jμ =

(
2ωqE1E2Ω

3

m2

)1/2

〈qp(−)
2 |Jμ|p1〉 (H.1)

Assume one has a theory for the pion–nucleon interaction with a set of
Feynman diagrams and Feynman rules so that an expression for Tfi is at
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hand. Define the Møller potential by

εμ ≡ ū(k2)γμu(k1)
1

k2
(H.2)

where, as before, k ≡ k1 − k2. The quantity εμJμ is then a Lorentz scalar.1

Conservation of the electromagnetic current states that the amplitude
must vanish under the replacement εμ → kμ

kμJμ = 0 (H.3)

With the aid of the Dirac equation and current conservation, the tran-
sition amplitude can always be reduced to the following form

εμJμ = ū(p2)

[
6∑

i=1

ai(W,Δ2, k2) εμM
(i)
μ

]
u(p1) (H.4)

The Dirac spinors for the nucleon are now normalized to ūu = 1. The four-
momentum transfer to the nucleon used here, and mean four-momentum
used below, are defined by

Δ ≡ 1

2
(k − q)

P ≡ 1

2
(p1 + p2) (H.5)

There are six independent kinematic invariants, and they can be taken
to be [Fu58]

MA =
1

2
iγ5

[
ε/ k/ − k/ ε/

]
MB = 2iγ5 [(P · ε)(q · k) − (P · k)(q · ε)]
MC = γ5

[
ε/ (q · k) − k/ (q · ε)

]
MD = 2γ5

[
ε/ (P · k) − k/ (P · ε)

]
− imγ5

[
ε/ k/ − k/ ε/

]
ME = iγ5

[
(k · ε)(q · k) − (q · ε) k2

]
Mf = γ5

[
k/ (k · ε) − ε/ k2

]
(H.6)

Here the Feynman notation v/ ≡ γμvμ is employed. Current conservation
is evidently satisfied since the replacement ε → k causes each invari-
ant to vanish identically.2 Furthermore, in photoproduction, the last two
invariants are absent since k2 = k · ε = 0 in that case [Ch57].

1 Strictly speaking one must renormalize the electron wave functions with a factor

(E/me)
1/2 so that ūu = 1 for this to be true [Bj65]; however, since all subsequent

expressions in this appendix are linear in ε (and we know how to get the correct cross

section) the overall normalization of ε here plays no role.
2 Recall v/ v/ = v2.
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Without loss of generality, one can reduce the transition amplitude to
an expression taken between two-component Pauli spinors by substituting
the explicit form of the Dirac spinors introduced previously in Eq. (19.9)
and now normalized to ūu = 1

u(p, s) =

(
Ep + m

2m

)1/2

⎛
⎜⎝

ηs

σ·p
Ep + m

ηs

⎞
⎟⎠ (H.7)

Here η↑ =

(
1
0

)
and η↓ =

(
0
1

)
represent spin up and down along

the z-axis, taken to be the direction of the incident nucleon in the C-M
system as in Fig. 13.3. Substitution of Eq. (H.7) in Eq. (H.6) and explicit
evaluation of the Dirac matrix products leads to the following equivalent,
but still exact, expression for the spatial part of the transition matrix
element expressed in term of Pauli matrices in the C-M system

ε̂ · J = η†
s2

[
6∑

i=1

Gi(W,Δ2, k2)mi

]
ηs1

m1 = iσ · ε̂

m2 = σ · q̂
[
σ · (k̂ × ε̂)

]
m3 = iσ · k̂ (q̂ · ε̂) m5 = iσ · q̂ (k̂ · ε̂)

m4 = iσ · q̂ (q̂ · ε̂) m6 = iσ · k̂ (k̂ · ε̂) (H.8)

In this expression v̂ denotes a unit vector. The linear relations between
the amplitudes ai referred to as {A,B, . . . , E} and the Gi is given by
[Wa68, Wa84]

G1 =

[
(E1 + m)(E2 + m)

4m2

]1/2

(W − m)

×
[
A + (W − m)D − k · q

W − m
(C − D) +

k2

W − m
F

]

G2 =
|q| k�(W + m)

[4m2(E1 + m)(E2 + m)]1/2

×
[

−A + (W + m)D − k · q
W + m

(C − D) +
k2

W + m
F

]

G3 = |q| k�(W + m)

[
E2 + m

4m2(E1 + m)

]1/2

×
[
C − D + (W − m)B − k2

W + m
E

]
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G4 = q2 (W − m)

[
E1 + m

4m2(E2 + m)

]1/2

×
[
C − D − (W + m)B +

k2

W − m
E

]

G5 =
|q| k�

[4m2(E1 + m)(E2 + m)]1/2

× {k0 [−A + (W + m)(D − F) − k · q(B − E)]

−k · q [C − D − (W + m)(B − E)]}

G6 = k�2
[

E2 + m

4m2(E1 + m)

]1/2

× [−A + k · q(E − B) − (W + m)F − (W − m)D] (H.9)

The Coulomb matrix element can be obtained from these results by
current conservation

〈qp(−)
2 |J · k̂|p1〉 =

(
k0

k�

)
〈qp(−)

2 |ρ|p1〉 (H.10)

If the Coulomb matrix element is evaluated directly, the result is

(
2ωqE1E2Ω

3

m2

)1/2

〈qp(−)
2 |(−1)J0ε0|p1〉 = η†

s2
[m7G7 + m8G8]ηs1

m7 = −iε0 σ · q̂

m8 = −iε0 σ · k̂ (H.11)

Equation (H.10) allows the identification

G7 =
k�

k0
[G5 + (k̂ · q̂)G4]

G8 =
k�

k0
[G1 + (k̂ · q̂)G3 + G6] (H.12)

It is convenient to take out the same overall factor as in Eq. (13.41), and
one defines new transition amplitudes by

Ji ≡ m

4πW
Gi i = 1, . . . , 8 (H.13)

It then follows from Eq. (H.8) that

ε̂ · J = η†
s2

[
6∑

i=1

Ji(W,Δ2, k2)mi

]
ηs1 (H.14)
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To carry out a multipole analysis of the transition amplitude of the
current, the covariant transition matrix element of the current is expanded
according to Eq. (13.58)

η
†
λ2

(
6∑

i=1

miJi

)
ηs1 = (H.15)

1

(4k�q)1/2

∑
J

(2J + 1)DJ
λ1−λk, λ2

(−φp,−θp, φp)
� 〈λ2|TJ(W, k2)|λ1 λk〉

Here λ1(≡ s1) and λ2 are the initial and final nucleon helicities, and λk is
the virtual photon helicity. The C-M configuration is shown in Fig. 13.3.
A little study shows that the Pauli spinor η�λ2

can be expressed in terms of

the previous spinor η�s2 (representing spin up or down along the −k̂� axis)
by the rotation

η
†
λ2

=
∑
s2

D1/2
λ2,s2

(−φp, θp, φp) η
†
s2

(H.16)

Now one has the invariant amplitude expressed in terms of helicity ampli-
tudes. This relation can be inverted using the orthonormality properties
of the rotation matrices [Ed74]. Thus, given any invariant amplitude for
pion electroproduction, one has all the equivalent helicity amplitudes.

Recall the transformation coefficients to the L–S basis, which provides
eigenstates of parity. For the case of the π–N, the transformation in Eq.
(F.2) takes the form (again S is suppressed)

|JL〉 =
∑
λ2

√
2L + 1(−1)1+L+λ2+1/2

(
L 1/2 J

0 λ2 −λ2

)
|Jλ2〉 (H.17)

Substitution of this expression in the definition of the transition amplitude
in Eq. (F.6) gives

c(LJ
1

2
)=

k�

ω�

∑
λ2

√
2L + 1(−1)1+L+λ2+1/2

(
L 1/2 J

0 λ2 −λ2

)
〈λ2|TJ |1

2
, 0〉

t(LJλ1)=
∑
λ2

√
2L + 1(−1)1+L+λ2+1/2

(
L 1/2 J

0 λ2 −λ2

)
〈λ2|TJ |λ1,+1〉

(H.18)

In the second relation λ1 = ±1/2, and the sum in both relations goes over
λ2 = ±1/2. Thus, once the helicity amplitudes have been obtained, the
transition amplitudes into eigenstates of parity follow immediately. The
angular correlation coefficients are then given by Eq. (F.13). The transition
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multipole amplitudes into states of definite parity are sometimes more
conventionally defined according to

c(LJ,
1

2
) = ±(4k�q)1/2

1√
2

k�

ω�
Ll±

t(LJ,
1

2
) = ±(4k�q)1/2

1√
2
T l±

1/2

t(LJ,−1

2
) = ±(4k�q)1/2

1√
2
T l±

3/2 (H.19)

Here J = L ± 1/2 with L ≡ l.
Although we now have all one needs to obtain the general angular

distribution in pion electroproduction, it is useful in comparing with
current analyses [Bu94] to derive an equivalent expression directly from
Eq. (H.14) by taking simple (two-component) traces. The cross section
is given by Eq. (13.47) where the helicity unit vectors are defined in Eq.
(13.43) with ε̂0 = ε̂k3. The result is readily shown to be

|JC|2 = |J7|2 + |J8|2 + 2Re J�
7J8 cos θq (H.20)

|J+1|2 + |J−1|2 = 2(|J1|2 + |J2|2 − 2Re J�
1J2 cos θq) + sin2 θq

×
(

|J3|2 + |J4|2 + 2Re J�
1J4 + 2Re J�

2J3 + 2Re J�
3J4 cos θq

)
Im JC

�
[
J+1 + J−1

)
= −(1/

√
2) sinφq sin θq

[
2Re J�

1J7 + 2Re J�
4J7

+2Re J�
2J8 + 2Re J�

3J8

+ cos θq(2Re J�
3J7 + 2Re J�

4J8)
]

Re
(
J+1

)� (J−1
)

= −(1/2) cos 2φq sin2 θq

×
(

|J3|2 + |J4|2 + 2Re J�
1J4 + 2Re J�

2J3 + 2Re J�
3J4 cos θq

)
The amplitudes Ji for i = 1, . . . , 4 are expressed in terms of more

familiar multipole amplitudes by

J1 =
∑
l

{[lMl+ + El+]P ′
l+1(x) + [(l + 1)Ml− + El−]P ′

l−1(x)}

J2 =
∑
l

{[(l + 1)Ml+ + lMl−]P ′
l (x)}

J3 =
∑
l

{[El+ − Ml+]P ′′
l+1(x) + [El− + Ml−]P ′′

l−1(x)}

J4 =
∑
l

{[Ml+ − El+ − Ml− − El−]P ′′
l (x)} (H.21)

Here x = cos θq and P ′
l (x) = dPl(x)/dx. The notation l± indicates that

J = l ± 1/2. For k2 → 0, that is the limit of photoproduction, these four
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equations reduce to those of CGLN [Ch57].3 In pion electroproduction,
the multipole amplitudes are still functions of both the energy in the
C-M frame and the four-momentum transfer (W, k2). In addition in
electroproduction, there are the Coulomb multipoles

J7 =
k�

k0
(J5 + xJ4) =

∑
l

{[Cl− − Cl+]P ′
l (x)} (H.22)

J8 =
k�

k0
(J1 + xJ3 + J6) =

∑
l

{[Cl+P
′
l+1(x) − Cl−P

′
l−1(x)]} (H.23)

Here k0 ≡ ω�.
These equations can be inverted to solve for the mutlipole amplitudes

themselves. Define

Ji
l(W, k2) =

1

2

∫ 1

−1
Pl(x)Ji(w, k2, x) dx (H.24)

Then use of the properties of the Legendre polynomials [Ed74] and a
little algebra lead to

lEl− = J1
l − J2

l−1 +
l + 1

2l + 1
[J3

l+1 − J3
l−1] +

l

2l − 1
[J4

l − J4
l−2]

lMl− = −J1
l + J2

l−1 − 1

2l + 1
[J3

l+1 − J3
l−1]

(l + 1)El+ = J1
l − J2

l+1 − l

2l + 1
[J3

l+1 − J3
l−1] − l + 1

2l + 3
[J4

l+2 − J4
l ]

(l + 1)Ml+ = J1
l − J2

l+1 +
1

2l + 1
[J3

l+1 − J3
l−1]

Cl+ = J7
l+1 + J8

l

Cl− = J7
l−1 + J8

l (H.25)

Finally, to close the loop, we give the relations between these multipoles
and the helicity amplitudes into states of definite parity defined in Eqs.
(H.19)

(l + 1)Ml+ = − i√
2
[T l+

1/2 +

(
l + 2

l

)1/2

T l+
3/2]

(l + 1)El+ = − i√
2
[T l+

1/2 −
(

l

l + 2

)1/2

T l+
3/2]

lMl− = − i√
2
[T l−

1/2 −
(
l − 1

l + 1

)1/2

T l−
3/2]

lEl− = +
i√
2
[T l−

1/2 +

(
l + 1

l − 1

)1/2

T l−
3/2] (H.26)

3 Recall that E1− = M0+ ≡ 0.
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The longitudinal multipoles are defined in terms of the Coulomb multi-
poles with the aid of current conservation

Cl± ≡ k�

k0
iLl± ≡ k�

k0
Nl± (H.27)

If only the electron is detected in an inclusive experiment, one must
integrate over the final pion direction. Only the terms (A0, B0) remain in
Eq. (13.71), and the result is written, with the aid of Eqs. (H.19), as∫

dΩq

4π
|JC|2 =

∑
Jπ

(
J +

1

2

)
|Cl±|2 (H.28)

∫
dΩq

4π

(
|J+1|2 + |J−1|2

)
=

∑
Jπ

(
J +

1

2

)(
|T l±

3/2|2 + |T l±
1/2|2

)

Consider the role of isospin in pion electroproduction. Let α = 1, 2, 3 be
the hermitian components of isospin for the produced pion. Recall that
the electromagnetic current has the isospin structure

Jγμ = JSμ + JV3
μ (H.29)

Isospin invariance of the strong interactions implies that the transition
matrix of the current must then have the covariant form

T = T (+)δα3 + T (−) 1

2
[τα, τ3] + T (0)τα (H.30)

The transition amplitudes into states of given total isospin from a proton
target then follow as

T (
3

2
, p) =

(
2

3

)1/2

(T+ − T−)

T (
1

2
, p) = −

(
1

3

)1/2

(T+ + 2T− + 3T 0) (H.31)

The relations between the multipoles presented in this appendix are all
derived in detail in [Wa84]. The reader now has enough background to
proceed from any covariant, gauge-invariant expression for the S-matrix
in pion electroproduction in the form of Eqs. (H.1) and Eq. (H.13) to
individual multipole amplitudes. The coincident angular distribution is
then given by Eqs. (13.71, F.13), or by Eqs. (H.20). Simultaneously, one
has all the information needed for a general phenomenological analysis
of pion electroproduction in terms of contributing multipoles [Bu94].

Finally, for the transition below the two-pion threshold into a π–N state
with given (Jπ, T ), there is a theorem due to Watson that the phase of
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the electroproduction amplitude is given by the strong-interaction elastic
scattering phase shift in this channel [Wa52]. To understand Watson’s
theorem, consider a 2-channel process where the first channel a+b ⇀↽ a+b

is elastic scattering through the strong interaction in a given partial wave,
the transition amplitude is weak, say of O(e) as in γ + a ⇀↽ a + b, and the
scattering in the second channel γ + a ⇀↽ γ + a is of O(e2). Time-reversal
invariance implies that the S-matrix for this process must be symmetric
and unitarity implies that S†S = 1 [Ja59]. To O(e), the first condition
implies that the S-matrix in this channel must have the form

S =

(
e2iδ 2it
2it 1

)
(H.32)

Explicit evaluation of the unitarity condition for this 2 × 2 matrix then
leads to the relation

t = |t|eiδ (H.33)

Thus the phase of the weak transition amplitude is that of the strong-
interaction phase shift. This is Watson’s theorem.
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