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Abstract

In through-wall radar system, the wall parameters, including permittivity, and wall thickness
are of crucial importance for locating targets precisely. Recently, to obtain a quick and accur-
ate estimation of wall parameters, an approach based on machine learning was introduced.
However, these approaches are less reliable as only simulations results are presented. One
of the major concerns with machine learning-based approaches is the generation of training
and testing data which require fabrication of wall with different permittivity, thickness, and
conductivity. Creating walls with different permittivity, thickness, and conductivity can really
be challenging and expensive. Therefore, an effort has been made in this paper to establish a
cost-effective and robust machine learning-based wall parameter estimation process with the
usage of transmission line method and artificial neural network. The implementation and effi-
cacy of proposed approach have been demonstrated through simulation and experimental
results. The proposed approach quickly and accurately predicted the wall relative permittivity
and thickness of real building wall. The merit of proposed approach is that it is less complex
and computational efficient as it can extract wall parameters from only one measurement and
therefore can be used in conjunction with any commercial through-wall radar systems.

Introduction

Through-wall radar systems (TWRS) are a new non-destructive technology that can detect and
locate targets hidden behind a wall. TWRS can only locate the target if the exact wall para-
meters are known in advance. Ambiguities in wall parameters can cause the target image to
defocus and shift away from its true location [1]. Therefore, estimating exact wall parameters
is critical in real environment when there is access from the side of the wall.

In this regard, a number of researchers have presented their works. In general, there are
four different types of wall parameter estimate methods. The first is the trajectory intersection
method, which requires multiple measurements to be taken at varying standoff distances with
an array structure [2]. This method appears sophisticated and difficult to perform in a real-world
scenario because of the various measurements. The time-delay estimation approach likewise
needs at least two experiments to be run. The method calculates the parameters by measuring
the time delay caused by various antenna spacings [1, 3]. The second method is autofocussing,
in which behind-the-wall images are created using various wall characteristics and an image
focusing metric is derived [4–6]. The wall parameter is calculated by looking for a better-quality
focusing metric. It is computationally expensive and time demanding because it employs an
iterative optimization strategy. The third is a pole extraction approach based in which the
wall parameter can be estimated from frequency domain signal [7]. This method provides
quick and precise estimates, but it requires the need for measurement to be performed by
removing the wall to eliminate unwanted received signal other than the wall so that received
signal contains information about walls only, which limits its usefulness in practice. The fourth
is a machine learning-based method in which an SVM-based regression model is created to
build a relationship between scattered field and wall parameters [8–10]. Deep learning models
have also been introduced for simultaneous estimation of wall parameters and target location
[11–13]. These models have shown to yield quick and highly accurate results, but are less
reliable as only simulation results are shown. In addition, these models have shown to be
effective for the case of a single and double target, but this approach is not suitable for the
case of multiple targets. A comparison between different machine learning methods is
described in Table 1.

Differing to the method above, this paper introduces a cost-effective machine leaning-based
wall parameter estimation approach. The permittivity of the wall is influenced by the moisture
content and humidity, both of which are unknown and unexpected. One of the major con-
cerns with machine learning-based approaches is the generation of training and testing data
which require fabrication of wall with different permittivity, thickness, and conductivity.
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Creating walls with different permittivity, thickness, and conduct-
ivity can really be challenging and expensive. Therefore, an effort
has been made in this paper to establish a cost-effective (i.e. fab-
rication complexity, time complexity, and cost) and robust wall
parameter estimation process with the usage of transmission
line method and artificial neural network (ANN). ANNs were ini-
tially introduced to classify and recognize targets from radar
images [15, 16]. Recently, ANN has also been used in radar appli-
cations to resolve regression problems, such as soil moisture pre-
diction [17]. This research incorporates ANN into TWRS to
estimate the wall characteristics, drawing inspiration from these
effective implementations. In general, a larger neural network
with more weights and hidden nodes may be more effective at
problem-solving but require much greater computational
resources and longer training times. Therefore, in this paper, we
have considered smaller neural network architecture that needs
shorter training time and have less network complexity thereby
can be useful in real-time environment where speed is essential.
The performance of artificial neural network trained with dataset
of synthetic through-wall imaging (TWI) signal generated from
an equivalent transmission-line circuit model has been demon-
strated. Instead of creating separate regression functions for

each parameter and estimating each parameter by its own func-
tion, a two-stage ANN model is used to leverage the estimated
results of one parameter for the estimation of the other parameter.
The implementation and efficacy of proposed method have been
demonstrated through simulation and experimental results. The
proposed method is computationally efficient and provides accur-
ate results. The result of the paper is organized as follows. Section
“Analytical transmission line modeling of wall radar return”
describes analytical transmission line modeling of wall radar
return. Section “Proposed method for wall parameter estimation”
presents the proposed method for wall parameter retrieval.
Section “Implementation of ANN with simulation and experi-
mental validation” reports and discusses the experimental results.
Section “Conclusion” presents the conclusions.

Analytical transmission line modeling of wall radar return

As shown in Fig. 1, consider a homogeneous smooth wall made of
N layers sandwiched between two semi-infinite media, A and
B. Each layer of the wall has a thickness di and is infinitely long
in x and y directions but finite in z. Allow an electromagnetic
wave transmitted from an antenna placed at a certain standoff

Table 1. Comparison of machine learning-based wall parameter estimation methods

Reference Machine learning methods Main contribution Accuracy Computational complexity [14]

[8] Support vector machine Wall parameters estimation High Medium O(DN2
tr + N3

tr I)

[9] Support vector machine Wall parameters estimation High Medium O(DN2
tr + N3

tr I)

[10] Least square support vector machine Wall parameters estimation High Medium O(DNtr + N2
tr )

[11, 12] Deep neural network Simultaneous wall parameters
estimation and target localization

High High O(DNtrIL)

[13] Convolution neural network Simultaneous wall parameters
estimation and target localization

High High O(DNtrIL)

Proposed Single hidden layer dense neural network Wall parameter estimation High Low O(DNtrI )

Note: Ntr is the number of training instances, D is the dimensionality of data, I is the number of iterations and L is the number of layers for neural networks.

Fig. 1. Section view of a multilayer media consisting of N layers between two semi-infinite mediums and its equivalent transmission line model.
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distance to illuminate the wall. The electromagnetic wave in a uni-
form plane is normally incident on the wall from medium A. The
electric and magnetic field components of the wave are orthog-
onal to the propagation direction z, and thus the incident plane
wave is a TEM one.

The incident wave travels through the layers of the wall at vary-
ing phase velocities, and some of the energy is reflected and some
is transmitted at each interface. The propagation of a wave along
layers of wall can be described by electromagnetic field theory as
the propagation of a TEM wave along cascaded transmission line
sections, the crucial parameters being the characteristic impe-
dances Z and the propagation constants [18]. These parameters
change as the layer’s permittivity changes.

The frequency response of the N layers of wall can be evaluated
using the analogy shown in Fig. 1 by solving the corresponding
circuit equations.

In Fig. 1, the ith transmission line segment characteristic
impedance and electrical length can be written as [18]:

Zi = Z0���
1r

√ (1)

fi = bidi (2)

where,
Z0 is the vacuum’s characteristic impedance, εr is the layer’s

relative electric permittivity, and βi is the propagation constant
in the layer.

The propagation constant is proportional to the incident field’s
angular frequency as follows [18]:

bi =
v

c
���
1r

√ (3)

where c is the speed of light in vacuum, and ω is the angular fre-
quency of monochromatic incident field.

Let Ei represent the electromagnetic (EM) field that illuminates
the wall. The reflected and transmitted signals from the N trans-
mission line sections can be related to the incident signal using
the reflection and transmission coefficients, which are based on
well-established microwave circuit theory. The 2×2 matching
matrix [MM] and propagation matrix [PM] of any layer must
be evaluated in order to relate the reflected and transmitted sig-
nals to the incident signal [18]:

[PM]i = e−jfi 0
0 e−jfi

[ ]
(4)

[MM]i,i+1 =
1

ti,i+1

1 ri,i+1
ri,i+1 1

[ ]
(5)

where τi,i+1 and ρi,i+1 are the Fresnel coefficient between the ith

layer and the next one:
The relationship between the incident and reflected signal at

the input port and the transmitted field at the output port is writ-
ten as follows [18]:

Ei
Er

[ ]
= [MM]A,1 ·

∑N
i=1

[PM]i[MM]i,i+1

( )
Et
0

[ ]
(6)

Due to its infinite extension, the signal propagating in medium B
vanishes. The reflection and transmission coefficients of the N
layer are obtained by solving equation (6) for the unknowns Er
and Et [18]:

G = Er
Ei

(7)

T = Et
Ei

(8)

It can be shown that both coefficients are solely dependent on the
thickness d, the electric permittivity εr of the layers, and the elec-
tromagnetic wave’s angular frequency. If we assume a wall with N
layers, we may compute the amplitude and phase of reflection and
transmission coefficients across a given frequency range by adjust-
ing the frequency value in expression (6), which results in a com-
plex spectrum of reflected and transmitted signals represented as
[18]:

Er(v) = G(v)Ei(v) (9)

Et(v) = T(v)Ei(v) (10)

The time-domain reflected and transmitted signals, Er(t) and
Et(t), can be estimated using the inverse Fourier transform once
the complex spectra of complex spectra Er(t) and Et(t) have
been obtained. The reflected signal measured by the antenna,
Er(t), is what we are interested in here.

Proposed method for wall parameter estimation

A synthetic TWI time domain signal produced analytically by
equation (9) with various wall parameters is displayed to demon-
strate the influence of the wall parameters. Figure 2 shows a syn-
thetic TWI time domain with wall parameter variations. The first
two peaks in the received time domain signal are caused by reflec-
tions from the front and back sides of the wall due to the presence
of the wall. The maximum magnitude P1 of the first peak changes
with εr, P2 changes with εr, d, and the time delay t2 of the second
peak changes with εr and d, but t1 remains virtually unchanged.
As a result, the wall parameters are related to the maximum amp-
litude P1 and time t2.

The wall parameters can be calculated using the maximum
amplitude P1 and the time t2 once a relationship has been estab-
lished. We treat the problem as a regression problem in order to
establish the relationship. A two-stage artificial neural network
model for wall parameter estimation is used for this purpose.
The schematic diagram of the two-stage artificial neural network
model is shown in Fig. 3. In the first stage, the relationship
between P1 and εr will be established after training the input–out-
put sets. The model is the name given to this relationship. If the
testing data vector P1 is provided, the model predicts εr. An arti-
ficial neural model with one input layer, one hidden layer of 10
neurons, and one output layer is considered. The features
extracted from the received signals are represented by X in
ANN. The input is P1i, and the output is εri. As a result, data
(P1i, εri) are obtained, with i being the ith sample. Some samples
are chosen as training data G = {(P11, εri),…. (P1n, εrn)}, where n
is the number of training samples.
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In the second stage, the relationship between input εr, t2, and
output d will be established using the artificial neural network
model with one input layer, one hidden layer of 10 neurons,
and one output layer in the second stage. By taking into account
the fact that the parameters are coupled with each other in the
wall echoes, the estimation result of one parameter, 1̂r , will be
used to estimate the other parameter. As a result, data (t2i, εri)
are obtained, with i being the ith sample. Some samples are cho-
sen as training data G = {(t21, εri),…. (t2n, εrn)}, where n is the
number of training samples. Once the training is completed, the
peak maximum magnitude P1 of first peak and time delay t2 of
the second peak exploited from the time domain profile of mater-
ial under test can be given as input to trained ANN to get permit-
tivity and thickness of material under test (MUT).

Implementation of ANN with simulation and experimental
validation

Simulation results

The proposed method is validated with simulation data before it is
used to demonstrate its validity with experimental data. The wall
parameter estimation sample has been carried out in accordance

with the flow chart shown in Fig. 4 and the steps are given as
follows:

Step 1 – data generation: Training data were obtained by vary-
ing the relative permittivity, the thickness, and the conductivity
between. The 231 data set has been generated by in MATLAB.
To obtain the training data, initially a database was created of
synthetic TWI time domain signal obtained analytically
through equation (4) by varying the relative permittivity
between 2 and 7, the thickness between 0.1 and 0.3 m, and
the conductivity between 0.0025 and 0.01 S/m. Then, features
such as maximum amplitude P1 of the first peak and the
delay t2 of second peak were extracted from synthetic TWI
time domain signal.
Step 2 – training: The data set obtained from step 1 has been
presented as input vector to the artificial neural network for
training. Once the training is completed then the ANN is
ready for computation.
Step 3 – testing: The testing data of different samples was
obtained from CST simulation. The simulation was done in
CST microwave studio to imitate the actual configuration for
this purpose. Different samples as rectangular slabs of various
thicknesses and permittivity were used in the simulation. For
more precision, the simulation is performed using a time
domain solver with 10 hexagonal cells per wavelength. On
the rectangular slab, a transverse electromagnetic (TEM)
wave is generally incident. The boundary conditions are
selected in such a way that the structure supports the TEM
mode of propagation as the dominant mode in order to
allow plane wave propagation.

Initially, a brick sample with a relative permittivity of 2.5 and a
thickness of 10 cm was used as MUT. For the frequency range
of 1–3 GHz, the S-parameter S11 is computed. The inverse
Fourier transform is then used to translate the S parameter
from the frequency domain to the time domain. The sample per-
mittivity and thickness were calculated using the proposed
scheme and found to be, which is quite near to the given values,
resulting in relative permittivity and thickness estimation errors of
4 and 7%, respectively. Furthermore, as indicated in Table 2, the
relative permittivity and thickness values of brick samples atFig. 3. Schematic diagram of the two-stage artificial neural network model.

Fig. 2. Plot of synthetic time domain profile with various wall parameters.
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various thicknesses have been determined. The simulations were
also run on various samples of various materials with varying
thicknesses, with the estimated results displayed in Table 2. The
simulations have also been carried out with different samples of
different thicknesses in the frequency range of 3.5–5.5 GHz and
their estimated results are shown in Table 3. It can be seen that
the proposed scheme successfully estimated the relative permittiv-
ity and thickness of various samples with varying thicknesses with
high accuracy.

Experimental results

The method is examined using experiment data to demonstrate
the efficiency of the estimation approach. The wall parameter esti-
mation sample has been carried out in accordance with the flow
chart shown in Fig. 4. First, the 231 training data were generated
by varying the relative permittivity, the thickness, and the con-
ductivity between. To obtain the training data, initially a database
was created of synthetic TWI time domain signal obtained analyt-
ically through equation (4) by varying the relative permittivity

Fig. 4. Flowchart of proposed method for wall parameter estimation.

Table 2. Result of estimated relative permittivity and thickness of various samples with varying thicknesses in frequency range 1–3 GHz

Samples Actual εr Estimated εr Error (%) Actual d (cm) Estimated d (cm) Error (%)

Brick 2.5 2.6 4 15 16.1 7.3

Brick 2.5 2.6 4 20 20.2 1

Brick 2.5 2.6 4 30 29.4 2

Adobe 4.5 4.5 0 15 14.5 3.3

Adobe 4.5 4.7 4.4 20 19.1 4.5

Adobe 4.5 4.7 4.4 30 28.6 4.6

Concrete 6.5 6.7 3 15 15.7 4.6

Concrete 6.5 6.8 4.6 20 19.9 0.05

Concrete 6.5 6.8 4.6 30 28.5 5
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between 2 and 7, the thickness between 0.1 and 0.3 m, and the
conductivity between 0.0025 and 0.01 S/m. Then, features such
as maximum amplitude P1 of the first peak and the delay t2 of
second peak were extracted from synthetic TWI time domain sig-
nal. The dataset presented as input vector to the artificial neural
network for training to predict wall parameters. The testing
data were obtained with measurement set-up which consists of
a horn antenna, which was connected to the vector network ana-
lyzer through a coaxial wire. The horn antenna was placed in
front of the wall. The background subtraction was done initially
to remove antenna mismatch. Initially, a real building wall of
unknown permittivity with a thickness of 14.5 cm is considered.
S11, the scattering parameter, was measured throughout a fre-
quency range of 3.5–5.5 GHz during the experiment. The data
measured in frequency domain were converted to time domain
by inverse Fourier transform. The time domain plot of real build-
ing wall of unknown permittivity and thickness 14.5 cm is shown
in Fig. 5. The proposed scheme was used to estimate the wall per-
mittivity and thickness, and their values are shown in Table 4. In
addition, as indicated in Table 4, the relative permittivity and
thickness values of a different wall with thicknesses of 30 cm
and unknown permittivity have also been estimated. It can be
observed that the estimated value of thickness of both walls
using proposed method was found to be very close to their actual
values. In order to check the reliability of the proposed method,
the effective permittivity was estimated using pole extraction
method [7], as shown in Table 4. As evident, the estimated
value of effective permittivity of both walls using proposed
method were found to be very close to the values determined
using [7].

Our method estimated the wall parameters from the signal,
which contained information about the targets on the other
side of the wall. Our study’s experimental findings showed that
our approach is adequately resilient to real-world challenges.
Real building materials are often inhomogeneous. The wall can
be considered to be homogeneous with an effective permittivity,
though, if the inhomogeneities are less in size than the range reso-
lution [3]. It is obvious that with uniform homogeneous walls best
results can be obtained. However, we have shown that the
approach is capable of handling actual building walls.
Obviously, not all possible real-world scenarios are suitable for
our method (e.g. with multilayered or strongly inhomogeneous

Table 3. Result of estimated relative permittivity and thickness of various samples with varying thicknesses in frequency range 3.5–5.5 GHz

Samples Actual εr Estimated εr Error (%) Actual d (cm) Estimated d (cm) Error (%)

Brick 3.5 4.1 17 10 8.7 13

Concrete 5.5 6.0 9 10 9.7 3

Concrete 5.5 5.9 7.2 20 19.2 4

Concrete 5.5 5.9 7.2 30 29.8 0.6

Glass 6.5 6.3 3 10 9.6 4

Glass 6.5 6.7 3 20 19.2 4

Glass 6.5 6.5 0 30 29.8 0.6

Fig. 5. The time domain plot of real building wall of
unknown permittivity and thickness 14.5 cm.

Table 4. Result of estimated relative permittivity and thickness of two real
building walls of different thicknesses

MUT
Parameter estimated
using different method

Actual
value

Estimated
value

Wall 1
Relative permittivity
(proposed)

2.5–6 3.5

Thickness (proposed) 14.5 cm 13.8 cm

Relative permittivity 2nd
method [7]

2.5–6 3.5

Wall 2
Relative permittivity
(proposed)

2.5–6 5.6

Thickness (proposed) 30 cm 30 cm

Relative permittivity 2nd
method [7]

2.5–6 5.4
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wall structures). In these cases, identifying the time delays that
correspond to the back side of the wall will be more difficult
and will almost certainly necessitate the assistance of the radar
operator. The proposed method requires time-domain signals as
the reference signal with metallic plate and in free-space, respect-
ively. However, these data can be acquired in the laboratory and
stored in the memory of a through-wall device.

Conclusion

This research work has been carried out with an intention to
develop cost-effective solutions of machine learning-based wall
parameter estimation for TWI applications. An effort has been
made in this paper to establish a cost-effective and robust wall
parameter estimation process with the usage of transmission-line
circuit model and artificial neural network. The synthetic TWI
signal generated by an equivalent transmission-line circuit
model was used to train the artificial neural network. The simu-
lation and experimental results demonstrated that the ANN
model can predict the wall parameters accurately and quickly.
The proposed scheme estimated wall permittivity and thickness
value of real building wall close to the value determined with
pole extraction method. The proposed method is simpler and
computationally efficient. As only one snapshot is required, the
ANN predictor is more suitable for TWRI and can be executed
simultaneously in real time. Furthermore, the less stringent fre-
quency requirement makes it more robust.
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