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Abstract

The study of threshold functions has a long history in random graph theory. It is known
that the thresholds for minimum degree k, k-connectivity, as well as k-robustness coin-
cide for a binomial random graph. In this paper we consider an inhomogeneous random
graph model, which is obtained by including each possible edge independently with an
individual probability. Based on an intuitive concept of neighborhood density, we show
two sufficient conditions guaranteeing k-connectivity and k-robustness, respectively,
which are asymptotically equivalent. Our framework sheds some light on extending
uniform threshold values in homogeneous random graphs to threshold landscapes in
inhomogeneous random graphs.
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1. Introduction

Classical binomial random graph theory founded in the late 1950s by Gilbert [9] and Erdős
and Rényi [5, 6] considers the random graph model G(n, pn) of all graphs over the vertex
set V = {1, 2, . . . , n}, in which each edge eij ∈ E appears independently with probability pn.
Here E = {eij = eji : 1 ≤ i �= j ≤ n} consists of all edges in the complete graph Kn over V . The
probability of a random graph in G(n, pn) holding a graph property is typically understood in
the large graph limit as n → ∞. One of the most important results on random graphs, shown
by Erdős and Rényi [6], is the following sharp threshold for k-connectivity. Recall that a graph
G is said to be k-connected if it remains connected when any set of at most k − 1 vertices is
deleted.

Theorem 1. ([6].) Let pn = 1
n (ln n + (k − 1) ln ln n + ωn) for an integer k ≥ 1. Then

lim
n→∞ P(G(n, pn) is k-connected)

= lim
n→∞ P(G(n, pn) has minimum degree no less than k)

=
{

0 if ωn → −∞,

1 if ωn → ∞.
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The above type of zero–one law is known to be universal for all monotone properties in
random graphs [7]. The theorem indicates that although having minimum degree at least k is
weaker than k-connectedness, both properties share the same asymptotic threshold function (in
this case 1

n (ln n + (k − 1) ln ln n)).
Connectivity is a fundamental property of graph theory and is essential to many distributed

computation problems over large-scale complex networks. For example, synchronization of
oscillators or mobile agents is not possible without a connected underlying communication
network. To cope with undesirable disturbances such as node faults and malicious attacks in
realistic networked systems, a novel graph concept known as k-robustness was recently intro-
duced by LeBlanc et al. [12] together with a class of distributed resilient consensus protocols
called weighted-mean subsequence reduced (W-MSR) algorithms. In these algorithms, a node
(or vertex) calculates its value in each iteration based on the current neighbors’ states and
cuts the links with some neighbors that have extreme values. The notion of k-robustness (see
Section 2 for the definition) of the communication network has been proposed as a sufficient
condition to guarantee the global consensus of the network against malicious neighbors. This
notion has been found to be central in a number of related network control protocols; see e.g.
[13], [15], and [16]. In this context, a sufficiently connected but inadequately robust network is
not able to deliver the consensus result. As will be seen below, k-robustness is a stronger prop-
erty than k-connectivity. Interestingly, Zhang et al. [18] showed that Theorem 1 holds verbatim
for k-robustness.

Theorem 2. ([18].) Let pn = 1
n (ln n + (k − 1) ln ln n + ωn) for an integer k ≥ 1. Then

lim
n→∞ P(G(n, pn) is k-robust) =

{
0 if ωn → −∞,

1 if ωn → ∞.

In other words, a random graph in G(n, pn) becomes k-robust as soon as it becomes
k-connected (and as soon as its last vertex of degree k − 1 vanishes).

The aforementioned threshold 1
n (ln n + (k − 1) ln ln n) is obviously precise and plain (note

that Theorem 1 is a weaker statement than the result in [6]). However, would there be a pos-
sibility of zooming in and examining details of the threshold landscape (across all edges)?
A natural way is to introduce unequal edge probabilities. To that end, in this paper we con-
sider an inhomogeneous random graph with a list of edge probabilities pn = {pn(eij)}1≤i<j≤n

by including each edge eij = eji of Kn independently with probability pn(eij). We denote this
inhomogeneous random graph model by G(n, pn).

As an effort to diversify and extend previous results regarding binomial random graphs, it
is not surprising that the G(n, pn) model has been studied by a few researchers across a rela-
tively long time period under different names, e.g. generalized binomial random graphs [1, 11],
anisotropic random graphs [4, 8], and edge-independent random graphs [3, 14]. We mention
that Chapter 9 of the monograph [8] presents an updated survey of connectivity-related results
for this and other inhomogeneous random graphs. In the seminal work [2], Bollobás et al. sys-
tematically analyzed a very general class of inhomogeneous random graphs and networks that
were studied in recent decades.

In this paper we attempt to generalize the threshold result presented in Theorem 1 for both
k-connectivity and k-robustness by considering the G(n, pn) model, and shed some light on
the shape of the threshold landscape. We show two sufficient conditions for k-connectivity and
k-robustness, which are asymptotically equivalent as n → ∞. It is hoped that the approach
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developed in the present work could facilitate relevant research in this direction on other top-
ics in random graphs. The main results of this paper and their implications are discussed in
Section 2 and proofs are given in Section 3.

2. Statements of main results and discussions

By convention, we will use standard Landau asymptotic notations such as O(·), o(·), �(·),
∼, etc. throughout the paper; see e.g. [10]. For a simple, undirected graph G = (VG, EG) with
vertex set VG = {1, 2, . . . , n} and edge set EG, let NG(i) = {j ∈ VG : eij ∈ EG} be the set of
neighbors (i.e. the open neighborhood) of vertex i ∈ VG. The degree of vertex i is denoted by
dG(i) = |NG(i)|. Let NG(i) = {i} ∪ NG(i) be the closed neighborhood of i. We also define the
neighborhood of a set S ⊆ VG as NG(S) = {j ∈ VG : eij ∈ EG for some i ∈ S}. As mentioned in
the Introduction, the following notion of graph robustness was put forward in [12] to analyze
the convergence of W-MSR algorithms in resilient control in the presence of adversaries.

Definition 1. ([12].) (a) For an integer k ≥ 1 and a graph G = (VG, EG), a subset S ⊆ VG is
called k-reachable if there is some vertex i ∈ S satisfying |NG(i)\S| ≥ k. (b) A graph G is called
k-robust if, for any two non-empty, disjoint sets in VG, at least one of them is k-reachable.

From Definition 1 it is not difficult to see that k-robustness is a stronger property com-
pared to k-connectedness in general. In fact, if a graph G is k-connected, for any two
non-empty disjoint sets in VG, at least one of them has k neighbors (collectively) outside
of the set itself. This does not guarantee k-reachability of either of these sets for k ≥ 2.
Generally, we have the following relationship between the three properties {k-robustness} ⊆
{k-connectedness} ⊆ {minimum degree k}, and for the binomial random graph G(n, pn) they
share the same threshold function pn = 1

n (ln n + (k − 1) ln ln n).
To accommodate the inhomogeneous random graph setting, we consider the neighbor-

hood density for a vertex i ∈ V with respect to a set S ⊆ V . For i ∈ V\S, define ρn(i, S) =
|S|−1 ∑

j∈S pn(eij). This quantifies the expected fraction of neighbors of i inside S. Let pn =
1
n (ln n + (k − 1) ln ln n + ωn), where k ≥ 1 is an integer and ωn → ∞ as n → ∞. For a constant
β ≥ 1, define

ρβ
n (i, S) = 1

|S|
∑
j∈S

min{pn(eij), βpn}.

A sufficient condition ensuring k-connectivity and minimum degree k is formalized in the
following.

Theorem 3. Suppose that there is some constant β ≥ 1 and an integer k ≥ 1 satisfies

min
1≤i≤n

min
S : i �∈S

|S|≥�n/2

ρβ

n (i, S) ≥ pn (1)

for all large n. Then

lim
n→∞ P(G(n, pn) is k-connected)

= lim
n→∞ P(G(n, pn)has minimum degree no less than k)

= 1.
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Theorem 3 is a generalization of the ‘one’ part of the zero–one law in Theorem 1, which
can be seen by taking pn(eij) ≡ pn for all distinct i, j ∈ V in Theorem 3. Roughly speaking,
Theorem 3 says that if the edge probabilities are large enough, then the random graph G(n, pn)
is sufficiently connected with high probability. The quantity ρ

β
n (i, S) can be viewed as a capped

neighborhood density with each potential edge contributing no more than βpn. If (1) holds for
a constant β then it holds for any larger β. Moreover, if maxi,j∈V pn(eij) ≤ βpn, then ρ

β
n (i, S) =

ρn(i, S) and (1) reduces to
min

1≤i≤n
min

S : i �∈S
|S|≥�n/2


ρn(i, S) ≥ pn (2)

concerning the neighborhood density. Since k-connectivity and minimum degree no less than k
are monotonic properties, without loss of generality we will only present the proofs in Section 3
under this maximum probability condition.

To appreciate the result presented above, we consider an example of non-trivial edge
probabilities satisfying (1).

Example 1. To build an inhomogeneous random graph G(n, pn), we consider the following
assignment probabilities. For 1 ≤ i < j ≤ �nα
 for some α ∈ (0, 1), let pn(eij) = 0. For all other
1 ≤ i < j ≤ n, let pn(eij) = 1

n (ln n + (k − 1) ln ln n + ωn) with k ≥ 1 and ωn → ∞. Let β = 1.
Notice that for any S ⊆ V with |S| ≥ �n/2
 and i ∈ V\S,

ρβ
n (i, S) ≥ 1

|S|
(

nα · 0 + (|S| − nα) · ln n + (k − 1) ln ln n + ωn

n

)

≥ ln n + (k − 1) ln ln n + ω′
n

n
,

where ω′
n → ∞ as n → ∞. It is easy to see that (1) is satisfied and hence by Theorem 3

G(n, pn) is k-connected a.a.s. (i.e. asymptotically almost surely [10]). Loosely speaking, this
example indicates that with a sublinear order portion of the graph being arbitrarily sparse and
the rest of the graph k-connected, the entire graph can still be k-connected a.a.s.

The next example looks into a classical result regarding connectivity of G(n, pn) by Alon,
which is sharp up to a multiplicative factor c.

Example 2. It is known [1] that for every constant b > 0 there exists a constant c > 0 so that
if, for any ∅ �= S ⊂ V , ∑

j∈S, i∈V\S

pn(eij) ≥ c ln n, (3)

then
P(G(n, pn) is connected) ≥ 1 − n−b.

By dividing both sides of condition (3) by |S|, we can rewrite it as

∑
i∈V\S

ρn(i, S) ≥ c ln n

|S| . (4)

Write
ρn(i) = (n − 1)−1

∑
j∈V\{i}

pn(eij)
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for the neighborhood density of a vertex i ∈ V in the entire graph. Firstly, taking S =
V\{i}, condition (2) becomes mini∈V ρn(i) ≥ 1

n (ln n + ωn) when k = 1, while (4) reduces to
mini∈V ρn(i) ≥ c

n ln n. As c is unknown, it is not difficult to see that these two conditions are
incomparable in general. Secondly, the form of condition (4) takes a sum over all i �∈ S, which
mitigates the risk of uneven contribution of edge probabilities. Our condition (1) considers a
single vertex i with minimum neighborhood density. Therefore we have to consider a cap on
the contribution to neighborhood density. Finally, for a given random graph G(n, pn), condition
(3) is not always easy to check compared to (1) due to the undetermined constant c.

Next, we present our result for robustness.

Theorem 4. Suppose that there is some constant β ≥ 1 and an integer k ≥ 1 satisfies condition
(1) for all large n. Then

lim
n→∞ P(G(n, pn) is k-robust) = 1.

Several remarks are in order. Firstly, Theorem 4 can be viewed as a generalization of the
‘one’ part of the zero–one law Theorem 2 for robustness of binomial random graphs, which
can be recovered by taking pn(eij) ≡ pn for all distinct i, j ∈ V in Theorem 4.

Secondly, the same condition is adopted here as in Theorem 3 and analogous comments
underneath it are applicable here. That said, k-robustness may be essentially stronger than
k-connectedness in the current setting as we are not able to match a ‘zero’ part statement. As
an example (which appeared in [18]) of a heterogeneously connected graph, we consider the
union graph G of a complete bipartite graph Kn/2,n/2 and a perfect matching between the two
partite sets. G has connectivity n/2 but is just 1-robust, suggesting that a gap might exist in the
thresholds for connectivity and robustness in the G(n, pn) model.

Finally, it would be useful to perform some computational experiments to vouch for the
above conjecture. Unfortunately, as shown in [17] and [18], determining robustness is signif-
icantly harder than checking connectivity, namely, NP-hard versus P in time complexity. The
most current robustness-checking algorithm can only effectively handle graphs of order about
n = 30.

Example 1 (revisited). For the model G(n, pn) set up in Example 1, we can argue in the same
way and show that G(n, pn) is not only k-connected but k-robust a.a.s. by Theorem 4.

3. Proofs of Theorem 3 and Theorem 4

In this section we present the proofs of our main results. As mentioned above, we will
assume maxi,j∈V pn(eij) ≤ βpn for some constant β ≥ 1 and that condition (2) holds.

Proof of Theorem 3. Here we will actually rely on the following inequality instead of (2):

min
1≤i≤n

min
S : i �∈S

|S|≥�(n−k+1)/2

ρn(i, S) ≥ pn. (5)

The minimum in condition (5) has the same asymptotic behavior as that in condition (2). In
fact, although �(n − k + 1)/2
 < �n/2
 for any k ≥ 1, the difference between the two terms is
O(1). Hence it can only make a difference of order O(n−1) to the right-hand side of (2) or (5).

For an integer d ≥ 0, let Xd be the random variable counting the number of vertices in
G(n, pn) having degree d. Write Nn(i) := NG(n,pn)(i) and Nn(i) := NG(n,pn)(i), respectively, for
the open and closed neighborhood of vertex i in Gn,pn

. Accordingly, we use N∗
n (i) and N

∗
n(i)
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to represent a potential instance of an open and closed neighborhood of i, respectively. By the
construction of our inhomogeneous random graph model, we have

EXd =
n∑

i=1

∑
N∗

n (i) : |N∗
n (i)|=d

∏
j∈N∗

n (i)

pn(eij)
∏

j∈V\N
∗
n(i)

(1 − pn(eij)).

Capitalizing on the neighborhood density condition (5) and the estimate for binomial coeffi-
cient

(n
d

)= (1 + o(1))nd/d! for fixed d as n → ∞, we obtain

EXd ≤
n∑

i=1

∑
N∗

n (i) : |N∗
n (i)|=d

βdpd
ne−|V\N

∗
n(i)|·ρn(i,V\N

∗
n(i))

≤ n

(
n − 1

d

)
βdpd

ne−(n−1−d)pn

≤ (1 + o(1))n · nd

d! β
d (ln n)d

nd
· e−ωn

n(ln n)k−1

= (1 + o(1))
βd

d!
(ln n)de−ωn

(ln n)k−1
. (6)

It follows from (6) that

k−2∑
d=0

EXd ≤ (1 + o(1))
e−ωn

(ln n)k−1

k−2∑
d=0

βd (ln n)d

d! ≤ (1 + o(1))
e−ωn

ln n
(k − 1)βk−2 (7)

and

EXk−1 ≤ (1 + o(1))
βk−1

(k − 1)! e−ωn . (8)

Since k and β are fixed constants and ωn → ∞ as n → ∞, by (7) and (8) we obtain

k−2∑
d=0

EXd = o(1) and EXk−1 = o(1).

Let dmin
n represent the minimum degree of G(n, pn). Then P(dmin

n ≥ k) → 1 as n → ∞ by
Markov’s inequality.

Notice that

P(G(n, pn) is k-connected) ≥ P(G(n, pn) is k-connected | dmin
n ≥ k) · P(dmin

n ≥ k).

To show Theorem 3, it suffices to prove

lim
n→∞ P(G(n, pn) is k-connected | dmin

n ≥ k) = 1. (9)

Given two subsets S1, S2 ⊆ V satisfying 0 ≤ |S1| ≤ k − 1 and k − |S1| + 1 ≤ |S2| ≤ � 1
2 (n −

|S1|)�, consider an event

E(S1, S2) = {S2 is a connected component of G(n, pn)\S1}.
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Notice that if G(n, pn)\S1 is not connected, it must contain a component having order at most
1
2 (n − |S1|). In the following, we will bound the probability P12 that there exist two vertex sets
S1 and S2 such that the event E(S1, S2) occurs. For this purpose, without loss of generality, we
assume S1 is minimal for the given S2. This implies that each vertex in S1 is adjacent to at least
one vertex in S2 (otherwise S1 can be made smaller by removing a vertex without neighbors in
S2). Moreover, NG(n,pn)(S2) = S1 since S2 is a component. Let |S1| = s1 and |S2| = s2. Therefore
we have

P12 ≤
k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

∑
S1 : |S1|=s1

S1⊆V

∑
S2 : |S2|=s2

S2⊆V

∑
T⊆S2

T is a spanning tree of S2

(∏
eij∈T

pn(eij)

)

×
( ∑

E∗
n (S1,S2) : |E∗

n (S1,S2)|=s1

∏
i : i∈S1
j∈S2

pn(eij)

)
·

∏
eij∈E∗

n (V\(S1∪S2),S2)

(1 − pn(eij))

≤
k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

∑
S1 : |S1|=s1

S1⊆V

∑
S2 : |S2|=s2

S2⊆V

∑
T⊆S2

T is a spanning tree of S2

(βpn)s2−1

×
( ∑

E∗
n (S1,S2) : |E∗

n (S1,S2)|=s1

(βpn)s1

)
· e

−∑
eij∈E∗

n (V\(S1∪S2),S2) pn(eij)
, (10)

where En(S1, S2) = {eij ∈ G(n, pn) : i ∈ S1, j ∈ S2} is the random edge set between two sets S1
and S2, and E∗

n(S1, S2) represents a potential instance accordingly. Using the neighborhood
density assumption (1) and the relation x − �x/2� = �x/2
 for any non-negative integer x, we
have

e
−∑

eij∈En(V\(S1∪S2),S2) pn(eij) = e−∑
j∈S2

∑
i∈V\(S1∪S2) pn(eij) ≤ e−s2(n−s1−s2)pn .

Since S1 is minimal for the given S2, S2 must be connected. There are at most ss2−2
2 different

labeled spanning trees over S2 by Cayley’s formula. Hence the right-hand side of (10) is upper-
bounded by

k−1∑
s1=0

(n−s1)/2∑
s2=k−s1+1

(
n

s1

)(
n

s2

)
ss2−2

2

(
s1s2

s1

)
(βpn)s1+s2−1 · e−s2(n−s1−s2)pn =: A1 + A2, (11)

where A1 represents the value for s1 = 0 and A2 the sum for 1 ≤ s1 ≤ k − 1.
We first estimate A1. Recall k ≥ 1 and

( n
s2

)≤ (ne/s2)s2 . We have

A1 =
n/2∑

s2=k+1

(
n

s2

)
ss2−2

2 (βpn)s2−1e−s2(n−s2)pn

≤ (βpn)−1
ln n∑

s2=k+1

(
neβpne−(n−s2)pn

)s2 + (βpn)−1
n/2∑

s2=1+ln n

(
neβpne−(n−s2)pn

)s2

:= A11 + A12.
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The term neβpne−(n−s2)pn in the above sums is less than 1. Using the definition of pn and k ≥ 1,
we obtain

A11 ≤ n

β ln n
· (ln n) · (neβpne−(n−ln n)pn

)k+1

= n

β

(
(1 + o(1)) eβ(ln n) e−(1+o(1)) ln n)k+1

= o(1)

and

A12 ≤ n

β ln n

n/2∑
s2=1+ln n

(
neβpne−(n/2)pn

)s2

≤ n

β ln n

∞∑
s2=1+ln n

(
(1 + o(1)) eβ(ln n + (k − 1) ln ln n + ωn) · e−(ln n+(k−1) ln ln n+ωn)/2)s2

= (1 + o(1))
n

β ln n

(
(1 + o(1)) eβ · ln n + (k − 1) ln ln n + ωn

e(ln n+(k−1) ln ln n+ωn)/2

)1+ln n

= o(1).

Therefore A1 = A11 + A12 = o(1) as n → ∞. Similarly, A2 for k ≥ 2 can be estimated as
follows:

A2 =
k−1∑
s1=1

(n−s1)/2∑
s2=k−s1+1

(
n

s1

)(
n

s2

)
ss2−2

2

(
s1s2

s1

)
(βpn)s1+s2−1 · e−s2(n−s1−s2)pn

≤ (βpn)−1
k−1∑
s1=1

(n−s1)/2∑
s2=k−s1+1

(
ne2s2βpnes2pn

)s1 · (neβpne−(n−s2)pn
)s2

= (βpn)−1
k−1∑
s1=1

ln n∑
s2=k−s1+1

(
ne2s2βpnes2pn

)s1 · (neβpne−(n−s2)pn
)s2

+ (βpn)−1
k−1∑
s1=1

(n−s1)/2∑
s2=1+ln n

(
ne2s2βpnes2pn

)s1 · (neβpne−(n−s2)pn
)s2

:= A21 + A22,

where the estimate
(n

s

)≤ (ne/s)s is used in the first inequality. Using the definition of pn we
write

pn = 1

n
(ln n + (1 + o(1))(k − 1) ln ln n) = (1 + o(1))

ln n

n
.
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Therefore we derive

A21 = O(1) · n

ln n

k−1∑
s1=1

ln n∑
s2=k−s1+1

(
(1 + o(1))βe2s2(ln n) · ns2/n(ln n)((1+o(1))s2(k−1))/n)s1

× (
(1 + o(1))βe(ln n) · ns2/n−1(ln n)(1+o(1))(k−1)(s2/n−1))s2

= O(1) · n

ln n

k−1∑
s1=1

(O(ln n))2s1 ·
ln n∑

s2=2

(
O

(
ln n

n

))s2

≤ nk(ln n)2k ·
(

ln n

n

)2

= o(1),

where in the second equality above we note the limit limn→∞ (n ln n)c ln n/n = 1 for any positive
constant c and s2 ≤ ln n. Likewise

A22 = O(1) · n

ln n

k−1∑
s1=1

(n−s1)/2∑
s2=1+ln n

(
(1 + o(1))βe2s2(ln n) · ns2/n(ln n)((1+o(1))s2(k−1))/n)s1

× (
(1 + o(1))βe(ln n) · ns2/n−1(ln n)(1+o(1))(k−1)(s2/n−1))s2

= O(1) · n

ln n

k−1∑
s1=1

(
O
(
n3/2+o(1)))s1 ·

(n−s1)/2∑
s2=1+ln n

(
O
(
n−1/2+o(1)))s2

≤ nk

ln n

(
n3/2+o(1))k · (n−1/2+o(1))1+ln n

= o(1),

where in the second equality above we note the relationship (ln n)c = no(1) for any positive
constant c and s2 ≤ n/2. Therefore A2 = A21 + A22 = o(1) as n → ∞. It follows from (11) that
P12 ≤ A1 + A2 = o(1).

Recall that G(n, pn)\S1 contains a component having order no more than 1
2 (n − |S1|) if it is

not connected. Moreover, when dmin
n ≥ k, any vertex in S1 has no less than k − |S1| + 1 neigh-

bors outside S1. Recalling the definition of the event E(S1, S2), we know that the probability
P12 = o(1) implies that if dmin

n ≥ k then a.a.s. G(n, pn) is k-connected. Hence (9) holds true.
The proof of Theorem 3 is completed. �

Proof of Theorem 4. Arguing similarly as in the beginning of Theorem 3, here we will rely
on the following inequality instead of (2):

min
1≤i≤n

min
S : i �∈S

|S|≥�n/2�−k+1

ρn(i, S) ≥ pn. (12)

In view of Definition 1, it suffices to show that

P(any non-empty set S ⊆ V with |S| ≤ �n/2
 is k-reachable in G(n, pn)) → 1 as n → ∞.
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Let P0 be the probability that some set of size no more than �n/2
 is not k-reachable.
Furthermore, let Pl represent the probability that some set of size l ≥ 1 is not k-reachable in
G(n, pn). Fix a set S ∈ V with |S| = l. For any vertex i ∈ S,

P(i has less than k neighbors in V\S)

=
k−1∑
r=0

∑
Nn(i)\S : |Nn(i)\S|=r

∏
j∈Nn(i)\S

pn(eij)
∏

j∈V\(S∪Nn(i))

(1 − pn(eij))

≤
k−1∑
r=0

∑
Nn(i)\S : |Nn(i)\S|=r

(βpn)re−|V\(S∪Nn(i))|·ρn(i,V\(S∪Nn(i)))

≤
k−1∑
r=0

(
n − l

r

)
(βpn)re−(n−l−r)pn ,

where we used the neighborhood density condition (12). Since
(n−l

r

)≤ nr, the above probability
is bounded from above by k(nβpnepn )k−1 · e−(n−l)pn . By independence, the probability that S is
not k-reachable is at most

(
k(nβpnepn)k−1 · e−(n−l)pn

)l. Therefore

Pl ≤
(

n

l

)(
k(nβpnepn )k−1 · e−(n−l)pn

)l ≤(ekn

l
(nβpnepn )k−1 · e−(n−l)pn

)l

. (13)

Using the assumption of pn, the right-hand side of (13) equals(
ek

l
(β(ln n + (k − 1) ln ln n + ωn) epn )k−1 1

(ln n)k−1
elpn−ωn

)l

≤ (Cϕ(l) e−ωn )l, (14)

where C > 0 is a constant and the function ϕ(l) := elpn/l. A quick study of ϕ, when seen as a
function of a real variable in the interval [1, n/2], shows that it is convex and hits its minimum
at p−1

n . Thus its maximum is either ϕ(1) = epn or ϕ(n/2) = O(1/
√

n). It follows from (13) and
(14) that Pl ≤ (Ce1−ωn )l.

Finally, an application of the union bound yields

P0 ≤
n/2∑
l=1

(Ce1−ωn )l ≤
∞∑

l=1

(Ce1−ωn )l = Ce1−ωn

1 − Ce1−ωn
= o(1)

as n → ∞, i.e. ωn → ∞. This completes the proof of Theorem 4. �
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