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This investigation characterises the time response and the transient turbulence dynamics
undergone by rapidly decelerating turbulent pipe flows. A series of direct numerical
simulations of decelerating flows between two steady Reynolds numbers were conducted
for this purpose. The statistical analyses reveal that rapidly decelerating turbulent flows
undergo four coherent, unambiguous transitional stages: inertial (stage I), a dramatic
change of sign in the viscous force associated with the decay of the viscous shear stress at
the wall together with a mild turbulence decay in the viscous sublayer; friction recovery
(stage II), a recovery in viscous force and progressive decay in the turbulent inertia at the
near-wall region; turbulence decay (stage III), a balanced decay in both turbulent inertia
and viscous force at the near-wall and overlap regions; core relaxation (stage IV), slow
turbulence decay at the core region. The FIK identity derived by Fukagata, Iwamoto
and Kasagi (Phys. Fluids, vol. 14, 2002, L73–L76) was used to understand further how
the flow dynamics influence the time response of the skin friction coefficient (Cf ). The
results show that although Cf plateaus during the fourth stage, the turbulent contribution
keeps decaying, undershoots and finally recovers to attain its final steady value. The time
evolution of the azimuthal vorticity (ωθ ) flux reveals that as the flow is decelerated, a
layer of negative ωθ is produced at the wall during the flow excursion. As time progresses,
this negative vorticity propagates in the wall-normal direction, attenuating the pre-existing
vorticity and producing a decay in the turbulence levels.

Key words: pipe flow, turbulence simulation, turbulent transition

† Email address for correspondence: byron.guerrerohinojosa@adelaide.edu.au

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 962 A44-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:byron.guerrerohinojosa@adelaide.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.294&domain=pdf
https://doi.org/10.1017/jfm.2023.294


B. Guerrero, M.F. Lambert and R.C. Chin

1. Introduction

With the rapid increases in computational power over the last fifty years, it has become
feasible to further understand the three-dimensional features of turbulent flows by
resolving numerically the Navier–Stokes and continuity equations using direct numerical
simulations (DNS). The DNS data sets obtained from the pioneering simulations by
Kim, Moin & Moser (1987) and Eggels et al. (1994) demonstrated that the flow
statistics obtained from volumetric DNS data sets agree well with existing experimental
databases. These numerical experiments have provided extremely useful insights and have
advanced our understanding of the physics of steady wall-bounded turbulent flows, such
as their statistical universality, scaling laws, flow organisation, self-sustaining process
and invariant solutions. Although understanding steady turbulent flows is of significant
importance from a fundamental and technological perspective, it is also essential to
understand the nature of unsteady turbulent flows with the same depth. However, the
physics of unsteady turbulent flows have received relatively little attention by comparison.

Unsteady turbulent flows can be subdivided into two kinds: periodic pulsating flows and
non-periodic flows (He & Jackson 2000). The former has been studied in more depth,
motivated by the nature of biological flows. On the other hand, minimal literature exists
regarding the fundamental physics of non-periodic accelerating and decelerating flows.
During the last twenty years, only a handful of experimental and numerical investigations
have been conducted to investigate the physics of linearly accelerating and decelerating
flows. These efforts have mainly focused on the physics and transitional statistics of
accelerating turbulent flows. Consequently, it has been possible to understand and obtain a
proper characterisation of the transient behaviour of accelerating internal canonical flows
(i.e. channel and pipe flows) (He & Seddighi 2013; Guerrero, Lambert & Chin 2021).
Decelerating turbulent flows have received much less attention than accelerating flows. As
a result, the literature dedicated to understanding the fundamental physics of decelerating
turbulent flows is extremely limited. Thus, the present investigation aims to analyse the
transient physics of turbulent pipe flows undergoing a rapid ramp-down reduction in their
flow rate using a series of DNS data sets.

1.1. Accelerating turbulent flow
Contrary to intuition, it has been demonstrated that as a fully developed turbulent flow
is linearly accelerated, there exists a phase lag in its turbulence response. This implies
that if an already turbulent flow is rapidly accelerated, its turbulence kinetic energy
(TKE) remains frozen during a relatively short period. In that sense, the seminal study
conducted by Maruyama, Kuribayashi & Mizushina (1976) revealed that there exist two
delays associated with the generation of turbulence in a step-up accelerating flow. The
first delay is related to the production of ‘new’ turbulence. The second delay is associated
with the wall-normal diffusion of the vorticity produced as a result of the acceleration
imposed on an already turbulent base flow. Consequently, the time scales associated with
the turbulence generation and diffusion in an accelerating flow have been shown to be
much larger than the ramp-up time.

To complement and extend the work mentioned above, He & Jackson (2000) carried
out a series of ramp-up accelerating flow experiments in a turbulent pipe and obtained
three-dimensional measurements of the flow by using a three-beam laser-Doppler
velocimeter (LDV). The results of that investigation showed that aside from the two
delays observed by Maruyama et al. (1976), there exists a third delay associated with
the redistribution of turbulent kinetic energy amongst the three orthogonal velocity
components. Later, Greenblatt & Moss (2004) gathered time series data sets of
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Transient behaviour of decelerating turbulent pipe flows

rapidly accelerating pipe flows by using single-component LDV. The results from that
study revealed that some integral quantities such as the momentum thickness and the
displacement thickness exhibited coherence in their time development and showed that
a rapidly accelerating turbulent pipe flow followed three transient phases. Jung & Chung
(2012) emulated the experiments conducted by He & Jackson (2000) using large-eddy
simulation (LES) data sets. As expected, the results obtained from those simulations
confirmed the three-phase lags in the turbulence response observed in the former study
(He & Jackson 2000).

During the last ten years, special attention has been paid to the time response of the
frictional drag in accelerating turbulent pipe and channel flows (He, Ariyaratne & Vardy
2011). In that regard, several numerical studies have been performed (He & Seddighi 2013,
2015; He, Seddighi & He 2016; Jung & Kim 2017; Mathur et al. 2018). The detailed study
conducted by He & Seddighi (2013) analysed the temporal dependence of the mean skin
friction coefficient Cf together with other mean flow statistics to determine the stages
undergone by a turbulent channel flow following a step-up increase in the flow rate,
using DNS data sets. The results of that study showed that Cf (t) in a rapidly accelerating
turbulent channel flow exhibits similarities to the bypass transition of a turbulent boundary
layer. Additionally, it was concluded that a rapidly accelerating channel flow follows two
transient stages, namely pre-transition and transition. The pre-transition phase seems to
be associated with the development of a perturbation boundary layer, resulting from a
plug-like inflow into the turbulent base flow, whose turbulence is initially frozen. As
a result, a decay in the skin friction coefficient is observed. Subsequently, Cf attains a
minimum; this is nominally the instant at which the pre-transitional period ends and the
transitional stage begins. The skin friction coefficient recovers within the transition stage
due to the generation of ‘new’ turbulent spots that grow, merge and propagate throughout
the flow domain. As the flow fully develops, a plateau in Cf is attained.

A recent study conducted by Guerrero et al. (2021) investigated the transient flow
dynamics of a series of rapidly accelerating turbulent pipe flows between two steady
Reynolds numbers (Re) using a series of DNS data sets. That investigation consolidated
and extended the different conceptual views existing in the literature (see Greenblatt
& Moss 2004; He & Seddighi 2013). The time evolution of the mean flow dynamics
of that study exhibited coherence and showed that a rapidly accelerated internal flow
follows four transient stages; inertial (stage I), a rapid increase in the viscous forces
and a frozen turbulent behaviour; pre-transition (stage II), a weak turbulence response
in the near-wall region together with a rapid attenuation in the viscous forces; transition
(stage III), a proportional increase in viscous and turbulent forces at the inner region; and
core relaxation (stage IV), a slow propagation of turbulence from the wall towards the
wake region.

1.2. Decelerating turbulent flow
As mentioned above, non-periodic decelerating flows have received marginal attention
compared with the other unsteady flows (i.e. periodic pulsating and non-periodic
accelerating flows). The very few experimental studies on this particular topic have
reported that as a pipe flow is decelerated, the mean velocity profile at the logarithmic
and wake region of the flow is progressively shifted to a lower value during the early
flow excursion (Kurokawa & Morikawa 1986). However, it maintains the same shape
as the initial turbulent base flow within the outer region of the flow. This behaviour in
the mean velocity profile has been confirmed from more recent numerical results using

962 A44-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.294


B. Guerrero, M.F. Lambert and R.C. Chin

Reynolds-averaged Navier–Stokes (Ariyaratne, He & Vardy 2010) and DNS (Chung 2005;
Lee et al. 2018) approaches.

Following those lines, the DNS study conducted by Mathur (2016) on decelerating
turbulent channel flows revealed that during the early flow excursion there exists the
development of a perturbation boundary layer with a negative sign. This perturbation
boundary layer exhibits strong similarities with the perturbation velocity profile observed
during the early flow excursion in accelerating internal flows (He & Seddighi 2015). It has
also been observed that the perturbation boundary layer growth can be modelled using
the solution to Stokes’ first problem (He & Seddighi 2015; Joel Sundstrom & Cervantes
2017; Mathur et al. 2018). This laminar similarity during the early transient process in
accelerating and decelerating flows was confirmed numerically by Mathur (2016) and
experimentally by Joel Sundstrom & Cervantes (2018).

Similar to accelerating flows, the literature has shown that decelerating flows experience
a ‘frozen’ turbulence behaviour during the early flow excursion (Maruyama et al. 1976;
Ariyaratne et al. 2010). The same experimental study conducted by Maruyama et al. (1976)
suggests that after the initial ‘frozen turbulence’ period, the TKE follows a somewhat
linear decay rate. Along these lines, recent DNS studies of a decelerating turbulent
channel flow at low initial Reynolds numbers have revealed that as a flow is decelerated,
there exists an anisotropy in the early response amongst the three normal components
of the Reynolds stress tensor (Seddighi, He & Orlandi 2011). Moreover, by analysing
the time series of the mean friction velocity uτ (t) and the mean centreline velocity
〈Uc〉, Chung (2005) suggested that a decelerating flow follows two transient stages,
which exhibited a fast and slow time response, respectively. Nevertheless, the mechanics
underlying these two different relaxation periods is not explained in that investigation.
More recently, Joel Sundstrom & Cervantes (2018) decomposed the TKE production
budget into three components and compared their behaviour between accelerating and
decelerating flows, concluding that the turbulence establishment between these two
unsteady flows is substantially different.

The temporal evolution of the mean skin friction coefficient and the near-wall dynamics
associated with a temporally decelerating internal flow have been analysed in very few
studies, and most of them only analyse the frictional drag during the ramp-down period
(Shuy 1996; Ariyaratne et al. 2010; Seddighi et al. 2011) and not during the entire
transient process (i.e. until the flow fully develops to its final steady conditions). Indeed,
to the knowledge of the present authors, there only exist very few DNS studies that have
attempted to examine the transient frictional drag in decelerating internal flows (Chung
2005; Mathur 2016; Guerrero, Lambert & Chin 2022), and in all those cases, the studies
were conducted at low Re turbulence.

From an industrial perspective, most modern fluid transportation systems through pipes
are not steady. For instance, the fluid flow through pipes in industrial and domestic
facilities is continuously modulated by control valves or pumps to fulfil a specific demand.
Nonetheless, due to the lack of knowledge of unsteady flows’ behaviour, the transient
effects in these flows are often ignored in the engineering design calculations. As a result,
there exist very few reliable unsteady friction models able to predict the frictional drag in
accelerating and decelerating turbulent pipe flows.

1.3. Motivation
Most efforts devoted to understanding the physics of temporally decelerating turbulent
internal flows have only reported the evolution of mean flow statistics during the
ramp-down time. As a result, the complete transient process undergone by a rapidly
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decelerating turbulent flow has not been analysed thoroughly. Indeed, the very recent
textbook by Ciofalo (2022), which devotes a chapter to the analysis of unsteady (periodic
and non-periodic) flows explicitly states, ‘The influence of temporal acceleration on
turbulence is a different and more subtle issue, which (in the author’s opinion) has not
found in the literature a really satisfactory treatment so far’. Similarly, the study conducted
by Mathur (2016) in the context of a decelerating turbulent channel flow mentions that
‘. . . the transition mechanism and timings of the different transitional stages are unclear,
possibly due to the masking effect by the existing flow structures at the beginning of the
transient or due to the step-down size chosen’. In contrast with the studies associated
with the behaviour of rapidly accelerating flows (see Greenblatt & Moss 2004; He &
Seddighi 2013; Guerrero et al. 2021), the different transient stages undergone by a rapidly
decelerating flow are still elusive.

As a result, this investigation aims to analyse over a long time scale the transient flow
kinematics, dynamics and turbulence decay process associated with a turbulent smooth
pipe flow following a rapid temporal ramp-down change in the Reynolds number from
one steady flow condition to another. A series of DNS data sets of linearly decelerating
turbulent pipe flows with a high spatiotemporal resolution have been conducted for
this purpose. Several flow visualisations and high- and low-order one-dimensional and
two-dimensional flow statistics have been carefully examined to properly characterise
the transient stages experienced by this kind of unsteady flow. It is noteworthy that
this investigation does not cover all the features inherent to each of the transient stages
experienced by a decelerating wall flow. Instead, this study sheds light on the general
dynamics and kinematics that characterise this kind of flow.

2. Numerical details

A series of DNS, using the spectral Navier–Stokes solver Nek5000 (Fischer, Lottes
& Kerkemeier 2019), were performed to gather volumetric time series of resolved
flow fields between two steady Reynolds numbers. The spatial domain was a circular
pipe whose spectral elements were based on seventh-order Gauss–Lobatto–Legendre
quadrature points. Periodic boundary conditions were imposed at both extremes of the
pipe. The flow fields were integrated in time using a third-order backward difference
scheme. Fully developed turbulent flow fields at an initial steady bulk Reynolds number
(Reb,0 = Ub,0D/ν) were used as the initial condition. Here, Ub,0 stands for the initial
bulk velocity of the flow, D = 2R is the pipe diameter, R is the pipe radius and ν is
the kinematic viscosity of the fluid. It should be mentioned that the flow ran for five
turnarounds throughout the domain, maintaining the initial steady Reynolds number Reb,0
in order to attain fully developed turbulence and converged flow statistics before a negative
acceleration (i.e. dUb/dt < 0) was imposed. Subsequently, at time t = 0 the flow rate was
linearly reduced until it attained a final bulk Reynolds number (Reb,1). Thereafter, the flow
rate was kept constant until the flow fully developed and the universal laws of turbulence
converged.

For generality and to properly characterise the transient stages of a rapidly decelerating
flow, three different simulation cases were conducted to consider different initial/final
Reynolds numbers and deceleration rates. It is noteworthy that each simulation was
repeated three times using uncorrelated flow fields as the restarting base flow to obtain
convergent flow statistics at each time step. In all cases, the volumetric flow realisations
were stored with a time frequency t+1 ≈ 0.5–1.0 to track the time evolution of the different
flow quantities adequately. The general set-up of each simulation is summarised in table 1.

962 A44-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.294


B. Guerrero, M.F. Lambert and R.C. Chin

Case Reτ,0 Reτ,1 �t+1
ramp �t+1

samp γ �z+0 �Rθ+0 �y+0
wall �y+0

core Lz/R Gridpoints

D1 830 500 11.8 0.6 −23.03 8.2 6.7 0.03 6.7 8π 383 × 106

D2 340 171 49.8 1.0 −2.12 7.5 6.1 0.03 4.5 8π 49 × 106

D3 250 171 28.2 1.0 −40.11 5.5 4.5 0.02 3.3 8π 49 × 106

Table 1. Computational parameters used in the numerical simulations. The ‘+’ superscript denotes
normalisation in viscous units, and the ‘0’ and ‘1’ indices denote the initial and final steady states.
The subscripts ‘ramp’ and ‘samp’ stand for the acceleration time and the sampling time intervals at
which three-dimensional flow realisations have been stored. The variable γ = [dUb/dt D/(Ub,0uτ,0)] is the
dimensionless ramp-rate parameter proposed by He & Jackson (2000).

0
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3.0

3.5
D1

D2

D3

Mathur 2016 (Channel DNS)
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–0.01

–0.005

0

0.005

0.01

0.015

(a) (b)

t +1

Reb Cf

t +1

(×104)

Figure 1. (a) Ramp-down change in the bulk Reynolds number Reb for the present cases D1 (————–),
D2 (− − − −) and D3 (−· − ·−). Case D3 is compared with the channel flow DNS by Mathur (2016) (◦).
(b) Transient response of the skin friction coefficient for the cases depicted in (a).

Additionally, the reader is referred to figure 1(a) to visualise the ramp-down change
imposed in the Reynolds number.

Due to the nature of a straight and smooth pipe, a cylindrical coordinate system has
been adopted in this paper, where r, θ and z are the radial, azimuthal and streamwise
directions, respectively. The wall-normal direction is denoted as y = R − r. Similarly,
the resolved flow fields contain three orthogonal velocity components Ur = −Uy, Uθ

and Uz whose fluctuating components are ur = −uy, uθ and uz. Note that the ‘+0’ or
‘+1’ superscripts denote normalisation in viscous units at the initial or final steady
Reynolds numbers of the simulations, respectively. Herein, the viscous unit length is
δν = ν/uτ , where ν is the kinematic viscosity of the fluid. The friction velocity is defined
as uτ = √〈τw〉 /ρ, where 〈τw〉 is the ensemble mean wall shear stress and ρ is the fluid
density. The ensemble average of any fluid quantity will be denoted using angle brackets
within the present investigation. For instance, the ensemble-averaged streamwise velocity
normalised in viscous units using the final steady friction velocity will be denoted as
〈Uz〉+1 = 〈Uz〉 /uτ,1.
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3. Near-wall behaviour and flow structures

3.1. Response in the mean skin friction coefficient
The time dependence in the bulk Reynolds number Reb(t), as a result of imposing a rapid
ramp-down reduction in the flow rate in all the cases analysed in this study, is observed in
figure 1(a). As explained previously, at t+1 < 0 the flow remained at a stationary Reynolds
number Reb,0. Later, at t+1 = 0 a ramp down in the flow rate was imposed to reduce the
Reynolds number rapidly. Once the final Reynolds number (Reb,1) is attained, the flow rate
remains constant until the vorticity (ωωω) is attenuated across the entire pipe domain, the
flow fully develops and a quasi-steady behaviour is obtained in the different flow statistics
analysed in this study.

The temporal response in the mean skin friction coefficient (i.e. Cf = τw/(0.5ρU2
b))

for cases D1, D2, D3 and the benchmark channel flow data from Mathur (2016) are
displayed in figure 1(b). In general, it can be observed that the skin friction coefficient
presents coherence in its behaviour. Additionally, its time response suggests that the flow
experiences several transient stages before attaining a stationary behaviour. Aside from
the mean skin friction coefficient response, the different stages have been heuristically
characterised by analysing the different flow statistics presented throughout this paper. Our
results suggest that similar to an accelerating turbulent flow, a decelerating flow exhibits
four unambiguous transitional stages as follows.

(i) Stage I: during the early flow excursion, there exists a quick and nonlinear decay
in the skin friction coefficient. This rapid decay is related to a sudden adverse
pressure gradient imposed in the flow. As a result, a plug-like reduction in the
mean velocity profile occurs during this early stage, as will be shown later. It is
interesting to note that case D1 attains negative values in Cf during this stage.
This implies that flow separation exists at the near-wall region (i.e. there are
reverse flows near the wall, leading to an inflectional velocity profile), consistent
with the temporal adverse pressure gradient imposed to reduce the flow rate.
Additionally, the fact that Cf attains negative values implies that the mean
wall shear stress has negative values (〈τw〉 < 0) during the early flow excursion.
Consequently, the instantaneous friction velocity (uτ (t) = √〈τw〉 /ρ) is not a
suitable scaling argument during this period since it would be an imaginary
variable.

(ii) Stage II: as the flow excursion stops (i.e. the flow rate remains constant), Cf
experiences a rapid recovery and overshoots its final steady-state value.

(iii) Stage III: after Cf attains a maximum, a progressive decay is observed, associated
with an attenuation of the turbulent motions. Note that the flow rate has remained
constant for a considerable time during this period. However, as explained later, the
transient turbulence dynamics require extensive periods to stabilise.

(iv) Stage IV: after the Cf has decayed, it plateaus, suggesting that the flow has
developed, at least within the near-wall region. Nevertheless, a constant value in Cf
does not necessarily imply that the flow has fully developed throughout the entire
domain (Guerrero et al. 2021). Indeed, the analyses conducted in the following
sections indicate that similar to the accelerating case, a decelerating flow also
exhibits a core-relaxation period. It is noteworthy that a complete analysis of the time
response of several mean flow statistics f ( y, t) has been conducted in the following
sections to characterise and examine thoroughly the transient stages experienced by
a rapidly decelerating flow.
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3.2. Flow visualisations

3.2.1. Temporal evolution of the vortical structures
Here, the temporal behaviour of some characteristic flow structures during the transient
process of a decelerating flow is analysed. Figure 2 depicts several instantaneous flow
visualisations of the vortex cores using the λ2 criterion (Jeong & Hussain 1995) at several
instants for case D2. In figure 2(a) it is observed that the entire pipe domain, at its initial
steady state, is populated with vortical structures extending from the wall towards the
pipe centreline. Afterwards, at t+1 > 0 the flow excursion takes place. During the early
moments of the inertial period or stage I (figure 2b), it is noted that the vortex cores
do not exhibit noticeable changes compared with the turbulent base flow. Subsequently,
the snapshot obtained during the early stage II (figure 2c) shows that at the end of the
ramp-down change imposed in the flow rate there exists a reduction in the population
of vortical structures at the near-wall region. This is highlighted within the zoomed
insets of figures 2(b) and 2(c). In figure 2(c) it is also noted that the core region of the
flow has not undergone substantial changes. This implies that the turbulence decay for a
decelerating wall-bounded flow starts at the wall. Subsequently, at t+1 ≈ 83 (figure 2d),
which coincides with the peak in Cf attained in case D2 (i.e. at the onset of stage III), it
is noted that the amount of turbulent eddies has been substantially reduced near the wall.
Additionally, several void spaces can be observed from the wall up to y/R ≈ 0.5, where
turbulence has been attenuated. After t+1 > 83.4, a substantial decay in turbulence exists.
Furthermore, it is noted that the existing turbulent eddies are progressively annihilated or
dampened in the wall-normal direction as time increases. This implies that, similar to the
turbulence generation produced in accelerating pipe flows, the attenuation of turbulence in
decelerating wall flows occurs at the wall and propagates by diffusion in the wall-normal
direction. In figure 2(e), at t+1 = 180, near the end of stage III, it is noted that turbulence
has substantially reduced throughout most of the pipe domain. Nevertheless, during stage
IV, the core region requires long time scales to relax, as explained in the following sections.
Finally, as the flow has fully developed (figure 2 f ), it exhibits the behaviour and the
characteristic flow structures of low-Reynolds-number turbulence.

3.2.2. Temporal evolution of the velocity streaks
It is well known that the turbulent vortices, especially the streamwise rolls, are responsible
for generating the characteristic alternating velocity streaks observed in turbulent flows
(Kline et al. 1967). Thus, a wall-parallel plane showing the streamwise velocity fluctuation
at y+ ≈ 12 has been computed and is depicted in figure 3 in order to understand how the
turbulent streaks respond to a rapid reduction in the flow rate. It should be mentioned
that the sequential plots of streamwise fluctuation have been computed for the same flow
fields shown previously in figure 2, and the streamwise fluctuation field uz(t) has been
normalised with the instantaneous bulk velocity Ub(t). The turbulent steady base flow
at Reτ ≈ 340 is shown in figure 3(a), where the alternating high/low-speed streaks of a
turbulent flow at moderate Reynolds numbers can be observed.

A careful examination of the behaviour in the velocity streaks reveals that during the
early inertial stage (figure 3b) the streaks have advected in the streamwise direction
showing a similar topology as the base flow. Nonetheless, it is possible to see that
the magnitude of both high- and low-speed streaks has increased, implying a possible
increase in turbulence, at least at the buffer region, throughout this period. Within the
same subfigure, it is also observed that even though the low-speed streaks (blue contours)
preserve similar length scales to the initial base flow, the sinuosities, characteristic of the
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(a) (b) (c)

(d) (e) ( f )

t +1 = 0.0

t +1 = 83.4 t +1 = 180.1 t +1 = 844.9

Initial steady state Stage I Stage II

y/R

Stage III

Stage IV

0 0.25 0.5 0.75 1 Final steady state

t +1 = 15.7 t +1 = 49.6

Figure 2. Temporal evolution of the vortical structures using the λ2 criterion. The isosurfaces were computed
at a level λ+2 = −0.5. The snapshots were obtained during the different stages experienced by the decelerating
flow: (a) initial steady state, (b) inertial stage or stage I, (c) friction recovery or stage II, (d) turbulence decay
or stage III, (e) core relaxation or stage IV and ( f ) final steady state.
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Figure 3. Temporal evolution of the velocity streaks at y+1 = 12. The streaks have been computed for the
same flow realisations exhibited in figure 2(a–f ).
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turbulent streaks, are amplified. This suggests that the sinuous secondary instability seems
to be one of the mechanisms that momentarily enhances turbulence at the buffer region
throughout stages I and II, before the turbulence decay occurs. The following sections will
further confirm these observations by analysing different flow statistics.

Figure 3(c) reveals that at the end of the inertial period (onset of stage II), the low-speed
streaks are substantially different from the structures observed in the turbulent base
flow. Indeed, it is noted that the low-speed streaks are wider, its sinuosities have been
considerably amplified, and their magnitude is higher than the streaks observed in the
turbulent base flow. As a result, the flow at the buffer layer exhibits higher intermittency
throughout this period, which is consistent with the growth of the sinuous secondary
instability mentioned above. In fact, the recent study of an impulsively decelerating
Taylor–Couette flow by Kaiser et al. (2020) showed that secondary instabilities grow
within the near-wall region after the flow is decelerated. This behaviour is consistent with
the momentary overshoot of the Reynolds shear stress within the buffer layer observed
during stage II, explained in the following sections.

A snapshot obtained at the end of the friction recovery stage (onset of the turbulence
decay period) is shown in figure 3(d). Within this flow realisation, it is noted that the
streamwise streaks exhibit, qualitatively, a larger scale when compared with the prior
snapshots, evidencing a decay in turbulence. Moreover, the low-speed streaks depicted in
this flow realisation still exhibit highly sinuous patterns with respect to the fully developed
turbulent flow at its final steady state (figure 3 f ). Later, at the end of the turbulence decay
period (figure 3e), the organisation and structure of the streamwise fluctuation field at the
buffer region show substantial similarities with the final steady turbulent state (figure 3 f ).

To further analyse the behaviour in the streaks, especially during the inertial (stage
I) and early friction recovery (stage II) stages, a series of sequential snapshots between
0 � t+1 � 49.6 have been computed for case D2 and are shown in figures 4(a)–4( f ).
Within these figures, the blue isosurfaces represent the low-speed streaks computed at
uz/Ub = −0.2, and the green isosurfaces are the near-wall vortices computed with the
λ2 criterion at a level λ+0

2 = −3. It should also be noted that within these snapshots the
pipe has been ‘unwrapped’ to provide a clearer view of the low-speed streaks. Figure 4(a)
shows the initial steady-state base flow at t+1 = 0, which shows the typical configuration
of a fully turbulent flow. During the early inertial period (figure 4b), the streaks exhibit a
slight growth in the streamwise and wall-normal directions. It is also noted that, during
the early flow excursion, the vortical structures’ population, length scales and topology do
not exhibit substantial changes.

As time progresses, it is observed that the low-speed streaks continue growing in length
and start merging, as shown in figure 4(c,d) (also see figure 5(c,d) for clarity). Moreover,
as the streaks grow, amplification in the sinuous mode (secondary instability) and a slight
increase in the population of azimuthal vortical structures above the highlighted streaks
are noted. It should be mentioned that several flow realisations analysed by the authors
(not shown here) reveal that this process seems universal in rapidly decelerating flows. For
a more explicit observation of the sinuous instability experienced by the streaks during
stage I, zoomed in top views of figures 4(a–f ) can be seen in figures 5(a–f ).

At the end of the inertial stage (figures 4e–f and 5e–f ), the streaks exhibit elongated
patterns in the azimuthal direction, occurring during the merging process. This confirms
the change in the topology of the streaks and shows a possible amplification in
the secondary instability as noted in figure 3(c). From a structural standpoint, these
observations reveal that the behaviour of the low-speed streaks along the inertial and the
early friction recovery stages in rapidly decelerating flows are substantially different from
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Figure 4. ‘Unwrapped’ snapshots of case D2 showing the time evolution of the low-speed streaks and vortical
structures during the (a–e) inertial (stage I) and ( f ) early friction recovery (stage II) periods. The low-speed
streaks are depicted in blue isosurfaces and have been computed at a level uz/Ub = −0.2. The green isosurfaces
are the vortical structures computed using the λ2 criterion at a level λ+2 = −3.

the pre-transitional stage of rapidly accelerating flows. It should be recalled that, during
the pre-transitional stage of accelerating internal flows, the low-speed streaks elongate in
the streamwise direction and temporarily become more stable (He & Seddighi 2013). On
the other hand, the present results reveal that throughout stages I (inertial) and II (friction
recovery), the sinuous secondary instability is temporarily amplified, the streaks merge and
their topology exhibits differences from a fully developed steady turbulent flow. Indeed,
during the early friction recovery period, it is possible to observe elongated patterns in the
azimuthal direction.

4. Mean flow statistics

The brief analysis conducted from the instantaneous flow visualisations observed in
figures 2–5 has provided a qualitative insight into the decay of turbulence and the evolution
of the velocity streaks. Nevertheless, conducting a series of statistical analyses is necessary
to properly characterise the mean flow dynamics inherent in the transient behaviour of
a decelerating turbulent pipe flow. Since the present study focuses on characterising
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Figure 5. Temporal evolution of the low-speed streaks during the inertial (stage I) and early friction recovery

(stage II) periods. The snapshots are a zoomed top view from figure 4.

the transient stages experienced by a rapidly decelerating turbulent flow, the volumetric
time series obtained from simulation D1 will be used to analyse the transient behaviour
undertaken by a decelerating flow from a statistical perspective. It is noteworthy that the
present authors have conducted similar analyses for cases D2 and D3 (not shown here),
and it has been observed that the flow development at lower Reτ agrees well with the high
Reτ case both quantitatively and qualitatively.

4.1. Time response of the mean velocity profile
Throughout the rest of this study, the flow statistics associated with case D1, whose initial
and final steady friction Reynolds number is Reτ,0 ≈ 830 and Reτ,1 ≈ 500, respectively,
are analysed. This case was chosen as it was conducted at higher initial and final Reynolds
numbers.

In order to further understand the temporal response observed in the skin friction
coefficient, it is insightful to analyse the temporal evolution of the mean velocity profile.
Following the proposed stages undergone by decelerating flows, figures 6(a)–6(d) exhibit
the time dependence of the mean velocity profile scaled in viscous units at the final
steady Reynolds number (Reb,1) attained by the flow. In figure 6(a) it is noted that
during the flow excursion, the mean velocity profile 〈Uz〉+1 is shifted downwards without
exhibiting substantial changes in its shape within the buffer and the wake regions of
the flow (i.e. at y+1 > 10). This suggests that there exists a plug-like reduction in the
mean velocity profile during the early flow deceleration. This agrees well with the early
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Figure 6. Temporal evolution of the mean velocity profile of case D1 normalised in viscous units with ν and
uτ,1. The plots have been computed during the four transient stages: (a) inertial (stage I), (b) friction recovery
(stage II), (c) turbulence decay (stage III) and (d) core relaxation (stage IV). Here (−·−) is the initial steady
state and (− − −) the final steady state. The arrows represent increase in time. For the colour legend, refer to
figure 8.

experimental observations by Maruyama et al. (1976) and the recent DNS study by Lee
et al. (2018). Nevertheless, a careful examination of the near-wall flow provided by the
inset exhibited in figure 6(a) shows substantial changes within the viscous sublayer of
the flow. Firstly, it should be noted that during this transient stage, the mean velocity
profile does not follow the well-known linear behaviour of the viscous sublayer observed
in fully developed steady turbulence. Furthermore, at t+1 ≈ 9 the existence of a reverse
flow region within 0 � y+1 � 2 is shown. As a result, an inflectional velocity profile is
produced, resulting from the temporal adverse pressure gradient imposed to reduce the
flow rate. The inflectional velocity profiles tend to be unstable (Drazin & Reid 2004).
Indeed, the generation of an inflectional profile could be both a consequence of the adverse
pressure gradient imposed to decelerate the flow, and the temporary amplification of the
sinuous secondary instability observed previously in figure 3.

During stage II, namely friction recovery (figure 6b), it is observed that 〈Uz〉 ( y, t)
mainly changes within the near-wall region of the flow (i.e. y+1 < 30), and its overlap and
wake regions are largely frozen during this stage. The same figure shows that the mean
velocity profile progressively shifts upwards within the viscous sublayer. As a result, the
velocity gradient at the wall increases throughout this period, which is consistent with the
rapid increase observed previously in the skin friction coefficient.

Contrary to the second stage, the turbulence decay period (figure 6c) exhibits a nearly
unchanged behaviour within the viscous sublayer. However, during this period, the mean
velocity profile presents its most relevant changes within the buffer and overlap regions
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(10 � y+1 � 100). It is also noted that, during this stage, the wake region exhibits a
marginal change, indicating that decelerating flows possibly have a nearly ‘quiescent’
behaviour at the core region during the three first transitional stages, similar to their
accelerating counterpart (Guerrero et al. 2021). At the end of this stage, the mean velocity
profile at the viscous sublayer starts converging, and its characteristic linear behaviour is
recovered.

Throughout the fourth stage (core relaxation), the near-wall region y+1 � 30 exhibits
convergence as it is nearly unchanged with time. Nevertheless, the mean velocity profile
keeps reshaping at the overlap and wake regions. The most substantial changes in the
velocity profile seem to occur in the wake of the flow. Precisely, the mean profile at the
wake region shifts downwards considerably until it converges with the final steady state at
a lower Reb,1.

4.2. Time response of the flow scales
As a complement to the flow visualisations presented previously in § 3.2.2, here we
analyse the time dependence of the two-point correlations Ruzuz of the streamwise velocity
fluctuation field at a wall-parallel plane located at y+1 ≈ 12 in the z direction. The
two-point correlations allow us to quantify the mean streamwise length of the flow scales
throughout the transient process of the decelerating pipe flows analysed in this study. The
results exhibited in figure 7(a) reveal that the streaks have an average streamwise length
(�z/R ≈ 2.8) during the early inertial stage (0 < t+1 � 5). Later, a slight increase in the
correlation is noted, revealing a minor growth in the average streamwise length of the
streaks.

The results observed in figure 7(b) reveal that during the friction recovery period, the
streaks experience substantial growth in their length. Indeed, at the end of this period,
the correlation increases and shows that the maximum average streamwise length attained
by the streaks is approximately Δz/R ≈ 4.9. This value represents a 75 % increase in the
average length scale of the streaks. Subsequently, during the transitional period (figure 7c),
a progressive reduction in the correlation up to Δz/R ≈ 3.7 is noticed. Finally, figure 7(d)
shows that throughout the core-relaxation period, negligible changes exist in the near-wall
streaks as the correlation seems to fluctuate around the final stationary value of the flow.

4.3. Time evolution of the Reynolds and viscous shear stresses
Figures 8(a)–8(d) depict the time response in the Reynolds (〈uruz〉+1) and viscous
(〈−∂Uz/∂r〉+1) shear stresses for case D1. During stage I (figure 8a), it is observed that
the viscous stress undergoes a substantial reduction within the viscous sublayer and part
of the buffer region. It is noted that at t+1 ≈ 9 (purple dashed line) the viscous stress
at the wall and within the viscous sublayer attains negative values. The (−∂Uz/∂r) term
is the major contributor to the azimuthal vorticity ωθ and the mean azimuthal vorticity
〈ωθ 〉 = 〈−∂Uz/∂r〉. This implies that, on average, a small layer of negative azimuthal
vorticity is produced at the wall during the flow excursion. Indeed, in the recent work
by Guerrero et al. (2022) it was shown that large-scale patches of negative wall shear
stress are generated during the early flow excursion in a decelerating flow. It should
also be mentioned that vorticity can only be produced at the wall (Batchelor 1967;
Morton 1984) due to local accelerations. This implies that negative azimuthal vorticity
(i.e. ωθ < 0) is immediately produced at the wall due to local adverse pressure gradients,
and subsequently, this negative vorticity is later transported away from the wall by viscous
diffusion. A possible mechanism of vorticity decay in decelerating wall-bounded flows
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Figure 7. Two-point correlation of the velocity streaks at y+0 = 12 computed for case D1 during the four
transient stages. Here (−·−) is the initial steady state and (− − −) the final steady state. The arrows represent
increase in time. The intersection between the vertical lines and the horizontal grey line represents the
streamwise length of the streaks correlated at Ruzuz = 0.05. For the colour legend, refer to figure 8.

will be analysed later. During this period, it is also noted that the Reynolds shear stress
undergoes a mild reduction in its magnitude within the viscous sublayer during the early
part of this period. Nevertheless, during the late inertial period, it is noted that 〈uruz〉+1

slightly overshoots the initial Reynolds shear stress within 10 � y+1 � 30, indicating a
slight increase in turbulence at the buffer produced by the inflectional profile and sinuous
secondary instabilities that grow throughout stages I and II. This is consistent with the
observations made from figure 3(b,c). At the core region, an unchanged behaviour in the
Reynolds shear stress is noted during this short stage, indicating that turbulence is nearly
frozen in most of the flow domain throughout this period.

Stage II, namely friction recovery (figure 8b), exhibits a quick recovery in the viscous
shear stress within the viscous sublayer, and at the end of this stage it overshoots the final
steady-state value, which agrees with the peak observed in the time response of the skin
friction coefficient throughout this stage. Simultaneously, the viscous stress experiences
a progressive reduction within the buffer layer, owing to a possible diffusive mechanism.
Hence, it is noted that the viscous shear stress overshoots the final steady state within
the viscous sublayer, undershoots the final steady state at the buffer region and remains
nearly unchanged at the outer region of the flow. In the same subfigure it is possible to
note a progressive decay in the Reynolds shear stress within the inner region of the flow
(y+1 � 50). Nonetheless, it is interesting to observe that within the buffer region, before
turbulence decays at a particular wall-normal position, the peak value of the instantaneous
Reynolds shear stress momentarily overshoots the initial steady-state value followed by a
decay in uruz. Within this stage, the core region exhibits a nearly unchanged behaviour in
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Figure 8. Temporal evolution of the viscous and Reynolds shear stresses computed for case D1. The flow
quantities have been normalised in viscous units with u2

τ,1. Here (−·−) is the initial steady state, (− − −) the
final steady state, (solid coloured) Reynolds shear stress and (dashed coloured) viscous shear stress. The arrows
represent an increase in time.

the Reynolds shear stress, implying that the turbulence decay mechanism generated at the
wall requires extensive periods to propagate towards the wake region.

Figure 8(c) shows that during the turbulence decay period there exists a considerable
attenuation in turbulence from the wall towards the buffer and overlap regions. This
is evidenced by the behaviour observed in the Reynolds shear stress, which exhibits a
substantial reduction within the buffer region during the early part of stage III. Thereafter,
during the late instants of this period, it is noted that the Reynolds shear stress undergoes
a substantial decay within the overlap region up to y+1 ≈ 200. Additionally, 〈uruz〉 is
nearly unchanged within 200 � y+1 � 500, showing that during the first three stages, the
turbulence decay has only affected approximately 40 % of the flow in the wall-normal
direction. Similarly, the viscous stress near the wall exhibits slow decay within the viscous
sublayer due to turbulence reduction. However, it is possible to observe that the viscous
stress tends to recover within the buffer region and approaches the final steady state.

The fourth stage, core relaxation, is shown in figure 8(d), where it is possible to
note that the Reynolds shear stress is nearly unchanged within the near-wall region.
However, it exhibits a substantial decay within the overlap and wake regions. It should
be noted that the time scales associated with this period are considerably larger than the
previous three stages as they are associated with the diffusion of vorticity within the wake
region and along the y direction. This observation agrees with the conceptual view of a
‘quiescent’ core associated with the large-scale uniform momentum zones located within
the wake region (Yang, Hwang & Sung 2019; Chen, Chung & Minping 2020). Finally, it
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Figure 9. Temporal evolution of the Reynolds shear stress pre-multiplied co-spectra kφ+
uruz

throughout the
different stages undergone by the flow: (a) initial steady state, (b) inertial, (c) friction recovery, (d) turbulence
decay, (e) core relaxation, ( f ) final steady state. The horizontal white dashed line represents the location of
λ+1 = 1000.

is worth mentioning that the viscous shear stress exhibits negligible changes during this
period, which is consistent with the plateau attained in Cf . Similar to the observations
in accelerating flows, it is noteworthy that a plateau attained by Cf is not necessarily an
indication that the flow has fully developed. Indeed, the near-wall flow dynamics is nearly
established during this considerably large period. Hence, the near-wall flow statistics may
seem unchanged. However, the wake region requires significant time scales to relax as the
decay of turbulence requires extensive periods to diffuse within the core region.

4.4. Reynolds shear stress spectra
The pre-multiplied co-spectra kφ+1

uruz
was computed to extend the analysis of the Reynolds

shear stress provided previously. The quantity kφ+1
uruz

is a useful tool to understand the
scales of motion and the flow regions that undergo turbulence energy growth or decay
in an unsteady flow. The result of computing kφ+1

uruz
for case D1 during the initial steady

state at Reτ ≈ 830 is observed in figure 9(a). The transient process during stages I–IV is
shown in figures 9(b)–9(e). Finally, the co-spectra of the final steady state at Reτ ≈ 500
is observed in figure 9( f ). The location and the length scales where the energy decay is
produced can be determined qualitatively from figure 9. However, to better understand the
length scales and the position where the energy decay occurs, the subtraction between the
two consecutive snapshots during the different stages has been computed (i.e. φ+1

uruz
(t +

�t) − φ+1
uruz

(t)). Figure 10 shows the result of that difference. For instance, figure 10(a)
shows the result of subtracting figures 9(b) and 9(a).

Figure 10(a) shows that during the inertial period there exists a mild energy decay at
the near-wall region (y+ < 10) in wavelengths oscillating between 100 � λ+1

z � 1000.
Negligible changes in energy growth or decay are observed within the overlap and outer
regions of the flow.
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Figure 10. Energy decay in the Reynolds shear stress co-spectra throughout the four transitional stages
underwent by case D1. The energy decay at each stage was computed by subtracting two consecutive
spectrograms from figures 9(a)–9(e). The horizontal white dashed line represents the location of λ+1

z = 1000
and the vertical dashed lines are plotted at y+1 = 30 and y+1 = 200, respectively.

The energy growth/decay during the second stage (friction recovery) is depicted in
figure 10(b). It is noted that within the inner region of the flow (y+1 < 30) the energy
decays mainly in the small-scale spectrum (λ+1

z < 1000). However, some wavelengths
around 1000 � λ+1

z � 3000 undergo an energy decay. At the overlap region (30 � y+ �
200), energy growth is observed in the small-scale spectrum. This observation is consistent
with the slight overshoot in the peak of the Reynolds shear stress observed in figure 8(b).
During this period, the wake region does not exhibit significant changes in the spectral
energy distribution. This shows that the energy losses due to a flow deceleration start at
the near-wall region, and the small-scale motions are the first to respond to this kind of
perturbation.

As expected, most of the energy decay in the inner region of the flow occurs throughout
the turbulence decay period, or stage III. The energy changes are shown in figure 10(c).
This figure reveals a significant energy decay at the buffer and the overlap regions. It is
noteworthy that, in this stage, most of the energy decay occurs within the small-scale
spectrum. However, a non-negligible contribution in the energy decay happens at the
overlap region at large- and very-large-scale wavelengths (103 � λ+1

z � 104). It is also
interesting to note that at the wake region there is a mild energy decay in the small scales
of motion together with a slight energy growth in the large scales of motion. The reasons
for producing this energy decay and growth in the different scales of motion at the same
radial location is likely due to the wall-normal propagation of a shear layer (refer back to
figure 6).

Finally, the core-relaxation period reveals minor energy losses at the inner region of the
flow. As expected, most of the energy losses are observed within the wake region of the
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Figure 11. Time evolution of the uzuz budgets for case D1 throughout the four transient stages: (a) inertial,
(b) friction recovery, (c) turbulence decay and (d) core relaxation. For the legend, see (a).

flow throughout all the scales of motion. However, due to the nature of the core region, the
wavelengths λ+1

z ≈ 1000 exhibit the most significant energy losses.

5. Analysis of the flow dynamics and higher-order statistics

5.1. Time dependence of the uzuz budgets
The high definition provided by the DNS data sets allows for having highly accurate results
in the velocity gradient tensor. As a result, it is possible to analyse the temporal evolution
of the Reynolds stress budgets. Here, we will focus on the uzuz budget, which is the major
contributor to the TKE budget. The equations derived by Eggels et al. (1994) have been
used to compute the uzuz budget in cylindrical coordinates. The notation adopted in this
section is as follows: turbulence production P , pressure strain Π , viscous dissipation
ε, turbulence transport T and viscous diffusion D. Similar to the statistical quantities
analysed previously, the uzuz budgets have been normalised with u4

τ,1/ν, and the results
are depicted in figures 11(a)–11(d). It should also be noted that the turbulence production,
dissipation and pressure strain for the initial steady state have been plotted for reference.

During stage I (figure 11a), it is noted that P+1 and ε+1 exhibit an early response
(decay) within the near-wall region, and an unchanged behaviour at the outer region of
the flow. This agrees with the previously presented results regarding the time response of
the Reynolds and viscous stresses, where it was observed that the decay of turbulence in a
decelerating flow starts at the wall. It is noteworthy that even though P+1 and ε+1 show an
early response within y+1 � 10, the pressure strain term remains almost unchanged, even
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at the near-wall region, during the early flow excursion. Since the pressure strain term
acts as a sink term to the Reynolds stress production, it avoids anisotropy in the TKE. In
other words, the nearly frozen behaviour of the pressure strain term during stage I, which
redistributes turbulence energy in the three orthogonal directions, induces anisotropy in
the response of the three normal components of the Reynolds stress tensor. As a result,
this observation provides a feasible explanation of the different delays and anisotropies
observed in the response of the different turbulence components in both accelerating (He
& Jackson 2000) and decelerating flows (Seddighi et al. 2011; Guerrero et al. 2022).

The behaviour of the uzuz budgets throughout stage II, shown in figure 11(b), exhibit a
substantial reduction within the viscous and buffer regions of the flow. It is also noted that
the pressure strain term shows a mild change in its magnitude throughout this stage, which
implies that energy starts redistributing from the 〈uzuz〉 stress to the other two Reynolds
stresses 〈urur〉 and 〈uθuθ 〉 within this stage. At the end of the second stage, an unchanged
behaviour of the uz budgets is noted at the outer region of the flow. Subsequently,
throughout stage III (figure 11c), the different transport terms decay and attain a magnitude
close to their final stationary state within y+1 � 100. Finally, as observed in figure 11(d),
the uzuz budgets do not exhibit a substantial change within the inner region of the flow.
However, they show a significant decay at the wake region throughout this stage until they
attain their final stationary behaviour.

5.2. Time evolution of the turbulent inertia and viscous force
Equation (5.1) represents the mean momentum balance of an unsteady turbulent pipe flow
in the streamwise direction. The term on the left-hand side represents the inertia force
(IF) or acceleration undergone by the unsteady fluid flow; similarly, the first term on the
right-hand side is the pressure gradient (PG) imposed in the fluid; the last two terms on
the right-hand side of (5.1) are the viscous force (VF) and the turbulent inertia (TI); these
two last terms are the viscous and Reynolds shear stress gradients, respectively:

∂ 〈Uz〉
∂t︸ ︷︷ ︸
IF

= − 1
ρ

dp
dz︸︷︷︸

PG

+ 1
r

∂

∂r

(
rν

∂ 〈Uz〉
∂r

)
︸ ︷︷ ︸

VF

+ 1
r

∂

∂r
(−r 〈uruz〉)︸ ︷︷ ︸

TI

. (5.1)

As explained by Adrian (2007), the turbulent inertia is the net force exerted by the
Reynolds shear stress within the flow. The turbulent inertia is positive within the near-wall
region, becomes zero at the location where the Reynolds shear stress attains a maximum
and has a negative value at the outer region of the flow. Thus, this term acts as a momentum
source at the near-wall region and becomes a sink term within the outer region. As a result,
it generates the well-known flattened mean velocity profile characteristic of turbulent
flows. On the other hand, the viscous force is a momentum sink that decelerates the flow at
the near-wall region to fulfil the no-slip boundary condition at the wall. This same term is
nearly zero far from the wall as the viscous forces have, on average, little influence within
the pipe core.

Figure 12 is the result of computing the turbulent inertia (solid lines) and the viscous
forces (dashed lines) during the four transient stages. In figure 12(a) it is possible to
observe the behaviour of turbulent inertia and viscous force during the inertial stage. First,
it is noteworthy that the turbulent forces start decaying within the viscous sublayer as
soon as the flow is decelerated. This contrasts with the features exhibited by accelerating
flows during the same period (see Guerrero et al. 2021), where a frozen behaviour
in the turbulent forces within this early period was observed. In the same figure it is
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Figure 12. Temporal evolution of the turbulent inertia and viscous force computed for case D1 across the four
transient stages: (a) inertial, (b) friction recovery, (d) turbulence decay, (e) core relaxation. Here (−·−) is the
initial steady state, (− − −) final steady state, (solid coloured) turbulent inertia (TI+1) and (dashed coloured)
viscous force (VF+1).

interesting to see that within y+1 < 3, the viscous force, which has negative values in
fully turbulent steady canonical wall-bounded flows, reverses its direction and attains high
positive magnitudes as a result of the adverse pressure gradient imposed to decelerate the
flow.

The temporal variation of the turbulent and viscous forces during stage II (friction
recovery) is depicted in figure 12(b). This figure shows that a substantial reduction in the
turbulent inertia occurs within the viscous region. Nonetheless, it is observed that turbulent
inertia exhibits a considerable increase in the buffer region between 5 � y+1 � 30. This
agrees with the increase observed in the overshoot of the peak in the Reynolds shear stress
(see figure 8b). Interestingly, it is noticed that the zero crossing in the turbulent inertia
starts shifting towards the pipe centreline by the end of this period. This indicates a growth
in the near-wall region of the flow, and it also shows that the logarithmic region of the mean
velocity profile starts shifting its position as a result of the change in Reynolds number in
the flow (see Chin et al. 2014). Additionally, it is also possible to observe that the turbulent
forces remain unchanged at the core region of the flow. Similarly, the same figure shows
that in the course of the second stage, the viscous forces change their sign, becoming
negative again. At the end of this period, the viscous force overshoots in magnitude
the final steady state agreeing with the peak attained in the skin friction coefficient as
previously observed in figure 1. In other words, the end of the friction recovery (onset
of the turbulence decay stage) could be nominally determined as the instant in which the
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skin friction coefficient (Cf ) attains a maximum. This exhibits similarity with the end of
the pre-transitional stage of accelerating flows, whose finalisation was determined as the
minimum reached by Cf (He & Seddighi 2013, 2015).

During stage III (figure 12c), a reduction of the turbulent inertia’s magnitude within the
inner region of the flow (y+1 < 50) is observed, indicating a wall-normal propagation of
the turbulence decay produced as a result of the rapid reduction in the flow rate. Similarly,
during this period, it is observed that the viscous force reduces its magnitude progressively
within the viscous sublayer, which agrees well with the progressive reduction observed in
Cf along this stage. Nevertheless, it is possible to note that the viscous force exhibits
a slight increase in magnitude within the buffer layer. This observation agrees with the
change in shape experienced by the mean velocity profile in the same region throughout
this period (refer back to figure 6c).

Finally, the core-relaxation period exhibits a slight and slow reduction in viscous force
and turbulent inertia within the near-wall region. At the outer region of the flow, the
viscous force exhibits a nearly unchanged behaviour. However, the turbulent forces show
a slow and relatively small reduction in magnitude at the outer region of the flow. The
slow reduction of the turbulent inertia at the wake region is directly associated with the
evolution of the azimuthal vorticity flux, which is explained in the following section.

5.3. Time dependence of the velocity–vorticity correlations and vorticity fluxes
Herein, we analyse the velocity–vorticity correlations and the azimuthal vorticity flux to
understand how they evolve during the transient process of a decelerating pipe flow.

The turbulent inertia and the viscous force can be expressed in terms of the
velocity–vorticity correlations and the gradient of the mean azimuthal vorticity,
respectively. As explained by Klewicki (1989), the mean turbulent inertia (gradient of
the mean Reynolds shear stress) can be expressed as a function of the velocity–vorticity
correlations as

TI = 1
r

∂

∂r
(−r 〈uruz〉) = 〈urωθ 〉 − 〈uθωr〉 . (5.2)

The first term on the right-hand side of (5.2) physically represents the advective vorticity
transport, and the last term is related to a vorticity stretching mechanism. As previously
explained, the mean azimuthal vorticity is equal to the mean streamwise velocity gradient
in the radial direction (i.e. 〈ωθ 〉 = 〈−∂Uz/∂r〉). Thus, as explained by Brown, Lee &
Moser (2015), the viscous force can be alternatively represented as

VF = 1
r

∂

∂r

(
rν

∂ 〈Uz〉
∂r

)
= 1

r
∂

∂r
(rν 〈ωθ 〉) . (5.3)

By substituting (5.2) and (5.3) into (5.1), the following alternative form of the mean
momentum balance is obtained:

d 〈Uz〉
dt

+ 1
ρ

dp
dz

= 1
r

∂

∂r
(rν 〈ωθ 〉) + 〈urωθ 〉 − 〈uθωr〉 . (5.4)

Equation (5.4) gives a relevant insight regarding the dynamics of an unsteady flow,
indicating that the driving forces in the streamwise direction of an unsteady pipe flow
(left-hand side of (5.4)) are equal to the total mean vorticity flux (right-hand side of
(5.4)). Within the context of the present study, the analysis of the total mean vorticity flux
might provide some hints of the mechanism associated with the decay in the turbulence
throughout the transitional stages of a linearly decelerating flow.

962 A44-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.294


Transient behaviour of decelerating turbulent pipe flows

100 101

y+1 102

–0.1

0

0.1

0.2

0.3

100 101

y+1 102

–0.1

0

0.1

0.2

0.3

100 101 102

–0.1

0

0.1

0.2

0.3

100 101 102

–0.1

0

0.1

0.2

0.3

〈u rω
θ〉+

1
, 
〈–u

θω
r〉+

1
〈u rω

θ〉+
1
, 
〈–u

θω
r〉+

1

t+1 = –2
t+1 = 0
t+1 = 2
t+1 = 5
t+1 = 9
t+1 = 11
t+1 = 1151

t+1 = –2
t+1 = 16
t+1 = 19
t+1 = 23
t+1 = 28
t+1 = 32
t+1 = 1151

t+1 = –2
t+1 = 49
t+1 = 66
t+1 = 113
t+1 = 170
t+1 = 228
t+1 = 1151

t+1 = –2
t+1 = 240
t+1 = 286
t+1 = 413
t+1 = 725
t+1 = 1044
t+1 = 1151

(a) (b)

(c) (d)

Figure 13. Temporal evolution of the velocity–vorticity correlations throughout the four transient stages:
(a) inertial, (b) friction recovery, (c) turbulence decay and (d) core relaxation. The vorticity advection 〈urωθ 〉
is represented by dashed lines and the vorticity stretching 〈−uθωr〉 term is represented by solid coloured lines.
The arrows represent increase in time. Here (−·−) is the initial steady state and (− − −) the final steady state.

The time dependence of the mean velocity–vorticity correlations, which contribute to
the turbulent inertia (see (5.2)), is depicted in figure 13. These higher-order statistics are
consistent with the four stages identified throughout the previous analyses. During the
inertial period (figure 13a), it is noted that both the advective and the stretching terms
exhibit an early decay in their magnitude within the viscous sublayer and part of the buffer
region (y+1 � 15). Additionally, it is noted that the outer region remains constant during
the inertial stage.

During the second stage (figure 13b), it is observed that 〈−uθωr〉 continues decaying
progressively within y+1 < 20 and remains nearly unchanged at y+1 > 20. However,
〈urωθ 〉 exhibits a substantial decay at y+1 � 40. Interestingly, this shows that the advective
term propagates quicker than the stretching term in the wall-normal direction, confirming
the anisotropies produced by the delayed response in the pressure strain budget (see
figure 11a,b). Furthermore, the substantial decay in the magnitude exhibited 〈urωθ 〉
together with a simultaneous unchanged behaviour in 〈−uθωr〉 at the buffer region produce
the overshoot observed in the turbulent inertia and the Reynolds shear stress within the
buffer region during this period (refer back to figures 8b and 12b). This reveals two
different delays in the propagation of the vorticity transport mechanisms, which constitute
the gradient of the Reynolds shear stress. Interestingly, this implies that two mechanisms
propagating at different rates in the wall-normal direction need to develop so that the final
Reynolds shear stress profile attains a steady state.

In the third stage (figure 13c) it is noted that the vorticity stretching term continues
progressively decaying within the near-wall region. Throughout this period a slight
overshoot of this term at the overlap region (30 � y+1 � 100) is observed. This coincides
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with the slight overshoots observed within the same region in the turbulent inertia (see
figure 12c). In this period, it is also possible to observe that the advective term 〈urωθ 〉
has somehow reversed its behaviour concerning stage II. In other words, a decrease in
magnitude within the viscous buffer region and a slight increase in magnitude (in the
negative direction) is noted within the overlap layer. At the end of this stage t+1 ≈ 170, the
stretching term approaches the final stationary state within the near-wall region.

Finally, during the core-relaxation stage, it is interesting to note that albeit the wake
region undergoes the most substantial changes (refer back to figure 8d), it is still possible to
observe a mild reduction in the turbulence activity at the buffer layer in both the advective
and stretching terms, indicating that the core flow has a mild influence in the vorticity
fluxes in the near-wall region. Due to the relatively low intensity of the velocity–vorticity
correlations at the core region, it is not possible to observe relevant changes in these
quantities throughout the core-relaxation period. However, the total mean vorticity flux
(i.e. the right-hand side of (5.4)) provides a better picture of this behaviour.

As explained by Brown et al. (2015) and Brown, Chin & Philip (2020), the right-hand
side of (5.4) represents the mean total flux of azimuthal vorticity of a turbulent pipe flow,
and it has a constant value across every plane parallel to the wall in the case of steady
turbulent flows (i.e. when ∂Uz/∂t = 0). This indicates that in steady turbulence, vorticity,
which is produced at the wall (Morton 1984), is transported from the wall towards the pipe
centreline at a constant rate. Since the mean vorticity flux in a steady turbulent flow equals
the mean pressure gradient, the total mean vorticity flux in a stationary turbulent pipe
flow attains constant negative values. This is observed in the initial and final steady state
of the mean vorticity fluxes depicted in figure 14 (dashed and dash-dotted black lines).
However, this is not the case for unsteady turbulent flows, such as those analysed in the
present study, since ‘new’ positive or negative azimuthal vorticity is generated at the wall
as soon as the flow is accelerated or decelerated. Indeed, figure 14 shows that throughout
the four transitional stages experienced by a decelerating pipe flow, the vorticity flux in the
wall-normal direction is not constant throughout its transitional stages.

In figure 14(a) it is revealed that as soon as the flow decelerates, the mean azimuthal
vorticity flux attains high positive values. These high positive values of the flux are
related to the negative vorticity produced at the wall. This suggests that as the flow is
decelerated, the positive 〈ωθ 〉 in the turbulent base flow is progressively dampened by
vorticity cross-annihilation as a result of the wall-normal diffusion of the negative vorticity
produced at the wall. Hence, the existing turbulence starts to decay from the wall. These
observations explain why, unlike accelerating flows, decelerating flows exhibit a quicker
turbulence response (Guerrero et al. 2022).

The high positive values attained in the vorticity flux throughout the first stage start
decaying at the viscous sublayer during the friction recovery stage (figure 14b). However,
within the buffer region, at 10 � y+1 � 50 it is noted that the positive values in the
vorticity flux keep propagating towards the pipe centreline. As a result, the initial ωθ flux
is attenuated within this region. During stage III (figure 14c), it is noted that the vorticity
flux establishes at lower magnitudes near its final steady state within the near-wall region.
However, within the overlap region of the flow, it is noted that the vorticity flux starts
becoming positive, indicating vorticity (and, hence, turbulence) is reduced. It should be
noted that during this stage, the vorticity flux at the wake region remains nearly unchanged.
This shows that across the transient stages I–III, vorticity and thereby turbulence remain
almost unchanged within the core flow.

During stage IV (figure 14d), the near-wall vorticity flux has almost established and
attains a constant behaviour within y+1 � 200. Nonetheless, within the outer region of
the flow, it continues evolving towards a constant value at a lower magnitude across every
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Figure 14. Time evolution of the mean vorticity flux 1/r∂(rν 〈ωθ 〉)+1/∂r+1 + 〈urωθ 〉+1 − 〈uθωr〉+1

throughout the four transitional stages underwent by a rapidly decelerating flow: (a) inertial, (b) friction
recovery, (c) turbulence decay and (d) core relaxation.

wall-parallel plane. Once the mean vorticity flux converges and becomes constant across
the y direction, the vorticity and the turbulence levels have been reduced throughout the
entire pipe domain due to the flow deceleration. Hence, the constant value attained by
the vorticity flux at the end of the core-relaxation period could be a suitable indication to
determine that the flow has fully established and has attained its final steady state.

6. Dynamic contributions into the skin friction coefficient

Several of the flow dynamics analysed in the previous sections can be related to the
temporal behaviour of the mean skin friction coefficient. To that purpose, the so-called FIK
identity derived by Fukagata, Iwamoto & Kasagi (2002) presents a suitable framework to
understand how the different flow dynamics contribute to the skin friction coefficient. By
using that identity as a base point, Guerrero et al. (2021) derived an alternative expression
to determine the dynamic contributions of an unsteady turbulent pipe flow into the skin
friction coefficient as follows:

Cf = 16
Reb︸︷︷︸
Cδ

f

+ 16
∫ 1

0
2r∗ 〈uruz〉∗ r∗ dr∗

︸ ︷︷ ︸
CT

f

− 16
∫ 1

0
((r∗)2 − 1)

(
1
r∗

∂ (r∗τ ∗)
∂r∗ − 2

R

∫ 1

0

1
r∗

∂ (r∗τ ∗)
∂r∗ r∗ dr∗

)
r∗ dr∗

︸ ︷︷ ︸
CU

f

. (6.1)
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All quantities in (6.1) are normalized by 2Ub and the pipe radius R (e.g. the mean
streamwise velocity Uz(r, t) is normalized as U∗

z = Uz/(2Ub), the spatial domain in
the radial direction is normalized as r∗ = r/R and the time domain is normalized as
t∗ = t/(2Ub/R)). The symbol τ ∗ stands for the total normalized shear stress, which
is the summation of the mean Reynolds stress and the mean viscous stress (i.e. τ∗ =
ρ 〈uruz〉∗ − ρν 〈∂Uz/∂r〉∗). The first term on the right-hand side of (6.1) (Cδ

f ) is equal
to the Fanning friction factor and, thus, it quantifies the laminar contribution to the flow.
As explained in Guerrero et al. (2022), Cδ

f becomes negligible at high Reynolds numbers.
The second term (CT

f ) on the right-hand side of (6.1) represents the turbulent contributions.
Finally, the last term (CU

f ) is a function of the total shear stress τ(t, r), and it appraises the
contribution of the pressure gradient and the inertia forces of the flow (Guerrero et al.
2021).

Since the gradient of the Reynolds shear stress can be expressed in terms of the
velocity–vorticity correlations (see (5.2)). Then, the Reynolds shear stress can be
expressed as

〈uruz〉 =
∫

〈uθωr〉 r dr −
∫

〈urωθ 〉 r dr. (6.2)

The turbulent contribution can be further decomposed by substituting (6.2) into the
turbulent term (CT

f ) from (6.1). As a result, the contribution of the velocity–vorticity
correlations into the skin friction coefficient for an unsteady flow is obtained, as observed
in (6.3) (it should be mentioned that this alternative form of the identity is different from
the expression obtained by Yoon et al. (2016) as that decomposition is purely based on the
vorticity contributions to the skin friction coefficient in a steady turbulent flow):

Cf = 16
Reb︸︷︷︸
Cδ

f

+ 16
∫ 1

0
2r∗

(∫
〈uθωr〉 r dr

)∗
r∗ dr∗

︸ ︷︷ ︸
CT

f ,uθ ωr

+ 16
∫ 1

0
2r∗

(∫
−〈urωθ 〉 r dr

)∗
r∗ dr∗

︸ ︷︷ ︸
CT

f ,urωθ

− 16
∫ 1

0
((r∗)2 − 1)

(
1
r∗

∂ (r∗τ ∗)
∂r∗ − 2

R

∫ 1

0

1
r∗

∂ (r∗τ ∗)
∂r∗ r∗ dr∗

)
r∗ dr∗

︸ ︷︷ ︸
CU

f

. (6.3)

The result of applying (6.1) to the time series data sets obtained in this study is shown
in figure 15(a). First, it should be noted that during stage I, the laminar term Cδ

f exhibits
a slight increase in its contribution due to a reduction in the Reynolds number. Later,
during stages II–IV, this contribution remains constant as Cδ

f is a function of Reb. It is
also noted that during the entire unsteady process, CT

f and CU
f provide the most significant

contributions to the unsteady behaviour of Cf .
During stage I, it is observed that CU

f quickly becomes the dominant term as it attains
a high negative magnitude as the flow is decelerated. As a result, negative values in the
mean skin friction coefficient are reached during this period due to the adverse pressure
gradient imposed to decelerate the flow rate. Simultaneously, CT

f increases positively in
its magnitude. This increase can be attributed to the decrease in the instantaneous bulk
velocity (Ub) by which 〈uruz〉 is normalised. Indeed, during this early stage, the Reynolds
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Figure 15. (a) Dynamic contributions of the different flow dynamics into the skin friction coefficient as a
function of time through the utilisation of the FIK identity using (6.1). (b) Decomposition of the turbulent
contribution CT

f in terms of the velocity–vorticity correlations based on (6.3).

shear stress suffers a very slight reduction within the viscous sublayer, as explained
previously in § 4.3.

The mean skin friction coefficient recovers throughout stage II and overshoots its
final steady value. The results from the dynamic decomposition suggest that this is a
consequence of rapid decay in the magnitude of the unsteady component. Indeed, the
decay in CU

f is so dramatic during this period that, at t+1 ≈ 17, the turbulent term becomes
the dominant contribution to Cf .

In stage III, a fast decay in the magnitude of both the turbulent and the unsteady
contributions is noted. During this period, the turbulent contribution decays due to a
rapid turbulence attenuation occurring at the inner region of the flow. As a result, a
slight decay in Cf is observed. The mean skin friction coefficient plateaus at the end
of stage III (onset of stage IV). Nevertheless, it does not necessarily indicate that the
flow has fully developed. Indeed, during most of the core-relaxation stage, slow and
balanced decay exists in the contribution of both CU

f and CT
f . However, near the end of the

core-relaxation stage, the turbulent term attains a minimum and subsequently recovers.
This indicates that the overall turbulence levels fall momentarily below the final steady
state during the core-relaxation stage, then it recovers. It should be mentioned that this
same behaviour was observed for the low-Reynolds-number cases D2 and D3. After CT

f
recovers (i.e. t+1 � 1000), all the terms plateau. This is an indication that the flow has
fully developed.

As a complement, figure 15(b) exhibits a further decomposition of the turbulent
contribution into the velocity–vorticity correlations (i.e. CT

f = CT
f ,urωθ

+ CT
f ,uθωr

). This
additional decomposition of the turbulent term has been performed by computing the
second and third terms on the right-hand side of (6.3). This decomposition exhibits some
relevant features associated with the convective (〈urωθ 〉) and stretching (〈uθωr〉) terms
of the azimuthal vorticity flux (refer back to § 5.3). First, the convective and stretching
terms dominate the total skin friction coefficient contributions, especially during stages
III and IV. In terms of their magnitude, the stretching term exhibits a larger relevance
than the unsteady component throughout all the transient stages underwent by the skin
friction coefficient. It should also be noted that the convective term contributes negatively
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to the skin friction coefficient. This is consistent with the observations by Yoon et al.
(2016). Additionally, the negative values attained by the turbulent convective term (CT

f ,urωθ
)

indicate that, on average, it reduces the frictional drag. Previous studies have shown
by quadrant analysis that the 〈urωθ 〉 term somehow tells how the azimuthal vorticity
structures, which could be understood as the heads of the hairpin vortices, are advected
towards the outer region of the flow (see Klewicki, Murray & Falco 1994). Furthermore,
it is noted that the advective term plateaus earlier than the stretching term. This implies a
phase lag between the advection and the stretching mechanisms in a decelerating flow.

7. Summary and conclusions

Direct numerical simulation data sets of turbulent pipe flow between two steady Reynolds
numbers have been used to investigate the transient process experienced by non-periodic
decelerating turbulent pipe flows based on their flow dynamics and kinematics. An
analysis of instantaneous flow visualisations and several flow statistics suggest that rapidly
decelerating flows undergo four unambiguous transient stages, which show temporal
coherence. In terms of the main flow dynamics, the features of each one of these four
transitional stages can be summarised as follows.

(i) Stage I or the inertial stage occurs during the early flow excursion and exhibits
a dramatic decay in the skin friction coefficient (Cf ), which undershoots its final
steady value. Simultaneously, the mean velocity profile shifts quickly to a lower
magnitude. Interestingly, the buffer and outer regions of the flow (y+1 > 10)
maintain their shape. This indicates that as the turbulent flow decelerates, its velocity
profile shifts downwards as though a negative plug flow were added to the mean
profile. Near the end of this stage, the mean velocity profile at the viscous sublayer
experiences major changes. For sufficiently high deceleration rates, large-scale
patches of reverse flow events are produced at the viscous sublayer. Thus, local
inflectional velocity profiles are produced, which in turn, are associated with a
temporary growth in the sinuous secondary instability, observed in the behaviour
of the streamwise velocity fluctuation streaks. The Reynolds and viscous shear
stresses were also analysed. The results show that during this stage there exists a
minor reduction in 〈uruz〉 within the viscous layer, and within most of the domain
y+1 > 5, 〈uruz〉 remains nearly unchanged. This shows that a rapidly decelerating
flow experiences a phase lag in its turbulence response, also seen in accelerating flow
investigations. On the other hand, the viscous shear stress at the viscous sublayer
decays rapidly, and it can even attain negative values as 〈−∂Uz/∂r〉 < 0 near the
end of the inertial stage. However, the viscous shear stress remains unchanged
at the buffer and outer regions throughout this period. The fact that the viscous
stress can become negative at the wall implies that large-scale layers of negative
azimuthal vorticity (ωθ < 0) attached to the wall are produced during this period as
〈ωθ 〉 = 〈−∂Uz/∂r〉.

Similarly, the turbulent inertia and the viscous force were analysed. The results
revealed that the turbulent inertia presents a mild decay within the viscous sublayer
during stage I and remains unchanged throughout the rest of the domain. On the
contrary, a rapid and dramatic response in viscous force is observed during this stage.
Indeed, as soon as the flow excursion happens, the viscous force changes its sign
from negative to positive in the viscous sublayer, and these changes start propagating
in the wall-normal direction, possibly by viscous diffusion.
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(ii) Stage II or friction recovery is characterised by a quick recovery and an overshoot
in Cf , which finally attains a peak in its value. The time at which this peak value
occurs is nominally at the end of the second stage. The mean velocity profile
changes its shape within the near-wall region and recovers its linear behaviour
during this period. In contrast, the overlap and wake regions of the flow remain
unchanged, indicating that turbulence at the outer flow remains frozen. The results
from the Reynolds shear stress along stage II revealed that turbulence is significantly
attenuated at the viscous sublayer, momentarily overshoots in the buffer region
and remains frozen within the outer flow. These observations suggest that one of
the possible turbulence decay mechanisms originates at the wall and propagates
towards the pipe centreline from the wall. Simultaneously, the viscous stress exhibits
a substantial recovery at the near-wall region, and it overshoots the magnitude of its
final steady state. Moreover, it is noted that during this period, the viscous forces
undergo a quick recovery and overshoot the magnitudes of their final steady state.
At the same time, the turbulent inertia undergoes a progressive decay at the near-wall
region and overshoots its initial steady state at the buffer region.

(iii) Stage III or turbulence decay is the period in which Cf experiences a slow decay and
then plateaus at the end of this stage. Concomitantly, the mean velocity profile attains
a stationary behaviour at the near-wall region. However, it undergoes substantial
changes, especially within the outer region of the flow. Throughout the same
period, a substantial decay in the Reynolds shear stress is observed, specially at the
overlap region of the flow. Nevertheless, the wake region remains nearly unchanged
throughout this period. In fact, the viscous and Reynolds shear stresses exhibit a
substantial decay at the viscous sublayer throughout stage III. By computing the
gradients of the viscous and Reynolds shear stresses, the turbulent and viscous forces
reveal a balanced decay throughout this period.

(iv) Stage IV or core relaxation is the most extensive period. Different from the previous
transient stages, the end of this period cannot be identified by analysing the
behaviour of the mean skin friction coefficient as it remains quasi-steady during the
core relaxation. The mean velocity profile experiences a prolonged decay in the wake
region throughout this stage until it attains the universal features of a steady turbulent
flow. Furthermore, the viscous shear stress exhibits a very mild decay only at the
near-wall region, and subsequently, it exhibits a steady-state behaviour. On the other
hand, the Reynolds shear stress shows convergence at the inner region of the flow.
However, it experiences a substantial decay within the flow’s wake region, implying
a propagation of the turbulence decay mechanism throughout the core region. Near
the end of this period, the Reynolds shear stress slightly undershoots its final steady
state and rapidly recovers, maintaining a stationary behaviour. The turbulent inertia
and viscous force components of the mean momentum balance show a mild decay
within the near-wall region throughout this extensive period.

A modified version of the FIK identity was used to understand how the different flow
dynamics contribute to the changes observed in the skin friction coefficient as a function
of time. The skin friction coefficient (Cf ) was decomposed as the summation of three
different terms: the laminar Cδ

f , the unsteady CU
f and the turbulent CT

f contributions.
During stage I (inertial), it was observed that the decay in the skin friction coefficient
is dominated by the response of CU

f , which attains negative values with a significant
magnitude. The recovery of Cf within stage II (friction recovery) seems to be associated
with a rapid reduction in the magnitude of CU

f together with a slow decay of CT
f .
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In fact, at the end of stage II, the turbulent term becomes dominant. During stage III
(turbulence decay), the turbulent contribution exhibits a substantial decay. The decay in
CT

f , along stage III, is somehow balanced by a simultaneous growth in CU
f . Even though

the mean skin friction coefficient plateaus during stage IV (core relaxation), it is noted
that the turbulent contribution continues decaying at a slow pace. Near the end of the core
relaxation, CT

f and CU
f slightly undershoot and overshoot their final steady-state values,

respectively. This indicates that turbulence slightly decays below its final steady-state value
just before the flow attains its stationary state. Finally, CT

f and CU
f recover and attain a

quasi-steady value, indicating that the turbulent flow at a lower Reynolds number has fully
developed.

To further understand the behaviour of the turbulent component, it was decomposed
in terms of the velocity–vorticity correlations in the form CT

f = CT
f ,urωθ

+ CT
f ,uθωr

. This
additional decomposition reveals that CT

f ,urωθ
, related to the vorticity advection term, has

a negative influence on the turbulent contribution. On the other hand, CT
f ,uθωr

has positive
values and is the dominant contribution to the turbulent term.

An analysis of the temporal behaviour in the azimuthal vorticity flux has provided a
feasible mechanism of turbulence decay in a decelerating flow (although not the only
one). This analysis has revealed that a layer of negative vorticity produced at the wall
propagates in the wall-normal direction, possibly by diffusion and advection. As a result,
it may attenuate the pre-existing vorticity by cross-annihilation. The authors are aware that
a complete understanding of the turbulence decay mechanisms in temporally decelerated
wall-bounded flows requires further study. Hence, more investigations are required to shed
light on the different mechanisms responsible for turbulence decay in a decelerating flow.
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