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Abstract

Denoising of images corrupted by multiplicative noise is an important task in various
applications, such as laser imaging, synthetic aperture radar and ultrasound imaging.
We propose a combined first-order and second-order variational model for removal
of multiplicative noise. Our model substantially reduces the staircase effects while
preserving edges in the restored images, since it combines advantages of the first-
order and second-order total variation. The issues of existence and uniqueness of a
minimizer for this variational model are analysed. Moreover, a gradient descent method
is employed to solve the associated Euler—Lagrange equation, and several numerical
experiments are given to show the efficiency of our model. In particular, a comparison
with an existing model in terms of peak signal-to-noise ratio and structural similarity
index is provided.

2010 Mathematics subject classification: 68U10.

Keywords and phrases: multiplicative noise removal, denoising, total variation,
Euler—Lagrange equation, structural similarity index.

1. Introduction

Image denoising is a fundamental problem of interest to the mathematical community,
and has wide applications in fields ranging from computer vision to medical imaging.
The goal of image denoising is to reconstruct an approximation of an ideal image
from an observed image. Over the past few decades, most of the literature has dealt
with the additive noise. Given a noisy image g = u + v, where u and v represent
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the original image and the noise, respectively, the denoising problem involving the
additive noise is to recover u from the observed image g. Many approaches, such
as traditional filtering, wavelets, stochastic approaches and variational methods have
been proposed for solving the additive noise removal problem. We refer the reader to
the articles [3, 4, 6, 9, 18, 36] for a review of image denoising algorithms.

However, multiplicative noise (also known as speckled noise) is quite different from
additive noise, and is image dependent. Usually, it appears in laser imaging, synthetic
aperture radar, ultrasound imaging and so on [16, 19, 39, 40]. In this paper, we deal
with the multiplicative noise removal problem. For a mathematical description of such
degradations, suppose that an original image, u : 2 — R, is a real function defined on
Q, a connected bounded open subset of R? with compact Lipschitz boundary. The goal
of multiplicative noise removal is to recover the image u from the observed data

g=uv.

In this work, we concentrate on the assumption that v follows a gamma distribution,
which commonly occurs in synthetic aperture radar (SAR). SAR images are strongly
corrupted by speckle noise. A radar sends a coherent wave, which is reflected on the
ground and then registered by the radar sensor. If the coherent wave is reflected on a
coarse surface, then the image processed by the radar is degraded by a noise with large
amplitude: this gives a speckled aspect to the image, and this is the reason why such
noise is called speckle [17, 32]. In general, the multiplicative noise v of SAR images
follows the gamma distribution with the probability density function [2]

MEyE- s
I'(L)

where I'(+) is the usual gamma function, and parameters L and M denote the inverse
scale and shape parameters in the gamma distribution, respectively. Note that the mean
of a gamma-distributed variable is L/M, and its variance is L/M?*. We assume that the
mean of v equals one, which implies that L = M.

It is known that due to the coherent nature of these image acquisition processes,
nearly all the information of the original image may vanish when it is distorted
by the multiplicative noise. Multiplicative noise is one of the very complex noise
models, which is also signal independent, non-Gaussian, and spatially dependent.
Hence, its removal is a very challenging problem compared to the removal of additive
Gaussian noise. Therefore, it is necessary to devise efficient and reliable algorithms for
recovering the true images from the observed multiplicative noisy images. Early in the
literature, a variety of methods were proposed to remove the multiplicative noise, such
as geometric filter, adaptive filter [12, 42] and anisotropic diffusion methods [22, 43].
Recently, several variational models have been proposed to handle this problem. These
methods have the ability to preserve edges very well in the denoised images. The first
variational approach for multiplicative noise removal is the one by Rudin et al. [35]
(commonly referred to as the RLO model). According to the statistical properties
of the multiplicative noise v, the recovery of the image u is based on solving the

Py(v;L,M) = forv >0, (1.1)
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constrained optimization problem

minf|Vu|dxdy
“ Ja

subject to f § dxdy =1,
olu

2
and f(g - 1) dxdy = 0.
o\u
2

The two constraints state that the mean of the noise is one, and the variance o-.
Only basic statistical properties, such as the mean and the variance of the noise, v,
are considered, so the method can not get a satisfactory restored result.

Aubert and Aujol [2] proposed a model (referred to as the AA model), whose
minimizer corresponds to the denoised image to be recovered by using a maximum
a posteriori (MAP) estimator. The AA model is a very famous model for the
multiplicative noise removal problem, which utilizes total variation regularization
due to its capability to preserve edges. This model is an unconstrained optimization
problem which can be described as

minflog(u+£)dxdy+/1f|Vu|dxdy, (1.2)
w Jo u Q

where the total variation of u is utilized as the regularization term, and A is the
regularization parameter, which controls the trade-off between a good fit of g and
a smoothness requirement due to the total variation regularization. Although their
proposed model is not convex, they still prove the existence of a minimizer and show
the capability of their model through some numerical examples.

A drawback of the objective function (1.2) is that it is not convex for all u, so the
solution obtained is most likely not the global optimal solution of (1.2). More recently,
many convex models related to the AA model have been proposed. Shi and Osher [37]
used the logarithmic transformation, and converted the multiplicative problem into
an additive one. Then they added a quadratic term in the data term of the AA
model and replaced the regularizer, TV (u) by TV(log u), where TV (u) = fg |Vuldx dy.
Hence, they derived a strictly convex TV minimization model (SO model) by setting
w = logu, and then applied a corresponding relaxed inverse scale space flow to
solve the transformed problem. The same idea as the SO model was proposed by
Huang et al. [20]; the authors modified the AA model by using an auxiliary variable z =
log u, then they solved the corresponding unconstrained model by a simpler alternating
minimization algorithm. Bioucas-Dias and Figueiredo [5] proposed an efficient
multiplicative noise removal method by using variable splitting and constrained
optimization. They used variable splitting to obtain an equivalent constrained problem,
and then solved this optimization problem by using the augmented Lagrangian method.
A set of experiments verified that the proposed method, which they named MIDAL
(multiplicative image denoising by augmented Lagrangian), yields state-of-the-art
results in terms of both speed and denoising performance. Note that the regularization
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parameter, A in (1.2), is an important quantity which controls the properties of the
regularized solution, and A should therefore be chosen with care. Recently, many
methods involving the TV norm have been proposed, involving spatially adapted
regularization parameters [10, 25].

Although the total variation regularization can realize significantly sharper edges
and overall more visually pleasing images, it also tends to create piecewise-constant
images even in regions with smooth transitions of grey values in the original image [8,
27]. This undesirable artefact is usually called the staircase effect. To alleviate
staircase effects, second-order regularization schemes have been considered in the
literature. There are two classes of second-order regularization methods for image
restoration problems. The first class employs a second-order regularizer in a stand-
alone way. For example, Chen et al. and Steidil [11, 38] considered a fourth-order
partial differential equation (PDE) model for noise removal, and employed the dual
algorithm of Chambolle [7] for solving the high-order problems. The high-order
PDEs are known to behave much better than TV from the point of view of recovering
smoother surfaces; however, they may not preserve edges very well. The second class
combines the TV norm with a second-order regularizer. For example, Papafitsoros
and Schonlieb [33] considered a high-order model involving convex functions of the
first-order and second-order TV for image restoration problems. They used the split
Bregman method [15] to numerically solve the corresponding discretized problem.
A technique combining the TV filter with a fourth-order PDE filter was proposed to
preserve edges and avoid staircase effects in smooth regions for noise removal [26, 28].

In order to avoid block effects (staircase effects) while achieving good trade-off
between noise removal and edge preservation for the multiplicative noise removal
problem, it is natural to utilize a combined first-order and second-order total variation
technique. In this paper, we modify the AA model by adding a high-order functional
into the energy. The proposed model can substantially reduce staircase effects, while
preserving edges in the restored images, since it combines advantages of the first-order
and second-order total variation. We study the issues of existence and uniqueness of a
minimizer for this variational model. Moreover, we employ a gradient descent method
to solve the associated Euler—Lagrange equation. Several numerical experiments are
given to show the performance of our model. In particular, a comparison with AA
model in terms of the peak signal-to-noise ratio and structural similarity index is
provided as well.

The main contribution of this paper is twofold:

(i) We propose a hybrid total variational minimization model to solve the
multiplicative noise removal problem. Since the proposed model combines the
advantages of the TV regularization and the high-order TV model, it is able to
avoid the blocky effects widely seen in images processed by TV regularization,
while achieving a higher degree of noise removal and edge preservation.

(i) The issues of existence and uniqueness of a minimizer for the proposed
variational model are studied. Moreover, we employ a gradient descent method
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to solve the associated Euler-Lagrange equation. The numerical results show
that our model avoids the creation of undesirable artefacts and blocky structures
in the restored images which is a disadvantage of the TV regularization.

The rest of the paper is organized as follows. In the next section, we present the
combined first-order and second-order total variational minimization for multiplicative
noise removal, and carry out the mathematical analysis of the proposed model. In
Section 3 we develop a gradient descent method to solve the associated Euler—
Lagrange equation and give the details of its implementation. In Section 4 several
numerical experiments are given to show the efficiency of the proposed method
compared with the AA model. Some concluding remarks are given in Section 5.

2. The proposed model and mathematical analysis

We propose a new objective function for restoring images distorted by
multiplicative noise. It is important that we apply a high-order total variation to
the objective function for preserving edges and reducing the staircase effects in the
restored images efficiently. We introduce our multiplicative denoising model from the
statistical perspective, using the Bayesian formulation [24].

Let g, u, and v denote samples of instances of some random variables G, U and V,
respectively. We assume that the random variable v is mutually independent and
identically distributed on each pixel. Moreover, the random variable v in each pixel
follows a gamma distribution (1.1) with L = M.

According to the posteriori estimation, the restored image u can be determined by

u = argmax Pyg(ulg). 2.1
From the Bayes rule, we have
Pau(glu)Py(u)
Pyig(ulg) = lPTg)’
which implies
Pguy(glu)Py(u)
u = argmax T@

Then, using a proposition of Aubert and Aujol [2], which yields Py(g/u)(1/u) =
Pgy(glu), we obtain
L,L-1
8 e—Lg/u
ulT (L) ’
Taking the logarithmic transformation into account, we note that maximizing Py (ulg)
amounts to minimizing

—log(Pyic(ulg)) = —log(Pgu(glu)) —log(Py(u)) +log(Pg(8)).

Since Pg(g) is a constant, equation (2.1) can be rewritten as

Pgu(glu) =

u = argmin[—log{ Py (glu)} — log{ Py (u)}].

https://doi.org/10.1017/51446181114000339 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181114000339

[6] Multiplicative noise removal 121

It is clear that —logPy(u) corresponds to the regularization term in the classical
penalized likelihood approach to regularization [23]. However, in the Bayesian setting,
Py(u) is the probability density, known as the prior, from which the unknown u is
assumed to arise. Thus the prior knowledge regarding the characteristics of u can be
formulated in the form of a probability density Py (u), and this yields a natural and
statistically rigorous motivation for the regularization method.

Standard Tikhonov regularization corresponds to the following choice of the
prior [1]:

Py(u) = exp_””””g/ 2.

This corresponds to the assumption that the prior for u is a zero-mean Gaussian
random variable with covariance matrix A~'/, which has the effect of penalizing
reconstructions with large L,-norm. For the L,-norm of the gradient regularization,
the penalty has a similar form, that is,

Puu) = exp VU2,

where V is the gradient operator. The use of this regularization function has the
effect of penalizing reconstructions that are not smooth. As an alternative to Tikhonov
regularization, including standard Tikhonov regularization and gradient regularization
for image noise removal, total variation regularization is another regularization
technique that allows for the presence of sharp edges in the resulting reconstruction.
In the case of total variational regularization, we have

Py(u) = exp—/IIIVulll ,

where ||Vu||; = fQ |Vuldx dy with |Vu| = | [u? + 3.

To reduce the staircase effects in the TV regularization, we consider a combined
first-order and second-order variational model to restore blurred images corrupted by
speckle noise in this work. In the proposed model, we assume that the prior probability

density is of the form

P,(u) = expfy(f?IIVuHﬁ(l *9)IIVZMH1)’

where ||V2u||, = fQ |V2u|dx dy with |V?u| = \/u§X +u2, + u?, + u?;, and 0 is a weighting
function that can be found adaptively. These considerations lead us to present the

following functional for restoring images corrupted with multiplicative gamma noise:
min E(u) = f 01Vul + (1 — 6)|V?u| + A(logu + g)dxdy, (2.2)

u Q u
where A = L/y acts as a regularization parameter which measures the trade-off between
the fidelity term fQ(log u+ g/u)ydxdy and a regularized term, and the parameter

6 € [0, 1] is used to control the balance between the edges and the smooth surface.
Next, we recall the definitions of BV(Q) and BVZ(Q) [26, 28].
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DerniTion 2.1. Let Q € RN be an open subset with Lipschitz boundary. Define BV(Q)
as the subspace of the function u € L'(Q) such that

f \Du| = sup{ f wdivip)dz | € CH(Q, RYY, gl < 1},
Q Q

called the BV seminorm, is finite. With respect to the norm [|ullpyq) = fQ |Du| +
[zl L1 3y, BV () is a Banach space.

DeriniTion 2.2. Let Q c RY be an open subset with Lipschitz boundary. Define BV?(Q)
as the subspace of the function u € L'(Q) such that

N
f \D*u| = sup{ f D uddng™ dz | € CHOQ RV ™M), gl < 1}
Q Q

hk=1

with [p(x)| = 4/ ZhN’ 121 ()2, called the BV? seminorm, is finite.

The functional E(x) in (2.2) is defined on the set BV(Q) () BV*(Q); in particular,
u must be positive almost everywhere in some cases. Some basic notation and
properties of the spaces BV and BV? can be found in the articles by Li et al. [26] and
Lysaker and Tai [28]. In this work, if a function g belongs to L.(L2), we denote
by supg g (respectively, infq g) the essential supremum of g (respectively, the
essential infimum of g). We recall that the essential supremum g = inf{C €
R | g(z) £ C almost everywhere} and essential infimum g = sup{C € R | g(z) >
C almost everywhere}. Motivated by the work of Aubert and Aujol [2], we have the
following existence and uniqueness of the minimizer for the model (2.2).

THEOREM 2.3. Let g be in L,(Q) with infg g > 0. Then the minimization problem (2.2)
has at least one minimizer u* in BV(Q) N BVX(Q), and u* satisfies 0 < infq g < u* <

Supg, &-
Proor. The proof is similar to that of [2, Theorem 4.3], and will be given in the
Appendix for completeness. O

THEOREM 2.4. Let g > 0 be in Lo(Q). Then problem (2.2) has a unique solution it such
that 0 < it < 2g.

Proor. Let u; and u, be two images defined on support Q with u; # u;. Then by
Minkowski’s inequality [31], we have

[V(tu; + (1 = w)up)| < w|Vu| + (1 — w)|Vuy|

and
IV (wu; + (1 = )| < wVu;| + (1 — w)|VZus|

for each w. Hence, 6|Vu| + (1 — )|V?u| is convex. Let f(u) =logu + g/u. Then
f'(u) = (u—g)/u*and f'(u) = 2g — u)/u’. If 0 < u < 2g, then f(u) is strictly convex.
Therefore, the objective function E(u) is strictly convex for O < u < 2g, and it implies
the uniqueness of a minimizer. This completes the proof. O
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3. Computational method

In this section, we derive the numerical method for problem (2.2) in detail. The
directional derivative of E(u) in (2.2) at u in the direction of v is given by

de

d
E(u+ev) = T
€

f [9|V(u +ev)+ (1= O)V2u+ ev)|
e=0JQ

e=0
+ /l{ log(u + ev) + g }] dxdy
(u + ev)
_ f O(Vu - Vv) f (1 -6)(Vu, - Vzvx + Vu, - Vvy) dxdy
o Vil [Vul
+ /lf 2=8 axay. 3.1)
Q u

Applying Green’s formula [34] for the first term of (3.1), we have

6(Vu - Vv) f f (HV )
———Zdxdy= —Vu NvdS — V. vdxdy,
fg Vul Y7 Joa Vil IVl Y

where N = (n, ny) is the unit outer normal vector of 9Q). Using the same formula for
the second term of (3.1), we get
f (1 =60 (Vuy, - Vvy + Vu, - Vvy)
[V2u|

dxdy

1 -60)Vu, 1 -6)Vu,
_f( )Vu - Vv, dx dy+f( AL -V, dxdy
Q

|V2u| V2 |
(1 —0)Vu, (1 -6)Vu, ]
= | [—= N+ ————2 Ny, |dS
fm[ 2 R 2T

f [v (1 |V2¢|Wx) e+ V- (—(1 l_VflT”y )vy] dxdy.

Let W = (V- {(1- 0)Vu,/|V?ul}, V- ((1 - 0)Vuy/|V2u|)). Thus, applying Green’s formula
for the last term of the above equation, we have

(I—G)Vux) ((I—Q)Vuy) |
v (), s v () | dxd
fg[ ( v )T N2 bt
=fW-Vvdxdy
Q

= W'Nvdxdy—fV'Wvdxdy
oQ Q
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R (s
-l (e e (S ) e
Therefore,
E=0E(u+ev) = [39 ﬁVu NvdS — fV (|9VV |)vdxdy

1 0)Vu, 6)v
+f A=OVur o LDV, J|ds
sol  [V2ul [V2ul

]6‘9[ (1 I_Vzidvux )n1v +V- (—(1 |_V§l|vuy )ngv] das
el (O {5 (S ) fasas
+/l]g; ! —zg

We can easily obtain the associated Euler—Lagrange equation [14] under a fixed 6
for (2.2):

0=-0V- (; Jra-olfv (|§Z;|)x}+{v'(|§?;|)y}]”uu_zg

with the boundary conditions

de

dxdy.

Vu-N=0, Vu,-N=0, Vu,-N=0,

Vu Vu
-0 v(Feno
V2l V24l
where N = (n1, ny) denotes the unit outer normal vector of 9Q [26, 28].

From the Euler-Lagrange variation principle [14], the minimizer of u can be
interpreted as the steady-state solution of the associated heat flow:

% - 9[(|$;| ) " (%)y] —a- 9)[(|$;L| )xx " (|$;yb¢|)yx (|$);| )xy

””') ]—A”_g 32
+(|V2u| " 2 (3-2)
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We use the finite difference scheme to discretize (3.2) (see, for example, [26, 28] for
more details). In the implementations, we use the following discretization with the
step size h = 1.

Diuij  +(Ur,j — Uij)

Diu;j (U1 — i j)

Dxxui,j D;I/l,’,j — D;Li,’_l’j
nyui,j i[Dj—;u,;ji] - Dfu,‘,]’]
Diuij  £[DJuxy j — Di(u; j)]

Dyyu; ; Dy u; Dy U j-1

Dt \[(DFui ) + (mlDfus 1, Dy )2 + 6

Dyt A mID3usj, Dyt 17 + (Djui )2 + 6

|D?u; || \/(Dxxui,j)2 + (Dhyui j)* + (D j)* + (Dyyui j)* + 6

In the discretization, we use the notation m[a, b] = (sgna + sgn b)/2 - min(|al, |b]), and
the small parameter ¢ > 0 is introduced to avoid division by zero. The time step and
space step are denoted by 7 and A, respectively. Also, we denote the time and space
coordinates as follows:

where Ih x Jh is the size of the image support. We denote by u* the approximation
for u(x,y, k, 7) where x and y are the grid points. Finally, we get the following explicit
computation scheme for (3.2):

_ Dt _Dhut D _ (D
Mk+l = Mk + TQ X X X + Dy ) A + T(l - 9) Dxx xzx & yx xzy k
Du| IDyut| |D*u| |Du|
. Dyyu* uk —g
e B Lt R 33
\ip2d )™ D) T Wb v p G

where the parameter S is introduced to avoid division by zero. There is an issue
of choosing the optimal step size T which ensures speedy convergence. Lysker and
Tai [28] have shown that the numerical scheme is stable if equation (3.3) is solved as
long as 7 fulfils the Courant-Friedrichs—Lewy (CFL) stability criterion [28, 29]. Due
to the severe nonlinearity of the equation, however, such an optimal step size is difficult
to obtain theoretically, and is computationally very expensive. In numerical examples,
we empirically choose a suitable value of 7 that satisfies the CFL condition.

Next, we discuss the choice of the weighting parameter 6 in equation (3.3). Due to
the strengths and weaknesses of the first-order and second-order variation approach,
it is desirable that the weighting parameter 6 = 1 along edges and in flat regions,
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emphasizing the restoration properties for the first-order total variation. To emphasize
the restoration properties for the second-order total variation in smooth regions,
we want 0 <8 < 1. Specifically, the resulting algorithm for (3.3) is just the TV
regularization method for then multiplicative noise removal problem when 8 = 1, while
the resulting algorithm is the second-order TV regularization method when 8 = 0.
Usually, we may compute the parameter 6 by using the information of the edges and
smooth regions of the resulting image obtained by smoothing the observed image g
with low-pass filters such as the median filter and the Gauss filter. We have carried out
some numerical experiments. In order to detect edges and smoothing regions much
better, we adopt the method of Lysker and Tai [28] for updating 6. The results obtained
from various numerical examples show that the updating procedure behaves better for
our model than the fixed 8. This is because, as the iteration proceeds, the edges and
smoothing regions of the recovered image are closer to the original image; thus the
parameter 6 computed by the updating scheme is more suitable for restoration. So we
employ this method [28] for updating 6 in our numerical experiments too. Suppose
that u* is the kth iterative solution. We update the parameter 6 as follows:

k
Vil |

1 - _ 5 = b
max(|Vu )
9,"/' = " (34)

1 27|V |
— ( . ) + otherwise,

1

2 N emaxvid /" 2

ij
where 0 < ¢ < 1, which implies that only the absolute largest jumps, the largest of
[Vuk|, are unaffected by the high-order regularization. As reported by Lysker and
Tai [28], for large and small values of |Vu¥|, the parameter 6 is closer to one, and
for intermediate values of |Vu*|, the parameter 6 approaches zero, which means that
the high-order filter dominates the computation, and the staircase effect is suppressed.
Since only small jumps should be suppressed with the high-order regularization, it is
useful to set ¢ = 1/8.

We are now in a position to describe the time-marching gradient descent algorithm
for restoring images corrupted by the multiplicative noise.

Algorithm 1: Time-marching gradient descent algorithm for solving (2.2)

Input : g, Maxlter, A and 7 and initialize u°
Iteration: For k = I:MaxlIter

1 Compute u* using the explicit scheme (3.3).

2 Update the parameter 6 according to (3.4).
end.

Similarly, with the method of Aubert and Aujol [2], it is easy to modify our model to
incorporate a linear blurring operator K. In this case, the minimization function (2.2)
becomes

muin{E(u) - fQ Vil + (1 — 0)|V2u] + /l(log Ku+ %)dx}. (3.5)
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We use the following explicit computation scheme to obtain the minimizer for
problem (3.5):

D+uk Dy Dyt
kel _ ok - ol =
i =it 471 -0)|D; ‘D D, ukl] | ”(|D2u'<|)+D”(ID2u"I)]
D; Dyyuf Kut —
x 8
A (G B s o
’ |D2uk| D2 )|~ K+ oo

Based on the computation scheme (3.6) and update formula (3.4), we obtain the
following algorithm for restoring blurred images corrupted by multiplicative noise.

Algorithm 2: Time-marching gradient descent algorithm for solving (3.5)
0

Input :k, g, Maxlter, A and 7 and initialize u
Iteration: For k = 1:MaxlIter

1 Compute u* using explicit scheme (3.6).

2 Update the parameter 6 according to (3.4).
end.

4. Numerical experiments

We present some numerical results to illustrate the performance of the proposed
model for multiplicative noise removal. We compare our approach with the AA model
of Aubert and Aujol [2]. Note that both the AA model and the proposed model are
solved by the time-marching method. For convenience, we use the terms terminology
“model” and “method” interchangeably in this work. All experiments were carried out
in Windows XP and Matlab v7.10 running on a desktop equipped with an Intel Core2
Duo CPU 2.93 GHz and 3 GB of RAM. The initial guess is chosen to be the observed
image in all tests.

The quality of the restoration results by the two different methods is compared
quantitatively by using the relative error, the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM). PSNR is an engineering term for the ratio between
the maximum possible power of a signal and the power of corrupting noise that affects
the fidelity of its representation. In general, a high PSNR value indicates that the
restoration is more accurate. The SSIM is a well-known quality metric, used to
measure the similarity between two images. This method, developed by Wang et al.
[41], is based on three specific statistical measures that are much closer to how the
human eye perceives differences between two images.

Suppose u, g and i are the original image, the noisy image and the restored image,
respectively. The relative error of the restored image with respect to the original image
is defined as

llu — all,

RelErr =
[lzall2
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FiGure 1. Original images (256 X 256). (a) “Cameraman”. (b) “Lena”. (c) “House”.

The PSNR is defined by
n*Max?

PR
e = a3

PSNR = 101log

where Max; is the maximum possible pixel value of the image, and if the pixels are
represented by using 8 bits per sample, it is usually 255. The SSIM is given by
Cptupta + C1)(20ua + C2)

SSIM = ,
(2 + 12+ C)(02+ 02+ Cr)

where u, and y; are averages of u and ii, respectively; o, and o; are the variance of
u and i1, respectively; o,; is the covariance of u and #i. The positive constants C| and
C; can be thought of as stabilizing constants for near-zero denominator values. In the
following experiments, we will also use an SSIM map to reveal areas of high or low
similarity between two images. A whiter SSIM map indicates that the two images are
closer. We refer the reader to the article by Wang et al. [41] for further details on SSIM
and SSIM maps.

We use eight images to test the proposed method: four simulated images and four
real SAR images, partly from http://www.sandia.gov/radar/complex_data. For the AA
method and the proposed method, we use the time-marching algorithm to solve the
corresponding Euler—Lagrange equations. We set the step size 7 to 0.1 in order to
obtain a stable iterative procedure. In the experiments, we adjust the parameter A
for the two methods to be optimal in the sense that after many trials, the parameter
gives the best restoration. The algorithms are stopped when the maximum number
of iterations is reached. For four real SAR images, since no corresponding reference
image exists, and, since we cannot compare the AA method and the proposed method
numerically, we just present the results obtained by the proposed method.

The first three original images are displayed in Figure 1. In the first test, we aim
to restore the image “Cameraman” corrupted by multiplicative noise with L = 15 and
L =5, respectively. We show the restored results for L = 15 in Figure 2. It is clear from
Figure 2 that the proposed method outperforms the AA method. The images recovered
by the proposed method have much smoother background than those recovered by the
AA method, and at the same time, the edges can be preserved as well. For better
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(b)

FiGure 2. Results of different methods for removing multiplicative noise with L = 15 (Cameraman): (a) the
noisy image corrupted by multiplicative noise; (b) the restored image by the AA method; (c) the restored
image by the proposed method.

(a)

(d

FiGure 3. The small portions and the SSIM maps of the restored images with L = 15 (Cameraman). (a) and
(b) are small parts of the restored images; (c) and (d) are contours of small parts; (e) and (f) are SSIM
maps of the restored images.

visualization, we zoom in on small parts of the recovered images and display them in
Figure 3. From the first row in Figure 3, the results obtained by the AA method have
some piecewise constant regions, while our method can restore images with smoother
surfaces. This effect is even better visualized in a contour plot in the second row, since
we can see from the contour plots of the face and the trouser-legs of the cameraman
that the contour plots obtained by the proposed method are significantly smoother at
smooth regions than those obtained by the AA method. We also present the SSIM
maps of the restored images in Figures 3(e)—(f). Note that the SSIM maps of the
restored images by the proposed method are whiter than those by the AA method, that
is, our method can get better restoration results.

In Figures 4 and 5, we compare the AA method with our method for recovering the
noisy image “Lena” with L = 10. The zoomed-in parts of the reconstructed images
for L = 10 and the SSIM maps are shown in Figure 5. From visual inspection of the
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()

Ficure 4. Results of different methods for removing multiplicative noise with L = 10 (Lena): (a) the noisy
image corrupted by multiplicative noise; (b) the restored image by the AA method; (c) the restored image
by the proposed method.

Ficure 5. The small portions and the SSIM maps of the restored images with L = 10 (Lena): (a) and (b)
are small parts of the restored images; (c) and (d) are contours of the small parts; (e) and (f) are SSIM
maps of the restored images.

images it is evident that the face, nose and shoulder of “Lena’ are much more smoothly
obtained by our method than by the AA method. The PSNR, RelErr and SSIM values
for L =33 and L = 10 are reported in Table 1. Throughout the paper, Iter denotes the
maximum number of iterations. It is clear that our method also behaves slightly better
than the AA method.

The third simulated test data is the “House” image. In Table 1, we report the
performance of the proposed method and the AA method for the speckled “House”
in Figure 6 with L = 25 and L = 3, respectively. The restoration results are shown in
Figure 6. From Figure 7, it is obvious that the SSIM maps of the restored images
obtained by our method are much whiter than those by the AA method. Also, in
Table 1, we observe that the PSNR and SSIM values are higher using our method.

In the fourth test, we deal with a more complicated case, that is, the original image is
also blurred. The original image “Lena” has been blurred by a 5-by-5 average kernel,
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Ficure 6. Results of different methods for removing multiplicative noise (House). (a) and (d) are the noisy
images corrupted by multiplicative noise with L = 25 and L = 3, respectively; (b) and (e) the restored
images by the AA method; (c) and (f) the restored images by the proposed method.

and then corrupted by a gamma noise with L = 10. In this case, the blurred matrix, K, is
generated by the function PsfMatrix [30]. We use the periodic boundary conditions so
that the blurred matrix K has a circulant with block structure. The blurred and noisy
image is shown in Figure 8(a). From Figures 8(c) and (d), we see that the restored
images obtained by our method have more detail than those by the AA method. In
Figures 8(e) and (f), we zoom in on parts of the recovered images (shown as the white
rectangle in Figure 8(a)). The comparison of SSIM maps shown in Figures 8(g) and
(h) also proves that our method gives a better result. We report the PSNR, RelErr, and
SSIM values in Table 3, which shows that our method behaves much better.

From the above experiments, we observe that our method obtains much better
results than the AA method, and our method can alleviate the staircase effects
efficiently. And from numerical results in terms of PSNR, RelErr, and SSIM reported
in Table 1, our method yields a better restoration result. We also display the parameters
chosen for the AA method and our method in Tables 2 and 3.

In the fifth test, we use a synthetic image of size 256 X 256 to show the power
of reduction of the staircase effects with our method. The original image in
Figure 9(a) is corrupted by gamma noise with L = 25. The noisy image is displayed
in Figure 9(b). The restored images produced by the AA method and our method
are shown in Figures 9(c) and (d), respectively. In this test, the highest PSNR value
for the AA method is achieved for A = 550 while the highest one for the proposed
method is achieved for 4 = 500. Without zooming in, staircasing is can already be
detected in the AA method. We present the SSIM maps of the restored images in
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Figure 7. The small portions and the SSIM maps of the restored images (House). (a)—(d) The small
portions of the restored images are shown for better visualization of the results: (a) and (b) are small parts
of the restored images with L = 25; (c) and (d) are small parts of the restored images with L = 3. (e)—(h)
The contours of the small parts: (e) and (f) are contours with L = 25; (g) and (h) are contours with L = 3.
(1)—(1) The SSIM maps of the restored images: (i) and (j) are SSIM maps with L = 25; (k) and (1) are
SSIM maps with L = 3.

TasLE 1. Numerical results for the denoising examples.

Images Methods PSNR RelErr SSIM  PSNR RelErr  SSIM

L =15 #Iter = 500 L =5 #lter = 900
Cameraman AA 26.75 0.0874 0.79 2372 0.1238 0.73
Ours 26.95 0.0854 0.80 23.87 0.1216 0.74

L = 33 #Iter = 500 L = 10 #Iter = 700
Lena AA 28.95 0.0684 0.84 2588 0.0973 0.77
Ours 29.25 0.0661 0.85 26.06 0.0954 0.78

L =25 #Iter = 500 L = 3 #lter = 700
House AA 29.77 0.0569 0.82 22.11 0.1374 0.57
Ours 30.08 0.0549 0.83 23.11 0.1224 0.64

Figures 9(e) and (f). We see from Figures 9(e) and (f) that the SSIM map of the
restored image by the proposed method is whiter than that by the AA method, that is,
our method can get better restoration results. In order to show the convergences of the
AA method and our method, we give a plot about the relative error versus iterations
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© (@

FiGure 8. Restoration of blurred images corrupted by multiplicative noise: (a) the original image blurred
by 5-by-5 average blur kernel; (b) the blurred and noisy image with L = 10; (c) and (d) restored results
by the AA method and our method, respectively; (e) and (f) the zoomed-in parts of the restored results;
(g) and (h) SSIM maps of the corresponding restored results.

TaBLE 2. The parameters A and the CPU time in seconds by different methods for the denoising examples.

Images Methods A Time(s) A Time(s)
L=15#Iter =500 L =5 #lter = 900
Cameraman AA 570 11.78 110 19.87
Ours 640 31.82 120 54.60
L =33 #Iter =500 L = 10 #Iter = 700
Lena AA 1000 11.78 350 17.96
Ours 1300 30.67 400 46.50
L =25#Iter=500 L =3 #lter = 700
House AA 700 10.90 0.5 15.04
Ours 750 30.75 20 42.04

TaBLE 3. Numerical results for the deblurring example (the parameters A and the CPU time in seconds by
different methods).

Image Methods PSNR RelErr SSIM 2 Time(s)
L =10 #Iter = 700
Lena AA 2220 0.1488 0.63 15 23.67
Ours 23.74 0.1247 0.68 300 53.34

in Figure 9(g). For better visualization, zoom-ins of the same regions are shown in
Figures 9(h) and (i). We see from Figure 9(i) that the staircase effects have been
successfully alleviated in the proposed method. We give the contours of the zoomed-
in parts in Figures 9(j) and (k), from which we reach similar conclusions.
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Fiure 9. Results of different methods for a synthetic image: (a) original image; (b) noisy image with
L = 25; (c) restored image by the AA method; (d) restored image by our method; (e) and (f) SSIM maps
of restored images by the AA method and our method, respectively; (g) relative error versus iterations;
(h) and (i) zoomed-in parts of the restored results; (j) and (k) contours of the zoomed-in parts.

Finally, to show the better ability of our method, we present nonspeckled images of
various real SAR images in Figures 10(a)-(d). Since we do not have the reference
images, the comparison between the AA method and the proposed method is not
carried out here. In Figures 10(e)—(h) we display the restoration results obtained by
the proposed method. From these figures, it is easy to see that the proposed method is
very efficient for multiplicative noise removal.

5. Conclusion

We have analysed the variational method for the multiplicative noise removal
problem. Based on a good feature of a high-order functional, we propose a model
by adding an extra high-order functional term in the AA model. The numerical results
show that the proposed method outperforms the AA method in terms of the PSNRs,
relative errors and SSIM values. A comparison between the reconstructed images
obtained by the two methods shows that the proposed one can alleviate the staircase
effects significantly, while preserving edges. Since our proposed model is nonconvex,
we employ the time-marching method to solve the minimization problem. Therefore,
we can only achieve its local minimizer. Further research will focus on studying a
strictly convex objective function for the multiplicative noise removal problem and
using the alternating direction method of multipliers (ADMM) algorithm to solve it.
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Ficure 10. Nonspeckled images obtained by our method: (a) SAR image with size 391 x 391; (b) SAR
image with size 391 x 391; (c) SAR image with size 256 x 256; (d) SAR image with size 256 X 256;
(e)—(h) restoration results.
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Appendix

Proor oF Tueorem 2.3. Let @ = infq g and 8 = supg g, and u,, € BV(Q) N BV*(Q) be a
minimizing sequence for the problem (2.2). We remark that log u + g/u is decreasing
if u € (0, g), and strictly increasing for u € (g, o0). Hence, we can always have

8 8
1 —_— < [ (1 = .
L( og sup(u, @) + — a))dxdy < L( ogu+ u)dxdy

Moreover,

f [V(sup(u, @)l dxdy < f |Vu|dx dy

Q Q
and
f IV2(sup(u, @))| dx dy < f IV2u| dx dy,

Q Q

which can be derived similarly, as in Lemma 1 [21, Section 4.3]. Then we get
E(sup(u, @)) < E(u),

and also E(inf(u,)) < E(u) in the same way. Therefore, we can assume without
restriction that @ < u,, < 8, which implies that u, is bounded in L;(Q).
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By the definition of {u,}, there exists a constant ¢ such that E(u,) < c. Since
fg(log u + g/u) dx dy reaches its minimum value, fg(l + log g)dxdy, when u = g, we
can deduce that fQ |Vu| dx dy and j;z |V2u| dx dy are bounded.

Thus, u, is bounded in BV(Q) N BV*(Q), and there exists u in BV(Q) N BV3(Q)
such that u, — u in BV(Q) N BV*(Q) weak* and u,, — u* in L;(Q) strong. According
to the lower semicontinuity of fQ |[Vu| dx dy and fQ |V2uldx dy, @ < u* < and Fatou’s
lemma [13], we get u* as a solution to the problem (2.2). This completes the proof of
Theorem 2.3. O
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