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Fluctuation covariance-based study of roll-streak
dynamics in Poiseuille flow turbulence
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Although the roll-streak (R-S) is fundamentally involved in the dynamics of wall
turbulence, the physical mechanism responsible for its formation and maintenance
remains controversial. In this work we investigate the dynamics maintaining the R-S
in turbulent Poiseuille flow at R = 1650. Spanwise collocation is used to remove
spanwise displacement of the streaks and associated flow components, which isolates
the streamwise-mean flow R-S component and the second-order statistics of the
streamwise-varying fluctuations that are collocated with the R-S. This partition of the
dynamics into streamwise-mean and fluctuation components facilitates exploiting insights
gained from the analytic characterization of turbulence in the second-order statistical
state dynamics (SSD), referred to as S3T, and its closely associated restricted nonlinear
dynamics (RNL) approximation. Symmetry of the statistics about the streak centreline
permits separation of the fluctuations into sinuous and varicose components. The Reynolds
stress forcing induced by the sinuous and varicose fluctuations acting on the R-S is shown
to reinforce low- and high-speed streaks, respectively. This targeted reinforcement of
streaks by the Reynolds stresses occurs continuously as the fluctuation field is strained
by the streamwise-mean streak and not intermittently as would be associated with
streak-breakdown events. The Reynolds stresses maintaining the streamwise-mean roll
arise primarily from the dominant proper orthogonal decomposition (POD) modes of
the fluctuations, which can be identified with the time average structure of optimal
perturbations growing on the streak. These results are consistent with a universal process
of R-S growth and maintenance in turbulent shear flow arising from roll forcing generated
by straining turbulent fluctuations, which was identified using the S3T SSD.
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1. Introduction

Although turbulent flows exhibit fluctuations indicative of a stochastic process, closer
analysis reveals elements of underlying order. Efforts to identify and analyse the origin
of this underlying order in turbulence led to the introduction of a structure measure, the
two-point correlation function, which was originally interpreted to provide an influence
distance from measurements of flow velocities (Taylor 1935). Progress in measuring
apparatus subsequently allowed the collection of increasingly resolved data sets and
Lumley (1967) proposed a method to identify coherent structures arising in turbulent flows
making use of two-point spatial correlation in the flow. In tandem with identification of
coherent structure arising from advances in experimental observations were attempts to
provide a theoretical basis for the emergence of these coherent structures, a summary
of which can be found in the reviews by Cantwell (1981), Robinson (1991) and Jiménez
(2018). Advances in flow visualization provided additional evidence of coherent structure
in turbulent shear flows not only in the buffer layer but including organized large-scale and
very large-scale motions throughout turbulent shear flows e.g. (Hutchins & Marusic 2007;
Hellström, Sinha & Smits 2011).

A prominent component of the coherent structure observed in turbulent shear flow is
the roll-streak (R-S) structure. This coherent structure alone accounts for a significant
fraction of the turbulent fluctuation kinetic energy and considerable effort has been
devoted to identifying the mechanisms forming and maintaining the R-S (Benney 1960;
Jang, Benney & Gran 1986; Hall & Smith 1991; Hamilton, Kim & Waleffe 1995;
Waleffe 1997; Schoppa & Hussain 2002; Flores & Jiménez 2010; Hall & Sherwin 2010;
Hwang & Cossu 2010, 2011; Farrell & Ioannou 2012; Rawat et al. 2015; Cossu &
Hwang 2017; Kwon & Jiménez 2021). As a result of these efforts, it became apparent
that the R-S is an important component of not only the energy bearing structures
but also of the dynamics underlying the maintenance of wall turbulence. One role of
the R-S in supporting turbulence is to transfer streamwise mean momentum from the
spanwise homogeneous equilibrium flow, which is maintained by external mean pressure
or boundary-associated forcing, to form a spanwise inhomogeneous streak in the flow
by the lift-up process (Ellingsen & Palm 1975; Landahl 1980). This streak in turn
makes available rapidly growing streamwise and spanwise dependent perturbations that
support subsequent energy transfers from the streamwise-mean flow to the fluctuation
field required to both generate and maintain the turbulent state. An example of the former
being transition to turbulence (Westin et al. 1994; Brandt, Schlatter & Henningson 2004)
and of the latter the self-sustaining process (SSP) mechanism (Hamilton et al. 1995;
Waleffe 1997).

The fact that the R-S does not arise as a modal instability when the Navier–Stokes
equations (NSE) expressed in velocity variables are linearized about the streamwise-mean
flow led to the belief that the R-S does not arise as an unstable mode in the NSE.
Nonetheless, in shear flow the R-S is the optimally growing structure in the NSE expressed
in velocity state variables. This has been studied in both the time domain (Butler &
Farrell 1992; Reddy & Henningson 1993) and frequency domain (McKeon & Sharma
2010; McKeon 2017), so that the occurrence of optimals with R-S form arising from
transient growth of fluctuations in the turbulence provides a plausible explanation for the
common observation of this structure in turbulent shear flows. However, R-S formation
through transient growth produces initial algebraic growth followed by decay in time
and, if randomly forced, a stochastic distribution in space because transient growth
lacks an organizational mechanism that would produce temporal persistence and spatial
organization of the R-S. The ubiquity, persistence and large scale organization of the
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Roll-streak dynamics in Poiseuille flow turbulence

R-S in turbulent shear flow despite lack of a modal R-S formation instability in the
traditional NSE formulation resulted in attempts to uncover explanations alternative to
transient growth of initial or continuously forced perturbations to explain the formation
and maintenance of the R-S. Among these mechanisms are various regeneration or
self-sustaining processes (Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe 1997;
Jiménez & Pinelli 1999; Schoppa & Hussain 2002; Hall & Sherwin 2010; Deguchi
& Hall 2016). Alternatively, the R-S has been attributed to unstable exact coherent
structures (ECS) (Waleffe 2001; Halcrow et al. 2009). While unstable ECS can resemble
R-Ss, the R-Ss in this study, as well as the preponderance of those in Poiseuille flow
turbulence, are hydrodynamically stable (Schoppa & Hussain 2002) rather than unstable,
as are the ECSs.

It is now recognized that the R-S can arise from a modal instability when the NSE
are expressed in cumulant variables and linearized about the streamwise-mean flow
associated with a background of turbulent fluctuations. This modal instability had been
overlooked because it has analytic expression only when the NSE are written using a
statistical state dynamics (SSD) formulation, such as the second order SSD referred to
as S3T (Farrell & Ioannou 2012; Farrell, Ioannou & Nikolaidis 2017b). The dynamics
of the S3T SSD is closely approximated by the restricted nonlinear dynamics (RNL)
equations, which allows insights from the essentially complete characterization of the
analytical structure of wall turbulence dynamics by S3T to be transferred to RNL, and
from RNL to its direct numerical simulation (DNS) companion (Thomas et al. 2014;
Farrell et al. 2016; Farrell, Gayme & Ioannou 2017a). The crucial choice of dynamical
significance in the formulation of both the S3T and its RNL approximation is to use a
partition into streamwise-mean and fluctuations from the streamwise-mean. This particular
partition is crucial to gaining insight into turbulence dynamics because it isolates the
interaction between these two components, which comprises the fundamental dynamics
maintaining and regulating the turbulent state. The success of this partition in maintaining
a realistic turbulent state when the associated SSD is closed at second order implies
that interaction between the streamwise-mean flow and the covariance of fluctuations
from the streamwise-mean suffices for understanding the physical mechanism sustaining
and regulating turbulence in shear flow. Analysis of the S3T SSD reveals that the
influence of the fluctuations on the streamwise mean component occurs through the
fluctuation Reynolds stresses, which can be obtained from the covariance component of the
SSD.

In agreement with simulations, R-S formation through the S3T modal instability
produces initial exponential growth in time leading through nonlinear equilibration
to persistent stable equilibrium R-S with coherent harmonic organization in space
(Farrell et al. 2017b). Although in turbulent Poiseuille flow the R-S is subject to
disruption, the organization mechanism inherent in the S3T dynamics still results in
streamwise extended R-S in Poiseuille flow turbulence, while accounting for the observed
persistence and harmonic organization of the R-S in the less disrupted wide channel
Couette turbulence (Avsarkisov et al. 2014; Pirozzoli, Bernardini & Orlandi 2014;
Lee & Moser 2018).

In this work we build on previous work in which the structure of the mean
and fluctuation components of the R-S were identified using proper orthogonal
decomposition (POD)-based methods (Nikolaidis et al. 2023). However, our aim in this
work is to address not structure but rather dynamics; specifically, we analyse data obtained
from DNS and RNL simulations of turbulent Poiseuille flows at R = 1650 concentrating
on diagnosing the dynamical processes responsible for sustaining the R-S. In our study
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of structure in Nikolaidis et al. (2023) we departed from traditional POD analysis by
incorporating into the analysis the recognition that while the streamwise-mean R-S is an
emergent coherent structure supported by the Reynolds-stresses of the streamwise-varying
fluctuations, in turbulence this structure is subject to stochastic displacements in the
homogeneous spanwise direction. In order to isolate the R-S structure, while refining
the convergence of the second-order statistical quantities supporting it, we collocate the
spanwise position of the R-S as indicated by the spanwise position of the spanwise varying
streak. This method is similar in intent to the slicing and centring methods employed
by Rowley & Marsden (2000), Froehlich & Cvitanović (2012), Willis, Cvitanović &
Avila (2013), Kreilos, Zammert & Eckhardt (2014) and the conditional space–time
(POD) method (Schmidt & Schmid 2019) used recently to obtain small-scale structure
in turbulent boundary layers (Saxton-Fox, Lozano-Durán & McKeon 2022) and also
to the method applied recently in dynamical mode decomposition in turbulent Couette
and Poiseuille flows (Marensi et al. 2023). Using collocation we obtained in Nikolaidis
et al. (2023) the mean structure of the low-speed and high-speed R-S and verified
that these collocated R-S structures are nearly identical in DNS and RNL and that the
associated fluctuations and Reynolds stresses are also compellingly similar. The mean
streak was found to be perturbation stable in the NSE when the NSE are expressed in
standard velocity variables and to be mirror-symmetric about the centreline in the spanwise
direction. This mirror symmetry allows separation of the fluctuations about the centreline
into linearly statistically independent odd and even components. The fluctuations with
symmetric streamwise and wall-normal velocity components and antisymmetric spanwise
velocity component are referred to as sinuous fluctuations (S), while the fluctuations with
antisymmetric streamwise and wall-normal velocity components and symmetric spanwise
velocity component are referred to as varicose fluctuations (V). While both S and V
fluctuations are represented in the POD modes of both low- and high-speed streaks,
the dominant POD modes of the fluctuations associated with the low-speed streak in
both DNS and RNL comprise S oblique waves collocated with the streak. Moreover,
these dominant fluctuation POD modes have the average structure of white-in-energy
perturbations evolved linearly on the R-S, white-in-energy perturbations being chosen so
that the perturbations that dominate the response reflect only the intrinsic dynamics of
the evolution of the perturbations, which is determined by the perturbations with optimal
growth. This result that the dominant POD modes of the streak excited white-in-energy
have the same structure as the fluctuation POD modes in both DNS and RNL has a
compelling interpretation: the background turbulence is being strained by the streak to
produce the structures required to support that streak via the SSP mechanism and these
structures can be identified with the optimal perturbations on the streak (Nikolaidis et al.
2023).

Having identified and characterized the mean low-speed and high-speed streaks and the
streak-collocated fluctuation fields, we proceed in this report to study the streamwise-mean
Reynolds stresses arising from these fluctuations in order to identify the dynamical
mechanism responsible for sustaining the rolls that give rise through lift-up to the streaks
in both DNS and RNL. A motivation for establishing the correspondence in the physical
mechanism of the SSP between DNS and RNL is that RNL shares its dynamical structure
with S3T so that establishing correspondence of the SSP in DNS and RNL implies that
the SSP structure and mechanism in DNS is dynamically the same as that in S3T, which
is completely characterized, and therefore establishing this correspondence is tantamount
to achieving an analytic characterization of the SSP underlying wall turbulence in the
DNS.
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Roll-streak dynamics in Poiseuille flow turbulence

2. Model problem and numerical methods

The data is obtained from a DNS of a pressure-driven constant mass flux plane Poiseuille
flow in a channel which is doubly periodic in the streamwise, x, and spanwise, z, directions.
The velocity field is decomposed into the streamwise-mean component U = (U, V, W)

and fluctuations from the mean, u = (u, v, w). In this decomposition the R-S is part of the
mean component of the flow with the streak component defined as Us( y, z, t) = U − [U],

where the square brackets [·] def= (1/Lz)
∫ Lz

0 · dz denote the spanwise average, and the roll
component has velocities components (0, V, W).

The incompressible non-dimensional NSE governing the channel flow in this
decomposition are

∂tU + U · ∇U − Π(t)x̂ + ∇P − R−1�U = −u · ∇u, (2.1a)

∂tu + U · ∇u + u · ∇U + ∇p − R−1�u = −(u · ∇u − u · ∇u), (2.1b)

∇ · U = 0, ∇ · u = 0. (2.1c)

The pressure gradient Π(t) is adjusted in time to maintain constant mass flux. Lengths
have been made non-dimensional by h, the channel’s half-width, velocities by the
time-mean velocity at the centre of the channel, Uc, and time by h/Uc. Averaging in
x is denoted by (·) and averaging in time by 〈·〉. No-slip and impermeable boundaries
are placed at y = 0 and y = 2, in the wall-normal variable. The Reynolds number is
R = Uch/ν, with ν the kinematic viscosity.

The DNS is obtained using NSE (2.1) and for comparison, parallel simulations are
made with the RNL approximation of (2.1), which is obtained by parameterizing the
fluctuation–fluctuation nonlinearity in (2.1b). The parameterization used is to set these
nonlinear interactions among streamwise non-constant flow components in the fluctuation
equations (2.1b) to zero. Consequently, the RNL system of equations is

∂tU + U · ∇U − Π(t)x̂ + ∇P − R−1�U = −u · ∇u, (2.2a)

∂tu + U · ∇u + u · ∇U + ∇p − R−1�u = 0. (2.2b)

∇ · U = 0, ∇ · u = 0. (2.2c)

Under this quasilinear restriction, the fluctuation field interacts nonlinearly only with the
mean, U , flow and not with itself. This quasilinear restriction of the dynamics results
in the spontaneous collapse in the support of the fluctuation field to a small subset of
streamwise Fourier components, while maintaining conservation of the total flow energy
1/2

∫
D d3x(|U |2 + |u|2) in the absence of dissipation (D is the flow domain). This

restriction in the support of RNL turbulence to a small subset of streamwise Fourier
components is not imposed but rather is a property of the quasilinear dynamics. The
fluctuation components retained by the dynamics identify the streamwise harmonics that
are energetically active in the parametric growth process that sustains the fluctuations
(Farrell & Ioannou 2012; Constantinou, Farrell & Ioannou 2014; Thomas et al. 2014, 2015;
Farrell et al. 2016). In a DNS at R = 2250 these energetically active streamwise harmonics
have been shown to synchronize the remaining components (Nikolaidis & Ioannou 2022).

The data were obtained from a DNS of (2.1), referred to as NSE100, and from the
associated RNL governed by (2.2), referred to as RNL100. The Reynolds number R =
Uch/ν = 1650 is imposed in both the DNS and the RNL simulations. A summary of the
parameters of the simulations is given in table 1. The RNL100 simulation is supported
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Abbreviation [Lx, Lz]/h [α, β] Nx × Nz × Ny Rτ R
NSE100 [4π, π] [0.5,2] 128 × 63 × 97 100.59 1650
RNL100 [4π, π] [0.5,2] 16 × 63 × 97 93.18 1650

Table 1. Simulation parameters: [Lx, Lz]/h is the domain size in the streamwise, spanwise direction; [α, β] =
[2π/Lx, 2π/Lz] denote the fundamental wavenumbers in the streamwise and spanwise directions; Nx, Nz are the
number of Fourier components after dealiasing and Ny is the number of Chebyshev components; Rτ = uτ h/ν

is the Reynolds number of the simulation based on the friction velocity uτ = √
ν d[U]/dy|w, where d[U]/dy|w

is the shear at the wall.

by only three streamwise components with wavelengths λx/h = 4π, 2π, 4π/3, which
correspond to the three lowest streamwise Fourier components of the channel, nx = 1, 2, 3.

For the numerical integration the dynamics were expressed in the form of evolution
equations for the wall-normal vorticity and the Laplacian of the wall-normal velocity,
with spatial discretization and Fourier dealiasing in the two wall-parallel directions and
Chebychev polynomials in the wall-normal direction (Kim, Moin & Moser 1987). Time
stepping was implemented using the third-order semi-implicit Runge–Kutta method.

3. Obtaining the streamwise-mean R-S and the covariance of the associated
fluctuations using collocation

In order to analyse the dynamics of the R-S we obtain both the streamwise-mean R-S
and the time-mean spatial two-point covariances of the fluctuations collocated with the
R-S for both the high-speed and the low-speed streak. The collocation implementation
is described in Nikolaidis et al. (2023). Briefly the method proceeds by identifying the
spanwise location of the streak with the location of the spanwise coordinate of the min(Us)
(for low-speed streaks) and translating the entire flow field in the spanwise direction to
place the low-speed streak minimum at the channel centre z/h = 0. We have verified that
as the averaging time increases the time-mean streak approaches mirror symmetry in the
spanwise about the streak centreline. We enforce this symmetry in the dataset and double
the available data by symmetrizing about the aligned streak centre.

The time-mean streak, 〈Us〉, obtained from the aligned time series of min(Us) isolates
the low-speed streak, producing a coherent low-speed R-S at z/h = 0, while away from
this core region the velocity components cancel indicative of their being incoherently
correlated with the centred streak. This collocation procedure is similarly implemented
to isolate the high-speed streak. The structures in the y–z plane of the time-mean
low-speed and high-speed R-S in NSE100 are shown in figure 1(a,b) using contours
for 〈Us〉 and vectors for (〈W〉, 〈V〉). The time-mean flow in the upper region, y/h > 1,
is to a good approximation spanwise homogeneous (not shown). The structure of the
time-mean streaks in RNL100 are similar (cf. Nikolaidis et al. 2023). It is important
to note that although low-speed streaks are associated with flanking high-speed streak
components, the low-speed streaks are isolated structures in the statistical mean because
of the decoherence of the spanwise location of the streaks in Poiseuille flow. In contrast,
simulations of Couette flow turbulence in wide channels reveal that the streaks exhibit
long range correlation (Avsarkisov et al. 2014; Pirozzoli et al. 2014; Lee & Moser 2018).
The implication is that in wide channel Couette flow a collocation procedure would not be
necessary because the turbulence would exhibit a full array of spanwise periodic low- and
high-speed R-S rather than the random distribution of isolated R-S seen in Poiseuille flow.
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Figure 1. Contours of the time-mean collocated streak, 〈Us〉, and vectors of the roll velocity, (〈W〉, 〈V〉), for the
NSE100 low-speed streak (a) and high-speed streak (b). The contour interval is 0.025. In (a) the max(|〈Us〉|) =
0.21Uc, max(〈V〉) = 0.024Uc. In (b) the max(|〈Us〉|) = 0.16Uc, max(〈V〉) = 0.015Uc. The contour interval is
0.025Uc.

Having isolated at each time instant the streamwise-mean R-S with streamwise velocity
U( y, z, t), wall-normal velocity V( y, z, t) and spanwise velocity W( y, z, t), we Fourier
decompose in the streamwise direction the fluctuation velocities collocated with the streak

u = [u(x, t), v(x, t), w(x, t)]T , (3.1)

and calculate the time-mean covariance

Ckx( y1, z1, y2, z2) = 〈ukx( y1, z1)u
†
kx

( y2, z2)〉, (3.2)

where ukx( yi, zi)) is the amplitude of the nxth Fourier component of the velocity field with
streamwise wavenumber, kx = nxα, at the position ( yi, zi), with † indicating the Hermitian
transpose and α = 2π/Lx the smallest streamwise wavenumber in the channel. The same
point time-mean covariance is denoted Ckx( y, z). From this time-mean covariance we
obtain the time-mean Reynolds stresses produced by the fluctuations.

4. The R-S dynamical balance diagnostics

The time-mean collocated R-S and the associated time-mean collocated fluctuation
Reynolds stresses comprise components of the structure of the R-S and the dynamics
maintaining it, respectively. We will now examine the terms in this equilibrium for the
case of the low-speed streak.
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Figure 2. For the low-speed streak in NSE100, contours in the ( y, z) plane are shown for (a) −〈V∂yU −
[V∂yU]〉, (b) −〈W∂zUs〉, (c) −〈∂y(uv − [uv])〉, (d) −∂z〈uw〉 and (e) R−1�〈Us〉. The sum shown in ( f ) confirms
that the above terms are in balance. The contour interval is 0.003U2

c /h.

Equations (2.1a) and (2.2a) imply that the streamwise-mean streak, Us = U − [U],
satisfies the equation

∂tUs = −(V∂y(U) − [V∂yU]) − W∂zUs − ∂y(uv − [uv]) − ∂z(uw − [uw]) + R−1�Us,
(4.1)

so that, given that ∂z[uw] = 0, the time-mean streak satisfies the force balance:

−〈(V∂y(U) − [V∂yU])〉 − 〈W∂zUs〉 − ∂y(〈uv〉 − 〈[uv]〉) − ∂z〈uw〉 + R−1�〈Us〉 = 0.

(4.2)

The terms comprising this balance are verified to be in a time-mean equilibrium in figure 2,
for the NSE100, and in figure 3, for the RNL100. Moreover, figures 2 and 3 show that, in
the time-mean, the streak is principally supported by the lift-up mechanism, −〈V∂yU −
[V∂yU]〉, and opposed by spanwise Reynolds stress divergence, −∂z〈uw〉 and diffusion
R−1�〈Us〉.

A typical time series of the average amplitude of the low-speed streak at the centreline of
the streak and of the principal terms in the force balance (4.2) which are the instantaneous
average streak acceleration by the lift-up process, − ∫ 1

0 dy(V∂yU − [V∂yU]), the average
acceleration by spanwise Reynolds stress divergence, − ∫ 1

0 dy∂zuw, and the average
acceleration due to diffusion, R−1 ∫ 1

0 dy�Us, are shown in figure 4. The time-mean
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Figure 3. As in figure 2 for RNL100. The contour interval is 0.003 U2
c /h.

acceleration and standard deviation over the entire dataset due to lift up is −0.01U2
c /h

(dashed blue) with σ = 0.004 U2
c /h, that due to Reynolds stress divergence is 0.007U2

c /h
(dashed black) with σ = 0.004U2

c /h and that due to diffusion is 0.003U2
c /h (dashed

green) with σ = 0.0013U2
c /h. Over the entire dataset the acceleration due to lift up

and that due to Reynolds stress divergence, − ∫ 1
0 dy∂zuw, are strongly correlated with

cross-correlation coefficient 0.72 at lag 1.2h/Uc as shown in figure 5. Also, over the entire
dataset streak maxima lead the streak regulation term, − ∫ h

0 dy∂z(uw)/(h2U2
c ), by 2h/Uc.

Two bursting events are seen in figure 4 associated with the streak maxima at 3275h/Uc
and 3866h/Uc. These streak maxima are followed by maxima of the streak regulation
term − ∫ h

0 dy∂z(uw)/(h2U2
c ) at 3282h/Uc and 3879h/Uc, respectively. The near balance

and near synchronicity seen in figure 5 indicates that the maintenance and regulation of
the streak amplitude is occurring at all times and that breakdown events are not primarily
responsible for either the maintenance or the regulation of the streak (see also figure 6).

5. Maintenance of the streamwise-mean roll

Having verified the dominance of lift-up by roll circulations in supporting the R-S,
our attention turns to studying the mechanism giving rise to the remarkable universal
coincidence in wall turbulence of streaks with roll circulations properly configured to
maintain them. By taking the curl of the streamwise-mean equations (2.1a) and (2.2a)
we obtain that in both NSE100 and RNL10 the streamwise component of the vorticity
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R–1 ∫0

h dy �Us/(h2Uc
2)

0.2 ∫0
h dy Us/(hUc) –∫0

h dy (V∂yU – [V∂yU ])/(h2Uc
2)

– ∫0
h dy ∂z(uw)/(h2U2

c)

Figure 4. Contributions to streak maintenance and regulation in NSE100. The scaled average streak amplitude
at the centreline of the low-speed streak (0.2

∫ h
0 dyUs/hUc) is shown in red. The average streak acceleration by

lift-up at the centreline of the low-speed streak (− ∫ h
0 dy(V∂y(U) − [V∂yU])/(h2U2

c )) (blue) is opposed by the
acceleration due to diffusion (green) (R−1 ∫ h

0 dy�Us/(h2U2
c )) and downgradient momentum transport by the

streamwise varying fluctuations (black) (− ∫ h
0 dy∂z(uw)/(h2U2

c )). The dashed lines with the corresponding
colours indicate the mean values taken over the entire dataset. This figure shows that maintenance and
regulation of the streak is occurring continuously in time and is not confined to bursting events.

3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0

0.005

0.010

tUc/h

Figure 5. Comparison between the primary components maintaining and regulating the low-speed streak
in NSE100. Shown are the acceleration due to lift-up (blue) and the negative of the acceleration due to
Reynolds stress divergence (black) (cf. figure 4). The time series have been shifted by the 1.2h/Uc lag between
them which was obtained over the entire dataset. These two accelerations are highly correlated (correlation
coefficient 0.72) revealing that a tight quasiequilibrium between lift-up and downgradient momentum transfer
characterizes the maintenance and regulation of the streak amplitude.
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Figure 6. Typical section of the time series of the integrated correlation between the instantaneous value of the
streamwise-mean vorticity and the streamwise-mean vorticity source G,

∫ 1
0 dy[ΩxG]h2/U3

c , for the case of the
low-speed streak in NSE10. Over the whole dataset the time mean is 0.0035h2/U3

c (dashed). This figure shows
that the forcing of the roll, and consequently of the streak, is continuous in time and almost always positive.

Ωx = ∂yW − ∂zV satisfies the equation

∂tΩx = −(V∂y + W∂z)Ωx︸ ︷︷ ︸
A

+ (∂zz − ∂yy)vw + ∂yz(v2 − w2)︸ ︷︷ ︸
G

+ R−1�Ωx︸ ︷︷ ︸
D

, (5.1)

in which the streamwise-mean wall-normal and spanwise velocities are given by V =
−∂zΔ

−1Ωx and W = ∂yΔ
−1Ωx with the inverse Laplacian Δ−1 incorporating the

boundary conditions.
The term A, representing advection of Ωx by the roll velocities (V, W), is not a source of

net streamwise vorticity. The roll vorticity is sustained against dissipation, D, by the curl of
the force arising from the Reynolds stress divergence, G. In this equation the wall-normal
component of the Reynolds stress divergence force is

Fy = −∂z(vw) − ∂y(v2), (5.2)

while the spanwise component is

Fz = −∂y(vw) − ∂z(w2), (5.3)

which results in the contribution to the rate of change of streamwise-mean vorticity in the
streamwise direction:

G = x̂ · ∇ × (0, Fy, Fz) = (∂zz − ∂yy)vw + ∂yz(v2 − w2), (5.4)

where x̂ is the unit vector in the streamwise direction. The first right-hand side term in (5.4)
represents the contribution to G from the Reynolds shear stress vw, while the second term
represents the contribution from v2 − w2, which can be identified with anisotropy in the
Reynolds normal stress components. The implications of this decomposition are discussed
by Alizard et al. (2021) in the context of the formation of streamwise constant rolls during
transition to turbulence in the RNL framework. The Reynolds normal stress component of
G will be shown in the next section to dominate and determine the direction and location
of the roll circulation and consequently of the streak acceleration.
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Figure 7. For the low-speed streak in NSE100, contours in the ( y, z) plane are shown for
(a) 〈A〉 = −〈(V∂y + W∂z)Ωx〉, contribution to the time-mean rate of change of 〈Ωx〉 by roll self-advection,
(b) 〈G〉 = (∂zz − ∂yy)〈vw〉 + ∂yz〈(v2 − w2)〉, contribution to the time-mean rate of change of 〈Ωx〉 by Reynolds
stress divergence, (c) 〈D〉 = R−1�〈Ωx〉, contribution to the time-mean rate of change of 〈Ωx〉 by dissipation.
The sum shown in (d) confirms that the above terms are in balance. The contour interval is 0.0015U2

c /h.

A time series of the inner product of Ωx with G is shown in figure 6. Two observations
are appropriate: the first is that roll forcing by Reynolds stresses is continuous in
time and almost always positive; the second is that streamwise-mean vorticity forcing
is negatively associated with bursting events such as that occurring around t = 3800.
Continual generation of streamwise vorticity supporting the existing roll circulation both
in the buffer layer and also in the logarithmic layer was previously documented in RNL
turbulence at Reynolds number Rτ = 1000 (cf. Farrell et al. 2016). This result has not yet
been confirmed in DNS, but we expect it to be, given that parallel mechanisms underlie
wall turbulence in RNL and DNS.

In the time-mean the streamwise-mean vorticity, Ωx, satisfies the balance

−〈(V∂y + W∂z)Ωx〉︸ ︷︷ ︸
〈A〉

+ (∂zz − ∂yy)〈vw〉 + ∂yz〈(v2 − w2)〉︸ ︷︷ ︸
〈G〉

+ R−1�〈Ωx〉︸ ︷︷ ︸
〈D〉

= 0. (5.5)

The three components of this time-mean balance in NSE100 and RNL100 are shown in
figures 7 and 8.

The roll circulation resulting from the forcing by 〈G〉 can be understood by assessing
the wall-normal velocity induced by 〈G〉 together with its modification by 〈A〉. The
modification given by 〈A〉 results from a pressure field required so that the circulation
forced by 〈G〉 satisfies boundary conditions. We project (5.5) to streamwise-mean
wall-normal velocity by multiplying (5.5) with −δt∂zΔ

−1 for a chosen time interval δt
in order to obtain

δVA + δVG = −δtR−1�〈V〉, (5.6)
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Figure 8. As in figure 7 for RNL100. The contour interval is 0.0015U2
c /h.
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Figure 9. For the low-speed streak in NSE100, contours in the ( y, z) plane are shown for (a) the time-mean
wall-normal velocity increment resulting from advection, δVA, (b) the wall-normal velocity increment resulting
from Reynolds stress, δVG, and (c) their sum δVA + δVG. This figure shows the contribution of the advection
and Reynolds stress to the maintenance of the low-speed R-S. The associated 〈A〉, 〈G〉 fields are shown in
figure 7(a,b). The contour interval is 2 × 10−4Uc.

where δVG = −δt∂zΔ
−1〈G〉 is the wall-normal velocity increment induced by 〈G〉 over

time interval δt and δVA = −δt∂zΔ
−1〈A〉 is the corresponding wall-normal velocity

increment induced by 〈A〉. It is the δVG induced by 〈G〉 and corrected by δVA that
determines the equilibrium V field as indicated in the balance equation (5.6). The
wall-normal velocity increments δVG and δVA maintaining the low-speed R-S in NSE100
are shown in figure 9. This figure shows that δVG is providing lift-up in the streak core
supporting the low-speed R-S and also the corrective δVA, which is approximately 1/3 of
the δVG, is adding to the support of the R-S provided by 〈G〉.

In figure 9 we have taken the time interval for the development of δV to be δt = 1h/Uc;
however, it is instructive to identify a physically relevant value of this time scale which
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for the low-speed streak is given by Td/δt ≈ Vmax/δVmax = 12, where Vmax is the
maximum wall normal velocity at the streak centreline (cf. figure 1a) and δVmax is the
maximum wall-normal velocity increment over unit time also evaluated at the centreline
(cf. figure 9c). This time scale can be interpreted as a Rayleigh damping time scale for
equilibration of the roll circulation being forced by the Reynolds stresses.

6. Contribution to roll forcing by the sinuous (S) and varicose (V) fluctuations

In the previous section we showed that the Reynolds stresses induce vorticity forcing that
continuously reinforces the pre-existing streamwise-mean streamwise vorticity so as to
sustain the R-S. Key to understanding this remarkable property is the dynamics of the
S and V fluctuations collocated with the mean streak. In this section we isolate the S
and V components of the velocity fluctuations collocated with the streak and show that
the maintenance of the mean R-S can be attributed to the Reynolds stresses due to the S
and V components of velocity acting independently. Although instantaneous snapshots of
the flow field would reveal Reynolds stresses arising from interaction between the S and
V fields, this interaction vanishes in the time-mean. This is expected because the R-S is
mirror-symmetric, and non-vanishing of the time-mean S and V covariance would result
in Reynolds stresses incompatible with the mirror symmetry of the time-mean R-S – this
will be verified below.

In order to define the time-mean covariance of the S and V components of the
fluctuation field we form at each time step of the simulation the S and V components
of the velocity field:

uS(x, y, z, t) = u − umirror

2
, uV(x, y, z, t) = u + umirror

2
, (6.1)

in which the mirror symmetric fluctuation field about the plane z = 0 is defined as

umirror(x, y, z, t)def=
⎛
⎝ u(x, y, −z, t)

v(x, y, −z, t)
−w(x, y, −z, t)

⎞
⎠ . (6.2)

The time-mean spatial covariances of the S and V components of the fluctuation

field at streamwise wavenumber kx are CS,kx( y1, z1, y2, z2)
def=〈uS,kx( y1, z1)u

†
S,kx

( y2, z2)〉
and CV,kx( y1, z1, y2, z2)

def=〈uV,kx( y1, z1)u
†
V,kx

( y2, z2)〉, where uS/V,kx are the Fourier
amplitudes of the S and V components of the fluctuation velocity field at kx, while the

corresponding covariance of the total field is given by Ckx( y1, z1, y2, z2)
def=〈ukx( y1, z1)u

†
kx

( y2, z2)〉. The asymptotic approach in time of the equality

Ckx( y1, z1, y2, z2) = CS,kx( y1, z1, y2, z2) + CV,kx( y1, z1, y2, z2) (6.3)

has been verified, implying that there is no time-mean correlation between the S and
V fluctuations. Consequently, the time-mean fluctuation Reynolds stresses, which are a
linear function of the covariances, are the sum of the Reynolds stresses obtained from the
respective S and V covariances. The fluctuation Reynolds stress can be further partitioned
into a sum over kx. Using this partition into S and V components at each wavenumber kx,
we can separate the contribution of the S and V components at each kx to the mechanism
sustaining the R-S.

We turn now to study how the roll is induced by the time-mean fluctuation Reynolds
stresses. We first consider the contribution to the roll forcing by the time-mean Reynolds
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Figure 10. Increment of mean streamwise vorticity, δΩx,kx , induced over unit time by Reynolds stresses of the
S (a) and the V (b) kx/α = 3 fluctuations in the low-speed streak of NSE100. Wavenumber kx/α = 3 is chosen
because the forcing is maximized at this wavenumber (cf. figure 12a). Also shown are vectors with components
(δWkx , δVkx ). This figure shows that the S fluctuations reinforce the low-speed streak while the V fluctuations
oppose it. Overall the S fluctuations are dominant and the low-speed streak is sustained.

stresses due to kx fluctuations, 〈Gkx〉 = (∂zz − ∂yy)〈vw〉kx + ∂yz〈(v2 − w2)〉kx . This 〈Gkx〉
acting alone would result, as discussed in the previous section, in a wall-normal velocity
increment over time δt, δVkx = −δt∂zΔ

−1〈Gkx〉, and a spanwise velocity increment over
time δt, δWkx = δt∂yΔ

−1〈Gkx〉. The associated streamwise-mean vorticity increment is
δΩx,kx = 〈Gkx〉δt and Δ−1 the inverse Laplacian required to account for the influence of
pressure forces arising from the boundary conditions. We choose δt = 1 from now on.

The spatial distribution of δΩx,kx and vector plots of the streamwise-mean velocity fields
(δVkx, δWkx) induced by S and V components of kx = 3α fluctuations in NSE100 for the
case of the low-speed streak are shown in figure 10. Note that the velocity increment
vectors are not tangent to the contours of the vorticity increments, δΩx,kx . This is due to the
action of pressure forces arising due to the boundary conditions. This figure demonstrates
that S Reynolds stresses produce mean vorticity that reinforces the low speed streak while
the V Reynolds stresses oppose the low-speed streak. In low-speed streaks the S Reynolds
stresses dominate, consistent with the S structures maintaining the low-speed streak.
While both S and V fluctuations are present in association with low-speed streaks so that
application of targeted data analysis techniques could be used to deduce the presence of,
for example, hairpin vortex structures in association with low-speed streaks, this result
demonstrates that the varicose component at kx = 3α opposes rather than maintains the
low-speed streak. We will verify that this is also the case at other kx. Conversely, in
high-speed streaks the V Reynolds stresses dominate, consistent with maintaining the
high-speed streak. We will show that this is also a general property. In RNL100 we obtain
similar results (cf. figure 11).

The velocity increment forced by the Reynolds stresses over the primary area of lift-up
forcing (see figure 9b)

δ̃Vkx
def=

∫ z0

−z0

dz
2z0

∫ y0

0

dy
y0

δVkx( y, z), (6.4)

with y0 = h/2 and z0 = 0.26h, partitioned into S and V components, and the velocity
increment induced by their sum, S + V , as a function of the streamwise wavenumber of
the fluctuations, kx/α, for the case of the low-speed streak and the high-speed streak in
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Figure 11. Increment of mean streamwise vorticity, δΩx,kx , induced over unit time by Reynolds stresses of
the S (a) and the V (b) kx/α = 2 fluctuations that are collocated with the mean low-speed streak in RNL100.
Wavenumber kx/α = 2 is chosen because the forcing is maximized at this wavenumber (cf. figure 13a). Also
shown are vectors with components the roll velocities induced over unit time (δWkx , δVkx ). This figure shows
that the S fluctuations reinforce the low-speed streak while the V fluctuations oppose it as in NSE100 shown
in figure 10.

NSE100 is shown in figure 12. The corresponding RNL100 results shown in figure 13
are similar to those of the NSE100, except that in RNL100 the streak is supported by
only the first three streamwise wavenumbers, which are the streamwise wavenumbers
spontaneously retained by RNL dynamics. These figures show that in the time-mean and
at all streamwise wavenumbers considered, the S fluctuations induce lift-up in both low-
and high-speed streaks, while the V induce push-down. These figures also show that in
low-speed streaks the S component dominates the V at every kx resulting in the support
of the low-speed streak, while in high-speed streaks the V component dominates the S
resulting in the support of the high-speed streak. Also the contribution to roll forcing by
the fluctuations at each wavenumber is similarly distributed so that each wavenumber is
contributing to the reinforcement of the pre-existing R-S. Note that the Reynolds stress
induced time-mean δ̃Vkx is maximized at kx/α = 3 for both low-speed and high-speed
streaks in NSE100. However, the support of the streak extends over a broad band of
streamwise wavenumbers implying structural robustness of the mechanism of roll forcing
supporting the SSP cycle in wall turbulence.

Note that the wall-normal velocity increments induced either by the S or the
V fluctuations in the case of the low-speed streak are substantially larger than the
corresponding velocity increments induced for the case of the high-speed streak.
Moreover, the net roll forcing from the sum of the opposing S and V induced velocities
is approximately two times larger in the low-speed streak compared with the high-speed
streak. This dynamical advantage in forcing of the low-speed streak in comparison with the
forcing of the high-speed streak, combined with the increased dissipation resulting from
displacement of the high-speed streak towards the boundary, provides explanation for the
relative dominance of the low-speed streak in observations of isolated R-S as occur in this
Poiseuille flow. In the case of the highly ordered R-S observed in wide channel Couette
flow (Pirozzoli et al. 2014), the low- and high-speed streaks would not be independent and
their interaction would need to be taken into account.
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Figure 12. Velocity increments, δ̃Vkx , forced by the Reynolds stresses over the primary area of lift-up,
partitioned into S and V components, and the velocity increment induced by their sum, S +V , as a function
of the streamwise wavenumber of the fluctuations, kx/α, for the case of the low-speed streak (a) and the
high-speed streak (b) of NSE100. The largest induced velocity occurs at kx/α = 3 for both the low-speed
streak and high-speed streak. These figures show that in the time-mean the S fluctuations induce lift-up while
the V induce push-down. In the low-speed streak the S induced lift-up dominates the V push-down producing
maintenance of the low-speed streak, while in the high-speed streak the V induced lift-up dominates the S
push-down producing maintenance of the high-speed streak.
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Figure 13. As in figure 12 except RNL100.

7. Contribution to streak forcing by the S and V shear and normal Reynolds stress
components

Simplicity in analysing the mechanism by which the Reynolds stress forcing G gives rise
to the R-S can be obtained by concentrating on the forcing of V along the centreline of the
streak given by δVkx( y, z = 0). The y structure of the S and V components of δVkx( y, z =
0) for the low-speed streak in NSE100 is shown in figure 14. This figure shows that the
Reynolds stress induced lift-up at each wavenumber add coherently.

For the analysis of the streak forcing we choose to show the streak velocity at the streak
centreline induced by δVkx( y, 0) acting over unit time, δU = −δVkx( y, 0)U′( y, 0)δt, with
δt = 1 and U′( y, 0) the shear of the streamwise flow at the streak centreline. The streak
velocity δU induced by the dominant kx/α = 3 fluctuations is plotted in figure 15 for
the low-speed streak in NSE100 and in figure 16 for the high-speed streak in NSE100,
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Figure 14. Wall-normal distribution at the centreline of δVkx ( y, z = 0). Shown separately are the S (a) and
the V (b) components with streamwise wavenumber kx/α = 1, 2, . . . , 12 for the case of the low-speed streak
of NSE100.

both of which are located in the lower half of the channel by our collocation procedure.
The net δU induced in the upper half of the channel by the S and V fluctuations, where
there is no streak, vanishes in the time-mean. In the lower region, where there is a streak,
the S and V contributions do not cancel in the time-mean and a net δU results. In the
low-speed streak region of figure 15(a), the S fluctuations dominate the V fluctuations in
the time-mean resulting in δU increments supporting the low-speed streak. In general it
can be shown that S fluctuations force low-speed streaks while V fluctuations oppose this
forcing (Farrell, Ioannou & Nikolaidis 2022). In the high-speed streak regions, as shown
in figure 16(a), the high-speed streak is forced by the Reynolds stresses of V fluctuations
which dominate the opposing tendency of the S fluctuations. The induced δU in RNL100
are similar; for example, in figure 17 we show the induced δU by the kx/α = 2 fluctuations
in the low-speed streak in the lower half of the channel of RNL100 and the δU in the
spanwise uniform flow in the upper half of the channel.

Partition of the Reynolds stress induced streak increment δU into the component δUvw
induced by the Reynolds shear stresses, 〈vw〉, and that induced by the Reynolds normal
stresses, 〈v2 − w2〉 is shown in figures 15(b,c), 16(b,c) and 17(b,c). The net dynamically
relevant asymmetric normal stress, 〈v2 − w2〉, which results from the dominance of the
S over the V fluctuations in the presence of a low-speed streak, is seen to determine
the resulting net streak forcing. Moreover, similar distributions characterize the induced
acceleration for other streamwise wavenumbers, kx. This will be shown below to be a
consequence of universality in the structure of the Reynolds-stress with kx.

Indicative of the primary dynamics underlying the R-S is the Reynolds normal stress
produced by the dominant wavenumbers. The distribution of the time-mean Reynolds
normal stress components partitioned into the contribution from the S and the V
988 A14-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.381


Roll-streak dynamics in Poiseuille flow turbulence

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

–2 –1 2 –2 –1 2 –2 –10 1 0 1 0 1 2
0

0.5

1.0

1.5

2.0

(×10–3) (×10–3) (×10–3)δU/Uc

δUvw
δUvw+ δUv2–w2

δUv2–w2

δU/Uc δU/Uc

y/
h

(b)(a) (c)

S V

Figure 15. In (a) is shown the contribution to streak forcing, δU, that is induced by lift-up. The lift-up is that
induced over unit time by the kx/α = 3 fluctuations. Shown is the resulting δU in the low-speed streak region
(y/h < 1) and in the spanwise uniform flow (y/h > 1) in NSE100 (black). Shown separately are contributions
to δU induced by the S (blue) and V fluctuations (red). In (b) is shown partition of the δU induced by S
(dashed black) into the component, δUv2−w2 , induced by the 〈v2 − w2〉 Reynolds stresses (solid blue) and the
component, δUvw, induced by the 〈vw〉 Reynolds stresses (solid red) while in (c) is shown the corresponding
partition for the V fluctuations. This figure shows that S fluctuations tend to accelerate the low-speed streaks,
while the V fluctuations tend to decelerate it; that the acceleration induced by the S is greater than that induced
by the V in the region of the low-speed streak in the lower half of the channel; that the S and V accelerations are
equal and opposite where there is no streak; that the 〈v2 − w2〉 Reynolds normal stress dominates the forcing
of lift-up resulting in streak forcing, δU. Here (a) S + V , (b) S and (c) V .
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Figure 16. As in figure 15 except for the kx/α = 3 fluctuations in the high-speed streak in NSE100. Here
(a) S + V , (b) S and (c) V .

fluctuations and the sum of these is shown in figure 18. The S fluctuations have v = 0
and ∂zw = 0 at the centreline and the normal stress asymmetric component 〈v2 − w2〉 is
negative and has a minimum as a function of z at the centreline with its overall minimum,
in the case of our streak, attained at y/h ≈ 0.4 above the centre of the streak, which is
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Figure 17. As in figure 15 except for the kx/α = 2 fluctuations in the low-speed streak in RNL100. Here
(a) S + V , (b) S and (c) V .

at y/h ≈ 0.15 (cf. figures 1a and 18a). The V fluctuations have w = 0 and ∂zv = 0 at the
centreline consistent with maxima of 〈v2 − w2〉 at the centre of the streak (cf. figure 18b).
In the absence of a streak, as in the region of the upper boundary of the channel, the
S fluctuations and the V fluctuations are equal and the sum 〈v2 − w2〉 is constant in the
spanwise direction, as shown in figure 18(c) near the upper boundary, and no roll forcing
results from the Reynolds normal stress. In low-speed streaks, as in the region of the
lower boundary of the channel, the S fluctuations dominate consistent with the primacy
of this term in providing the required roll forcing to maintain the low-speed streak through
lift-up (cf. figure 18c). In contrast to the case of low-speed streaks, in high-speed streaks
the V fluctuations dominate with the maximum 〈v2 − w2〉 of the V fluctuations almost
cancelling the minimum of the S fluctuations at the centreline leading the total 〈v2 − w2〉
to be determined by the two minima of 〈v2 − w2〉 of the V fluctuations at the wings of the
streak (cf. figure 19). Note that the stresses in the presence of a high-speed streak are not
mirror images of the stresses in the presence of a low-speed streak as the low-speed streak
flow is not a mirror image of the high-speed streak flow. However, as discussed in the
next section, the stresses in the presence of infinitesimal low- and high-speed streaks are
mirror images of each other and remarkably the low-speed streak is dominantly forced by
the S fluctuations and the high-speed streak by V fluctuations even for infinitesimal strain
of the perturbation field. The high-speed streak is supported by the 〈w2〉 component of
the normal stress at the wings of the high-speed streak, consistent with the 〈w2〉 Reynolds
stress distribution being the dominant component supporting both low- and high-speed
streaks. A similar dominance of the w2 component of the normal stress in roll formation
was found in transitional RNL flows by Alizard et al. (2021) and in the vortex-wave theory
for the generation of rolls (cf. Hall & Sherwin 2010).

The crucial observation is that in the region of the streak an asymmetry between the S
and V induces net Reynolds stresses that sustain the pre-existing streak. This asymmetry
between S and V fluctuations arises as a general property of turbulence in the presence of
a streak, as will be argued in the next section, and manifests in the time-mean statistics as
a general property that is responsible for the roll forcing that generates and maintains

988 A14-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

38
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.381


Roll-streak dynamics in Poiseuille flow turbulence

2.0
–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0

1.5

1.0

0.5

0

–0.5

–1.0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.5

–3.0

1.5

1.0

0.5

0
–1 0 1

2.0

1.5

1.0

0.5

0
–1 0 1

2.0

1.5

1.0

0.5

0
–1 0 1

z/h

y/
h

z/h z/h
(×10–4) (×10–4)

(×10–4)
(b)(a) (c)

Figure 18. Time-mean Reynolds normal stress at kx/α = 3 in NSE100 for the low-speed streak shown in
figure 1. The normal stress shown is partitioned into (a) S and (b) V components. (c) The total time-mean
normal stress is the sum of S + V . This figure shows that the low-speed streak results primarily from the
S component. Near the upper boundary the flow is spanwise homogeneous and the normal stress becomes
spanwise constant producing no roll-forcing. The contour interval is 0.25 × 10−4 U2

c . Here (a) (v2 − w2)kx=3α

of S , (b) (v2 − w2)kx=3α of V and (c) (v2 − w2)kx=3α of S + V .
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Figure 19. As in figure 18 except for the high-speed streak. Here (a) (v2 − w2)kx=3α of S , (b) (v2 − w2)kx=3α

of V and (c) (v2 − w2)kx=3α of S + V .

the SSP and that underlies the universal mechanism of the S3T modal instability of
spanwise uniform mean flows in the presence of background turbulence responsible for
the emergence of the R-S as a ubiquitous structure in turbulent shear flows (Farrell &
Ioannou 2012; Farrell et al. 2017b, 2022).

8. Universality in structure of the Reynolds stresses arising from fluctuations about
the mean streak

We have seen that the SSP is primarily supported by the Reynolds stresses of the first
10 streamwise wavenumbers (cf. figure 12). The time-mean Reynolds stresses at these
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Figure 20. Time-mean Reynolds stresses of fluctuations collocated with low-speed streak of NSE100. Here
(a–d) kx/α = 2; (e–h) kx/α = 3; (i–l) kx/α = 4. Panels (a,b,e, f,i, j) show contours of 〈uv − [uv]〉 and 〈uw〉
which comprise the Reynolds stresses responsible for the regulation of the streak. Panels (c,d,g,h,k,l) show
contours of 〈vw〉 and 〈v2 − w2〉 which comprise the Reynolds stresses responsible for forcing the roll sustaining
the low-speed streak. This figure shows that there is universality in the mechanism sustaining and regulating
the low-speed streak as a function of streamwise wavenumber.

wavenumbers exhibit a notable universality in structure about the time-mean streak for the
case of both the low-speed streak (figures 20 and 21) and the high-speed streak (figure 22).
Universality and self-similarity of the time-mean structure of fluctuations about time-mean
flows has been found to characterize wall-bounded turbulence (del Álamo et al. 2006;
Hwang & Cossu 2010; Lozano-Durán & Jiménez 2014; Hwang 2015; Hellström, Marusic
& Smits 2016) and it has been demonstrated that this property derives from the linear
interaction of the fluctuations with the time-mean flow (Farrell & Ioannou 1993a; del
Álamo & Jiménez 2006; Moarref et al. 2013; McKeon 2019; Vadarevu et al. 2019;
Hwang & Eckhardt 2020; Holford & Hwang 2023). Here we verify the universality
of the time-mean structure of the large-scale fluctuations that are collocated with the
low-speed and high-speed streak, which was already apparent in figure 14, and attribute
the self-similarity of these structures to the linear interaction of the fluctuations with the
time-mean streak. The typical structure of Reynolds stresses of the fluctuations in NSE100
in low-speed streaks is shown in figure 20 and for high-speed streaks in figure 22. These
figures show the universality in streamwise wavenumber of the structure of the time-mean
Reynolds stresses implying universality of the mechanism sustaining and regulating both
the low- and high-speed streaks. Remarkably, the universal structure of the fluctuations on
the streak will be shown to arise from the growth of fluctuations excited white-in-energy
so that their structure arises solely from the optimal growth properties of the streak and
does not require the introduction of colour to the excitation.

The structure of the 〈uw〉 (figures 20b, f , j, 21b, f, j and 22b, f, j) and of the 〈v2 − w2〉
(figures 20d,h,l, 21d,h,l and 22d,h,l) Reynolds stress components are directly interpretable.
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Figure 21. As in figure 20 for fluctuations with kx/α = 10 (a–d), kx/α = 11 (e–h) and kx/α = 12 (i–l). This
figure shows that the universality in structure is still apparent at high streamwise wavenumbers.
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Figure 22. As in figure 20 except for fluctuations with kx/α = 3 (a–d), kx/α = 4 (e–h) and kx/α = 5 (i–l) in
the high-speed streak.
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The structure of 〈uw〉 indicates that energy is being transferred in the mean from the
spanwise varying mean streak to the fluctuations. This reflects the mechanism by which
the fluctuations are sustaining while at the same time regulating the streaks. Near the
centreline of a low-speed streak ∂z〈uw〉 < 0 indicating that on average the fluctuations
are being sustained by gaining kinetic energy from the streak (cf. figure 20b, f , j). The
opposite polarity of the 〈uw〉 is found as required for sustaining the fluctuations in the
case of a high speed streak (cf. figure 22b, f , j). The 〈v2 − w2〉 Reynolds stress, identified
as the asymmetric component of the Reynolds normal stress, was shown above to be the
primary source of roll acceleration supporting the streak through the lift-up mechanism.
As discussed in the previous section the minimum of the normal stress at the centreline
of the low-speed streak indicates dominance of the S component of the fluctuations,
consistent with the primacy of this term in providing the roll forcing maintaining the
low-speed streak through lift-up (cf. figures 20d,h,l and 21d,h,l). In high-speed streaks
the minimum of v2 − w2 occurs at the wings of the streak (cf. figure 22) indicating the
dominance of the V fluctuations over the S at the wings of the streak, as is clear in figure 19
from the contribution to this stress from the S and V fluctuations separately.

9. Tracing the origin of the universality of the Reynolds stresses supporting the R-S
to the optimal growth of perturbations on the R-S

We have seen that there is a universal mechanism producing Reynolds stresses properly
collocated to result in streak growth in turbulent shear flow. This remarkable result
has precedence in earlier work in which it was shown that even an infinitesimal streak
perturbation imposed on a spanwise homogeneous field of turbulence in a spanwise
constant mean shear flow organizes roll-inducing Reynolds stresses resulting in an unstable
mode with R-S form arising from the streak perturbation (Farrell & Ioannou 2012; Farrell
et al. 2017b, 2022). This result was ascribed to the structure of optimal perturbations which
dominate the perturbation variance as a necessary consequence of the completeness of
basis functions which requires that a sufficiently random field will have a projection on
every basis function and in a non-normal dynamics, such as a shear flow, only a small
set of these projections grow appreciably over time in the energy norm. These structures
can be identified using singular value decomposition to be the optimal perturbations. It
follows that in the stochastic background field of shear turbulence a small set of optimal
perturbations form a basis in the energy norm for the set of energy active fluctuations that
determine the fluctuations obtaining significant amplitude. The hypothesis to be tested
is whether the optimal perturbations on a streak in a shear flow evolve correlated with
the streak just so as to force the streak to grow by inducing roll forcing that results in
a streak-amplifying lift-up process. The implication of this hypothesis being verified is
that, in the random field of the turbulent background, the set of growing structures that
spontaneously develop are responsible for the universality of the Reynolds stresses and
also that these optimal perturbations tend to destabilize any perturbation with streak form
giving rise to a universal streak destabilizing mechanism that is a general property of
turbulence in shear flow.

We test this hypothesis by calculating the ensemble mean covariance of stochastically
excited perturbations imposed on a mean streak using a stochastic turbulence model
(STM). In this STM the ensemble mean covariance, Ckx , of the fluctuations
with streamwise wavenumber kx (cf. (3.2)) that develops with white-in-time and
white-in-energy stochastic excitation through the non-normal interaction with the mean
flow, U, satisfies the time-dependent Lyapunov equation which can be written in matrix
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form as
dCkx

dt
= Akx(U)Ckx + CkxA†

kx
(U) + I, (9.1)

which, it is useful to note, is also the second cumulant equation of S3T. Here Akx(U) is
the linear operator governing the evolution of the fluctuations with wavenumber kx about
the mean flow, U; I is the spatial covariance of the stochastic forcing, which is taken as
the identity in order that all degrees of freedom are excited equally in energy; † denotes
the Hermitian transpose (Farrell & Ioannou 1993b). The mean flow Ux̂ considered is
hydrodynamically stable (it is our stable low- or high-speed streak). While all fluctuations
eventually decay, continual excitation produces a finite covariance, which is dominated by
the structures that grow the most by non-normal interaction with the mean flow. These
dominantly growing structures are the optimal perturbations. In Nikolaidis et al. (2023)
the dominant POD modes of the covariance that develops in (9.1) in the background of the
time-mean low-speed streak shown in figure 1 were obtained. It was shown there that the
dominant POD modes reflect the average structure of the optimal perturbations that grow
on the streak and consequently provide a characterization of the Reynolds stresses and of
the induced roll forcing.

First consider the covariances that develop when the mean flow U in (9.1) is spanwise
independent. This to a good approximation occurs in the upper region, y/h > 1, of the
time mean flow in figure 1. In that case the S and V fluctuation components are identical
modulo a spanwise shift, the velocity fields are statistically spanwise homogeneous and
the associated Reynolds stresses do not produce roll forcing as 〈v2 − w2〉 is spanwise
constant and 〈vw〉 = 0 (cf. (5.4)). The vanishing of 〈vw〉 can be seen by noting that the
S contribution to this stress is equal and opposite to the V contribution. As a result, the
streak acceleration vanishes in the homogeneous regions y/h > 1 above the low-speed
streaks, as shown in figures 15a, 17a. Upon introducing in (9.1) the mean flow of the
streak of figure 1, indicated as Us, the covariances are no longer spanwise homogeneous
and the Reynolds stresses produce roll forcing. Consider (9.1) integrated forward with the
streak mean flow in figure 1 and initial condition the spanwise homogeneous equilibrium
covariance, Chom,kx , that emerges asymptotically when the mean flow is the spanwise
independent time-mean flow Um( y). The inhomogeneous covariance C inh,kx that develops
according to (9.1) in time δt after the introduction of the streak is

C inh,kx = (δAkx(Us)Chom,kx + Chom,kxδA†
kx

(Us))δt, (9.2)

with δAkx(Us) = Akx(Um + Us) − Akx(Um). The Reynolds shear and normal stresses
produced by C inh,kx are shown in figure 23(a,b) after integration of (9.1) for δt =
0.001h/Uc units of time. The roll-circulation induced through the straining of the spanwise
homogeneous velocity field over this short interval of time is shown in figure 23(c–f ).
Remarkably, the universal structure of the Reynolds stresses and of the roll forcing seen
in the time mean statistics of NSE100 and RNL100 manifests instantaneously upon the
introduction of the streak in the flow. This indicates that straining over an infinitesimal
time interval of a spanwise homogeneous fluctuation field by a low-speed streak favours
the S component of the field over the V producing correctly configured roll forcing to
destabilize the streak.

Note that because δAkx(Us) depends linearly on Us, reversing the sign of Us in (9.2)
reverses the sign of all the Reynolds stresses and (9.2) predicts that a high-speed streak
strains a spanwise homogeneous field of turbulence to produce push-down reinforcing the
high-speed streak. Because changes of the strength of the streak in (9.2) are associated
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Figure 23. Reynolds stresses predicted by the STM about the NSE100 low-speed streak: the ensemble mean
Reynolds shear stress 〈vw〉 (a), and the dynamically relevant asymmetric Reynolds normal stress component
〈v2 − w2〉 (b). Also shown in (c) is the roll circulation (δW, δV) induced in unit time by both components of the
Reynold stress. The stream function δΨvw of the roll circulation induced by 〈vw〉 is shown in (d) and the stream
function δΨv2−w2 of the roll circulation induced by 〈v2 − w2〉 is shown in (e), while the total stream function
δΨ = δΨvw + δΨv2−w2 is shown in ( f ) (the contour interval in (d,e, f ) is 2 × 10−10hUc). These Reynolds
stresses and roll circulations emerge when a spanwise homogeneous field of fluctuations white-in-energy with
kx/α = 3 is strained for only 0.001h/Uc units of time by the low-speed streak of figure 1 centred at z = 0.
This figure shows that the universal structure of the Reynolds stresses supporting a streak emerges immediately
through the straining of a random homogeneous field of perturbations by the streak.

only with changes in the time scale, these results also apply to infinitesimal streaks and
it is in fact the mechanism underlying the exponential growth of the R-S which, while
clearly manifested in DNS and RNL, has analytic expression as a modal instability only
in the infinite ensemble framework of S3T theory (Farrell et al. 2017b). This example
application underscores the fundamental theoretical importance of analysing the dynamics
of an infinite ensemble of realizations and the value of convincingly demonstrating the
dynamical similarity among DNS, RNL and S3T in order to exploit the power afforded by
the analytic structure of S3T to understand NSE turbulence.

Having shown that infinitesimal straining of a spanwise homogeneous field of
turbulence by a low- or high-speed streak produces R-S destabilizing Reynolds stresses,
we turn next to straining a turbulent field over a time interval typical of fully developed
turbulence by considering the Reynolds stresses that develop in the STM (9.1) over a
period of Td = 30h/Uc initiated with a zero covariance. This period is selected because
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Figure 24. As in figure 20 but showing the time-mean Reynolds stresses of fluctuations obtained using
the Td = 30h/Uc STM covariance resulting from stochastically exciting the time-mean low-speed streak of
NSE100 white-in-energy initiated with zero initial covariance. Results are shown for fluctuations with kx/α = 2
(a–d), kx/α = 3 (e–h) and kx/α = 4 (i–l).

it is the typical coherence time of integral scale fluctuations in the turbulent flow (cf.
Lozano-Durán et al. 2021). The Reynolds stresses that are obtained by the STM with (9.1)
are shown in figure 24 (cf. figure 20) for the low-speed streak and figure 25 (cf. figure 22)
for the high-speed streak. These Reynolds stresses verify that non-normal linear interaction
between the streak and white-in-energy random perturbations give rise to the roll-forcing
ensemble mean Reynolds stresses observed in DNS.

Note that in the case of infinitesimal straining the stress distribution in high-speed
streaks is identical to that in low-speed streaks with the same structure except for a
change in sign (cf. (9.2)). In contrast, the finite time stress distributions in the high- and
low-speed streaks of figure 1 differ substantially in structure, as seen in figures 24 and
25. Nevertheless, in both cases the stress distributions induce roll forcing that maintain
the imposed streak. The difference in the stress distribution between low- and high-speed
finite amplitude streaks results from differences in the optimal perturbation growth in low-
and high-speed streaks, which favours the growth of S optimal perturbations in low-speed
streaks, as was previously noted by Hoepffner, Brandt & Henningson (2005).

We illustrate in figure 26 this divergent behaviour of the S and V optimals in the
presence of the time-mean flows Um( y) ± εUs( y, z), where Um( y) is the spanwise mean
flow and Us( y, z) is the time mean low-speed streak of figure 1 with streak amplitude
ε = 0, ±1. This figure shows that the optimal perturbation growth increases as the
amplitude of the streak increases and that the increase is substantial when the streak is
low-speed and marginal when the streak is high-speed. The optimization time T = 10h/Uc
was chosen to correspond to the global optimal time. Energy transfer from the mean
spanwise shear to the perturbations, − ∫

D dy dzuwUz, is the energy source that accounts for
the increased perturbation growth in the presence of the streak, and especially so when a
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Figure 25. As in figure 22 but showing the time-mean Reynolds stresses of fluctuations obtained using
the Td = 30h/Uc STM covariance resulting from stochastically exciting the high-speed streak of NSE100
white-in-energy initiated with zero initial covariance. Results are shown for fluctuations with kx/α = 3 (a–d),
kx/α = 4 (e–h) and kx/α = 5 (i–l).

low-speed streak is present because flows with low-speed streaks have a relatively smaller
wall-normal shear and the perturbations are less readily sheared over by the wall-normal
shear, which limits their potential growth. Differences in the growth of perturbations in
flows of the form Um( y) ± εUs( y, z) is expected, because the flows are not mirror images
of each other.

The pronounced asymmetry in the growth of optimal perturbations in low-speed and
high-speed streaks has dynamical implications. It implies, as we have seen reflected in
the time-mean statistics of the DNS and also RNL, that high-speed streaks are supported
weakly by their Reynolds stresses, which contributes to the dominance of low-speed
streaks in wall-bounded turbulence.

10. Conclusions

In this work we have examined the dynamics supporting the R-S in plane Poiseuille
turbulence at R = 1650 and verified that this dynamics is substantially the same in RNL
and DNS and that it is the mechanism of R-S destabilization by transiently growing
structures identified in S3T dynamics (Farrell & Ioannou 2012). Transient growth is
shown to destabilize an imposed streak immediately as the background turbulence is
strained by the streak and to continue to amplify the streak as optimally growing structures
contained in the background turbulence evolve over finite time, as is required for both
initial destabilization of the R-S and its maintenance at finite amplitude.

In order to study the R-S formation, maintenance and regulation to its finite amplitude
equilibrium we have departed from the traditional decomposition of wall-bounded
turbulence into time-mean and fluctuation fields, in which the R-S is relegated to comprise
a part of the fluctuation field. We have rather chosen a streamwise-mean decomposition
because this partition results in a SSD that comprises the fundamental dynamics of wall
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Figure 26. Time evolution of the energy of the S (red) and V (blue) T = 10h/Uc optimal perturbations in
a flow with a low-speed streak (a) and a high-speed streak with the same structure (b) for streak amplitude
ε = 1. The corresponding energy growth of the S and V optimals with no streak ε = 0 are indicated with
the black line, in this case the growth of the S and V optimal perturbations is equal. This figure shows that
the spanwise shear increases the energy growth of both S and V perturbations but that the low-speed streak
supports substantially greater growth of the S optimal perturbation. Perturbations have kx/α = 3.

turbulence in a transparent manner. With the R-S contained in the mean flow we obtain a
second-order closure, referred to as S3T (Farrell & Ioannou 2012), that concisely captures
the structure and dynamics of wall turbulence.

The validity and utility of S3T theory is evident from the fact that it provides the means
for the analytic study of the stability of the attractors of the SSD of turbulent shear flows.
Consider as example a plane wall-bounded flow with a statistical mean equilibrium profile
consistent with an externally supplied spanwise homogeneous field of random fluctuations
(a field of free stream turbulence). Application of S3T perturbation stability analysis
reveals that this spanwise-uniform mean flow and its associated fluctuation cumulant is
modally unstable at large enough Reynolds numbers, giving rise to a mean flow that
includes rolls and streaks (Farrell et al. 2017b). That this fundamental symmetry-breaking
instability has analytic expression only in S3T, while being clearly manifest in both DNS
and RNL, indicates the analytic utility of adopting S3T for the study of turbulence in
shear flow. This point of view is implicitly adopted in the classical picture of the SSP
cycle (Hamilton et al. 1995), which involves a self-sustaining quasilinear interaction of
the streamwise-mean with the fluctuations, as analytically embodied in the S3T/RNL
dynamics. Because S3T and RNL have the same dynamical structure (RNL is essentially
S3T with the second cumulant approximated by a finite ensemble) we can take RNL
simulations as confirming at higher Reynolds numbers than S3T can be integrated that this
quasilinear interaction, with this definition of the mean, produces, within the framework of
the NSE, a sustained SSP cycle and realistic turbulent states (Thomas et al. 2014; Bretheim,
Meneveau & Gayme 2015; Farrell et al. 2016, 2017a). The key ingredient of the SSP cycle,
as identified in Farrell & Ioannou (2012) and extensively verified in RNL simulations, is
that in the presence of a streak the non-normal growth of fluctuations results in Reynolds
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stresses that drive roll circulations that reinforce the pre-existing streaks in the flow. This
is also the underlying mechanism of the S3T modal instability discussed in Farrell &
Ioannou (2012) and Farrell et al. (2017b): any flow perturbation with streak form induces
ensemble fluctuation Reynolds stresses that lead to collocated roll circulations that, at high
enough Reynolds numbers, lead to exponential growth of the R-S. In this work we began
by verifying that the turbulent fluctuations in DNS and in RNL become configured in the
presence of a streak so as to induce roll circulations that reinforce pre-existing streaks in
the flow. While roll forcing by fluctuation Reynolds stresses was previously identified and
verified to be the mechanism of R-S formation in S3T, RNL and DNS, the exact dynamical
mechanism producing the required collocated roll forcing was left unidentified. In this
work we showed using data from a DNS that in the time mean the S and V components
of the fluctuations are linearly statistically independent and it is the S fluctuations about
the centreline of the streak that produce roll circulations leading to lift-up in shear regions,
strengthening pre-existing low-speed streaks and weakening high-speed streaks, while it is
the V fluctuations that produce the opposite effects resulting in amplification of high-speed
streaks. In a homogeneous turbulent background field and without a perturbation of streak
form these opposing streak-forming tendencies cancel exactly leading to no roll formation.
However, in the presence of a streak, exact stress balance between the S and V components
is disrupted so that for a low-speed streak the S roll-forming stresses dominate over the
V roll-destroying stresses while the opposite is true in high-speed streaks. In this way the
presence of a streak partitions the fluctuation stresses between S and V components in just
the manner required for its amplification. While both the S and V fluctuations are present
in both low-speed and high-speed streaks, so that, for example, careful data analysis would
reveal V structures consistent with hairpin vortices coincident with low-speed streaks, we
show in this work that these V structures oppose rather than support the low-speed streak.

When diagnosis of the streamwise varying fluctuation Reynolds stresses is made we find
that the Reynolds stress term that dominates in the formation and maintenance of the R-S is
〈v2 − w2〉, and primarily the 〈w2〉 component. The distribution of this component results
from asymmetry in the non-normal amplifications of the S and V fluctuations, and this
asymmetry determines the direction of the roll circulation. In a forthcoming publication
we explain how this normal stress distribution determines the direction of the roll forcing
(Farrell et al. 2022). This remarkable identification of the primary role of the asymmetric
Reynolds normal stress in the dynamics of the R-S points to a novel interpretation of the
origin of this structure that underlies the maintenance of wall turbulence. The utility of
verifying that the same mechanism supports wall turbulence in the three representations
of NS dynamics, the S3T SSD closure, the RNL approximation of the S3T SSD closure
and DNS, lies in the fact that the S3T is analytically complete in the dynamics of its
turbulence whereas the DNS has proven recalcitrant to reveal its fundamental dynamics.
The S3T/RNL system being both analytically transparent and numerically tractable
provides a powerful tool for understanding the fundamental dynamics of wall turbulence.
In addition to its theoretical utility, the quasilinear structure of S3T/RNL promises to allow
extension of the powerful methods of linear control to address other problems associated
with both understanding and controlling turbulence in shear flow.
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