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Abstract

Pneumonia is a respiratory condition with complex etiology. Host genetic variation is thought to contribute to individual differences in sus-
ceptibility and symptom manifestation. Here, we analyze pneumonia data from the UK Biobank (14,780 cases and 439,096 controls) and
FinnGen (9980 cases and 86,519 controls) and perform a genomewide association study meta-analysis. We use gene-based tests, colocaliza-
tion, genetic correlation, latent causal variable (LCV) and polygenic prediction in an independent Australian sample (N= 5595) to draw
insights into the etiology of pneumonia risk. We identify two independent loci on chromosome 15 (lead single-nucleotide polymorphisms
rs2009746 and rs76474922) to be associated with pneumonia (p< 5e−8). Gene-based tests revealed 18 genes in chromosomes 15, 16 and 9,
including IL127, PBX3, ApoB receptor (APOBR) and smoking related genes CHRNA3/5, statistically associated with pneumonia. We
observed genetic correlations between pneumonia and cardiorespiratory, psychiatric and inflammatory related traits. LCV analysis suggests
a strong genetic causal relationship with cardiovascular health phenotypes. Polygenic risk scores for pneumonia significantly predicted self-
reported pneumonia in an independent sample, albeit with a small effect size (OR= 1.11 95% CI [1.04, 1.19], p < .05). Sensitivity analyses
suggested the associations in chromosome 15 are mediated by smoking history, but the associations in chromosomes 16 and 9, and polygenic
prediction were robust to adjustment for smoking. Altogether, our results highlight common genetic variants, genes and potential pathways
that contribute to individual differences in susceptibility to pneumonia, and advance our understanding of the genetic factors underlying
heterogeneity in respiratory medical outcomes.
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Pneumonia is an inflammatory condition of the lungs that usually
stems from an infection. TheWorld Health Organization estimates
450 million cases of pneumonia occur every year, affecting mostly
young children and older adults (Ruuskanen et al., 2011). Although
distinct subtypes exist, pneumonia is characterized by alveolar fill-
ing with fluid, microorganisms and immune response cells, pre-
venting the lungs from working properly (National Institute for
Health and Care Excellence [NICE], 2016). Diagnosis is confirmed
with chest radiography showing abnormalities, and other pieces of
evidence such as laboratory tests identifying the causal pathogen
and increases in antibody count (Szalados, 2005). Pneumonia is
associated with increased morbidity and mortality (Lim et al,
2009); in fact, mortality estimates range between 5% and 14%
for hospitalized patients. Risk factors for pneumonia include
smoking (Farr et al., 2000), alcoholism (Ruiz et al., 1999), heart

disease and advanced age (Koivula et al., 1994). Furthermore, mor-
tality among pneumonia cases is associated with factors such as
hypertension and smoking (Guo et al., 2019). Nonetheless, individ-
uals considered ‘at low risk’ of pneumonia can still develop the con-
dition, which highlights its complexity and clinical heterogeneity.

Since the emergence of the 2020 COVID-19 pandemic, there
has been an increase in pneumonia incidence and mortality (Shi
et al., 2020). Its relatively high infectivity andmortality even among
low-risk groups calls for the investigation of genetic mechanisms
underlying pathogenesis and prognosis. A recent study on 2633
British twins (728 complete pairs, 537 monozygotic and 191 dizy-
gotic, 86.9% female) investigated the susceptibility to infection by
SARS-CoV-2 (Williams et al., 2020). The researchers used a symp-
tom-based algorithm to predict true infection in participants tested
for SARS-CoV-2 and estimated heritability for symptoms, includ-
ing fever, 0.41 (95% CI [0.12, 0.70]); anosmia, 0.47 (95% CI [0.27,
0.67]); and delirium, 0.49 (95% CI [0.24, 0.75]). Overall predicted
heritability of COVID-19 status was 0.50 (95% CI [0.29, 0.70]),
suggesting that symptomatic infection with SARS-CoV-2 is under
host genetic influence to some extent, and reflecting interindivid-
ual variation in the host immune response. Thus, host-specific
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genetic susceptibility is an emerging area of research interest
(Tanigawa & Rivas, 2020) as it could facilitate the systematic strati-
fication of patients by genetic risk and aid in the design of more
efficient treatments (Salnikova et al., 2014).

In fact, evidence from other infectious diseases points to an
important role for host genetics in influencing the development
of symptomatic infection (Cooke & Hill, 2001). Twin studies have
shown higher concordance rates of tuberculosis, leprosy, poliomy-
elitis and hepatitis B in identical versus nonidentical twins, sug-
gesting a genetic component in susceptibility to these infectious
diseases (Cooke & Hill, 2001). Moreover, clinical trials for drugs
targeting genes with evidence of disease association are more likely
to lead to useful therapies (King et al., 2019; Nelson et al., 2015).
Thus, identification of genes and pathways that confer increased
susceptibility to pneumonia could reveal new therapeutic targets
and inform the design of prevention and treatment strategies.

Here, we report a genomewide association study (GWAS)
meta-analysis of pneumonia history in adults using data from
two large datasets, the UK Biobank and FinnGen. We identify
genetic variants and genes associated with pneumonia risk, an
essential step for understanding interindividual differences in sus-
ceptibility. We characterize the genetic etiology of pneumonia by
assessing its genetic correlations and genetic evidence for causality
against∼1500 traits with publicly available GWAS data. Finally, we
demonstrate the external validity of our findings by performing
polygenic prediction of self-reported pneumonia in an indepen-
dent Australian sample.

Methods

Samples and Phenotypic Information

For this study, we meta-analyzed GWAS for pneumonia in two in-
dependent samples: the UK Biobank and FinnGen. For the UK
Biobank, we conducted a GWAS of pneumonia using individ-
ual-level genetic and phenotypic data from the UK Biobank.
International Classification of Diseases (ICD10) codes are used
to store information on participants’ health conditions. Raw
ICD10 data were extracted from the UK Biobank under
Application Number 25,331. In this study, we excluded partici-
pants of non-European ancestry to avoid potential genetic associ-
ations emerging from population stratification. Participants with
a history of pneumonia were defined as those presenting any
ICD10 code related to infectious pneumonia (N = 14,780; see
Supplementary Table 1). For FinnGen, we leveraged publicly avail-
able summary statistics on the phenotype ICD10-J10 pneumonia,
which comprised 9980 cases and 86,519 controls. Information on
sample phenotyping, genotyping and GWAS in the FinnGen sam-
ple is available elsewhere (FinnGen, 2020). Both the UK Biobank
and the FinnGen resource were approved by their corresponding
research ethics committees.

Pneumonia GWAS in the UK Biobank

The GWAS was performed using BOLT-LMM, which implements
a linear mixed-model association analysis and fits a genetic rela-
tionship matrix as a random effect to account for cryptic related-
ness and population stratification. Age, sex, genotyping array and
the first 20 genetic principal components were adjusted for in the
analysis. We used a stringent quality control procedure corre-
sponding to minor allele frequency (MAF≥ 0.01) and imputation
quality (INFO≥ 0.60).

GWAS Meta-Analysis

A z-score meta-analysis of pneumonia summary statistics was con-
ducted between the UK Biobank and Finngen samples using
METAL v (2011–03–25). The final meta-analysis comprised
24,760 cases and 525,615 controls. Only variants passing quality
control in both cohorts were included in the meta-analysis.
Furthermore, variants with inconsistent allele frequencies in both
cohorts (difference> 0.15) were removed. The final number of var-
iants meta-analyzed and included in this study was 7,831,927.
Independent genetic signals were identified by clumping
(r2 < .05, and 1Mb window) using the complex traits genomics vir-
tual lab (CTG-VL) web-platform (Cuellar-Partida et al., 2019). A
sensitivity analysis was performed by adjusting the GWAS results
using multitrait conditional and joint analysis (mtCOJO) to simul-
taneously adjust for two smoking phenotypes: smoking history and
cigarettes per day.

Gene-Based Analysis

Gene-based analysis was conducted on both the main and smoking
adjusted GWAS using the ‘set-based association analysis for
human complex traits’ fastBAT method (Bakshi et al., 2016) avail-
able on CTG-VL (https://genoma.io). fastBAT performs a set-
based enrichment analysis based on the GWAS summary statistics
while accounting for linkage disequilibrium (LD) between single-
nucleotide polymorphisms (SNPs). We tested the association
between 24,443 genes and pneumonia using this method.
Statistical significance was defined using Benjamini-Hochberg false
discovery rate (FDR) 5% for multiple testing correction. Genes iden-
tified as statistically significant were further assessed for expression
quantitative trait loci (eQTLs) colocalization with pneumonia.

Colocalization and eQTL

To assess the co-occurrence of signals in GWAS data and cis-eQTL
data, we performed a summary-based colocalization analysis. We
integrated our GWAS data and cis-eQTL data from lung tissue
and whole blood in GTEx V7. We used GWAS and eQTL summary
statistics of SNPs within 1Mb window around each fastBAT-identi-
fied gene to estimate the posterior probability that GWAS signals co-
occur with eQTL signals while accounting for LD structure. This
method estimates the posterior probabilities for five different scenar-
ios: no association with either trait (PP0), association with the disease
only (PP1), association with gene expression only (PP2), associations
with both traits but distinct SNPs (PP3) and associations with both
traits in same SNPs (PP4). A threshold of PP4> 0.8 was considered
the statistical cutoff for co-occurrence of GWAS signals and eQTL
signals at the region of interest. Colocalization analysis was performed
using the COLOC package in R.

Heritability and Genetic Correlations

We used LD-score regression (LDSC) to estimate the SNP-based
heritability (hSNP2) for pneumonia on the liability scale, assuming
prevalence estimates of UK Biobank (3.3%) as both sample and
population prevalence. Genetic correlations (rG) between pneu-
monia and 1522 phenotypes were estimated using bivariate
LDSC regression in CTG-VL based on a common set of
HapMap3 variants. Benjamini-Hochberg FDR at 5% was used to
assess statistical significance.
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Genetic Causal Proportion

To assess whether significant genetic correlations observed could
be explained by an underlying causal relationship between traits,
we used the latent causal variable (LCV) method (O’Connor &
Price, 2018) as implemented in CTG-VL. LCV uses GWAS sum-
mary statistics to estimate the genetic causal proportion (GCP)
between two traits. The GCP’s absolute value ranges from 0 (no
genetic causality) to 1 (full genetic causality). In our study, a high
GCP value (GCP> 0.60) indicates that pneumonia is likely to
affect the trait of interest. In contrast, a robust negative value
(GCP < −0.60) provides evidence that the trait of interest is likely
to affect pneumonia. For traits of interest (deep vein thrombosis
[DVT], low-density lipoproteins [LDL] and cholesterol) with sig-
nificant evidence of a causal effect on pneumonia, generalized
summary data-based Mendelian randomization (GSMR) was used
as a secondary assessment of the existence of a causal relationship.

Target Sample and Polygenic Risk Scoring

To assess the external validity of the GWAS, we performed poly-
genic based prediction on an independent target sample of 5595
unrelated Australian adults from the Australian Genetics of
Depression Study (AGDS) with complete data (Byrne et al.,
2019). Pneumonia cases were identified through self-reported
medical history in AGDS. Polygenic risk score (PRS) analysis
was further adjusted for smoking by: (1) additionally including
smoking history as a covariate and (2) performing PRS calculation
using the summary statistics adjusted for smoking history and cig-
arettes per day. Smoking history was assessed with the item: ‘Have
you smoked more than 100 cigarettes in your lifetime?’ We
employed a recently developed method, SBayesR, to obtain the
conditional effects of the studied variants, thus avoiding inflation
arising from using correlated SNPs due to LD. Pneumonia PRSs
were calculated using PLINK 1.9 in the AGDS sample. Briefly, a
PRS is calculated by multiplying the effect size of a given risk allele
(obtained from the discovery GWAS summary statistics) by the
imputed number of risk alleles (using dosage probabilities) present
in each individual. A weighted average was then obtained across all
loci. To assess the association between pneumonia PRS and self-
reported pneumonia history in AGDS, we used a logistic regression
model (python statsmodels). Pneumonia PRS was the predictive
variable of interest, with age, sex and the first 20 genetic ancestry
principal components included as covariates.

Results

Prevalence of Pneumonia and Sample Demographics

The prevalence of lifetime pneumonia in the UK Biobank was
3.3%. Sex was associated with pneumonia, where females were less
likely to have experienced the condition (female OR= 0.713 95%
CI [0.69, 0.737]). Furthermore, participants with a history of pneu-
monia were on average older than controls (OR= 1.06; 95% CI
[1.06, 1.07]). Smoking history was also associated with an increased
pneumonia risk (OR= 1.74; 95% CI [1.68, 1.68]; see Table 1).

Pneumonia GWAS

Our GWAS meta-analysis identified two independent genome-
wide significant variants on 15q25.1 (index SNPs rs2009746 and
rs76474922; p< 5e−8; Figure 1a). The significant locus was located
in a gene-rich region near IREB2, CHRNA3/5 and HYKK
(Supplementary Figure 1). In addition, 18 independent loci showed

suggestive association with pneumonia (Table 2). The amount of
variance on the liability of pneumonia explained by this GWAS in
the UK Biobank, also called the SNP heritability of the trait, for the
whole meta-analysis was estimated at 0.03 (SE= 0.006) using
LDSC regression. A sensitivity analysis using mtCOJO to adjust
for smoking history and cigarettes per day revealed the hits on
chromosome 15, but not other signals, to be mediated by smoking.
A near genomewide signal in chromosome 3 became significant
after conditioning on smoking phenotypes (Figure 1b). Notably,
the genetic correlation between the unconditional and smoking
conditional GWAS was high (rg = 0.9371, SE= 0.015).

Gene-Based Analysis and Colocalization

We performed gene-based association testing followed by colocali-
zation analysis to identify genes likely associated with pneumonia.
fastBAT analysis revealed 18 genes in chromosomes 9,15 and 16
to be potentially associated with pneumonia risk (Supplementary
Table 2). Sensitivity gene-based tests suggested the association of
genes in chromosome 15, but not those in chromosomes 9 and
16, to be mediated by smoking (Figure 2). Three genes, HYKK,
EIF3C and PBX3, showed some evidence of colocalization in lung
tissue (Table 3). EIF3C also showed evidence of colocalization in
whole blood (Supplementary Table 3). Nonetheless, none of these
results satisfied the strict threshold of posterior probability of coloc-
alization> 0.8. While IL27, CHRNA3 and CHRNA5 have eQTL sig-
nals in the vicinity of pneumonia hits, our analysis suggests that the
relationship between their expression and pneumonia is better
explained by two neighboring independent causal variants.

LD-Score Genetic Correlations

Across 1522 traits studied, 552 traits displayed a genetic overlap with
pneumonia at FDR< 5%. Traits with the strongest evidence of a
genetic correlation with pneumonia included chronic obstructive
pulmonary disease (COPD), ‘Wheeze or whistling in the chest in last
year,’ blood clot in the leg and myocardial infarction (Figure 3).
Lifestyle factors such as current smoking showed a positive genetic
correlation with pneumonia, indicating that variants that increase
smoking behavior also increase pneumonia risk. Genetic correlation
between alcohol intake and pneumonia was conflicting, as the var-
iable ‘Alcohol usually taken with meals’ and ‘Alcohol drinker status:
current’ had a negative genetic correlation with pneumonia. In con-
trast, the variable ‘Alcohol drinker status: previous’ displayed a pos-
itive genetic correlation with pneumonia. Traits related to mood or
psychiatric disorders (such as depression and irritability), lifestyle
variables (such as cycling to work and educational attainment)
and biomarkers (such as immune cell count and C Reactive
Protein [CRP]), among others, also showed significant genetic cor-
relations with pneumonia (Figure 3).

Table 1. Genomewide association study (GWAS) UK Biobank sample
composition

Cases Controls OR (95% CI)

Sample size 14,780 (3.3%) 439,096 (96.7%) NA

Female N (%) 6490 (44%) 240,059 (55%) 0.713 (0.69, 0.737)

Age mean (SD) 60.4 (7.2) 56.7 (8.0) 1.06 (1.06, 1.07)

Smoking
history N (%)

9143 (62%) 198,667 (45%) 1.74 (1.68, 1.68)

Note: Data for participants of European ancestry included in the GWAS.
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GCPs

To assess whether the genetic correlations observed could be explained
by a causal relationship, we performed an LCV analysis. Forty-four of
the 552 traits with a significant (FDR< 5%) genetic overlap with pneu-
monia showed evidence of a causal association (see Methods). LCV
provided genetic evidence on several traits causally associated with
pneumonia, including DVT, LDL (decreased), cholesterol (decreased)
among other traits closely related to cardiovascular health, such as heart
failure, arrhythmias and fibrillation. Evidence for DVT, hypertension,
LDL and the cholesterol causal associations were further assessed using
GSMR. This analysis showed a consistent result for DVT and hyper-
tension, but no evidence of causality for LDL or cholesterol
(Supplementary Figure 2). Traits highlighted as potential consequences
of pneumonia included long-standing illness, lower forced vital capac-
ity, anhedonia, pain and taking omeprazole and co-codamol (Figure 4
and Supplementary Data 1).

Polygenic Prediction of Pneumonia

We performed polygenic prediction of pneumonia on the
AGDS sample to assess the validity of our pneumonia
GWAS. The prevalence of self-reported pneumonia history
(∼2000 cases, ∼20%) in the AGDS sample was higher than
pneumonia diagnosis in the UK Biobank (∼15,000 cases,
∼3%) and FinnGen (∼10,000 cases, ∼10%). Furthermore,
the AGDS sample had a different age and sex composition
from the UK Biobank (Table 4). We assessed whether PRS
derived from the pneumonia GWAS meta-analysis was associ-
ated with pneumonia in the AGDS cohort using a multivariate
logistic regression (see Methods) and identified a statistically
significant, but small in effect, association between pneumonia
PRS and self-reported pneumonia OR = 1.06 (95% CI [1.01–
1.12]; p = 0.02) per standard deviation increase of pneumonia
PRS.

Fig. 1. Pneumonia genomewide association study (GWAS) meta-analysis (a) Manhattan plot shows the results of the GWAS meta-analysis. Each dot represents a genetic variant.
The x-axis is the genomic location ordered by chromosome. The y-axis represents the statistical evidence of the association (−log10 transformed p value). The solid-red and
dashed-blue lines represent the genomewide and suggestive association significance thresholds. (b) Manhattan plot shows the results of a sensitivity analysis using multitrait
conditional and joint analysis to condition on smoking history and cigarettes per day. Note: the hit on chromosome 15 is no longer significant after this adjustment, while other
signals remain largely unchanged.
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Sensitivity Analyses

The genomewide significant locus overlaps, and is in LD, with a set
of well-established smoking-associated variants including
rs16969968 (Saccone et al., 2010). To assess whether the genetic
associations for pneumonia aremediated by smoking, we performed
several sensitivity analyses. A conditional association test showed

that our top hit (rs2009746) evidence of association was reduced
after adjusting for three independent smoking associated variants
(prs2009746= 0.002; Supplementary Table 4). Nonetheless, an
mtCOJO analysis suggested the associations between pneumonia
and genes in chromosomes 16 and 9 to be independent from smok-
ing (Figures 1 and 2). Finally, the association between pneumonia

Table 2. Pneumonia GWAS meta-analysis and sensitivity results

CHR SNP A1 A2 Beta SE p Direction p adjusted ever smoked p adjusted ever smoked and cigs per day

15 rs2009746 A G −0.012 0.002 8.08E-10 − 1.36E-10 4.42E-03

15 rs76474922 A C 0.02 0.003 3.16E-09 þþ 1.85E-09 4.53E-04

3 rs11708673 A T −0.014 0.002 6.06E-08 − 5.59E-08 4.21E-08

4 rs144242331 A G 0.036 0.007 2.21E-07 þþ 2.23E-07 2.00E-07

1 rs1894692 A G −0.034 0.007 3.05E-07 − 1.84E-07 4.69E-07

20 rs3810478 T G 0.01 0.002 8.29E-07 þþ 7.11E-07 3.20E-05

16 rs4787458 A G −0.01 0.002 8.95E-07 − NA NA

11 rs470263 T C −0.01 0.002 1.27E-06 − 1.67E-06 1.96E-06

2 rs9309718 A G 0.01 0.002 1.47E-06 þþ 1.42E-06 4.35E-06

1 rs34517439 A C 0.014 0.003 2.11E-06 þþ 1.90E-06 3.84E-06

17 rs62057446 T C 0.019 0.004 2.13E-06 þþ 1.93E-06 6.49E-07

11 rs1154905 A C −0.009 0.002 2.44E-06 − 3.23E-06 1.22E-06

11 rs11606719 C G 0.028 0.006 2.69E-06 þþ 3.11E-06 1.64E-05

6 rs200243764 G GA 0.022 0.005 2.89E-06 þþ 2.89E-06 2.40E-06

2 rs62169465 T C −0.01 0.002 3.19E-06 − 3.31E-06 3.24E-05

9 rs150438131 A G 0.043 0.009 3.27E-06 þþ 3.31E-06 7.38E-07

13 rs76713055 A G −0.033 0.007 3.57E-06 − 2.92E-06 1.48E-06

10 rs138075843 T C −0.026 0.006 3.89E-06 − 6.20E-06 1.07E-05

12 rs79345814 A T 0.029 0.006 4.71E-06 þþ 6.52E-06 1.84E-05

9 rs10819081 A C −0.009 0.002 4.89E-06 − 9.21E-06 1.01E-05

Note: Table shows all single single-nucleotide polymorphisms (SNPs) with at least suggestive evidence of association with pneumonia (p< 1e−5). *SNPs with genomewide significant evidence
of association (p< 5e−8) are in bold. A1 = effect allele; A2 = noneffect allele; Beta = effect allele effect size; CHR = chromosome; Direction = direction of effect on UK Biobank and Finngen;
SE = effect size standard error; SNP = variant identifier.

Fig. 2. Gene-based test association results. Each dot represents a gene and its position on the y-axis corresponds to the p value for association with pneumonia adjusted for
multiple testing. Genes in bold (black) were robust to adjustment for smoking phenotypes, whereas genes in nonbold (red) font were not. Genes above the red line are significantly
associated with pneumonia, and were assessed for expression quantitative trait locus colocalization.
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PRS and self-reported pneumonia remained statistically significant
after adjustment for smoking history both on the genetic and phe-
notypic level (Supplementary Table 5).

Discussion

Our findings highlighted 18 genes across chromosomes 6, 15 and
16 to be potentially associated with pneumonia risk. We identified
genes involved in general gene regulation (PBX3, EIF3C), iron
regulation (IREB2), nicotine signaling (CHRNA3/5) and inflam-
matory processes (IL27, APOBR). Here, we integrated eQTL data
with our GWAS results and performed colocalization analysis to
identify which genes havemore robust evidence of association with
pneumonia. Our analyses suggested EIF3C, HYKK and PBX3 gene
expression to potentially colocalize with pneumonia. Nonetheless
the evidence for colocalization was not sufficient (see Methods).
Notably, PBX3 encodes a transcription factor whose deficiency
has been linked to respiratory failure in mice (Rhee et al., 2004).
HYKK is an enzyme involved in lysine catabolism and was recently
linked to nicotine metabolism (Buchwald et al., 2020).

Genetic variants in 15q25.1 have been extensively linked with
smoking (Bierut & Cesarini, 2015). This complex region has also
been previously associated with COPD (Hardin et al., 2012) and
lung cancer (McKay et al., 2017), and contains several compelling
genes associated with nicotine addiction (CHRNA3, CHRNB4,
CHRNA5, HYKK) and iron regulation (IREB2). We performed a
sensitivity analysis and showed that 15q25.1 was not associated
with pneumonia after adjusting for smoking history and cigarettes
per day. Nonetheless, genes in other regions remained associated
with pneumonia after adjusting for smoking. This is consistent
with the observed high genetic correlation between the smok-
ing-adjusted and unadjusted summary statistics. Moreover, poly-
genic prediction was also robust to adjustment for smoking history.
Future efforts could leverage analyses such as pairwise GWAS or
genomic structural equation modelling to further deconvolute the

effects of smoking and respiratory disease. We consider this
beyond the scope of the present study.

We discovered genetic correlations between pneumonia and
biomarkers such as immune cell counts, cystatin C and sodium
in urine. Consistently, cystatin C and CRP levels have been linked
to community-acquired pneumonia (CAP; García Vázquez et al.,
2003; Holloway et al., 2018). Furthermore, lifestyle factors such as
smoking and lower socioeconomic status (as measured by the
Townsend deprivation index) were genetically correlated with
pneumonia. Finally, traits requiring healthy respiratory function
such as cycling to work and maximum workload during a fitness
test displayed a negative genetic correlation with pneumonia.

A genetic correlation between two traits could reflect causality
between traits, or horizontal pleiotropy (genes acting on both traits
independently of each other). Here, we performed LCV analyses to
identify traits causally associated with pneumonia. Our results sug-
gest that DVTmay causally increase risk of pneumonia. This result
was further confirmed using GSMR. Previous studies have noted
an association between these two diseases (Rae et al., 2016).
Most studies suggest or assume that pneumonia causes DVT
due to immobilization, hypoxia and inflammation. Hypoxia is
one of the strongest predictors of pneumonia (Rae et al., 2016)
and has been shown to increase the incidence of thrombosis
through the downregulation of protein S, a natural anticoagulant
(Pilli et al., 2018). Furthermore, tissue factor, along with coagula-
tion-related pathways, are known to be upregulated upon inflam-
mation (Esmon, 2003). Future studies should focus on further
understanding of the intricate relationship between cardiovascular
and respiratory diseases.

LCV also highlighted the potential involvement of cholesterol
levels and specifically LDL in the risk for pneumonia.
Nonetheless, these results did not replicate in our GSMR analyses.
Cholesterol is essential for cellular integrity and metabolism, and its
dysregulation has been linked to a variety of diseases, including
cardiovascular and pulmonary disease (Ravnskov, 2003). Previous

Table 3. Colocalization of lung expression quantitative trait loci with pneumonia GWAS loci

COLOC posterior probability (PP)

Gene PP0 PP1 PP2 PP3 PP4 PP3þ PP4 PP4/(PP3þ PP4)

EIF3C 0.023 0.028 0.151 0.183 0.614 0.797 0.771

HYKK 0.001 0.439 2.46E-04 0.098 0.461 0.560 0.824

PBX3 3.36E-04 4.12E-05 0.538 0.066 0.396 0.461 0.858

CHRNA3 3.53E-04 0.141 0.002 0.753 0.103 0.856 0.120

IREB2 0.002 0.900 2.12E-04 0.085 0.013 0.098 0.129

PSMA4 0.002 0.918 1.67E-04 0.067 0.012 0.079 0.156

APOBR 0.433 0.525 0.015 0.018 0.009 0.027 0.341

MAPKAP1 0.626 0.077 0.257 0.031 0.009 0.040 0.216

EIF3CL 0.411 0.499 0.038 0.046 0.005 0.052 0.102

NPIPB6 0.419 0.508 0.031 0.038 0.004 0.042 0.099

ADAMTS7 0.002 0.788 0.001 0.206 0.004 0.209 0.017

CLN3 0.428 0.519 0.023 0.027 0.002 0.030 0.073

IL27 1.26E-07 1.53E-07 0.452 0.548 3.99E-04 0.548 0.001

CHRNA5 1.63E-13 6.52E-11 0.002 0.998 1.26E-06 0.998 1.26E-06

Note: PP0, no association with gene expression and pneumonia risk; PP1, association with gene expression only; PP2, association with pneumonia GWAS only; PP3, association with gene
expression and pneumonia GWAS, but two distinct SNP; PP4, association with gene expression and pneumonia GWAS, shared SNP; NA, Not assessed. PP4> 0.8 is considered evidence of
colocalization.

150 Adrian I. Campos et al.

https://doi.org/10.1017/thg.2021.27 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2021.27
https://doi.org/10.1017/thg.2021.27


studies show that LDL and high-density lipoproteins (HDL) traf-
ficking influences multiple cell types in the lung (Gowdy &
Fessler, 2013). Class A scavenger receptors on alveolar macrophages
uptake HDL as a source of vitamin E (Kolleck et al., 1999), which is
an antioxidant that plays an essential role in the clearance of oxi-
dized lipids that would otherwise result in cytotoxic and pro-inflam-
matory responses (Fessler, 2017). Furthermore, cholesterol plays an
essential role in protecting and covering the alveoli, which prevents
several pathological conditions (Andersson et al., 2017). Thus, total
cholesterol might protect from developing pneumonia through the
relationship between cholesterol and immune homeostasis in the
lung. Nevertheless, low levels of LDL have been associated with bet-
ter lung function (Barochia et al., 2015), and low HDL levels have

been proposed as a poor prognosis marker for CAP (Chien et al.,
2015). Moreover, a recent proteomic study in patients with sepsis
secondary to pneumonia were found to have an impairment in lipid
metabolism (lower total cholesterol, LDL cholesterol, as well as
major apolipoprotein of LDL, ApoB; Sharma et al., 2019) This is
consistent with our gene-based tests identifying the APOBR as a
potential pneumonia risk mediating gene. Overall our findings
and the literature suggest that a dyslipidemic state, rather than spe-
cific levels of LDL influence pneumonia risk.

Some limitations of the present study must be acknowledged.
Pneumonia was ascertained through ICD10 codes, which might
contain biases implicit in health records (Dueñas et al., 2020).
Thus, genetic signals will include a range of underlying factors such

Fig. 3. Pneumonia is genetically correlated with respiratory, circulatory, metabolic and lifestyle traits. Forest plot showing genetic correlations (rG) between pneumonia and traits
of interest. Genetic correlations were estimated using bivariate linkage disequilibrium-score regression. All of the results shown are statistically significant. Due to space restric-
tions, the full results are available as Supplementary Data 1. Error bars represent standard errors of the genetic correlations.
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as smoking or socioeconomic status and disorders such as asthma
and COPD. Future studies would benefit from performing within
case analyses to identify genetic factors that modify disease out-
comes such as pneumonia. This will be increasingly challenging
as our results suggest pneumonia to be rather complex and poly-
genic, thus requiring a sufficient number of cases to perform
genetic analyses. We excluded participants of non-European
ancestry to avoid biases due to population stratification. This limits
the generalizability of our findings to populations of non-
European ancestry. Furthermore, our results suggest that the
genetic risk for pneumonia is highly complex, and several variants
remain to be identified by more powered studies. Further evidence
of this is the low polygenic prediction in an independent sample,
which is still far from other traits where clinical relevance is starting
to be considered. This could be explained by the differences the
AGDS cohort has with the UK Biobank and Finngen. For example.
ADGS is a depression-enriched sample, and pneumonia was
ascertained through self-reported rather than ICD10 diagnosis.
We replicated LCV findings using GSMR. Nonetheless, we could
not attempt to replicate any of the causal associations where
pneumonia was the exposure because our pneumonia GWAS
was underpowered to be accurately used as an exposure. Finally,

experimental approaches along with powered analyses considering
not only smoking history but also smoking exposure and
quantitative smoking measures are needed to claim, beyond any
doubt, 15q25.1 to be associated with pneumonia over and above
smoking.

In summary, pneumonia GWAS meta-analysis identified a
region in 15q25.1 which has been previously linked to smoking,
lung cancer and COPD. Gene-based tests association identified
18 genes implicated in pneumonia risk in chromosomes 9, 15
and 16. Sensitivity analyses suggested the locus in chromosome
15 to be driven by smoking, but other associations were robust
to adjustment for smoking-related traits. We identified traits with
a significant genetic correlation and highlighted potential causally
associated traits, including DVT and lipid homeostasis. Finally,
validation of our GWAS was obtained by polygenic prediction
of self-reported history of pneumonia in an independent sample.
Polygenic prediction was robust to adjustment for smoking history
either at the PRS level, phenotypic level or both, thus suggesting
some independence of our GWAS signals from smoking history.
Increasing statistical power could help identify additional genetic
targets which will, in turn, enable the development of new thera-
peutics and patient risk stratification based on genetic risk.

Fig. 4. Pneumonia causal association analysis. Causal architecture plot showing the results of a phenomewide latent causal variable analysis assessing the evidence for a causal
association between pneumonia and other traits (see Methods). Each point represents a trait that showed a significant genetic correlation with pneumonia. The x-axis represents
the genetic causal proportion; high values indicate evidence for a causal association between pneumonia and the trait of interest. Positive values indicate that pneumonia is likely
to act as a risk factor for the trait (i.e., it causes the other trait). In contrast, negative values would highlight risk factors for pneumonia. Traits are colored based on their genetic
correlation with pneumonia and indicate the direction of the causal association (i.e., increasing risk or decreasing risk). Trait or trait category labels with a color indicating the
direction of the causal association have been added.
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Data availability. Individual level data for UK Biobank participants are avail-
able to eligible researchers through the UK Biobank (www.biobank.ac.UK).
Results for the GWAS downstream analyses have been made available in
CTG-VIEW (https://view.genoma.io). Code used for this study is available
upon request.
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