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Abstract

We consider the pricing of European options under a modified Black–Scholes equation
having fractional derivatives in the “spatial” (price) variable. To be specific, the
underlying price is assumed to follow a geometric Koponen–Boyarchenko–Levendorski
process. This pure jump Lévy process could better capture the real behaviour of market
data. Despite many difficulties caused by the “globalness” of the fractional derivatives,
we derive an explicit closed-form analytical solution by solving the fractional partial
differential equation analytically, using the Fourier transform technique. Based on the
newly derived formula, we also examine, in theory, many basic properties of the option
price under the current model. On the other hand, for practical purposes, we impose a
reliable implementation method for the current formula so that it can be easily used in
the trading market. With the numerical results, the impact of different parameters on the
option price are also investigated.

2010 Mathematics subject classification: primary 62P05; secondary 35K25.

Keywords and phrases: option pricing, fractional derivative, KoBol process, fractional
partial differential equation.

1. Introduction

Despite the great success of the Black–Scholes (B–S) model [3] which provides a
hedging argument allowing us to price financial derivatives under the risk-neutral
measure, many drawbacks of this model caused by some unrealistic assumptions have
been mentioned and criticized. One of the major shortcomings is that the B–S model
assumes the underlying distribution to be Gaussian, which is in clear contrast to the
market observation that the underlying distribution is skewed [21] and leptokurtic [22].
Over the last two decades, numerous efforts [2, 13, 15, 19] have been made to modify
the distribution assumption of the B–S model. Notable approaches in this direction
include one which assumes that the underlying satisfies a pure jump Lévy process
such as the variance gamma process adopted by Madan et al. [17], the finite moment
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log stable (FMLS) model by Carr and Wu [8], the Carr–Geman–Madan–Yor (CGMY)
model proposed by Carr et al. [7] and the KoBol model introduced by Koponen [16]
and Boyarchenko and Levendorski [4].

The stochastic process considered in the current paper is the so-called exponential
Koponen–Boyarchenko–Levendorski (KoBol) process, which is proposed based on the
fact that the truncated Lévy flights are capable of capturing the empirical probability
distribution of the high frequency data, such as the S&P 500 index [18]. With five
parameters controlling the essential characteristics, this process could capture the
skewness and heavy tails of the underlying return, and also allow the distribution to be
either symmetric or asymmetric [21, 22].

Under the KoBol model, it has been shown by Cartea and del-Castillo-Negrete [9]
that the option price is governed by a fractional partial differential equation (FPDE)
with two fractional derivatives appearing in the spatial direction. Financially, the
introduction of the fractional derivatives allows the asset price to jump a finite amount
within an infinitesimal time step. Mathematically, in comparison to the derivative with
positive integer order, the determination of the so-called fractional derivative requires
information of the function in a certain subset of the entire domain of definition,
whereas the determination of the former only requires the function value in a small
neighbourhood of a certain point. It is this feature that has made the fractional
derivative extremely difficult to deal with, both numerically and analytically.

In the literature, fractional derivatives have already been widely used in the option
pricing field. For instance, Cartea and del-Castillo-Negrete [9] successfully connected
the FMLS, CGMY and KoBol models to FPDEs with spatial-fractional derivatives.
Later, several authors considered the pricing of options under the proposed FPDE
systems numerically (see [11] and the references therein). Recently, Chen et al.
[10, 12] considered the pricing of European options under both the FMLS model and
the CGMY model from an analytical point of view by deriving closed-form analytical
solutions. They also proposed numerical implementation techniques for their formulae
so that those can be easily adopted for trading purposes.

In this paper, we consider the pricing of European options under the KoBol
model. It should be noted that our work is a nontrivial extension of [12] because the
current FPDE is much more complicated with both left-side and right-side fractional
derivatives involved, whereas in the FMLS model, the left-side fractional derivative
is the only fractional derivative that appears in the FPDE system. Despite all the
difficulties, we have still managed to derive an explicit closed-form analytical formula
for European options under the KoBol model. In addition, for trading purposes,
a reliable implementation method for the solution is also proposed. Due to the
complexity of the newly derived formula, the numerical implementation technique
is also quite different and much more complicated than the one proposed by Chen
et al. [12]; this is discussed in Section 4.

The rest of the paper is organized as follows. In Section 2, we introduce the FPDE
system governing the European option price under the KoBol model. In Section 3,
we derive a closed-form solution from the established FPDE system and we examine
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various basic properties of the option price. In Section 4, some numerical examples
and discussions are provided. Concluding remarks are given in the last section.

2. The KoBol model

The KoBol process {LKoBol
t , t ≥ 0} introduced recently [4, 16] is a special case of the

extended Koponen family of Lévy processes with density defined as

µ(x) =

{
Dpx−1−αe−λx x > 0,
Dq|x|−1−αe−λ|x| x < 0,

where p + q = 1, p > 0, q > 0, D > 0, λ > 0 and α ∈ (0, 2]. As pointed out by
Koponen [4], the triplet (α, Dp, Dq) determines the shape of the Lévy density. In
particular, α determines whether this process has finite or infinite variation. The
parameters p and q determine the overall and relative frequency of the upwind and
downwind jumps, respectively. If p , q, one could expect the fall of the underlying
price from the peak to be asymmetric. The parameter λ is the so-called steepness
parameter, which determines the exponential decay rate of the tails of the probability
density. Usually, the smaller the value of λ, the heavier the tails become. It should
be remarked that the KoBol process provides an alternative to the CGMY process for
capturing the non-Gaussian characteristic of the underlying return. On the other hand,
if p = q, the distribution of the KoBol process is identical to the one under the CGMY
model with M = G = λ.

Under a risk-neutral measure Q, the KoBol model assumes the log-price of the
underlying asset xt (= ln S t) as

d(xt) = (r − v) dt + dLKoBol
t , (2.1)

where r is the risk-free interest rate and v is chosen such that e−rtS t is a martingale. As
pointed out by Koponen [4], under the KoBol model,

v = DΓ(−α)[p(λ − 1)α + q(λ + 1)α − λα − αλα−1(q − p)].

Now let V(x, t) be the price of European path-independent option with x and t
being the current time and the underlying log-price, respectively, both of which satisfy
(2.1). Cartea and del-Castillo-Negrete [9] found that V(x, t) is the solution to the FPDE
system given by

∂V(x, t)
∂t

+ (r − v − λα−1(q − p))
∂V(x, t)
∂x

+ DΓ(−α){peλx
xDα
∞[e−λxV(x, t)]

+ qe−λx
−∞Dα

x [eλxV(x, t)]} = [r + DΓ(−α)λα]V(x, t)
V(x,T ) = Π(x),

(2.2)

where Π(x) is the pay-off defined as max(ex − K, 0) and max(K − ex, 0) for European
calls and puts, respectively, with K being the strike price. The one-dimensional left-
side and right-side Weyl fractional operators [9], −∞DY

x (·) and xDY
∞(·), respectively, are
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defined as

−∞DY
x f (x) =

1
Γ(m − Y)

dm

dxm

∫ x

−∞

(x − y)m−Y−1 f (y)dy m − 1 ≤ Re(Y) < m,

xDY
∞ f (x) =

(−1)m

Γ(m − Y)
dm

dxm

∫ ∞

x
(y − x)m−Y−1 f (y)dy m − 1 ≤ Re(Y) < m.

(2.3)

According to (2.3), it is clear that the fractional derivative is different from the
classical derivative with integer order. The determination of the former needs all the
information of the target function, whereas the value of the latter at a point is only
affected by a small neighbourhood of that particular point.

One should also notice that (2.2) is a generalization of the classical B–S system
or even the FPDE system of the FMLS model. With D = σ2/2Γ(−α) and p = q, (2.2)
would transform to the B–S system, whereas (2.2) becomes the FMLS system when

D =
−σα sec(απ/2)

2Γ(−α)
p = 0 and q = 1.

Note that (2.2) appears to be much more complicated in comparison to the B–S
system or even the FPDE system for the FMLS model. The current FPDE involves both
the left-side and right-side fractional derivatives, with the product of the exponential
function and the option price to be differentiated, whereas the one for the FMLS model
only has a left-side fractional derivative. Despite the difficulty, we still have managed
to derive an explicit closed-form analytical formula for the KoBol model. This issue
will be further discussed in the next section.

3. Explicit closed-form analytical solution

In this section, we consider the pricing of European path-independent options under
the KoBol model analytically. With the issues to be addressed, this section is further
divided into two subsections. First, a closed-form analytical solution is derived by
solving the established FPDE system analytically, and then some basic properties of
our solution are examined from a theoretical point of view.

3.1. Solution procedure To solve (2.2) analytically, we adopt the Fourier
transform technique, because the fractional derivatives usually have simpler behaviour
in the Fourier space [20]. Before the Fourier transform can be applied, the following
lemma needs to be established.

Lemma 3.1. If the Fourier transform is denoted by F(·),

F{eλx
xDα
∞[e−λx f (x)]} = (λ − iξ)αF[ f (x)](ξ) (3.1)

and
F{e−λx

−∞Dα
x [eλx f (x)]} = (λ + iξ)αF[ f (x)](ξ), (3.2)

where ξ is the Fourier transform parameter.
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Proof. According to [20], F{xDα
∞[ f (x)]}} = (iξ)α f̂ (ξ), where f (·) is analytic on

(−∞,∞). Therefore,

F{xDα
∞[e−λx f (x)]}}(θ) = (iθ)αF[e−λx f (x)](θ)

= (iθ)αF[ f (x)](φ)|φ=θ+iξ

= (λ + iξ)αF[ f (x)](ξ).

The second part of this lemma can be proved by using a similar approach, and it is
thus omitted. This completes the proof. �

Now applying the Fourier transform with x to (2.2) by using (3.1) and (3.2) gives
∂V̂
∂t

= {r + iξ(r − v) − DΓ(−α)[p(λ + iξ)α + q(λ − iξ)α − λα + iξαλα−1(q − p)]}V̂ ,

V̂(ξ,T ) = Π̂(ξ),

which can be solved in the Fourier space as

V̂(ξ, t) = e−(r+iξ(r−v)−DΓ(−α)[p(λ+iξ)α+q(λ−iξ)α−λα+iξαλα−1(q−p)])(T−t) Π̂(ξ). (3.3)

To obtain the option price in the original x space, the Fourier inversion still needs to
be carried out, either numerically or analytically: a formidable process that has often
hindered the application of this great technique to various problems. In the following,
we concentrate on carrying out the inversion of (3.3) analytically.

Applying the inverse Fourier transform to (3.3) gives

V(x, t) =
1

2π

∫ ∞

−∞

e−ixξV̂ dξ

=
k0

2π

∫ ∞

−∞

e−ixξ{exp{−iξ[k1 − k2αλ
α−1(q − p)]}Π(ξ)}ek2 p(λ+iξ)αek2q(λ−iξ)α dξ

= k0F−1[exp{−iξ[k1 − k2αλ
α−1(q − p)]}Π̂(ξ) · ek2 p(λ+iξ)α ėk2q(λ−iξ)α]

= k0Π[x + k1 − k2αλ
α−1(q − p)] ∗ F−1[ek2 p(λ+iξ)α]︸            ︷︷            ︸

I

∗ F−1[ek2q(λ−iξ)α]︸            ︷︷            ︸
II

, (3.4)

where ∗ denotes the convolution of the Fourier transform and

k0 = e−r(T−t)−k2λ
α

, k1 = (r − v)(T − t), k2 = DΓ(−α)(T − t).

To determine I and II, we use the fact that the characteristic function of the Lévy
stable density is e(iξ)α [20]. Then, using the relationship between the characteristic
function and the Fourier transform, we obtain

F
[ 1
a1/α fα,0

(
|x|
a

)]
= ea(iξ)α ,

where a > 0, and fα,0(x) is the Lévy stable density defined as

fα,0(x) =
1
α

H1,1
2,2

[
x

∣∣∣∣∣∣(1 − 1/α, 1/α) (1/2, 1/2)
(0, 1) (1/2, 1/2)

∣∣∣∣∣∣
]
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with H being the Fox function [12]. Then, by using the shift theorem of the Fourier
transform [5],

F
[
eλx 1

a1/α fα,0
( x
a1/α

)]
= ea(λ+iξ)α ,

F
[
e−λx 1

a1/α fα,0
( x
a1/α

)]
= ea(λ−iξ)α .

Consequently, in the original x-space,

I = F−1[ek2 p(λ+iξ)α](x) = eλx 1
(k2 p)1/α fα,0

( x
(k2 p)1/α

)
(3.5)

and

II = F−1[ek2q(λ−iξ)α](x) = e−λx 1
(k2q)1/α fα,0

( x
(k2q)1/α

)
. (3.6)

By substituting (3.5) and (3.6) into (3.4), the price of European option with pay-off

Π(x) is obtained as

V(x, t) = k0

∫ ∞

−∞

L(η)Π(x − η + k3) dη,

where

L(η) =
1

(k2 p)1/α(k2q)1/α M1

(
|η|

(k2 p)1/α

)
∗ M2

(
|η|

(k2q)1/α

)
,

and k3 = k1 − k2αλ
α−1(q − p), M1(x) = eλx fα,0(x), M2(x) = e−λx fα,0(x).

With the newly derived closed-form formula, it is feasible to further analyse some
properties of the European option price. This issue will be discussed in detail in the
next subsection.

3.2. Basic properties of the solution In this section, various basic properties of
the European option price are analysed. Hereafter, for simplicity, we concentrate on
European call options unless otherwise stated. The extension to other path-independent
European options is rather straightforward. To avoid confusion, we use Vc(x, t) and
Vp(x, t) to represent European call and put option prices, respectively, under the KoBol
model.

Proposition 3.2 (Monotonicity). The European call option price is a monotonically
increasing function of the underlying price S .

Proof. To show the monotonicity of the option price with respect to S , we calculate

∂Vc(x, t)
∂x

= k0ex+k3−d0 L(d0) − k0KL(d0) + k0

∫ d0

−∞

L(η)ex−η+k3 dη

=

∫ d0

−∞

L(η) exp[x − η + k3 − r(T − t) − DΓ(−α)(T − t)λα] dη, (3.7)

https://doi.org/10.1017/S1446181118000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000196


[7] Option pricing under the KoBol model 181

where d0 = x + k3 − ln K. Since fα,0(x) represents the Lévy stable density, we have
fα,0(x) > 0 for all x. Consequently, L(η) > 0 for any η, which indicates that the
integrand of (3.7) is always positive. Therefore,

∂Vc(x, t)
∂S

=
1
S
∂Vc(x, t)
∂x

=
1
S

∫ d0

−∞

L(η) exp[x − η + k3 − r(T − t) − DΓ(−α)(T − t)λα] dη

> 0,

which implies that Vc is a monotonically increasing function with the underlying S ,
and this completes the proof. �

In fact, from the above proof, it can also be observed that one of the most important
hedging parameters for European calls, that is, ∆c, is positive, because

∆c =
∂Vc

∂S
=

1
S

∫ d0

−∞

L(η) exp{−η − DΓ(−α)(T − t)[p(λ − 1)α + q(1 + λ)α]} dη > 0.

A further differentiation of ∆c with respect to S indicates that

Γc =
∂2Vc(x, t)
∂S 2 > 0,

and thus the following proposition of the convexity of the option price holds.

Proposition 3.3 (Convexity). The European call price under the KoBol model is a
convex function with the underlying S , that is,

Vc(θS 1 + (1 − θ)S 2, t) ≤ θVc(S 1, t) + (1 − θ)Vc(S 2, t) where θ ∈ [0, 1].

In fact, one can easily show that Proposition 3.3 is true for options with convex
pay-off functions.

Proposition 3.4 (Asymptotics). The following are true for the function Vc.

(i) lim
x→∞

Vc(x, t) ∼ S (as S →∞), (ii) lim
x→−∞

Vc(x, t) = 0.

Proof. (i) By taking x→∞, the price of the European call option becomes

lim
x→∞

Vc(x, t) = lim
x→∞

k0ex+k3

∫ ∞

−∞

e−ηL(η) dη − k0K
∫ ∞

−∞

L(η) dη. (3.8)

The values of two integrals in the right-hand side (RHS) of (3.8) can be calculated by
means of the Fourier transform. To be specific,∫ ∞

−∞

e−ηL(η) dη = F[L(η)]|ξ=i = exp[k2 p(λ − 1)α + k2q(λ + 1)α] (3.9)

and ∫ ∞

−∞

L(η) dη = F[L(η)]|ξ=0 = ek2λ
α

. (3.10)

https://doi.org/10.1017/S1446181118000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000196


182 W. Chen and S. Lin [8]

Now, by substituting (3.9) and (3.10) into (3.8),

lim
x→∞

Vc(x, t) = lim
x→∞

k0 exp[x + k3 + k2 p(λ − 1)α + k2q(λ + 1)α] − k0Kek2λ
α

= lim
x→∞

ex − e−r(T−t)K,

which is indeed of the same order as S , when S is extremely large. (ii) One can deduce
from (3.9) that

∫ ∞
−∞

e−ηL(η) dη is a bounded integral. Therefore, for any given η, e−ηL(η)
is also bounded since e−ηL(η) is continuous and nonnegative. Consequently,

lim
d0→−∞

∫ d0

−∞

e−ηL(η) dη = 0.

Similarly,

lim
d0→−∞

∫ d0

−∞

L(η) dη = 0.

Thus, we can reach the conclusion that limx→−∞ Vc(x, t) = 0, and the proof is
complete. �

Note that the asymptotic behaviour shown in Proposition 3.4 agrees with the far-
field boundary conditions appropriate for call options. This indicates the validity of
the current solution.

On the other hand, as pointed out in Section 2, our solution reduces to the
corresponding B–S price or the FMLS price under certain parameter settings. We
examine this limiting behaviour in the following proposition.

Proposition 3.5.

(i) With D = σ2/2Γ(−α) and p = q, our pricing formula reduces to the B–S formula
with constant volatility σ if α→ 2.

(ii) When D = [−σα sec(απ/2)]/2Γ(−α), p = 0 and q = 1, our pricing formula is
identical to the FMLS formula [12].

Proof. (i) By setting D = σ2/2Γ(−α) and p = q, we obtain

lim
α→2

k0 = e−r(T−t)+k2λ
2(T−t), lim

α→2
k1 = k3 = (r − 1

2σ
2)(T − t), lim

α→2
k2 = 1

2σ
2(T − t).

On the other hand, according to Chen et al. [12], the following identity holds:

f2,0(|x|) =
e−x2/4

2
√
π
,

which yields

lim
α→2

L(x) = e−λx 1
4k2π

√
pq

∫ ∞

−∞

e2ληe−[η2/(4k2 p)1/2]−[(x−η)2/(4k2q)1/2] dη

=
1

4k2π
√

pq
e[((px+4k2 pqλ)2−px2)/4k2 pq]−λx

∫ ∞

−∞

e−[η−(px+4k2 pqλ)]2/4k2 pq dη

=
1

2
√
πk2

e4k2 pqλ2
e−x2/4k2 .
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Therefore, the European call option price under the current parameter settings can be
calculated as

lim
α→2

Vc(x, t) =
k0

2
√
πk2

e4k2 pqλ2
[
ex+k3

∫ ∞

−∞

e−(η2/4k2)−η dη − K
∫ ∞

−∞

e−η
2/4k2 dη

]
= k0e4k2 pqλ2

[ex+k3+k2 N(d1) − KN(d2)], (3.11)

where

d1 = lim
α→2

d0 + 2k2
√

2k2
=

ln(S/K) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2 = lim
α→2

d0
√

2k2
=

ln(S/K) + (r − σ2/2)(T − t)

σ
√

T − t
.

Since p + q = 1 and p = q, we have p = q = 1/2, and thus

k0e4k2 pqλ2
= e−r(T−t) and k0e4k2 pqλ2

ex+k3+k2 = ex. (3.12)

By substituting (3.12) into (3.11), we obtain

Vc(x, t) = exN(d1) − Ke−r(T−t)N(d2) = VCall
B–S(x, t)

with VCall
B–S(x, t) representing the European call option price under the B–S model. This

completes the proof of (i).
(ii) When D = [−σα sec(απ/2)]/2Γ(−α), p = 0 and q = 1, it follows that

k0 = e−r(T−t), k1 = k3 =

(
r +

1
2
σα sec

απ

2

)
(T − t), and k2 = −

(1
2
σα sec

απ

2

)
(T − t).

Therefore,

lim
p→0

Vc(x, t) = lim
p→0

e−r(T−t)
∫ x+k1−ln K

−∞

∫ ∞

−∞

[ fα,0(|s|/(k2 p)1/α) fα,0(|η − s|/(k2)1/α)
(k2 p)1/α(k2)1/α

× (ex−η+k1 − K)
]

ds dη

= e−r(T−t)
∫ x+k1−ln K

−∞

∫ ∞

−∞

δ(s)
1

(k2)1/α fα,0
(
|η − s|
(k2)1/α

)
(ex−η+k1 − K) ds dη

= e−r(T−t)
∫ x+k1−ln K

−∞

1
(k2)1/α fα,0

(
|η|

(k2)1/α

)
(ex−η+k1 − K) dη,

which is indeed identical to the call option price under the FMLS model. This
completes the proof of (ii). �

Finally, we consider the put-call parity under the KoBol model. The so-called
put-call parity is a relationship between European vanilla options with the same
parameters. From a financial point of view, the introduction of the convexity
adjustment v has ensured the existence of the risk-neutral measure, indicating that the
“no arbitrage opportunity” assumption still holds for the KoBol model. The put-call
parity can thus be achieved by using a similar portfolio analysis as adopted under the
B–S model. Mathematically, it can be proved as follows.
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Theorem 3.6. For any given α ∈ (1, 2), the put-call parity for European puts and calls
with the same parameters can be found as

Vc(x, t) − Vp(x, t) = S − Ke−r(T−t).

Proof. Since both Vc(x, t) and Vp(x, t) satisfy the governing equation contained in
(2.2), Vc(x, t) − Vp(x, t), denoted by V0 in the following, also satisfies the same
governing equation as in (2.2) but with terminal condition

V0(x,T ) = max(ex − K, 0) −max(K − ex, 0) = ex − K.

Following the solution procedure in Section 3.1, we derive

V0(x, t) = k0ex+k3

∫ ∞

−∞

e−ηL(η) dη − k0K
∫ ∞

−∞

L(η) dη

= S − Ke−r(T−t),

where the last line of the above equation has used (3.9) and (3.10). This completes the
proof. �

Note that the put-call parity derived in Theorem 3.6 can greatly facilitate the trading
of vanilla options under the KoBol model, in the sense that the price of either a
European call or put is easy to reduce from the parity relationship once the price
of the “opposite” contract is determined from our formula. In the next section, the
implementation details of the current formula will be provided.

4. Numerical examples and discussions

In this section, the implementation details of the current solution are illustrated.
Based on the numerical results, some analysis on the impacts of different parameters
are provided.

Although our pricing formula is similar to the B–S formula or the one derived
under the FMLS model [12], the implementation of our solution is not straightforward
because it involves numerical computation of the Fox function and double integrals
over infinite domains. For fα,0(x), we adopt the series representation of Chen et al. [12],
that is,

fα,0(x) =
1
π

∞∑
n=1

Γ(1 + n/α)
n!

sin
(nπ

2

)
(−x)n−1, (4.1)

instead of its usual form in the Mellin space [6] to avoid the extra task of determining
the inverse Mellin transform. Since (4.1) converges slowly when x takes on large
values, the large asymptotic expression of fα,0(x) is adopted when x exceeds a critical
value, that is,

fα,0(x) =
1
π

∞∑
n=1

Γ(1 + n/α)
n!

sin
(nπα

2

)
|x|−1−nα.

Numerical experiments suggest that x ≈ 5 is an appropriate critical value for all the
numerical experiments shown below.
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Figure 1. Parameters are K = $10, σ = 0.2, r = 0.1, p = q = 0.5, λ = 1, T − t = 0.5 (year), D = σ2/2Γ(−α).

On the other hand, the generalized Laguerre–Gauss (LG) quadrature [14], is used
to determine the integrals involved in our pricing formula. Since this quadrature only
deals with integrals in semiinfinite domains, we rewrite our solution as

Vc = S − Ke−r(T−t) + Vp

= S − Ke−r(T−t)

+
k0

(4pq)1/α

∫ ∞

d0/(k2/2)1/α
e−λ(k2/2)1/αz

[∫ ∞

0
e2λ(k2/2)1/αy fα,0

(
|y|

(2p)1/α

)
fα,0

(
|y − z|
(2q)1/α

)
dy

+

∫ ∞

0
e−2λ(k2/2)1/αy fα,0

(
|y|

(2p)1/α

)
fα,0

(
|y + z|
(2q)1/α

)
dy

]
[E − ex+k3−(k2/2)1/αz] dz,

which can then be determined accurately by the LG quadrature.
One of the most efficient ways to test the reliability of our formula as well as the

proposed numerical evaluation technique is to consider the degenerate case as α→ 2.
Theoretically, as shown in (i) of Proposition 3.5, with D = σ2/2Γ(−α) and p = q, our
pricing formula degenerates to the B–S formula with constant volatility σ as a further
limit of α→ 2. Figure 1(a) illustrates the comparison between our solution at three
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Figure 2. Option price difference. Parameters are K = $10, σ = 0.2, r = 0.1, p = q = 0.5, λ = 1, T − t = 0.5
(year), D = σ2/2Γ(−α).

different α values and the B–S formula, with the pointwise absolute difference further
shown in Figure 2. From these two figures, it is clear that under the given parameter
settings, our pricing formula approaches the B–S formula as expected. Note that, for
the purpose of comparison, we put an enlarged figure in Figure 1(b). Intuitively, the
remarkably little difference shown in Figure 2 is the result of the error arising from the
implementation technique and the difference between our α- values and two. Since the
α are chosen to be very close to two, we believe that the difference shown in Figure 2
is mainly caused by the error of the proposed numerical method.

To further verify the validity of our solution, we compare our results with the
Bates formula, as shown in Figure 3. We point out that the Bates formula is actually
the option price in the Fourier space without the Fourier inversion being carried
out analytically. Theoretically, if there were no errors brought in by the numerical
implementation technique, our results should be identical to those calculated from the
Bates formula [1]. From Figure 3, it is clear that the maximum pointwise absolute
error between our solution and the Bates formula is less than 0.025. This indicates that
both our pricing formula and the implementation technique are quite convincing.

With confidence in our solution as well as the proposed implementation technique,
we investigate some financial properties of our solution. The hedging parameters of
this model are examined first, followed by the impact of some parameters on the option
prices.

It is known that with the closed-form analytical solution available, the hedging
parameters can also be obtained in closed forms, by differentiating with respect
to the corresponding parameters. For example, the delta value can be obtained by
differentiating with respect to S , as shown in Section 3.2. One can also get the gamma
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Figure 3. Comparison of our price with the Bates formula. Parameters are α = 1.8, K = $10, r = 0.1,
p = 0.3, q = 0.7, λ = 1, T − t = 0.5 (year), D = σ2/2Γ(−α).

value by a further derivative of delta with respect to S . Theoretically, the hedging
parameters are not equivalent to the ones under the B–S model, depending on the
chosen parameters. For instance, one can observe from Figure 4 that even with the
conditions in (i) of Proposition 3.5 being satisfied, the delta values of European calls
under the two models are quite different, depending on the α values.

Now we turn to investigating the influences of p, q, λ and α on option prices. The
solution produced with D = 0.08, p = q = 0.5, r = 0.1, T − t = 0.5 (year), α = 1.8
and λ = 1 is set as the benchmark case. We study the impact of a certain parameter
by changing the value of this parameter, but with other parameters fixed as in the
benchmark case.

First, we consider the impact of p. As pointed out by Tankov [23], p and q determine
the overall and relative frequency of the upward and downward jumps, respectively.
As a result, when p increases, more upward jumps would occur, resulting in a higher
European call option price, as shown in Figure 5. Similarly, with increasing values of q,
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Figure 4. Delta values of the European call options. Parameters are K = $10, r = 0.1, p = 0.3, q = 0.7,
λ = 1, T − t = 0.5 (year), D = 0.0063.

Figure 5. Influence of p on our option price.

the call option price would also increase because of the more frequently occurring
downward jumps in the underlying price.

Depicted in Figure 6(a) is the variation in the European call option price with respect
to λ. From this figure, it is obvious that the call price tends to fall as λ increases. This
can be explained by the argument that heavier tails lead to more valuable call options,
because the smaller the value of λ, the heavier the tails will be, as mentioned in [4].
A similar argument can also be used to explain the fact that the call option price is a
strictly increasing function of α, as shown in Figure 6(b).
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Figure 6. Influences of λ and α on our option price.

5. Conclusion

In this paper, an explicit closed-form analytical solution for European path-
independent options under the KoBol model is derived for the first time with the help
of the Fourier transform technique. Based on the newly derived formula, many basic
properties of the option price under the KoBol model are examined from a theoretical
point of view. Numerical experiments suggest the validity of our solution and the
proposed numerical implementation technique. We have also proposed a reliable
implementation technique for the current solution so that it can be easily used for
trading purposes.
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