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Abstract. We show that in the context of homogeneous Cantor sets, there are generically
five possible (open and dense) structures for their arithmetic sum: a Cantor set, an L,
R, M-Cantorval and a finite union of closed intervals. The dense case has been dealt
with previously. In this paper, we explicitly present pairs of this space which have stable
intersection, while not satisfying the generalized thickness test. Also, all the pairs of middle
homogeneous Cantor sets whose arithmetic sum is a closed interval are identified.
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1. Introduction
Homogeneous Cantor sets have been regarded, on the one hand, as a natural generalization
of the middle Cantor sets and, on the other hand, as a particular case of affine Cantor
sets. A homogeneous Cantor set can be obtained via an iteration process on the finite
union of many discrete closed intervals with the same lengths. Hence, for a homogeneous
Cantor set K, there is always a positive real number λ smaller than 1 and a finite subset
A of real numbers for which K = {∑∞

n=0 anλ
n | an ∈ A} [7]. Assume that K ′ is also

a homogeneous Cantor set corresponding to positive real number μ and subset B. The
arithmetic sum K +K ′ := {x + y | x ∈ K , y ∈ K ′} can be expressed in the usual form{ ∞∑

n=0

anλ
n +

∞∑
n=0

bnμ
n

∣∣∣∣ an ∈ A, bn ∈ B
}

.

In the case when the pair (K , K ′) does not satisfy the generalized thickness test (GTT)
[9] (which is stronger than the Newhouse thickness condition), the aforementioned sum,
generally speaking, is unknown and mysterious and any knowledge of the mathematical
structures of the set may be useful in its morphology. When log λ/log μ is rational,
K +K ′ has a well-behaved structure compared to other cases. In this case, it takes the

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2021.156
mailto:m-pourbarat@sbu.ac.ir
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2021.156&domain=pdf
https://doi.org/10.1017/etds.2021.156


Topological structure of the sum of two homogeneous Cantor sets 1713

form of a uniformly contracting self-similar set and, algebraically speaking, there is a
positive real number ν and a finite subset C such that K +K ′ = {∑∞

n=0 cnν
n | cn ∈ C}

[7]. It is shown in [8] that whenever the convex hull of K and K ′ are [0, 1], K +K ′ is
topologically a Cantor set, an L, R, M-Cantorval (see Definition 1) or [0, 2]. It is also
known in [1] whenever log λ/log μ is irrational, K +K ′ is topologically a Cantor set, an
L, R, M-Cantorval or a finite union of closed intervals. When the sets A and B have exactly
two elements, K +K ′ is always a Cantor set, an M-Cantorval or a finite union of closed
intervals [3]. Along the same lines, we have characterized all K and K ′ for which their
sum is a finite union of closed intervals [18]. In the special cases A = {0, 1 − λ}, λ < 1

2 ,
homogeneous Cantor sets are the same as middle Cantor sets, and in this context many
results have been written about the topological and measure-theoretic structure of their
sum [4, 6, 8, 16–18, 20, 21]. We emphasize here that in the context of affine Cantor
sets, there are pairs for which the topological structures of their sum set are different
than the above five structures and are even persistent in keeping their structure [10]. Some
results have been presented in the case where their Markov partitions have two elements
[2, 19].

In §2 we set out some notation and conventions that are used throughout the paper.
In §3 we introduce a dense and open subset of pairs of homogeneous Cantor sets, such

that one of the aforementioned five structures always happens for their sum. This subset
includes all the pairs studied in [1, 8].

In §4 we first show that if the pair (K , K ′) satisfies the GTT, then there is a recurrent
set of relative configurations corresponding to their renormalization operators. Thus, there
are translations of K and K ′ which have stable intersection. Moreover, we propose a
property that is equivalent to the GTT, which may be easier to verify the GTT. This
leads us to introduce a family of pairs which have stable intersection while not satisfying
the GTT. Note that whenever the pair (K , K ′) has stable intersection, there is an open
set U containing (K , K ′) in the space of pairs of regular Cantor sets such that for each
(K̃ , K̃ ′) ∈ U, the set K̃ − K̃ ′ contains an interval. This property was studied by Moreira
[9] in connection with bifurcation phenomena in dynamical systems [11–15].

In §5 we extend our results in [18] to the so-called middle homogeneous Cantor sets.
We say that a homogeneous Cantor set is middle if the removed intervals at the first step
of its construction process have equal lengths. Suppose that the underlying homogeneous
Cantor set K (respectively,K ′) is middle with convex hull [0, a] (respectively, [0, b]), and
the length of the removed intervals in the first step from its construction is c (respectively,
c′). We show in the case τ(K) · τ(K ′) < 1 (where τ is the thickness of Cantor set [15])
that:
(I) if log λ/log μ is irrational, then K +K ′ �= [0, a + b];

(II) if log λ/log μ = n/m with (m, n) = 1 and γ := λ−1/n, then
• the condition τ(K) · τ(K ′) < 1/γ gives K +K ′ �= [0, a + b],
• the condition τ(K) · τ(K ′) ≥ 1/γ gives K +K ′ = [0, a + b] if and only if⌈

n logλ

λa

c′

⌉
=

⌊
n logλ

c

μb

⌋
+ 1,

where � � and 	 
 are the floor and ceiling functions, respectively.
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In the following, a special class of middle homogeneous Cantor sets is introduced and
then the sum of its two elements is examined in the same way as in Mendes and Oliveira’s
study in [8]. Take a natural number M and a positive real number λ with λ < 1/(M + 1).
The M-middle Cantor set CMλ is defined as a middle homogeneous Cantor set with convex
hull [0, 1] such that the number of removed intervals in the first step of its construction
process is M and they have the same length (1 − (M + 1)λ)/M . Algebraically,

CMλ :=
{

1 − λ

M

∞∑
n=0

anλ
n

∣∣∣∣ an ∈ {0, 1, . . . , M}
}

.

One may regard this family of homogeneous Cantor sets as a generalization of the middle
Cantor sets, since the middle Cantor set Cλ is the 1-middle Cantor set C1

λ. If (K , K ′) is a
pair of middle homogeneous Cantor sets, then the set K +K ′ can be written as an affine
translation of one sumset in the form CMλ + νCNμ , where ν > 0; see §3.

Obviously, HD(CMλ ) = − logλ(M + 1) and τ(CMλ ) = Mλ/(1 − (M + 1)λ). Take
natural numbers M , N , m and n with (m, n) = 1. Moreover, suppose that λ0 and
λ1 are real numbers satisfying conditions HD(CMλ0

)+HD(CN
λ
m/n
0
) = 1 and τ(CMλ1

) ·
τ(CN

λ
m/n
1
) = 1. We show the following results.

(i) There is α > λ0 such that CMλ + CN
λm/n

has zero Lebesgue measure, for all λ < α.
In the particular case where M = N and λ = μ, we have α = λ1.

(ii) There is β ≤ λ1 such that CMλ + CN
λm/n

is a Cantor set or an M-Cantorval if and only

if λ < β. Also, β = λ1 if and only if there exists r, −m+ 1 ≤ r < n, such that λ
1/n
1

is a root of the system >{
Mxm+r + (M + 1)xn − 1 = 0,

(N + 1)xm +Nxn−r − 1 = 0.

In the case where (M , N + 1) = 1 and (N , M + 1) = 1, we observe that β = λ1 is
equivalent to m/n = log(2N + 1)/log(2M + 1). Thus, in the particular case where M =
N , β < λ1 is equivalent to m �= n. Result (ii) also has the following implications.
(1) For every M , N ∈ N, there is a choice of λ and μ satisfying CMλ + CNμ = [0, 2],

while τ(CMλ ) · τ(CNμ ) < 1.
(2) Suppose that RM ,N := {(λ, μ) | τ(CMλ ) · τ(CNμ ) ≤ 1}. Then there is an open and

dense subset U of RM ,N , such that for each (λ, μ) ∈ U, the set CMλ + CNμ is either
a Cantor set or an M-Cantorval.

2. Basic notation
This section contains basic notation that is used throughout the paper.

Suppose that M and N are two natural numbers and a, b, λ and μ are four positive real
numbers satisfying (M + 1)λ < 1 and (N + 1)μ < 1. The homogeneous Cantor sets K
and K ′ are obtained geometrically as follows. Let [0, a] (respectively, [0, b]) represent
the zeroth step of the construction process. The first step of the construction process
is performed by removing M (respectively, N) open intervals from the zeroth step and
thus leaving intervals of equal size. For each natural number n > 1, the nth step of the
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construction is obtained by removing M (respectively, N) open intervals from each one of
the sub-intervals produced in the (n− 1)th step such that the remaining ones are intervals
of equal size, and the additional constraint that the union of basic intervals of the nth
step appears in a given basic interval of the (n− 1)th step is congruent to the (n− 1)th
step at scale λ (respectively, μ). Let En be the union of nth-step basic intervals of the
construction process. Then K (respectively, K ′) is

⋂∞
n=0 En. Note that the lengths of the

nth-step intervals are aλn (respectively, bμn), which tend to 0 as n goes to ∞. Hence, K
and K ′ are totally disconnected and perfect subsets of [0, a] and [0, b], respectively. A
detailed analysis of the construction process of a homogeneous Cantor set is given below.

A Cantor set K is regular or dynamically defined if the following conditions hold.
(i) There are disjoint compact intervals I0, I1, . . . , Ir such thatK ⊂ I0 ∪ I1 ∪ · · · ∪ Ir

and the boundary of each Ii is contained in K.
(ii) There is a C1+ε expanding map ψ defined in a neighbourhood of I0 ∪ I1 ∪ · · · ∪ Ir

such that ψ(Ii) is the convex hull of a finite union of some intervals Ij satisfying:
• for each 0 ≤ i ≤ r and n sufficiently large, ψn(K ∩ Ii) = K;
• K = ⋂∞

n=0 ψ
−n(I0 ∪ I1 ∪ · · · ∪ Ir ).

The set {I0, I1, . . . , Ir } is, by definition, a Markov partition for K, and the set D :=⋃r
i=0 Ii is the Markov domain of K. A regular Cantor set K is affine if Dψ is constant

on every interval Ii . It is called homogeneous if Dψ is constant on the Markov domain D.
It is convenient to let 	 := {0, 1, 2, . . . , M}, 	′ := {0, 1, 2, . . . , N}, p := 1/λ and

q := 1/μ. For all i ∈ 	 (respectively, j ∈ 	′), let Ii := [ai , bi], ai < ai+1 with a0 = 0
and bM = a (respectively, I ′

j := [a′
j , b′

j ], a′
j < a′

j+1 with a′
0 = 0 and b′

N = b) be disjoint
closed intervals of size a/p (respectively, b/q). With this notation, the underlying homo-
geneous Cantor set K is defined by the Markov domain {I0, I1, . . . , IM } and expanding
mapψ , whereψ|Ii =: px + ei , ei := −pai , and also the underlying homogeneous Cantor
setK ′ is defined by the Markov domain {I ′

0, I ′
1, . . . , I ′

N } and expanding map ψ ′, where
ψ ′

|I ′
j

=: qx + fj , fj := −qa′
j .

From [5], transferred renormalization operators (or simply operators) are given by

(s, t)
Ti�−→ (ps, pt + ei), (s, t)

T ′
j�−→

(
s

q
, t − fj

q
s

)
. (2.1)

We say that the pair (s, t) is a difference pair for K and K ′ if there exists a relatively
compact sequence (sn, tn) in the space R∗ × R with (s1, t1) = (s, t) such that the point
(sn+1, tn+1) is obtained from (sn, tn) by applying one of operators (2.1). The following
assertion is proved in [18]:
• t ∈ K − sK ′ if and only if (s, t) is a difference pair for K and K ′.

Now suppose that a = b = 1 and consider, in the (s, t)-plane, the lines L0
j : t = −b′

j s

and L1
j : t = −a′

j s + 1, j ∈ 	′ with s > 0. It is easy to show that the line L0
j is placed

above the line t = −s and the operator T ′
j maps the points of L0

j to the line t = −s. The
line L1

j also is placed below the horizontal line t = 1, and the operator T ′
j maps the points

of L1
j to the line t = 1. The operator T ′

j returns the point (s, t) to the point with the first
component s/q on the line passing through the point (s, t)with slope fj/(q − 1). It is also

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.156


1716 M. Pourbarat

worth mentioning that the operator Ti expands distances at the scale p and is invariant on
every line that passes through the point (0, −ei/(p − 1)). Another important property of
the operators (2.1) is Ti ◦ T ′

j = T ′
j ◦ Ti .

We say that the homogeneous Cantor set K is middle, if there is a real number c such
that ai+1 − bi = c, for all 0 ≤ i < M , and write this as |G(K)| = c. When K and K ′ are
middle, K +K ′ and K −K ′ have the same structures since K +K ′ = K −K ′ + b. We
emphasize that the sets K +K ′ and K −K ′ may have completely different structures.
Example III.3 in [9] proposes two homogeneous Cantor sets with convex hull [0, 1],
whose sumset has zero Lebesgue and whose difference set is a closed interval. Note
that the set a −K is also a homogeneous Cantor set with convex hull [0, a] defined
by the Markov partition {Ī0, Ī1, . . . , ĪM}, where Īi := −In−i + a and ψ̄ is given by
ψ̄i(x) := −ψn−i (a − x)+ a [18]. Hence, the sumset can always be translated into a
difference set and vice versa.

3. Topological structure of the sumset
We begin this section by stating the definition of a Cantorval set which was introduced for
the first time by Mendes and Oliveira [8].

Definition 1. Suppose that A is a perfect subset of R such that any gap has an interval
adjacent to its right (respectively, left) and is accumulated on the left (respectively, right)
by infinitely many intervals and gaps. Then A is called an L-Cantorval (respectively,
R-Cantorval). It is called an M-Cantorval if any gap is accumulated on each side by
infinitely many intervals and gaps.

Thus, if A is an L-Cantorval then −A is an R-Cantorval, and vice versa. Consequently,
when K and K ′ are middle (and further, K = a −K and K ′ = b −K ′; see the definition
of a symmetric Cantor set and Corollary B in [8]), the L-Cantorval and R-Cantorval cases
never happen for the set K +K ′. To state Theorem 1, we need further notation.

If K and K ′ are two homogeneous Cantor sets with convex hull [0, a] and [0, b]
respectively, then one can write

K +K ′ = a

(
1
a
K + b

a

1
b
K ′

)
,

in which (1/a)K and (1/b)K ′ are homogeneous Cantor sets with convex hull [0, 1].
Consequently, for given homogeneous Cantor sets K1 and K2 with arbitrary convex hulls,
there are homogeneous Cantor sets K and K ′ with convex hull [0, 1] and also a positive
real number λ such that K1 +K2 is an affine translation of K + λK ′. Let

K := {(K , λK ′) | p, q, λ > 0, K and K ′ have convex hull [0, 1]}
and

U :=
{
(K , λK ′)∈K

∣∣∣∣ there are m, n∈N such that
1

q min{a′
1, 1 − b′

N−1}
<
pm

qn
λ<pa1

}
.

Obviously, U contains all pairs (K , λK ′) for which log p/log q is an irrational number.
It is not hard to show that U is an open and dense subset of K. Lastly, let V be the space
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of pairs (K , K ′) of homogeneous Cantor sets such that there is (K , λK ′) ∈ U for which
K1 +K2 is an affine translation of K + λK ′. Clearly, V is an open and dense subset in
the space of all pairs of homogeneous Cantor sets.

THEOREM 1. For each element (K1, K2) ∈ V, the set K1 +K2 is just a Cantor set, an L,
R, M-Cantorval or a union of finitely many closed intervals.

Proof. From the above discussion, it is enough to prove the assertion for the elements of
U. Assume that the convex hull of K and K ′ is [0, 1] and λ is a positive number. Since
(K , λK ′) ∈ U is equivalent to (K , λ − λK ′) ∈ U, we employ the difference setK − λK ′
instead of the sumsetK + λK ′. The assertion will be proved by invoking the following six
lemmas.

LEMMA 1. Suppose that λ ∈ {p, q, 1/p, 1/q}. Then, depending on the value of λ, the set
K −K ′ contains an interval if and only if the set K − λK ′ does so.

Proof. We first prove the lemma in the case where λ = p. Suppose that K −K ′ contains
an interval and write it as a finite union of sets,

K −K ′ =
i=M⋃
i=0

(
1
p
K + ai

)
−K ′ = 1

p

( i=M⋃
i=0

((K − pK ′)+ pai)

)
.

If the interior of K − pK ′ is empty, then the interior of (K − pK ′)+ pai is also empty
for each i. Since they are closed sets, the interior of their union is an empty set as well,
which is a contradiction. The converse is valid too, since

K − pK ′ = p

(
1
p
K −K ′

)
⊂ p(K −K ′).

In the case λ = 1/p, we see that

K − 1
p
K ′ = 1

p
(pK −K ′) = 1

p

( i=M⋃
i=0

(K −K ′ + pai)

)
,

and a similar discussion gives the result.
Finally, replacing p by q, q by p and λ by 1/λ completes the proof.

The following lemma also asserts that, for every pair of homogeneous Cantor sets,
whenever the difference set is not a Cantor set, it is the closure of its interior.

LEMMA 2. For given λ, if K − λK ′ contains an interval, then for each point x ∈ K −
λK ′ there is an interval in K − λK ′ arbitrarily close to x.

Proof. Suppose that ε > 0. Since (λ, x) is a difference pair, there are finite sequences
{ik}k=mk=1 and {jk}k=m′

k=1 of the sets 	 and 	′ respectively, such that

T ′
jm′ ◦ · · · ◦ T ′

j1
◦ T im ◦ · · · ◦ T i1(λ, x) ∈

{
pmλ

qm
′

}
×

[
− pmλ

qm
′ , 1

]
.
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One can also select the natural numbers m and m′ such that

pm · (2ε) > 1 + 2λ,
pm

qm
′ ∈ [1, 2].

On the other hand, from Lemma 1 and the fact that K − λK ′ contains an interval, there is
an interval I ⊂ K − (pm/qm

′
)λK ′. It is easy to check that all points of the interval

(T ′
jm′ ◦ · · · ◦ T ′

j1
◦ T im ◦ · · · ◦ T i1)−1

({
pmλ

qm
′

}
× I

)
⊂ {λ} × [x − ε, x + ε]

are difference pairs, which completes the proof of the lemma.

LEMMA 3. If K − λK ′ is a finite union of closed intervals, then K − (λ/p)K ′ and K −
qλK ′ are also finite unions of closed intervals.

Proof. Express K − (λ/p)K ′ and K − qλK ′ as follows:
(i) K − (λ/p)K ′ = (1/p)(pK − λK ′) = (1/p)(

⋃i=M
i=0 (K − λK ′ + pai));

(ii) K − qλK ′ = K − qλ(
⋃i=N
i=0 ((1/q)K

′ + a′
i )) = ⋃i=N

i=0 (K − λK ′ + qλa′
i ).

This proves the assertion, since K − λK ′ is a finite union of intervals.

To continue, we introduce some further notation.

Definition 2. Suppose that K is a perfect subset with convex hull [a, b]. Then it is called a
top-Cantorval (respectively, bottom-Cantorval), if the point b (respectively, the point a) is
accumulated by infinitely many intervals and gaps.

LEMMA 4. If log p/log q is irrational (respectively, rational) and, for given λ0 > 0, the
setK − λ0K

′ is a top-Cantorval, then for all λ > 0 (respectively, λ ∈ {(pi/qj )λ0 | i, j ∈
Z}), the point 1 is accumulated by infinitely many gaps of K − λK ′. A similar assertion
holds for the point −λ by replacing ‘top-Cantorval’ with ‘bottom-Cantorval’.

Proof. If K − λ0K
′ is a top-Cantorval, then one can choose a point (λ0, x) that is not a

difference pair and satisfies max{−a′
jλ0 + 1, 1 − 1/p} < x < 1, for all 0 < j ≤ N . There

are the intervals I and J, containing λ0 and x respectively, such that all the points in
I × J are not difference pairs. Fix a λ and then take sequences {nk} and {mk} of natural
numbers such that the sequence {(qmk/pnk )λ0} converges to λ and, moreover, the interval
((qmk/pnk )λ0)I contains λ, for all k. Selecting the point x says that none of the points
of the open and connected sets Un := TM

−nk ◦ T ′
0
−mk (I × J ) are difference pairs, since

they always stay above the lines L1
j and t = 1 − 1/p. Suppose that π2 is the map that

projects the points of R2 to their second component. Then the intervals π2(Un ∩ {(λ, t) |
t ∈ R}) are subsets [−λ, 1] \ (K − λK ′) which accumulate to 1. In the case where
K − λ0K

′ is a bottom-Cantorval, the proof is similar. This concludes the proof of the
lemma.

LEMMA 5. Suppose that 1/qa′
1 < λ < pa1 and K − λK ′ contains an interval. If K −

λK ′ is not a top-Cantorval and bottom-Cantorval, then K − λK ′ = [−λ, 1].
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Proof. Let D be the region {(s, t) | 1/qa′
1 < s < pa1, −s ≤ t ≤ 1}. Consider the regions

D1 := T ′
0
−1
(D ∩ {(s, t) | t ≥ 0}) =

{
(s, t)

∣∣∣∣ 1
a′

1
< s < pqa1, 0 ≤ t ≤ 1

}
and

D2 := T ′
N

−1
(D ∩ {(s, t) | t ≤ 0}) =

{
(s, t)

∣∣∣∣ 1
a′

1
< s < pqa1, −s ≤ t ≤ −a′

Ns

}
.

For each 0 < j ≤ N , the region D1 is above the line L1
j , since the corner point (1/a′

1, 0)
satisfies 0 + a′

j · 1/a′
1 ≥ 1. Also, for each 0 ≤ j < N , the region D2 is below the line

L0
j , since for the corner points (1/a′

1, −a′
N/a

′
1) and (pqa1, −a′

Npqa1) we always have

−a′
N/a

′
1 + b′

j · 1/a′
1 < 0 and −a′

Npqa1 + b′
jpqa1 < 0. Note that T ′

j
−1
(s, t) = (qs, t +

fj s) and fj = −qa′
j .

Now suppose that the assertion does not hold. Thus, there is an interval I ⊂ [0, 1]
or I ⊂ [−λ, 0] such that I ⊂ [−λ, 1] \ (K − λK). Suppose that the case I ⊂ [0, 1]
happens. Thus, there is an interval J ⊂ (1/qa′

1, pa1) such that all the points of the square
U := J × I are not difference pairs. Since T ′

0
−1
(U) is a subset ofD1 and indeed above the

lines L1
j , 0 < j ≤ N , its points are not difference pairs. Also, since (TM ◦ T ′

0)
−1
(U) is a

subset of the strip {(s, t) | 1 − 1/p < t < 1}, its points are not difference pairs. By taking
a sequence {(qmk/pnk )λ} which tends to λ and proceeding similarly to the proof in the
middle of Lemma 4, we observe that the point 1 is accumulated by infinitely many gaps
of K − λK ′. From Lemma 2, K − λK ′ is a top-Cantorval, which leads to a contradiction.
Similarly, if the case I ⊂ [−λ, 1] happens, there is an open and connected set V, such
that all the points of T ′

N
−1
(V ) are not difference pairs, since T ′

N
−1
(V ) is a subset of D2

and indeed below the lines L0
j , 0 ≤ j < N . Also, it is not hard to see that (T0 ◦ T ′

N)
−1
(V )

is a subset of the strip {(s, t) | −s ≤ t < −s + a1} and so its points are not difference
pairs. Note that for each 0 < i ≤ M , the line Ti({(s, t) | t = −s + a1}) is below the line
{(s, t) | t = −s}. As above, by taking a sequence which converges to λ, it follows that
K − λK ′ is a bottom-Cantorval. This gives a contradiction, which completes the proof of
the lemma.

LEMMA 6. If K − λK ′ is a top-Cantorval (respectively, bottom-Cantorval) and (c, d) is
its gap, then the point c (respectively, the point d) is accumulated by infinitely many gaps.

Proof. Since (λ, c) is a difference pair and c is a boundary point of the gap, there are the
finite sequences {ik}k=mk=1 and {jk}k=m′

k=1 of the sets 	 and 	′ respectively, such that

T ′
jm′ ◦ · · · ◦ T ′

j1
◦ T im ◦ · · · ◦ T i1(λ, c) =

(
pm

qm
′ λ, 1

)
.

For given k ∈ N, let 	k and 	′
k be the sets of all maps from {1, 2, . . . , k} to 	 and 	′,

respectively. Let

A :=
{
(T ′
jσ ′(m′) ◦ · · · ◦ T ′

jσ ′(1) ◦ T iσ(m) ◦ · · · ◦ T iσ(1) )−1
(
pm

qm
′ λ, 1

)∣∣∣∣σ ∈	m and σ ′ ∈	′
m′

}
,
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which is a subset of the line s = λ. Let

a := max{π2(z) | z ∈ A, π2(z) < c}.
From Lemma 4, there is a sequence {Un} of gaps ofK − (pm/qm

′
)λK ′ such that the point

1 is accumulated by them. Thus,{
π2

(
(T ′
jm′ ◦ · · · ◦ T ′

j1
◦ T im ◦ · · · ◦ T i1)−1

({
pm

qm
′ λ

}
× Un

)) ⋂
[a, c]

}
is a sequence of gaps K − λK ′ such that the point c is accumulated by them. The other
case follows a similar proof.

We are now ready to prove Theorem 1. Suppose that K − λK ′ is not a Cantor set.
Thus it contains an interval. From Lemma 2, for each point x ∈ K − λK ′ there is an
interval in K − λK ′ arbitrarily close to x. From Lemma 6, if K − λK ′ is a top-Cantorval
and is not bottom-Cantorval, then it is an L-Cantorval, and similarly if K − λK ′ is a
bottom-Cantorval and is not top-Cantorval, then it is an R-Cantorval. Moreover, if it is
a top-Cantorval and bottom-Cantorval, then it is an M-Cantorval.

There only remains the case where K − λK ′ is neither a top-Cantorval nor a
bottom-Cantorval. With regard to the definition of U, there are natural numbers m and
n such that λ0 := (pm/qn)λ belongs to the interval (1/qa′

1, pa1). From Lemma 1,
K − (pm/qn)λK ′ contains an interval, and by Lemma 4, K − (pm/qn)λK ′ is neither a
top-Cantorval nor a bottom-Cantorval, and by Lemma 5, we have K − (pm/qn)λK =
[−(pm/qn)λ, 1]. From Lemma 3, we see that K − λK ′ is a finite union of closed
intervals, which completes the proof of the theorem.

The following proposition is a direct result of above lemmas which also confirms the
results of [1, 8].

PROPOSITION 1. Using the above notation:
(1) if K +K ′ is not a Cantor set, then it is the closure of its interior;
(2) if log p/log q is an irrational number, then K +K ′ is a Cantor set, an L, R,

M-Cantorval or a finite union of many closed intervals;
(3) if log p/log q is a rational number and b/q(b − b′

N−1) < b/a < pa1/a, then K +
K ′ is a Cantor set, an L, R, M-Cantorval or a finite union of closed intervals.
Furthermore, if

λ ∈
⋃
i,j∈N

pi

qj

((
a

q(b − b′
N−1)

,
pa1

b

)
∪

(
− pa1

b
, − a

qa′
1

))
,

then K + λK ′ takes on one of the five above mentioned structures.

Corollary (2.2) in [1] states that ifK +K ′ carries none of the five mentioned structures,
then it is an LR-Cantorval, which is defined as a perfect subset of R with infinitely many
intervals and gaps such that any gap has intervals adjacent to its left and right. Example
(1.5) in [1] is an LR-Cantorval, and another example is presented below. Before that I
would like to thank Moreira for the following example.
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Example 1. Take the middle Cantor set C3/10 defined by the expanding map

φ(x) :=

⎧⎪⎪⎨⎪⎪⎩
20
7
x, x ∈

[
0,

7
20

]
,

20
7

(
x − 13

20

)
, x ∈

[
13
20

, 1
]

.

The set φ−4([0, 1]) is the union of 16 intervals of size 0.354 each, which we label
I1, I2, . . . , I16. Let J be the closed interval [ 1

2 − (0.354/2), 1
2 + (0.354/2)], of the same

size 0.354. Let K be the homogeneous Cantor set corresponding to the Markov partition
{I1, . . . , I8, J , I9 . . . , I16}. So C3/10 ⊂ K . We claim that, for λ = 0.352 = 0.1225, K −
λK is the union of { 1

2 } with a countable union of closed intervals converging to (1 − λ)/2.

In order to prove this claim, we first notice that

K − λK = ((K ∩ [0, 0.35])) ∪ (K ∩ J ) ∪ ((K ∩ [0.65, 1]))− λK .

(i) We always have (K ∩ [0, 0.35])− λK ⊂ [0, 0.35] − [0, λ] = [−λ, 0.35] and

(K ∩ [0, 0.35])− λK ⊂ (C3/10 ∩ [0, 0.35])− λC3/10

= 0.35C3/10 − λC3/10

= 0.35(C3/10 − 0.35C3/10).

Since τ(C3/10) = (0.35/0.3) > 1 and no translation of 0.35C3/10 is contained in a
bounded gap of C3/10, we have C3/10 − 0.35C3/10 = [−0.35, 1], and by using the
gap lemma 0.35C3/10 − λC3/10 = [−λ, 0.35]. Consequently, (K ∩ [0, 0.35])−
λK = [−λ, 0.35].

(ii) Since K ∩ [0.65, 1] = 0.65 + (K ∩ [0, 0.35]), we obtain

K ∩ [0.65, 1] − λK = [0.65 − λ, 1] = [0.5275, 1].

(iii) Since |J | = λ2, K ∩ J = λ2K + ( 1
2 − (0.354/2) we have

(K ∩ J )− λK =
(

1
2

− 0.354

2

)
+ λ2K − λK

=
(

1
2

− 0.354

2

)
− λ(K − λK).

Since K − λK ⊂ [−λ, 1], we have

(K ∩ J )− λK ⊂
[

1
2

− 0.354

2
− λ,

1
2

− 0.354

2
+ λ2

]
= [0.369996875, 0.507503125].

The structure of the intersection of K − λK with this interval is similar to the structure of
the intersection ofK − λK with itself with rate of similarity −λ, which implies the result.

We emphasize here that above example is robust in the setting of homogeneous Cantor
sets with the same ratio p = q.
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4. Stable intersection
The GTT establishes a method to check the stable intersection of regular Cantor sets [9].
We begin this section by examining this concept in the special affine case. Assume that
K and K ′ are two affine Cantor sets defined by Markov partitions P := ⋃i=M

i=0 [ai , bi]
and P ′ := ⋃j=N

j=0 [a′
j , b′

j ], respectively. Here, Ii , i ∈ 	 (respectively, I ′
j , j ∈ 	′) are not

necessarily of equal size.

Definition 3. We say that (K , K ′) satisfies the GTT if, for each t ∈ R and λ > 0, either
λP + t is contained in the gap of P ′ or P ′ is contained in the gap of λP + t or (λP +
t) ∩ P ′ �= ∅.

A generalization of the gap lemma which has been proved in [9] is as follows. Suppose
that (K , K ′) satisfies the GTT. Then either K is contained in a gap ofK ′ orK ′ is contained
in a gap of K or K ∩K ′ �= ∅. Theorem 2 introduces a family of homogeneous Cantor sets
K and K ′ that may not satisfy the GTT, are linked together and robustly do not intersect,
while there are translations of them which have stable intersection. When we say that ‘K
is linked to K ′ we mean that the intersection of convex hulls of K and K ′ has non-empty
interior. Also, when we say that K robustly does not intersect K ′ we mean that there are
open sets UK and VK ′ , in the context of regular Cantor sets, such that for all K̃ ∈ UK
and K̃ ′ ∈ VK ′ , K̃ ∩ K̃ ′ = ∅. To state the theorem, we need some further notation.

For given δ ≥ 0, let Vδ := {(s, t) | −s + δ < t < 1 − δ}, and for each X ⊂ R2, let
B(δ, X) := {y ∈ R2 | there is x ∈ X such that d(x, y) < δ}. Without loss of generality,
we may assume that K and K ′ are homogeneous Cantor sets with convex hull [0, 1].
Let

s1 := max{ai+1−bi | i ∈ 	 \{M}}, s2 := min
{

1
a′
j+1−b′

j

∣∣∣∣j ∈ 	′ \{N}
}

, s0 := pqs1.

Let J := {j | xj ≤ s0}, where xj := 1/(a′
j+1 − b′

j ) and, for each j ∈ J ,

Gj := {(s, t) | xj ≤ s ≤ s0, 1 − a′
j+1s ≤ t ≤ −b′

j s}.
For given i ∈ 	 and j ∈ J , let

A
j
i := Gj

⋂ ( ⋂
k∈	

(
V C0 ∪

( ⋃
n∈J

Gn

)
+ (0, (ak − ai)p)

))
,

and lastly, let A := ⋃
i∈	,j∈J A

j
i and B := ⋃

i∈	 T
−1
i (A).

The compact set R ⊂ R∗ × R is called a recurrent set if for every element of R there
exist suitable composites of operators (2.1), which transfer that element to the interior of
R. If R is a recurrent compact set and (s, t) ∈ R, then Cantor set K is linked to sK ′ + t and
the pair (K , sK ′ + t) have stable intersection (see [5, 11, 18, 19]).

THEOREM 2. Suppose that p > q and τ(K) · τ(K ′) > 1/q. Also suppose that, for each
(s, t) ∈ B and j ∈ 	′, there is k ∈ 	′ such that (s, t + (a′

k − a′
j )qs) ∈ V0 \ B. Then K

and K ′ carry a recurrent set. Thus, there are translations of them which have stable
intersection.

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.156


Topological structure of the sum of two homogeneous Cantor sets 1723

T

Bi

s1
s0

A

t = 1

S

sL : t = –bj 
0
j

L : t = 1– aj+1 s
1
j+1

t = –s '

'

FIGURE 1. The grey region illustrates the recurrent set R. Here, B∗(δ1, B) is the union of two gaps.

Proof. Since B is a compact set, one can choose a number 0 < δ1 such that, for each
(s, t) ∈ B(δ1, B) and j ∈ 	′, there is k ∈ 	′ such that

(s, t + (a′
k − a′

j )qs) ∈ Vδ1 \ B(δ1, B).

Let W := ⋃
i∈	 Ti(B(δ1, B)) be an open set that contains A. For each j ∈ J and positive

numbers ε, δ � 1, let

G̃j = G̃
ε,δ
j := {(s, t) | (1 − 2δ)xj < s ≤ (1 + 2ε)s0, 1 − a′

j+1s − δ < t < −b′
j s + δ}.

Also, for each i ∈ 	 and j ∈ J , let

Ã
j
i := G̃j

⋂ ( ⋂
k∈	

(
V Cδ ∪

( ⋃
n∈J

G̃n

)
+ (0, (ak − ai)p)

))
.

One can choose positive numbers ε and δ such that:
(1) τ(K) · τ(K ′) > (1 + 2ε)/(1 − 2δ) · 1/q;
(2) 2δ < min{δ1, εps1, 2 − (2paM−1/(p − 1))};
(3) Ã

j
i ⊂ W , for all i ∈ 	 and j ∈ J .

Let

R1 := {(s, t) | (1 + ε)s1 ≤ s ≤ (1 + 2ε)s0, −s + δ ≤ t ≤ 1 − δ}

and R := R1 \ (B∗(δ1, B)
⋃
(
⋃
n∈J G̃n)), where B∗(δ1, B) := {(s, t) ∈ B(δ1, B) | s <

(1 + ε)s0/p}. Obviously, R is a compact set which we will show is recurrent; see Figure 1.
We first split the region R1 as follows:

• A1 := {(s, t) | (1 + ε)s0/p ≤ s ≤ (1 + 2ε)s0, −s + δ ≤ t ≤ 1 − δ};
• B1

0 := {(s, t) | (1 + ε)s1 ≤ s < (1 + ε)s0/p, −s + δ ≤ t < (1 − δ)/p};
• B1

i := {(s, t) | (1 + ε)s1 ≤ s < (1 + ε)s0/p, (1 + pai−1 − δ)/p ≤ t < (1 + pai −
δ)/p}, 1 ≤ i ≤ M − 1;

• B1
M := {(s, t) | (1 + ε)s1 ≤ s < (1 + ε)s0/p, (1 + paM−1 − δ)/p ≤ t ≤ 1 − δ}.
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Then the region R splits into two subsets A and Bi as follows:

A := A1 \
( ⋃
n∈J

G̃n

)
, Bi := B1

i \ B(δ1, B), i ∈ 	.

For each 0 ≤ j ≤ N , let

Aj :=
{
(s, t)

∣∣∣∣ (1 + ε)s0

p
≤ s ≤ (1 + 2ε)s0, −b′

j s + δ ≤ t ≤ 1 − a′
j s − δ

}
.

Since, for each (s, t) ∈ A, there is at least one j such that −b′
j s + δ ≤ t ≤ 1 − a′

j s − δ, we

have A = {(s, t) | (1 + ε)s0/p ≤ s ≤ (1 + 2ε)s0} ∩ (⋃j=N
j=0 Aj). On the other hand,

T ′
j (Aj ) =

{
(s, t)

∣∣∣∣ (1 + ε)s0

pq
≤ s ≤ (1 + 2ε)s0

q
, s + δ ≤ t ≤ 1 − δ

}
⊂ R.

Since τ(K) · τ(K ′) > (1 + 2ε)/(1 − 2δ)q and (1 + ε)s0/pq = (1 + ε)s1, it follows that,
for each (s, t) ∈ A, there are words i1, i2, . . . , ik ∈ 	′ such that (s∗, t∗) := T ′

ik
◦ · · · ◦

T ′
i1
(s, t) ∈ ⋃n=M

n=0 B1
n . Now if (s∗, t∗) ∈ B(δ1, B), then there is an element k∗ ∈ 	′ such

that

(s∗, t∗ + (a′
k∗ − a′

ik
)qs) ∈ Vδ1 \ B(δ1, B).

Therefore, T ′
k∗ ◦ T ′

ik−1
◦ · · · ◦ T ′

i1
(s, t) ∈ ⋃n=M

n=0 B1
n \ B(δ1, B), since

T ′
k∗ ◦ T ′

ik

−1
(s∗, t∗) = (s∗, t∗ + (a′

k∗ − a′
ik
)qs).

This says that, for each point (s, t) ∈ A, we can select the operators T ′
j , j ∈ 	′ (perhaps

several times) and transfer the point to one of sets Bi , i ∈ 	.
To continue, we need to know that Ti(Bi) is a subset of the interior of R1, for all i ∈ 	.

In fact, it is easy to see that the assertion holds for i = 0. For i > 0, Ti maps the corner
point ((1 + ε)s1, (1 + pai−1 − δ)/p) to (p(1 + ε)s1, −p(ai − bi−1)− δ), and −p(1 +
ε)s1 + δ < −p(ai − bi−1)− δ always holds, since 2δ < εps1. Note that the last condition
in (2) gives that the region BM is well defined.

To show that R is a recurrent set, it is enough to show that, for each j ∈ J and i ∈ 	,
each point of T −1

i (G̃j ) \ B∗(δ1, B) goes to the interior of R by one of the operators (2.1),
since (1 + ε)s0/p < p(1 + ε)s1. To do this, suppose that i, j and (s, t) ∈ G̃j have been
chosen such that T −1

i (s, t) /∈ B(δ1, B). Thus, from (3), (s, t) /∈ Ãji . Hence, there is at least
one k ∈ 	 such that the point (s, t)+ (0, (ai − ak)p) belongs to Vδ \ (⋃n∈J G̃n). Since
Tk ◦ T −1

i (s, t) = (s, t + (ai − ak)p), we see that Tk(T −1
i (s, t)) falls in the interior of R.

Consequently, for each point (s, t) ∈ A, we first use the operators T ′
j , j ∈ 	′ (perhaps

several times) and transfer (s, t) to a point in the sets
⋃
i∈	 Bi . Then, by using one of the

operators Ti , i ∈ 	, we transfer the latter point to R◦. This implies that R is a recurrent set
for the operators (2.1), which completes the proof of the theorem.
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FIGURE 2. Markov partition of homogeneous Cantor set K.

According to what we established above, whenever the hypothesis of Theorem 2 holds,
K and λK ′ + t0 have stable intersection for all

(λ, t0) ∈
{
(s, t)

∣∣∣∣ s ∈ (s1, s∗) \
[

inf(π1(B)),
s0

p

]
, t ∈ (−s, 1)

}
,

where s∗ := min{xj | j ∈ J }. Here, π1 is the map that projects the points of R2 into their
first component.

In the case where p = q and A = ∅, K and K ′ carry a recurrent set too. Indeed, in
the proof of Theorem 2, B and consequently B∗(δ1, B) become empty sets. Hence, we
can transfer each point of the segment R ∩ {(s, t) | s = (1 + ε)s1} to R◦ ∩ {(s, t) | s =
(1 + ε)s0/p} by one of the operators Tk , k ∈ 	. Also, we see that when τ(K) · τ(K ′) ≤
1/q, for all λ ∈ (s1, s∗), there is t0 ∈ (−s, 1) such that P ∩ (λP ′ + t0) = ∅, since s∗ ≤
s0/p. These facts lead us to the following theorem.

THEOREM 3. The pair (K , K ′) satisfies the GTT strictly (see [9]) if and only if A = ∅.

Proof. Firstly, suppose that the pair (K , K ′) satisfies the GTT strictly and A
j
i is a

non-empty set for words i ∈ 	 and j ∈ J . Thus, there is x ∈ Gj such that for each k ∈
	 we have x + (0, (ai − ak)p) ∈ V C0 ∪ (⋃n∈J Gn). Let (λ, t0) := T −1

i (x), which gives
s1 < λ < s∗ and t0 ∈ (−s, 1). Thus, P ◦ ∩ (λP ′ + t0)

◦ = ∅, which is a contradiction.
Conversely, suppose that Aji = ∅ for each i ∈ 	 and j ∈ J . From the above discussion,

we see that for each (λ, t0) ∈ {(s, t) | s ∈ (s1, s∗), t ∈ (−s, 1)}, K and λK ′ + t0 have
stable intersection. Thus, the pair (K , K ′) satisfies the GTT strictly, and this completes the
proof of the theorem.

Consequently, if the pair (K , K ′) satisfies the GTT strictly, then K and K ′ carry a
compact recurrent set. Moreover, for all (λ, t0) ∈ {(s, t) | s ∈ (s1, s∗), t ∈ (−s, 1)}, K
and λK ′ + t0 have stable intersection.

Example 2. Let p = 97/6 and

a0 = 0, a1 = 11
97

, a2 = 22
97

, a3 = 38
97

, a4 = 53
97

, a5 = 69
97

, a6 = 80
97

, a7 = 91
97

(see Figure 2), and let K ′ be the third Cantor set for which q = 3, a′
0 = 0 and a′

1 = 2
3 .

Then K and K ′ carry a recurrent set, but do not satisfy the GTT strictly. Moreover, for
all λ ∈ [10/97, 18/97] ∪ [25/97, 3] and t0 ∈ [−λ, 1], the pair (K , λK ′ + t0) has stable
intersection. Note that here τ(K) · τ(K ′) = 2

3 < 1.

To check the above assertion, we first observe that s1 = 10/97, s0 = 5, J = {0}
and Go := A1A2A3 is a triangle with vertices A1 := (3, −1), A2 := (5, − 7

3 ) and
A3 := (5, − 5

3 ). Moreover, (ai+1 − ai)p belong to {11/6, 16/6, 15/6}. Thus, for every
i ∈ {0, 1, 2, 5, 6, 7}, we can always choose k with |i − k| = 1 such that (ai − ak)p ∈
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{±11/6}. This implies that for all i ∈ {0, 1, 2, 5, 6, 7} and j ∈ J , we have Aji = ∅, since
G0 + (0, (ai − ak)p) ⊂ V0 \G0.

We claim that for i = 3, 4 and j ∈ J , Aji is a subset of triangle A1CD, where
C := (25/6, −32/18) and D := (25/6, −25/18). The claim follows from the following
two facts.
(i) When i = 3, we have (a3 − a2)p = 16/6 and (a3 − a4)p = −15/6. Thus,

• {(s, t) | 25/6 < s ≤ 5, t < − 5
3 } ∩G0 + (0, (a3 − a2)p) ⊂ V0 \G0,

• {(s, t) | 25/6 < s ≤ 5, t ≥ − 5
3 } ∩G0 + (0, (a3 − a4)p) ⊂ V0 \G0.

(ii) When i = 4, we have (a4 − a3)p = 15/6 and (a4 − a5)p = −16/6. Thus,
• {(s, t) | 25/6 < s ≤ 5, t < − 3

2 } ∩G0 + (0, (a4 − a3)p) ⊂ V0 \G0,
• {(s, t) | 25/6 < s ≤ 5, t ≥ − 3

2 } ∩G0 + (0, (a4 − a5)p) ⊂ V0 \G0.

Therefore, B is a subset of T −1
3 (A1CD) ∪ T −1

4 (A1CD). Put B1B2B3 := T −1
3 (A1CD)

and B ′
1B

′
2B

′
3 := T −1

4 (A1CD). Since T −1
i (s, t) = (s/p, t/p + ai), we obtain

• B1 = (18/97, 32/97), B2 = (25/97, 82/291), B3 = (25/97, 89/291),
• B ′

1 = (18/97, 47/97), B ′
2 = (25/97, 127/291), B ′

3 = (25/97, 134/291).
Consider the maps T±(s, t) := (s, t ± (a′

1 − a′
0)qs) = (s, t ± 2s). Put B+

1 B
+
2 B

+
3 :=

T+(B1B2B3) and B−
1 B

−
2 B

−
3 := T−(B1B2B3). Then we obtain

• B+
1 = (18/97, 68/97), B+

2 = (25/97, 232/291), B+
3 = (25/97, 239/291),

• B−
1 = (18/97, −4/97), B−

2 = (25/97, −68/291), B−
3 = (25/97, −61/291).

Consequently, the triangles B1B2B3, B ′
1B

′
2B

′
3, B+

1 B
+
2 B

+
3 and B−

1 B
−
2 B

−
3 are disjoint

subsets of V0, since
• −18/97 < π2(B

−
1 ) < π2(B1) < π2(B

′
1) < π2(B

+
1 ) < 1,

• −25/97<π2(B
−
2 )<π2(B

−
3 )<π2(B2)<π2(B3)<π2(B

′
2)<π2(B

′
3)<π2(B

+
2 )<

π2(B
+
3 ) < 1.

Also, the triangles B1B2B3, B ′
1B

′
2B

′
3, T+(B ′

1B
′
2B

′
3) and T−(B ′

1B
′
2B

′
3) are disjoint subsets

of V0, since K and K ′ are middle. Therefore, the assumptions of Theorem 2 hold, which
guarantees the existence of one recurrent set. Note that from Theorem 3, the pair (K , K ′)
do not satisfy the GTT strictly since B is a non-empty set. The above discussion also
implies that K − λK ′ is an interval if and only if λ ∈ [10/97, 18/97] ∪ [25/97, 3].

5. Middle homogeneous Cantor sets
To reach our goal, we first prove the following result. Notice that the λ stated in the
following proposition and its proof is different from the λ used in the definition of K.

PROPOSITION 2. Assume that K andK ′ are middle homogeneous Cantor sets with convex
hull [0, 1] and τ(K) · τ(K ′) < 1.
(I) If log p/log q is irrational, then K − λK ′ �= [−λ, 1], for all λ > 0.

(II) If log p/log q = n0/m0 with (m0, n0) = 1 and γ := p1/n0 , then
(i) τ(K) · τ(K ′) < 1/γ gives K − λK ′ �= [−λ, 1],

(ii) τ(K) · τ(K ′) ≥ 1/γ gives K − λK ′ = [−λ, 1] if and only if

λ ∈
⋃

n=−m0+1

n=n0γ n ·
[
cq

γ
,

1
pc′

]
.

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.156


Topological structure of the sum of two homogeneous Cantor sets 1727

T

1– 1
p

s J I

∇

1

L : t = 1– a1 
1
1 ' s

L : t = 1– b0 
0
0 's

s2

t = 1

t = –s

t = bM–1

S

FIGURE 3. The points s1, s2, the intervals I , J and the set �.

Proof. Since homogeneous Cantor sets K and K ′ are middle, ai+1 − bi is constant for
each i ∈ 	, which we call c, and also a′

j+1 − b′
j is constant for each j ∈ 	′, which we will

call c′. Thus, ai = i/p + ic, i ∈ 	 and a′
j = j/q + jc′, j ∈ 	′. Hence, the transferred

renormalization operators (2.1) can be written in the following form:

(s, t)
Ti�−→ (ps, pt − i − pic), (s, t)

T ′
j�−→

(
s

q
, t +

(
j

q
+ jc′

)
s

)
. (5.1)

It is easy to check that [cq/γ , 1/pc′] = ∅ if and only if τ(K) · τ(K ′) < 1/γ . When,
λ /∈ [s1, s2], one knows that K − λK ′ �= [−λ, 1], where s1 = c and s2 = 1/c′ (see §4).
Since τ(K) · τ(K ′) < 1, we have (1/p)s2 < qs1. Let I := ((1/p)s2, qs1); see Figure 3.

Notice that if λ ∈ I , then none of the points pλ and (1/q)λ belong to [s1, s2].
Moreover, we may consider the case I ⊆ [s1, s2]. Indeed, I � [s1, s2] is equivalent to
τ(K) · τ(K ′) < 1/min{p, q}. A proof similar to [18, p. 22] shows that if τ(K) · τ(K ′) <
1/min{p, q}, then K − λK ′ �= [−λ, 1], for every λ. Define

T (x) :=

⎧⎪⎪⎨⎪⎪⎩
px, x ∈

[
s1,

1
p
s2

]
,

1
q
x, x ∈ [qs1, s2],

with domain DT := [s1, (1/p)s2] ∪ [qs1, s2]; see Figure 4.
We emphasize here that, for given n ∈ N and x ∈ DT , T n(x) is well defined and we

consider T (T n−1(x)) if T n−1(x) is well defined and belongs to DT . In other words, the
smallest n such that T n(x) is not well defined is when T n−1(x) ∈ I . Moreover, for each
n ∈ N ∪ {0} and A ⊂ [s1, s2], consider

T −n(A) := {x ∈ DT | T n(x) is well defined and belongs to A}.
A property that is worth mentioning here is that, for each 0 ≤ n ≤ m0 + n0 and each x that
stays in domain T n, there exist 0 ≤ i ≤ m0 and 0 ≤ j ≤ n0 such that T n(x) = (pi/qj )x.
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s2

s1

s1 s2I

J

FIGURE 4. The graph of the map T.

Moreover, if T n0+m0(x) is well defined, it is equal to x. The following lemma will be
needed.

LEMMA 7. For each λ ∈ ⋃∞
n=0 T

−n(I ), we have K − λK ′ �= [−λ, 1].

Proof. Let

� :=
{
(s, t)

∣∣∣∣ t + a′
1s > 1, t > bM−1, t + b′

0s < 1 − 1
p

}
;

see Figure 3. The point (s2/p, 1 − a′
1s2/p), which is the intersection point L1

1 with the
line {(s, t) | t + b′

0s < 1 − 1/p}, is above the horizontal line {(s, t) | t = bM−1}, since
τ(K) · τ(K ′) < 1. Thus, � is non-empty. Also

(qs1, bM−1) = {(s, t) | t = bM−1} ∩
{
(s, t)

∣∣∣∣ t + b′
0s = 1 − 1

p

}
.

These facts lead to π1(�) = I . On the other hand, Ti(�) is placed above the line
{(s, t) | t = 1}, for all 0 ≤ i < M . Also TM(�) ⊂ {(s, t) | t + a′

1s > 1, t + b′
0s < 0},

which implies that T ′
j (TM(�)) is placed above the line {(s, t) | t = 1}, for all 0 < j ≤ N

and T ′
0(TM(�)) is placed below the line {(s, t) | t = −s}. Consequently, none of the points

of � are difference pairs.
Now suppose that λ ∈ ⋃∞

n=0 T
−n(I ). Thus, there is an n ∈ N such that T n(λ) ∈ I . This

implies that there exist 0 ≤ i0 ≤ m0 and 0 ≤ j0 ≤ n0 such that T n(λ) = (pi0/qj0)λ ∈ I .
From the above discussions, there is a 0 < t < 1 such that ((pi0/qj0)λ, t) ∈ �. The set
T ′

0
−j0(�) always stays above the lines L1

j , 0 < j ≤ N , hence its points are not difference

pairs. Also, since T −i0
M ◦ T ′

0
−j0(�) is a subset of the strip {(s, t) | bM−1 < t < 1}, its

points are not difference pairs. On the other hand, λ ∈ π1(T
−i0
M ◦ T ′

0
−j0(�)), which gives

the existence of −λ < t1 < 1 with (λ, t1) ∈ T −i0
M ◦ T ′

0
−j0(�) such that (λ, t1) is not one

difference pair. This implies K − λK ′ �= [−λ, 1] which completes the proof.

Define � := [s1, s2] − ⋃∞
n=0 T

−n(I ). It is straightforward to show that T (�) ⊂ �,
meaning that � is invariant under the map T.
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LEMMA 8. λ ∈ � ⇐⇒ Cα − λCβ = [−λ, 1].

Proof. Take the subset

R := {(s, t) | s ∈ �, − s ≤ t ≤ 1}
of R∗ × R, which is obviously bounded and far from zero. We show that for every element
of R there exists at least one of the operators (5.1) which transfers that element to R and so
the element is a difference pair. To prove this assertion, fix s with (s, t) ∈ R. Two possible
cases may occur.

Case 1: s1 ≤ s ≤ (1/p)s2. We observe that the points T0(s, t) = (ps, pt) and
TM(s, t) = (ps, pt − paM) are placed in the regions {(s, t) | t ≥ −s} and {(s, t) | t ≤ 1},
respectively. Moreover, for each 1 ≤ i ≤ M , we have π1(Ti(s, t)) = ps and

0 < π2(Ti−1(s, t))− π2(Ti(s, t)) = 1 + cp ≤ 1 + ps,

since s1 = c. Thus, one of the points {Ti(s, t)}i=Mi=0 is placed in the region R, since � is
invariant under T.

Case 2: qs1 ≤ s ≤ s2. We prove that one of the operators {T ′
j (s, t)}j=Nj=0 transfers the

point (s, t) to the set R. To do this, take

Vj :=
{
(s, t)

∣∣∣∣ − s

q
−

(
j

q
+ jc′

)
s ≤ t ≤ 1 −

(
j

q
+ jc′

)
s

}
,

for each j ∈ 	′. We have sup π2(V0) = 1 and inf π2(VN) = −s, since (N + 1)/q +
Nc′ = 1. Moreover, for all 0 ≤ j < N , we have

inf π2(Vj+1) ≤ inf π2(Vj ) ≤ sup π2(Vj+1) ≤ sup π2(Vj ),

since s ≤ s2 = 1/c′. On the other hand, T ′
j (Vj ) = {(s/q, t) | −s/q ≤ t ≤ 1} for each

j ∈ 	′. Thus, for each (s, t) ∈ {(s, t) | s ≤ s2, − s ≤ t ≤ 1}, there is j ∈ 	′ such that
T ′
j (s, t) ∈ R, since � is invariant under the map T.

If λ ∈ � and t ∈ [−λ, 1], then the pair (λ, t) belongs to R and cases (1) and (2) lead to
the conclusion that it is a difference pair, which implies K − λK ′ = [−λ, 1].

The converse is implied by Lemma 7, which completes the proof of the lemma.

Consequently, if log p/log q is irrational then � = ∅, and by Lemma 7, we have
K − λK ′ �= [−λ, 1], for all λ > 0. This proves assertion (I) of the proposition. To prove
assertion (II), suppose that log p/log q = n0/m0 with (m0, n0) = 1 and γ = p1/n0 . This
implies ⋃

n=0

∞T −n(I ) =
⋃
n=0

n0+m0−2T −n(I ).

Let

J :=
[
qs1

γ
,
s2

p

]
.

When τ(Cα) · τ(Cβ) < 1/γ , the sets J and so � are empty and Lemma 7 proves (II.i).
Now assume that 1/γ ≤ τ(Cα) · τ(Cβ) < 1. This gives that J := [qs1/γ , s2/p] is

non-empty. Note that J ⊂ [s1, s2] and sup J = inf I ; see Figure 3. By a similar proof
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in [18], we obtain

n=n0+m0−1⋃
n=0

T n(J ) = [s1, s2] −
n0+m0−2⋃
n=0

T −n(I ).

Another result that we proved in [18] is that for each x ∈ J ,

{DT n(x) | 0 ≤ n ≤ n0 +m0 − 1} = {γ n | −m0 + 1 ≤ n ≤ n0}.
However, T n(J ) = DT n|J J . Thus,

n=n0+m0−1⋃
n=0

T n(J ) =
n=n0⋃

n=−m0+1

γ n ·
[
qs1

γ
,
s2

p

]
.

Consequently,

� =
n=n0⋃

n=−m0+1

γ n ·
[
qs1

γ
,
s2

p

]
.

The conclusion (II.ii) follows from Lemma 8. Finally, the proof of the proposition is
completed.

For given regular Cantor sets K andK ′, the gap lemma asserts that if τ(K) · τ(K ′) ≥ 1,
then K +K ′ is one interval. Also, it is shown in [9] that if τ(K) · τ(K ′) < 1 and
log p/log q is irrational, then K +K ′ is non-connected. In the context of middle
homogeneous Cantor sets we have the following result.

THEOREM 4. Suppose that K and K ′ are two middle homogeneous Cantor sets with
|G(K)| = c and |G(K ′)| = c′.
(I) If τ(K) · τ(K ′) ≥ 1, then K +K ′ = [0, a + b].

(II) If τ(K) · τ(K ′) < 1, then
(i) if log p/log q is irrational, then K +K ′ �= [0, a + b],

(ii) if log p/log q = n0/m0 with (m0, n0) = 1 and γ := p1/n0 , then
• if τ(K) · τ(K ′) ≥ 1/γ , then K +K ′ = [0, a + b], if and only if⌈

n0 logp
pc′

a

⌉
=

⌊
n0 logp

b

qc

⌋
+ 1,

• if τ(K) · τ(K ′) < (1/γ ), then K +K ′ �= [0, a + b].

Proof. Assertion (I) follows from the gap lemma. The middle homogeneous Can-
tor sets (1/a)K and (1/b)K ′ have convex hull [0, 1] with |G((1/a)K)| = c/a and
|G((1/b)K ′)| = c′/b. Recall that

K +K ′ = a

(
1
a
K + b

a

1
b
K ′

)
.

Assertion (II.i) and the second part of assertion (II.ii) follow from Proposition 2 and the
above relation. It only remains to prove the first assertion of (II .ii). Again, by using

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.156


Topological structure of the sum of two homogeneous Cantor sets 1731

Proposition 2 and the above relation, K +K ′ = [0, a + b], if and only if

b

a
∈

n=n0⋃
n=−m0+1

γ n ·
[
cq

aγ
,
b

pc′

]
,

which is equivalent to

1 ∈
n=n0⋃

n=−m0+1

γ n ·
[
cq

bγ
,
a

pc′

]
.

Equivalently, there exists −m0 + 1 ≤ n ≤ n0 such that γ−n ∈ [cq/bγ , a/pc′]. This,
in turn, is equivalent to [logγ (pc

′/a), 1 − logγ (cq/b)] ∩ {−m0 + 1, . . . , −1, 0, 1, . . . ,
n0} �= ∅. Since τ(K) · τ(K ′) < 1, the length of the interval in the previous relation is
smaller than 1 and so the latter is equivalent to 	logγ (pc

′/a)
 = �1 − logγ (cq/b)�.
Putting γ = p1/n0 into the above relation yields the result.

We now turn to the proof of results (i) and (ii) mentioned at the end of §1. Recall
that for given M ∈ N and λ < 1/(M + 1) (respectively, N ∈ N and μ < (1/(N + 1))),
CMλ (respectively, CNμ ) is a middle homogeneous Cantor set with convex hull [0, 1]
and c = (1 − (M + 1)λ)/M (respectively, c′ = (1 − (N + 1)μ)/N). Assume that the pair
(CMλ , CNμ ) satisfies the condition τ(CMλ ) · τ(CNμ ) < 1, and there are the natural numbers
m and n with (m, n) = 1 such that λm = μn.

Let us first prove (ii). From Theorem 4, CMλ + CNμ = [0, 2], if and only if⌈
n logλ

Nλ

1 − (N + 1)λm/n

⌉
=

⌊
n logλ

1 − (M + 1)λ
Mλm/n

⌋
+ 1. (5.2)

On the interval (0, (1/(M + 1))) take two functions

f1(λ) := n logλ

Nλ

1 − (N + 1)λm/n
, f2(λ) := n logλ

1 − (M + 1)λ
Mλm/n

+ 1.

The functions f1 and f2 are C∞-smooth and f1(0+) = n, f2(0+) = −m+ 1. It is easy
to check that the function f1 is strictly decreasing and f2 is strictly increasing. Note that if
the function h is C1 on (0, 1) satisfying 0 < h ≤ 1 and h′ < 0, and if, moreover,H(x) :=
logx h(x), then H ′(x) > 0 since H ′(x) = (1/ln2 x)(h′(x) ln x/h(x)− (ln h(x)/x)).

Suppose that τ(CMλ1
) · τ(CN

λ1
m/n) = 1, which gives f1(λ1)+ 1 = f2(λ1). Put

K = Kn,m := {λ | 	f1(λ)
 = �f2(λ)�, λ ∈ (0, λ1]}.
Thus, for all λ < λ1, CMλ + CN

λm/n
= [0, 2] if and only if λ ∈ Kn,m.

Depending on the values of n and m, two cases may occur.

Case 1. If f1(λ1) /∈ Z, then let β := inf K . In this case λ1 ∈ Km,n since f1(λ1)+ 1 =
f2(λ1) /∈ Z, and so Km,n is non-empty. Since the function f1 is strictly decreasing and f2

is strictly increasing, one concludes that β belongs to K and obviously is smaller than λ1.

Case 2. If f1(λ1) ∈ Z, then let β := λ1. In this case Km,n is empty since f1(λ1)+ 1 =
f2(λ1) ∈ Z, and the function f1 is strictly decreasing and f2 is strictly increasing.
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The above cases imply that

f1(λ1) ∈ Z ⇐⇒ K = ∅ ⇐⇒ β = λ1.

On the other hand, the relation f1(λ1) = n logλ1
(Nλ1/(1 − (N + 1)λ1

m/n)) ∈ Z is
equivalent to the existence of an integer number −m+ 1 ≤ r ≤ n such that

n logλ1

Nλ1

1 − (N + 1)λ1
m/n

= r = n logλ1

1 − (M + 1)λ1

Mλ1
m/n

.

Note that f1 is decreasing and f2 is increasing and, moreover, f1(0+) = n, f2(0+) =
−m+ 1 and f1(λ1)+ 1 = f2(λ1). It is easy to show that λ1 is a root of the system⎧⎪⎪⎨⎪⎪⎩

r

n
= logλ

N + 1 − (M +N + 1)λ
M

,

m

n
= logλ

1 − (M + 1)λ
N + 1 − (M +N + 1)λ

.
(5.3)

The first equation in (5.3) givesMλr/n = N + 1 − (M +N + 1)λ. By putting ρ := λ1/n,
we see that ρ > 0 satisfies

(M +N + 1)ρn +Mρr − (N + 1) = 0.

Summing up both equations in (5.3) yields

Mρm+r = 1 − (M + 1)λ = 1 − (M + 1)ρn.

It is easy to check that ρ is a root of the system{
p1(x) := Mxm+r + (M + 1)xn − 1 = 0,

p2(x) := (N + 1)xm +Nxn−r − 1 = 0.
(5.4)

Since −m+ 1 ≤ r ≤ n, the polynomials p1 and p2 are decreasing on (0, ∞), and so each
one takes exactly one real root in (0, 1). Thus, 0 < λ < 1/(M + 1) is a positive real root
of (5.3) if and only if ρ = λ1/n ∈ (0, 1) is a positive real root of (5.4). Consequently, since
the function f1 is strictly decreasing, n logλ1

(Nλ1/(1 − (N + 1)λ1
m/n)) ∈ Z if and only

if there is an integer number −m+ 1 ≤ r ≤ n such that (5.4) has a positive real root.
Since 0 < λ < 1/(M + 1), we have λr/n = (N + 1 − (M +N + 1)λ)/M ∈ (λ, (N +

1)/M) and so r < n. Hence, we have the following assertions.
(i) If N < M , then λr/n ∈ (λ, 1) and so 0 < r < n.

(ii) If N > M , then λr/n ∈ (1, (N + 1)/M) and so −m+ 1 ≤ r < 0.
(iii) If N = M , then three cases are possible.

• m > n, so we have 0 < r < n. In this case, λm/n = (1 − (M + 1)λ)/(N + 1 −
(M +N + 1)λ) < λ, which gives 1/(M +N + 1) < λ. Thus, λr/n =
(N + 1 − (M +N + 1)λ)/M ∈ (λ, 1), which gives the result.

• m < n, so we have −m+ 1 ≤ r < 0. In this case 0 < λ < 1/(M +N + 1)
and so λr/n = (N + 1 − (M +N + 1)λ)/M ∈ (1, (N + 1)/M), which gives
the result.

• m = n, so we have r = 0. Indeed, m = n = 1 since (m, n) = 1, and so r = 0.
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THEOREM 5. Suppose that (M , N + 1) = 1 and (N , M + 1) = 1. Then, for givenm, n ∈
N, the system (5.4) has a positive real root if and only ifm/n = log(2N + 1)/log(2M + 1).

Proof. First, suppose that m/n = log(2N + 1)/log(2M + 1). Let ρ := (2N + 1)−1/m =
(2M + 1)−1/n and r := n−m. Thus, ρ is a positive real root of the system (5.4).

To prove the converse, suppose that λ is a positive real root of the system (5.4) and
m/n �= log(2N + 1)/log(2M + 1). Suppose that p(x) ∈ Z[x] is the minimal polynomial
of λ. Thus, there are polynomials q1(x), q2(x) ∈ Z[x] such that p1 = pq1 and p2 = pq2.
Consequently, p is monic, since (M , N + 1) = 1 and (N , M + 1) = 1, and p(0) = ±1.
Note that:
• ifm+ r > n, then the leading coefficients of p1 and p2 are M andN + 1, respectively;
• ifm+ r < n, then the leading coefficients of p1 and p2 areM + 1 and N, respectively;
• if m+ r = n, then the leading coefficients of p1 and p2 are 2M + 1 and 2N + 1,

respectively. Thus, p1 and p2 have a common positive real root if and only if m/n =
log(2N + 1)/log(2M + 1). Obviously, this case never occurs.

On the other hand, if s is a root (probably complex) of p2(x) with |s| ≥ 1, then

0 = |p2(s)| ≥ |(N + 1)sm| −N |sn−r | − 1 ≥ |s|m − 1 ≥ 0,

and so |s| = 1. Thus, the norm of each root of p2 is less than or equal to 1. Therefore the
norm of the product of the roots of p is less than or 1, since p(λ) = 0 and λ < 1. This
leads to contradiction since p(0) = ±1, and this concludes the proof.

Theorem 5 and explanations before that complete the proof of the main assertion of (ii).
For given M , N ∈ N, letD := { m/n | Kn,m �= ∅}. When M = N , from Theorem 5,D is
a dense subset of Q. Also, whenM �= N and λ = μ, we havem = n = 1 and r = 0. Thus
the system (5.4) does not have any positive real root and so β < λ1. This indicates that D
is a non-empty set, which proves (ii.1). Of course, we guess that #{Q \D} ≤ 2, although
we cannot prove this.

PROPOSITION 3. Suppose that 1 < N < M ≤ (N + 1)2 or 1 < M < N ≤ (M + 1)2.
Then there is a dense subsetD0 of Q such that, for all m/n ∈ D0, we have β < λ1.

Proof. We only prove the first case; the second case follows a similar proof. On the inter-
val (0, 1/(M + 1)), take two functions f (λ) := logλ(N + 1 − (M +N + 1)λ)/M and
g(λ) = logλ(1 − (M + 1)λ)/(N + 1 − (M +N + 1)λ). It is easy to check that the func-
tions f and g are positive and increasing sinceN < M . Moreover f ′ < g′; see Figure 5. To
see this, letH := g − f and h(λ) := (M(1 − (M + 1)λ))/((N + 1 − (M +N + 1)λ)2).
Thus, H(λ) = logλh(λ). Since 1 < N < M , we obtain h′ < 0. Moreover, h ≤ 1, since
h(0) = M/(N + 1)2 ≤ 1. This implies H ′ > 0 and proves the claim.

In order to prove thatD0 is a dense subset of rational numbers, it is enough to prove that,
for all m and n with (n, m) = 1 and (n, m+ 1) = 1, we have Kn,m �= ∅ or Kn,m+1 �= ∅.
To see this, suppose that for such a pair m, n, we have Kn,m = ∅. Suppose that λ1 is the
solution of system (5.3) and also λ∗

1 satisfies (m+ 1)/n = g(λ∗
1). Thus

k

n
< f (λ∗

1) <
k + 1
n

,

https://doi.org/10.1017/etds.2021.156 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.156


1734 M. Pourbarat

m+1
n

1
M+1

k+1
n

m

g

f

n

1f ( λ∗)

k
n

0
λ λ1 λ1

∗

FIGURE 5. The functions f and g are illustrated. Note that f < g always holds, since f ′ < g′ and f ′(0+) =
g′(0+) = 0. Geometrically, we see that f (λ∗

1) ∈ (k/n, (k + 1)/n).

since f ′ < g′. This implies that, replacing m+ 1 by m in (4.2), the new system never has
a root in the interval (0, 1/(M + 1)) for each k ∈ N.

For the proof of (ii.2), fix the natural numbers M and N and suppose that

R :={(λ, μ) | τ(CMλ ) · τ(CNμ )≤1}, C :={(λ, λm/n) | λ∈Km,n, m, n∈N, (m, n)=1}.

Suppose that x0 := (λ0, μ0) ∈ R \ C, ε is a positive real number such that Bx0(ε) ⊂ R

and E := {(λ, μ) | τ(CMλ ) · τ(CNμ ) = 1}. For given θ > 0, let λ̄1 := sup{λ | (λ, λθ ) ∈
Bx0(ε)}. Note that it is possible such a number does not exist. For given m, n ∈ N with
(m, n) = 1, let Lm,n := {(λ, λm/n) | λ̄1(m/n) ≤ λ ≤ λ1(m/n)} provided that λ̄1(m/n)

exists, and otherwise letLm,n := ∅. Also let δ := inf{|Lm,n| | m, n ∈ N, Lm,n �= ∅}, where
|Lm,n| is the length of the arc Lm,n. Lastly, let H(λ) := logλ(1 − (M + 1)λ)/M on the
interval (0, 1/(M + 1)). Since

H ′(λ) = 1

λ ln2 λ

(−(M + 1)λ ln λ

1 − (M + 1)λ
− ln

1 − (M + 1)λ
M

)
>

−(M + 1)
ln λ(1 − (M + 1)λ)

,

one can choose a positive number c such that c ≤ H ′(λ), for each λ ∈ (λ0 −
ε, 1/(M + 1)). Now suppose that θ is a positive real number and λ̄1(θ) exists.
• If θ is irrational, then β = λ1(θ) ∈ E and so (β, βθ ) /∈ Bx0(ε).
• If θ = m/n and β = λ1(θ) ∈ E, then (β, βθ ) /∈ Bx0(ε).
• If θ = m/n and β(θ) /∈ E, then (β, βθ ) /∈ Bx0(ε) for all 1/cδ < n. To see this, let

k := �f2(β)� and λ̄ be the point such that f2(λ̄) = k. Since f2 = nH −m+ 1 on the
interval (0, 1/(M + 1)), we always have nc ≤ f ′

2. In view of the definition of β and
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using the mean value theorem, one has

λ1 − β ≤ λ1 − λ̄ ≤ f2(λ1)− f2(λ̄)

nc
<

1
nc
< δ.

Thus, (β, βθ ) /∈ Bx0(ε) since λ1 − β < δ < |Lm,n|.
From the above discussion, we see that there is at least one finite sequence of rational
numbers {θi}i=ri=1 such that (β(θi), β(θi)θi ) ∈ Bx0(ε) for all 1 ≤ i ≤ r . Now one can choose
ε1 < ε such that Bx0(ε1) ⊂ R \ C, and this completes the proof of (ii.2).

Finally, it remains to prove the assertion (i). For given real number λ < (1/(M + 1)), let
μ := λm/n, which gives μn = λm. Thus, CMλ + CNμ is a union of (M + 1)m(N + 1)n − 1
translated copies of λm(CMλ + CNμ ). Hence,

HD(CMλ + CNμ ) ≤ log((M + 1)m(N + 1)n − 1)
log(1/λm)

.

On the other hand, (−1/m) logλ0
((M + 1)m(N + 1)n) = 1, since HD(CMλ0

)+
HD(CN

λ
m/n

0
) = 1. Consequently, there is always λ0 < α, such that |CMλ + CNμ | = 0 for

all λ < α.
WhenM = N and λ = μwith λ < 1/(2M + 1) (in fact τ(C1/(2M+1)

M) = 1), we have
that CMλ + CMλ is a disjoint union of 2M + 1 translated copies of λ(CMλ + CMλ ). Thus,
CMλ + CMλ is an affine Cantor set with HD(CMλ + CMλ ) = (log(2M + 1))/(− log λ).
This implies that CMλ + CMλ has zero Lebesgue measure, for all λ < (1/(2M + 1)) = λ1,
which concludes the proof of (i).
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