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Compelling evidence exists for the cardioprotective benefits resulting from consumption of
fatty acids from fish oils, EPA (20:5n-3) and DHA (22:6n-3). EPA and DHA alter membrane
fluidity, interact with transcription factors such as PPAR and sterol regulatory element binding
protein, and are substrates for enzymes including cyclooxygenase, lipoxygenase and cyto-
chrome P450. As a result, fish oils may improve cardiovascular health by altering lipid
metabolism, inducing haemodynamic changes, decreasing arrhythmias, modulating platelet
function, improving endothelial function and inhibiting inflammatory pathways. The indepen-
dent effects of EPA and DHA are poorly understood. While both EPA and DHA decrease TAG
levels, only DHA appears to increase HDL and LDL particle size. Evidence to date suggests
that DHA is more efficient in decreasing blood pressure, heart rate and platelet aggregation
compared to EPA. Fish oil consumption appears to improve arterial compliance and endothelial
function; it is not yet clear as to whether differences exist between EPA and DHA in their
vascular effects. In contrast, the beneficial effect of fish oils on inflammation and insulin
sensitivity observed in vitro and in animal studies has not been confirmed in human subjects.
Further investigation to clarify the relative effects of consuming EPA and DHA at a range of
doses would enable elaboration of current understanding regarding cardioprotective effects of
consuming oily fish and algal sources of long chain n-3 PUFA, and provide clearer evidence for
the clinical therapeutic potential of consuming either EPA or DHA-rich oils.

EPA: DHA: n-3 fatty acids: Cardiovascular risk: Vascular function

In the late 1970s, Dyerberg and Bang(1) were the first to
highlight the cardioprotective effect of dietary long chain
n-3 PUFA (n-3 LCP) present in oily fish in the Inuit
population. It is now widely accepted that habitual oily fish
and fish oil intake decreases the risk of CVD(2,3) such as
fatal CHD(4,5) and stroke(5,6). Over the past 30 years, the
mechanisms by which fish oils improve cardiovascular
health have been extensively investigated, showing anti-
inflammatory, anti-arrhythmic and anti-aggregatory effects,
as well as an improvement in endothelial function (EF).
Responding to the abundance of evidence, national and
international organisations encourage an increased fish oil
consumption(7,8). n-3 LCP from fish oils include EPA

(20:5n-3) and DHA (22:6n-3), and have been developed
commercially as dietary supplements. Recent evidence
from randomised controlled trials has produced equivocal
results(9–11). Heterogeneity of the studies in terms of
dosage, duration, population target, sample size, as well as
the relative amount of EPA and DHA used in supplements
could account for the variability of the results. Since the
appearance of purified forms of DHA on the market in the
1990s, researchers have started to investigate the differ-
ential effects of EPA and DHA on cardiovascular health.
However, the number of human studies is still limited in
this field and the independent effects of EPA and DHA on
various cardiovascular outcomes are yet to be firmly
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established. Further understanding in this field is needed to
define optimal doses of EPA and/or DHA in order to target
different metabolic disorders, and to assess the relative
efficiency of algal DHA, which could be used as a source
of n-3 LCP in vegetarians.

Structure, formation and metabolism of EPA and DHA

EPA and DHA are derived from another n-3 PUFA,
a-linolenic acid (a-LNA; 18:3n-3) (Fig. 1), which is found
in common vegetable oils, such as linseed or walnut oils.
a-LNA is an essential fatty acid, i.e. it has to be provided in
the diet as human subjects are unable to synthesise it. Some
studies suggested that a-LNA has cardioprotective effects,
but evidence is not as robust as for EPA and DHA and there
are insufficient data to encourage increasing a-LNA con-
sumption(12) in order to reduce cardiovascular risk. Human

subjects can only convert a-LNA to longer-chain n-3 LCP at
a very low rate, especially DHA(13,14), and the reduced
potency or absence of effect of dietary a-LNA in improving
cardiovascular risk factors suggests that dietary intake of n-3
fatty acids in the form of oily fish or supplements is desirable
for optimal health. Cardioprotective benefits of a-LNA are
mainly attributed to competition for D6-desaturase with
linoleic acid (C18:2n-6), found in abundance in vegetable
oils, seeds and nuts, and a precursor for arachidonic acid
(AA; C20:4n-6), also directly obtained from animal sources
including meat, eggs and dairy products, leading to produc-
tion of more EPA and less AA. EPA competes with AA
through the cycloxygenase (COX) and lipoxygenase (LOX)
pathways, leading to a set of lipid mediators that improve
vasodilation and decrease inflammation, as well as aggre-
gation. Upon the action of aspirin, EPA and DHA can be
converted by the COX and LOX pathways into similar
families of resolvins, E and D series, respectively(13).

Fig. 1. Outline of the formation of EPA and DHA and their metabolites. a-LNA, a-linolenic acid;

DPA, docosapentaenoic acid; COX, cyclooxygenase; LOX, lipoxygenase; CYP450, cytochrome

P450 enzymes; TX, thromboxanes; LT, leukotriene; EEQ, epoxyeicosatetraenoic acid;

HEPE, hydroxyeicosapentaenoic acid; EDP, epoxydocosapentaenoic acid; HDoHE, hydro-

xydocosahexaenoic acid.
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In addition, both EPA and DHA compete with AA for
the cytochrome P450 (CYP450) enzymes, leading to the
formation of important mediators of vasodilation(15). These
EPA- and DHA-derived eicosanoids are likely to exert
varying effects within the cardiovascular system.
DHA possesses a longer carbon chain and one more

double bond than EPA, which is thought to be the reason
for the greater influence of DHA on membrane fluidity and
cholesterol content(16), and thus on the activity of membrane
protein or ion channels. EPA and DHA, as well as their
broad range of derivatives, may also have a differential
effect on transcription factors such as PPAR(17), NF-kB(18)

or sterol regulatory element binding protein (SREBP)(19),
with subsequent differences in lipid metabolism, insulin
sensitivity and inflammation. This review will explore the
differential effects of EPA and DHA in human subjects
and relate it to possible molecular mechanisms.

Effects of EPA and DHA on plasma lipid and
lipoprotein metabolism

Dyslipidaemia, specifically hypertriglyceridemia, hyper-
cholesterolemia and/or a low HDL cholesterol level, is a
major risk factor for development of atherosclerosis and
CVD. The cardioprotective effects of fish oils are partially
attributed to their TAG-lowering action, while their effect
on cholesterol levels appears weak or inexistent.

Effect of EPA and DHA on TAG levels

Raised fasting and postprandial TAG concentrations are now
widely recognised as markers of cardiovascular risk(20,21).
There is strong evidence from epidemiological and inter-
vention studies that EPA+DHA consumption decreases
TAG levels(22), thus improving cardiovascular health, and
this appears to be dose-dependent(23). When administered
individually for 6 weeks or more, both EPA and DHA

decrease TAG levels in normolipidaemic(24,25) and hyperli-
pidaemic subjects(26) from 15 to 30%. Interventions of £ 4
weeks are less consistent. One study showed that 3 weeks of
supplementation with EPA or fish oil, but not DHA reduced
TAG levels in healthy human subjects(27). More recently,
Buckley et al.(28) showed that 4 weeks of supplementation
with DHA significantly reduced TAG levels in normolipi-
daemic human subjects by 22%, while EPA decreased TAG
levels by 15% without reaching significance. In another 4-
week intervention in healthy human subjects, both EPA and
DHA reduced postprandial TAG without affecting fasting
TAG levels(29). However, when given for a sufficient
period, EPA and DHA seem to reduce triglyceridaemia with
no apparent differential effect (24–26,28–32) (Table 1).

Effect of EPA and DHA on lipoprotein profiles

Fish oils generally have no effect on total cholesterol but
their influence on LDL and HDL cholesterol is variable,
depending on the dose, form and population. Meta-analysis
of EPA+DHA supplementation studies showed a very
slight increase in LDL (n14009) and HDL (n15106)
cholesterol levels, but these were clinically insignificant(22).
The majority of studies investigating the effect of algal DHA
(that also contains docosapentaenoic acid, 22:5n-3) reported
a moderate but significant increase in both HDL and LDL
levels(33–37). Few studies have reported the differential effect
of purified EPA and DHA from fish oils on plasma LDL and
HDL cholesterol. Relatively high doses of DHA (2–4g/d;
6–7 weeks) increased HDL levels by 4–13% in normolipi-
daemics, whereas similar doses of EPA had no effect(24,25).
However, DHA but not EPA (3.7 and 3.8 g/d, respectively,
6 weeks) increased total LDL by 8% in hyperlipidaemic
subjects, while no significant effect was observed on total
HDL levels(26). Our recent research observed that
neither EPA nor DHA (3 g/d, 6 weeks) affected TAG, HDL

Table 1. Differential effect of EPA and DHA supplementation on plasma fasting TAG levels in human subjects.

Duration

(weeks)

Design and

sample size Population

Fatty

acid Form

Dose

(g/d)

Effect on

TAG levels Control Reference

Parallel Normolipidaemic human subjects EPA Spread 2.2 fl (15%) None (25)

n 74 DHA 2.3 fl (31%)

4 Parallel Normolipidaemic human subjects EPA EE 4.8 fl (15%, NS) Olive oil (28)

n 42 DHA 4.9 fl (22%)

6 Parallel Hyperlipidaemic human subjects EPA EE 3.84 fl (18%) Olive oil (26)

n 56 DHA 3.68 fl (20%)

7 Parallel Normolipidaemic human subjects EPA EE 3.8 fl (21%) Corn oil (24)

n 224 DHA 3.6 fl (26%)

4 Crossover Normolipidaemic human subjects EPA TAG 3.3 fl (28%) Palmolein

soyabean

oil mix

(30)

n 38 DHA 3.7 fl (19%)

6 Parallel T2D human subjects with treated

hypertension

EPA EE 3.84 fl (15%) Olive oil (31)

n 50 DHA EE 3.68 fl (19%)

7 Parallel Dyslipidaemic human subjects EPA EE 3.04 fl (23%) Olive oil (32)

n 38 DHA EE 2.84 fl (32%)

4 Parallel Normolipidaemic human subjects EPA EE 3.8 = Safflower oil (29)

n 33 DHA EE 3.8 =

EE, ethyl ester; NS, non-significant; T2D: type 2 diabetes; fl, decrease; = , no change.
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or LDL cholesterol levels in normolipidaemic young men
(SC Cottin, TAB Sanders and WL Hall, unpublished
results).
Beyond cholesterol levels, LDL and HDL subfractions

have emerged as candidate markers of cardiovascular risk.
LDL particle size correlates negatively with TAG levels
and positively with HDL levels(38). Larger HDL (HDL-2)
carry more cholesterol and are more protective than their
counterpart (HDL-3)(39). In general, dietary fish oil
increases HDL-2 levels(40,41), sometimes without a sig-
nificant change of HDL level(42), and also decrease small
dense LDL levels(41,43). When given individually, DHA
but not EPA increased both LDL and HDL particle size in
hyperlipidaemic and healthy human subjects(26,27),
although EPA alone also increased HDL-2:HDL-3 in
hypercholesterolaemic subjects(44). High doses of DHA
alone (3 g/d, 45 d) also increased LDL particle size in
hypertriglyceridaemic men(35), whereas low doses of DHA
alone (0.7 g/d) increased LDL by 7% and LDL:apoB ratio
by 3.1% in middle-aged women and men(45), suggesting an
increase in LDL size.
Hypertriglyceridaemia is a result of overproduction

and/or decreased catabolism of TAG-rich lipoproteins,
including VLDL and chylomicrons. There is growing evi-
dence that EPA and DHA exert their TAG lowering effects
by reducing VLDL TAG release from the liver and by
increasing TAG clearance from chylomicrons and VLDL
particles(46), as well as altering VLDL concentration and
particle size(47). The potential molecular mechanisms have
been comprehensively reviewed by Harris et al.(46) and
notably involves the modulation of transcription factors
activity, including SREBP and PPAR. SREBP-1c controls
enzymes responsible for fatty acid and TAG synthesis,
while SREBP-2 modulates enzymes involved in choles-
terol synthesis. In animal and in vitro models, both EPA
and DHA were reported to down-regulate SREBP-1c
activity, and this was associated with a decrease in lipo-
genic enzymes expression(19,48,49). In addition, both EPA
and DHA are PPAR ligands and EPA and DHA stimulate
b-oxidation of fatty acids through PPARa-dependent
mechanisms in rats(50), thus contributing to the decrease
in TAG release by the liver. Lipoprotein lipase, located in
capillary endothelium, hydrolyses circulating TAG in
TAG-rich lipoprotein, generating NEFA. EPA and DHA
(4 g/d, 4 weeks) were equally as effective in accelerating
chylomicron TAG clearance by stimulating lipoprotein
lipase activity in healthy human subjects(29); possibly via
PPARg-dependent mechanisms(51).
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase is a

key enzyme in cholesterol synthesis and is inhibited by
both EPA and DHA in hepatocytes, probably through
SREBP-2 dependent mechanisms(52,53). Although HMG-
CoA reductase inhibitors (statins) are well known for their
hypocholesterolemic effect, this has not been a consistent
outcome of fish oils consumption. However, a common
mechanism for statins and EPA/DHA may be related to
increasing LDL and HDL particle size(54–56); in fact n-3
LCP and statins may exert a synergistic beneficial effect on
lipid levels(57), and it can be postulated that EPA and DHA
modulate particle size by a mechanism analogous to that of
HMG-CoA reductase inhibitors(58).

In summary, both DHA and EPA reduce fasting plasma
TAG concentrations with no apparent differential effect,
probably by inhibiting VLDL-TAG release and increasing
TAG clearance. DHA appears to increase HDL and LDL
particle size through the regulation of cholesterol synthesis
and lipid transfer between lipoprotein.

Effects of EPA and DHA on haemodynamics

Blood pressure

Hypertension is a strong predictor of cardiovascular risk,
and there is convincing evidence that reducing blood
pressure (BP) decreases the risk of total mortality, cardio-
vascular mortality and stroke(59,60). Numerous epidemi-
ological and intervention studies have demonstrated a
hypotensive role of fish oils(61). In a meta-analysis of
thirty-one placebo-controlled trials, Morris and co-workers
showed that fish oils reduced BP with a dose-dependent
effect (systolic BP/diastolic BP: - 0.66/- 0.35mm Hg/g n-3
fatty acids), and so is of potential benefit to patients with
hypertension, atherosclerosis or hypercholesterolaemia(62).
A more recent meta-analysis of thirty-six intervention trials
confirmed the hypotensive role of fish oils on both systolic
BP and diastolic BP, especially in elderly and hypertensive
patients, although the clinical effect of doses lower than
0.5 g/d, equivalent to one portion of oily fish a week, could
not be established(63). Few human studies have investi-
gated the separate effects of EPA and DHA on BP; these
have generally been assessed by seated office measure-
ments, with no significant lowering effects in hypertensive,
dyslipidaemic and healthy human subjects(31,32,64). How-
ever, low doses of DHA alone (from algal sources) were
shown to decrease diastolic BP in healthy subjects(65).
Ambulatory BP, where monitors are worn and take read-
ings at regular intervals over 24 h, considered to be an
estimate of the true mean BP level(66), is more sensitive
than the conventional office BP in predicting cardiovas-
cular events(67,68). Mori and co-workers investigated the
effect of 6-weeks supplementation with EPA or DHA (4 g/
d) on ambulatory BP and showed that DHA but not EPA
decreased both 24 h and daytime systolic and diastolic
ambulatory BP in mildly hyperlipidaemic males(69).

Heart rate

A high heart rate (HR) has been long associated with
cardiovascular morbidity and mortality in epidemiological
studies. It is positively correlated with hypertension and has
only recently emerged as an independent cardiovascular risk
factor to be targeted to reduce cardiovascular events, espe-
cially in high-risk populations(70). A meta-analysis including
thirty randomised controlled trials showed that fish oil intake
reduces HR, especially in populations with a high-baseline
HR and when consumed for a longer intervention
period(71). This effect appears to be mediated by DHA rather
than EPA: DHA alone (2.8 g/d) decreased HR by 7% in
postmenopausal women(72), and DHA but not EPA
decreased HR by 3.5 beats per minute (bpm) and 2.2 bpm, in
hyperlipidaemic males(69) and healthy males(64), respec-
tively. In contrast, Woodman and co-workers showed no
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significant effect of neither EPA nor DHA on HR in healthy
males for similar dosage and treatment duration(31).
HR variability (HRV) is also a strong predictor of

CVD, including sudden cardiac death, arrhythmic CHD and
atrial fibrillation. Fish oils have shown anti-arrhythmic
properties in animal studies(73), and several clinical and
epidemiological studies have reported an association be-
tween an increase (improvement) of HRV and n-3 LCP
blood cell levels and/or fish oil consumption(74–76). How-
ever, fish oils fail to improve HRV in several other human
interventions. For example, n-3 LCP supplementation did
not increase HRV in haemodialysis patients(77), and failed to
increase HRV calculated from 10min recordings(78) or 24 h
Holter recordings(79) in healthy men. Nevertheless, the
authors of the latter study noted that subjects presented with
a particularly high baseline HRV, and subanalysis showed
a significant improvement of HRV for subjects with lower
baseline values(79). Inconsistency in the results of inter-
vention trials might be due to variability of design, treatment
duration, sample size or duration of HRV measurement; a
prospective observational study (n 4263) reported that fish
oil consumption, recorded over a year, correlated with an
improvement of HRV, especially in older people(80).
As previously mentioned, the incorporation of EPA and

DHA into the cell membrane influences its organisation,
fluidity and permeability, as well as the activity of trans-
membrane proteins, including receptors, enzymes and
ion channels. Both EPA and DHA were shown to modulate
K, Na and Ca channel activities in myocardial cells,
regulating myocyte electrical excitability and contrac-
tility(81–83). These effects, observed in a concentration-
dependent manner, are thought to be mediated by the effect
of EPA and DHA on membrane fluidity(83), although other
mechanisms, such as direct binding of n-3 LCP to the chan-
nel could be involved(84). Furthermore, there is growing
evidence from animal studies that DHA, compared to EPA,
is preferentially incorporated into the myocardial cell mem-
brane(73). Collectively, these findings help to explain the
anti-arrythmic and HR-lowering effects observed with DHA
but not EPA in human subjects(69). In addition, incorporation
of DHA into the membrane of cardiomyocytes influences the
beta adrenergic system to a greater extent than EPA(85),
potentially an important mechanism in the hypotensive and
anti-arrhythmic effects of DHA. DHA incorporation into the
membrane of endothelial cells stimulates ATP release from
the endothelium, increasing vasodilation by stimulating
nitric oxide (NO) release(86). The induction of NO release,
together with the decrease in noradrenaline levels, is likely to
be responsible for the BP-lowering effect of DHA(86).
DHA, but not EPA, seems to have lowering effects on

BP and HR, very probably mediated by the increased
fluidity in the membrane cardiomyocytes, potentially im-
proving channel activity and beta adrenergic signalling.
More studies are necessary to confirm this differential
effect and understand the mechanisms involved.

Effects of EPA and DHA on endothelial function
and arterial compliance

Endothelial dysfunction is a key early event in the devel-
opment of atherosclerosis and is characterised by an

imbalance between molecules produced by the endo-
thelium, impairing vasodilation, inflammatory status and
haemostasis. In human subjects, EF can be assessed by
measuring plasma markers of EF, including NO and pros-
tacyclin metabolites (the two main vasodilators) or markers
of endothelial damage and/or activation, such as soluble
thrombomodulin, von Willebrand factor or E-Selectin.
EF can also be assessed by non-invasive techniques such
as plethysmography and flow-mediated dilation (FMD) or
invasive techniques like forearm blood flow, with FMD
being more commonly used. These techniques can also
be used to measure endothelium-independent vascular
response (using NO donors, or NO synthase (NOS) inhi-
bitors) or vasoconstrictive response. Endothelium-derived
mediators influence vascular tone and structure, thus
influencing arterial stiffness and microvascular function.
Non-invasive techniques have been developed to measure
arterial stiffness/compliance in order to assess vascular
function, which include pulse wave analysis, pulse wave
velocity(87) and digital volume pulse(88).

Endothelial function

Animal studies demonstrated that EF could be modulated
by feeding EPA and DHA(89–91). An observational study
reported that plasma and erythrocyte DHA levels were
positively associated with FMD in young smokers and
young adults at greater metabolic risk(92). Recent findings
suggest that fish oil consumption can improve EF in
human subjects, particularly in those with a high risk
of CVD (Table 2). Supplementation with n-3 LCP for
periods ranging from 2 weeks up to 8 months improved
endothelium-dependent vasodilation, prevented vasocon-
striction or augmented exercise-induced blood flow at
doses ‡0.5 g/d(93–107).

The comparative effects of EPA and DHA on EF have
been seldom investigated in human subjects (Table 2).
Supplementation with EPA alone (1.8 g/d; 3 months) in-
creased endothelium-dependent forearm blood flow response
in untreated hypertriglyceridaemic males(108), whereas DHA
alone (1.2 g/d; 6 weeks) improved endothelium-dependent
FMD in hyperlipidaemic children receiving nutritional
counselling(109). Supplementation with low doses of algal
DHA did not affect salbutamol-induced changes in digital
volume pulse reflection index (a measure of endothelium-
dependent vasodilation), but more extensively validated
techniques such as FMD are required to confirm this(65).
When the vasodilatory effects of high doses of EPA and
DHA (4 g/d, 6 weeks) were compared in overweight mildly
hyperlipidaemic males, DHA, but not EPA, decreased
vasoconstrictive responses to noradrenaline and increased
vasodilatory responses to acetylcholine(97). However, DHA
(but not EPA) also increased vasodilation in response to
the co-infusion of acetylcholine and NG-monomethyl-L-
arginine citrate (an NOS inhibitor), as well as sodium
nitroprusside (a NO donor), suggesting that the vasodilatory
effects of DHA were mainly mediated through endothelium-
independent mechanisms(97). In healthy volunteers, fish oil
concentrate, but not EPA alone, increased urinary excre-
tion of NO metabolites (nitrates/nitrites), suggesting that
EPA is unlikely to be responsible for the enhancement of
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Table 2. Effect of fish oils on endothelial function in human randomised controlled trials.

Durationj
(weeks) Design Population Dosage Measurement Effect Function assessed References

Fish oils

6 Cross-over T2D patients 2 g/d Fasting FMD = EF (fasting) (106)

n 34 Fasting RH (Doppler) = EF (fasting)

Postprandial FMD › EF (postprandial)

Postprandial RH › EF (postprandial)

12 Parallel Elderly 2.5 g/d RH (mercury strain gauge

plethysmography)

› EF (104)

n 46 NOx › EF

vWF = ED/EA

E-selectin = ED/EA

Endothelin = ED/EA

12 Parallel Offsprings of T2D 2g/d FMD › EF (102)

n 50 VCAM = ED/EA

ICAM = ED/EA

E-selectin = ED/EA

12 Parallel PAD patients 2 g/d FMD › EF (103)

n 32 sTM fl ED/EA

24 Parallel Lupus erythematosus

patients n 60

3 g/d FMD › EF (107)

2 Parallel Healthy subjects 1 g/d FMD › EF (98)

n 26 FMD +GTN › Endothelium

independent

vasodilation

6 Crossover Chronic heart failure

patients (>65-year-old)
3 g/d FBF +Ach › EF (105)

n 20 FBF +SNP = Endothelium

independent

vasodilation

FBF +AT-II = Vasoconstriction

FBF + L-NAME = Vasoconstriction

6 Parallel Healthy subjects 5 g/d BA diameter (post contraction) › EF (101)

n 13 BA conductance (post contraction) › EF

BA blood flow (post contraction) › EF

32 Parallel Healthy subjects 1.1–1.2 g/d Laser Doppler +Ach › EF (95)

n 173 Laser Doppler +SNP = Endothelium

independent

vasodilation

16 Parallel Hypercholesterolemic subjects 4 g/d FMD › EF (94)

n 30 FMD +GTN = Endothelium

independent

vasodilation

4 Parallel Healthy subjects 1.5–5.9 g/d FBF +NAd fl Vasoconstriction (93)

n 29 +AT-II fl Vasoconstriction

6 Crossover T2D patients 3 g/d FBF +Ach › EF (96)

2
2
0
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Table 2 (Continued)

Durationj
(weeks) Design Population Dosage Measurement Effect Function assessed References

n 23 +GTN = Endothelium

independent

vasodilation

EPA

12 Parallel Untreated

hypertriglyceridaemic

subjects

1.8 g/d FBF +Ach › EF (108)

n 15 FBF +SNP = Endothelium

independent

vasodilation

DHA

6 Crossover Hyperlipidaemic children 1.2 g/d FMD › EF (109)

n 20 ADMA = ED/EA

12 Crossover Healthy subjects 0.7 g/d sTM = ED/EA (65)

n 38 vWF = ED/EA

E-selectin = ED/EA

EPA v.

DHA

6 Parallel Overweight mildly

hyperlipidaemic

subjects

4 g/d EPA FBF +NAd = Vasoconstriction (97)

FBF +Ach = EF

FBF +Ach + L-NMMA = Endothelium

independent

vasodilation

FBF +SNP = Endothelium

independent

vasodilation

DHA FBF +NAd fl Vasoconstriction

n 56 FBF +Ach › EF

FBF +Ach + L-NMMA › Endothelium

independent

vasodilation

FBF +SNP › Endothelium

independent

vasodilation

T2D, type 2 diabetes; PAD, peripheral arterial disease; CAD, coronary artery disease; FMD, flow-mediated dilation; RH, reactive hyperaemia; BA, brachial artery; EF, endothelial function; ED/EA, endothelial
dysfunction/endothelial damage; NOx, nitrates/nitrites; vWF, von Willebrand factor; VCAM, vascular cell adhesion molecule; ICAM, intercellular adhesion molecule; sTM, soluble thrombomodulin; FBF, forearm blood
flow; Ach, acetylcholine; SNP, sodium nitroprusside (NO donor); L-NAME, nitro-L-arginine-methyl ester (NOS inhibitor); GTN, glyceryl trinitrate (NO donor); AT-II, angiotensin II; NAd, noradrenaline (norepinephrine);
ADMA, asymmetrical dimethylarginine; L-NMMA, NG-monomethyl-L-arginine.

›, increase; fl, decrease; = , unchanged.
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NO production(110). In summary, there are too few data to
conclude whether EPA and DHA have differing effects on
endothelium-dependent vasodilation, but early indications
are that DHA might be more effective in improving EF.

Arterial compliance

Little is known about the influence of dietary n-3 LCP
on arterial stiffness, although it has been observed that
Japanese populations with higher intakes of n-3 LCP have
reduced arterial stiffness(111), and the results of two ran-
domised controlled trials indicate a beneficial effect(112,113).
Even less is known about the individual effects of either
EPA or DHA. Three-month supplementation with low
doses of DHA (0.7 g/d) in healthy subjects had no effect on
indices of arterial stiffness using digital volume pulse,
suggesting that either larger doses are necessary for mea-
surable changes to occur during that time period, that fish
oil is more effective in subjects at greater cardiovascular
risk (our group also found no effects of 3 g/d EPA or DHA
for 6 weeks in young healthy males (SC Cottin, TAB
Sanders and WL Hall, unpublished results)) or lastly, that
EPA rather than DHA is the active constituent of fish oil in
relation to arterial stiffness(65). In support of this, EPA
supplementation (1.8 g/d; 3 months) improved pulse wave
velocity and cardio-ankle vascular index in obese Japanese
subjects, the latter measure being a novel index of arterial
stiffness that is less influenced by BP than pulse wave
velocity(114). The same dose of EPA consumed for 12
months by hyperlipidaemic patients also prevented the
increase of pulse wave velocity due to ageing, even after
adjustment for gender, age and BP change(115). However,
not all evidence supports the theory that EPA is the sole
active constituent of fish oil in relation to arterial stiffness;
the only trial to compare the individual effects of EPA and
DHA showed that 7 weeks supplementation with EPA
increased systemic arterial compliance in dyslipidaemics
by 36% and DHA increased it by 27%, with no significant
differences in the size of the effect between the two
groups(32).
Microvascular dysfunction, as observed in hypertensive

and insulin-resistant states, is characterised by capillary
rarefaction in skin and muscle(116,117). Fish oil supple-
mentation increased capillary density in ventricles(118) and
skin (cheek pouch)(119) in hypertensive rats and hamsters,
respectively, suggesting there might be beneficial effects
on human microvasculature. Videomicroscopic techniques
(capillaroscopy) have been developed and used in human
subjects in order to look at microcirculation in the skin and
oral mucosa (tongue), which are readily accessible for
microscopic measurements (see comprehensive review(120)).
Capillaries appear either parallel (loops) or perpendicular
(dot or comma shaped) to the skin, and can be analysed in
terms of shape (tortuousness and diameter) and number
(density). Capillaroscopy also gives the possibility to
assess the velocity of the erythrocytes by video or laser
Doppler. However, to date, the effect of fish oil on this
outcome has not been investigated. In our recent trial,
neither EPA nor DHA changed finger capillary density
(Capiscope; KK Technologies) in healthy young men (SC
Cottin, TAB Sanders and WL Hall, unpublished results),

but further research is needed in sub-populations with
impaired microvascular function to ascertain whether fish
oils or individual n-3 LCP have protective effects.

The expression of endothelial NOS is vital to EF and
therefore a major factor in atherogenesis. Cell membranes
are organised in microdomains, called lipid rafts, that co-
localise transmembrane proteins involved in intracellular
signalling pathways. When incorporated into the mem-
brane, EPA and DHA can alter this organisation, thus
modulating signalling in various types of cells(121). In
endothelial cells, both EPA and DHA were shown to alter
the organisation of caveolae, a particular subset of lipid
rafts, and displace endothelial NOS from caveolae, a
necessary step in the activation of endothelial NOS(122,123).
This could potentially lead to an increase in NO release by
the endothelium and explain the putative beneficial effects
of EPA and DHA on vasodilation observed to date
(Table 2). EPA and DHA probably also influence the pro-
duction of the two other main vasodilators produced by
the endothelium: prostacyclin and endothelium-dependent
hyperpolarising factor. EPA, as a direct substrate for COX,
may be converted to 3-series prostacyclin, analogue to the
2-series prostacyclin derived from AA. Both EPA and
DHA increased 3-series prostacyclin production by endo-
thelial cells to the same extent without affecting 2-series
prostacyclin levels, suggesting a retroconversion from
DHA to EPA(124). In addition, EPA was shown to increase
acetylcholine-induced endothelium-dependent hyperpolar-
ising factor-mediated vasodilation in diabetic rats(125).
Endothelium-independent vasodilatory effects are mediated
by the modulation of Ca2 + signalling in smooth muscle
cells, but the mechanisms, especially with respect to the
type of Ca channels involved, remain uncertain(126–129).

AA, EPA and DHA are also substrates for the CYP450
enzymes that act as monooxygenases, catalysing hydro-
xylation, epoxidation or allylic oxidation. CYP450-
dependent derivatives include epoxyeicosatrienoic acids and
hydroxyeicosatetraenoic acids, potentially important factors
in the regulation of vasodilation and vasoconstriction, and
modulate renal, vascular and cardiac function. CYP450
enzymes are highly regioselective and stereospecific, and
several isoforms prefer n-3 LCP as substrates rather than n-6
LCP. Investigation into the physiological roles of CYP450-
dependent EPA and DHA metabolites is at an early stage,
but recent data suggest that CYP450-dependent mediators
derived from EPA and DHA contribute to the vasodilatory
and cardioprotective effects of fish oils(130). Interestingly,
different CYP450 isoforms have a different affinity, regios-
electivity and stereospecificity for EPA and DHA (see
comprehensive review(15)), leading to various sets of med-
iators that will exert varying effects on the vasculature.

In addition, EPA and DHA modulate EF through
anti-inflammatory effects. When endothelial cells undergo
inflammatory activation, they increase the expression of
adhesion molecules, allowing the migration of leucocytes
through the endothelium, an important process in the
pathophysiology of atherosclerosis(131). General patterns
that emerge from in vitro experimental literature indicate
that DHA has a greater effect than EPA in reducing
endothelial inflammation. DHA tends to inhibit markers of
EF, such as inflammatory cell adhesion molecules and
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monocyte chemoattractant protein-1 gene and protein
expression, and the adhesion of leucocytes to the endo-
thelium, whereas EPA either up-regulated gene expression
of monocyte chemoattractant protein-1 or was a weaker
inhibitor of cell adhesion molecules than DHA(132–137).
The effect of DHA on vascular cell adhesion molecule-1 is
likely to be mediated by the inhibition of the mobilisation
of the nuclear transcription factor, NF-kB(136), which
regulates the expression of numerous cytokines and other
adhesion molecules.
Fish oils generally improve EF and arterial compliance

in subjects at high cardiovascular risk. However, the
effects of fish oils in healthy human subjects and
the mechanisms (endothelium dependent and independent)
by which EPA and/or DHA improve vascular function are
yet to be fully established.

Effects of EPA and DHA on inflammation

Inflammation is an important process in the development
of CVD; and chronic inflammation, characterised by
elevated plasma levels of inflammatory markers, is com-
monly found in subjects at high cardiovascular risk,
including type 2 diabetics and patients with CHD.
Epidemiological studies strongly suggest that fish oils

have anti-inflammatory properties, and levels of n-3 LCP
in plasma, as well as in erythrocyte membrane, negatively
correlate with plasma pro-inflammatory markers, including
C-reactive protein (CRP) and IL-6(138,139). Another hypo-
thesis for the cardioprotective effects of fish oil supple-
mentation is the inhibition of cytokine production,
as measured directly in plasma or ex vivo, and studies
have been published that support and challenge the hypo-
thesis that n-3 LCP inhibit cytokine and CRP produc-
tion(102,103,140–150). In their recent meta-analysis including
twenty-one trials, Balk et al.(151) concluded that the effect
of n-3 LCP, including EPA and DHA, on CRP levels in
human subjects was unconvincing. In human subjects, only
one study investigated the differential role of EPA and
DHA (4 g/d; 6 weeks), reporting that plasma CRP, IL-6
and TNF-a remained unchanged in hypertensive type 2
diabetics(152). When investigated separately, DHA (3 g/d,
3 months) reduced CRP at 6 weeks and IL-6 at 12 weeks
of intervention in hypertriglyceridaemic subjects(153),
while EPA (1.8 g/d, 8 weeks) decreased CRP levels in
obese subjects(114). Lower doses of DHA, representative
of levels of intake obtained from dietary sources, failed
to affect plasma CRP levels in healthy subjects(65).
Complete understanding of this topic requires intervention
studies on the anti-inflammatory effects of long-term
combined EPA and DHA intakes at low doses (<1.5 g/d),
relevant to dietary guidelines for optimal health, and also
shorter-term higher doses EPA and DHA (1.5–5 g/d),
potentially important in developing therapies for at-risk
patients.
Related to the observations for cytokines, an increasing

dietary intake of n-3 LCP also modifies the eicosanoid
profile in blood, reducing production of AA-derived med-
iators by inflammatory cells, such as leukotriene (LT) B4

and PGE2 and increasing EPA-derived mediators such as
LTB5 and PGE3 (see review(154) for further information).

As indicated earlier, EPA and DHA supplementation
lowers the cell membrane n-6:n-3 ratio. This reduces AA
availability for the production of lipid mediators through
the COX and LOX pathways, including 4-series LT,
2-series PG and thromboxane (TX), while increasing the
production of 5-series LT, and 3-series PG and TX(154).
3-series EPA-derived eicosanoids, are thought to be less
potent than AA-derived eicosanoids, thus contributing to
the anti-inflammatory, but also the anti-aggregatory and
vasodilatory effects of fish oils(154) previously described.
As mentioned earlier, EPA, unlike DHA, is a direct sub-
strate for COX and LOX for the synthesis of LT, PG and
TX, which might explain why it reduces LTB4 and PGD2

production in macrophages to a greater extent than
DHA(155). The slight but significant effect of DHA might
be due to its partial reconversion to EPA(156).

In addition, both EPA and DHA undergo a series of
reactions involving COX-2 in the presence of aspirin and
5-LOX(2), leading to a novel class of lipid mediators,
known as E-series resolvins (Rv) from EPA and D-series
Rv and neuroprotectin D1 from DHA, which are involved
in the resolution of inflammation. Although EPA-
and DHA-derived compounds possess strong similarities,
they exert different actions that could account for the
differential effect of EPA and DHA on various processes
in cardiovascular health and disease. For example, both
RvE1 and RvD1 reduced the expression of vascular cell
adhesion molecule-1, IL-8, macrophage inflammatory
protein-1b and TNF-a by endothelial cells and reduced
leucocyte transmigration through the endothelium(157).
However, the DHA-derived compound RvD1, but not the
EPA-derived RvE1, decreased PGE2 production in endo-
thelial cells(157).

In summary, fish oils decrease inflammation, although
efficacy in human studies depends on dose, population and
inflammation marker chosen. Individually, DHA, and to a
lesser extent EPA, have anti-inflammatory properties
in vitro but there is insufficient information to determine
whether one is more potent than the other.

Effects of EPA and DHA on thrombosis
and haemostasis

While noting the cardioprotective effects of n-3 LCP from
fish oils, Bang and Dyerberg reported that very high oily
fish consumption was associated with lengthened bleeding
time(1). The anti-thrombotic action of fish oils in both
healthy human subjects and people at high cardiovascular
risk have been extensively investigated during the ensuing
decades. Several intervention studies later confirmed the
effect on bleeding time in healthy, hyperlipidaemic and
patients with heart disease at generally relatively high
doses of fish oils(158,159), while lower doses (<2 g/d) seem
to have no significant effect(160,161). A recent meta-analysis
including twenty-four trials in type 2 diabetics (1533 sub-
jects) concluded that fish oils reduced platelet aggregation
to ADP and to collagen by 22 and 21%, respectively(162).
In general, fish oils seem to reduce platelet aggregation
and TX A2 production in response to ADP and collagen
in healthy people(163,164) and in subjects with mildly
raised BP and cholesterol levels(165). However, platelet
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aggregation is usually measured in the laboratory in
response to various stimuli and there is uncertainty
regarding the correlation between platelet activity ex vivo
and in vivo. The effect of fish oils on in vivo platelet
aggregation in healthy young males was recently investi-
gated by Din and co-workers measuring platelet monocyte
aggregates by flow cytometry; low doses of fish oils (1 g/d;
4 weeks) reduced platelet monocyte aggregate, while
markers of platelet activation (soluble P-selectin, soluble
CD40L) remained unchanged(166).
Anti-thrombotic properties of fish oils were initially

attributed to EPA due to its competition with AA in the
COX and LOX pathways. Accordingly, 1.8 g EPA given
daily to hyperlipidaemic diabetics for 4 weeks was shown
to reduce platelet- and monocyte-derived particles, as well
as the expression of CD62P, CD63 and PAC-1, all markers
of platelet activation(167). Interestingly, EPA but not DHA
was also able to reduce mean platelet volume, a simple
marker of platelet activation in healthy subjects(168). Four-
week supplementation with 3.6 g EPA alone, daily, was
also shown to decrease platelet aggregation and TX pro-
duction in response to collagen in healthy males(169).
However, in agreement with animal studies(170–172), human
studies suggest that DHA is a more potent anti-aggregatory

agent than EPA at high doses(173,174). More recently, 8-
week supplementation with DHA alone were shown to
reduce platelet aggregation to collagen in healthy males for
doses as low as 0.4 g/d(175).

Due to great variability in terms of design, dose of fish
oils and population type, there is inconsistency regarding the
effect of fish oils on haemostatic factors in human sub-
jects(151,176). However, studies generally show no significant
effect of n-3 LCP on haemostatic factors levels or activities
in healthy subjects(177–179), with similar findings for algal
DHA(180). In type 2 diabetics, fish oil supplementation
decreased fibrinogen levels by 10%(162), and increased fac-
tor VII by 25%(181), based on meta-analysis of three trials
(159 participants) and two trials (116 participants), respec-
tively. More studies are needed to clarify the independent
effects of EPA and DHA on haemostatic factors.

Dietary EPA and DHA are readily incorporated into
platelet membrane, leading to the formation of eicosanoids
from the 3-series, less pro-thrombotic than the 2-series
eicosanoids derived from AA (Fig. 2). This, in addition to
the effect on platelet membrane fluidity, is likely to influ-
ence haemostatic and thrombotic processes. Competition
of EPA with AA in the COX pathway (Fig. 2) reduces
TXA2 production, leading to the formation of TXA3, a less

Fig. 2. Outline of the pathways of eicosanoid and lipid mediators synthesis from arachidonic acid (AA), EPA and DHA.

Through cyclooxygenases (COX) and lipoxygenases (LOX), AA is converted into a set of lipid mediators including

2-series PG and thromboxanes (TX), 4-series leukotrienes (LT) and lipoxins. Competing with AA for COX and LOX

enzymes, EPA is converted to 5-series LT, 3-series PG and TX, which are overall less inflammatory than the

AA-derived eicosanoids. In the presence of aspirin, both EPA and DHA are substrates for COX-2, eventually leading to

the formation of E- and D-series resolvins, respectively, involved in the resolution of inflammation. In addition, DHA may

undergo lipoxygenation (through 5-LOX) and other reactions, producing the anti-inflammatory mediator neuroprotectin

D1. HETE, hydroxyeicosatetraenoic; HPEPE, hydroperoxy-EPA; HPDHA, hydroperoxy-DHA.
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potent vasoconstrictor and pro-aggregatory mediator.
Accordingly, both EPA and DHA decrease AA-induced
TXA2 production by platelets, while only EPA increases
TXA3 production, showing that EPA, but not DHA is a
direct substrate for the COX/TX synthase complex(182).
Anti-thrombotic effects of EPA and DHA might also be
endothelium dependent. 3-series prostacyclin is synthe-
sised from EPA by endothelial cells, which adds on to
the anti-aggregatory effect of 2-series prostacyclin(124).
In addition, both EPA and DHA inhibit platelet-
activating factor synthesis(183) and stimulate endothelial
NOS activity(122,123) in endothelial cells. The decrease in
platelet-activating factor levels, as well as the increase of
NO, which has anti-aggregatory properties, may also con-
tribute to the anti-thrombotic effects of fish oils.
Fish oils seem to exert their anti-thrombotic action in

human subjects by influencing platelet activation and
aggregation rather than haemostatic factors levels and/or
activity. DHA is more potent than EPA in reducing platelet
aggregation in animals, and possibly in human subjects,
possibly as a result of its greater effect on membrane
fluidity(170). In contrast to DHA, EPA is a direct substrate
of COX for the synthesis of anti-inflammatory and anti-
aggregatory mediators, a key factor in the inhibition
of platelet activation. Further investigation is needed to
specify the individual role of EPA and DHA in platelet
function in human subjects, especially in vivo.

Insulin sensitivity and glycaemic control

Insulin resistance is characteristic of type 2 diabetes and
is associated with several disorders involved in the de-
velopment of CVD, including chronic inflammation, dys-
lipidaemia, hypertension and endothelial dysfunction.
Plasma and erythrocyte n-3 LCP, n-3:n-6, and espe-

cially EPA:AA ratios correlate positively with insulin
sensitivity in healthy subjects and type 2 diabetics(184–186).
There is also growing evidence from animal studies that fish
oil intake increases insulin sensitivity and adiponectin levels
in insulin resistant rats and mice(187,188). In contrast, inter-
vention studies generally show little or no effect of fish oils
on insulin sensitivity and glycaemic control in human
subjects. Balk’s meta-analysis considered healthy subjects,
type 2 diabetics, hypertensives, dyslipidaemics or patients
with CVD and concluded that fish oils induced no change
in glycated Hb (HbA1c, eighteen trials, 578 participants)
and a slight but non-significant increase in fasting blood
sugar (seventeen trials, 1427 participants)(151). This was
more recently confirmed in a meta-analysis including 1075
type 2 diabetics, where the authors showed no effect of
EPA and DHA on HbA1c, fasting glucose, fasting insulin
or body weight(189).
There is growing evidence from animal and in vitro

studies that both EPA and DHA, taken individually,
exert an insulin-sensitising action(187,190–193). However, the
relative effect of EPA and DHA on insulin sensitivity
in human subjects has been poorly investigated. EPA
alone decreased insulin reactivity and increased adipo-
nectin levels in obese Japanese, without affecting leptin
levels(114). In type 2 diabetics, EPA had no effect on

adiponectin levels but an additive positive effect when
combined with statin treatment(194). To date, only three
studies investigated the independent effects of EPA and
DHA on insulin sensitivity in human subjects. In hyper-
lipidaemic subjects, both EPA and DHA (6 weeks, 4 g/d)
decreased fasting insulin levels, and fasting glucose tended
to increase in the EPA group, remaining unchanged fol-
lowing DHA supplementation(26). In treated hypertensive
type 2 diabetics, neither EPA nor DHA influenced insulin
levels, secretion or sensitivity, but both increased fasting
glucose(31). More recently, Egert and co-workers confirmed
that neither EPA nor DHA had an effect on HbA1c, insulin
level or sensitivity in healthy subjects, although EPA
showed a minor increase in glucose levels while DHA had
no effect(195).

Conclusion

Numerous studies have proven the cardioprotective effects
of fish oils in human subjects, showing their hypo-
triglyceridaemic, hypotensive, anti-arrhythmic and anti-
thrombotic properties. Recent data suggest that fish oils
also improve arterial stiffness and EF, and increase HDL
and LDL particle size. Most studies have investigated the
effect of oily fish or fish oil supplements containing mix-
tures of EPA and DHA, and current UK dietary guidelines
recommend the consumption of one portion of oily fish a
week to maintain general good health. However, over the
past 20 years, there has been growing evidence that EPA
and DHA exert a heterogeneous effect on various cardio-
vascular outcomes, which is of considerable relevance for
primary and secondary cardiovascular prevention. While
both EPA and DHA are able to reduce TAG levels, DHA
appears responsible for the BP and HR-lowering effect of
fish oils. DHA also seems to be beneficial for EF and pla-
telet function, although an active role for EPA has not been
ruled out. Although fish oils show anti-inflammatory and
insulin-sensitising properties in vitro and in animal studies,
human studies are often conflicting and efficacy remains
uncertain; accordingly, neither EPA nor DHA alone
showed an effect on inflammation or insulin sensitivity in
human subjects, despite indications for potency in vitro.

The apparent efficacy of DHA in improving a number of
cardiovascular risk factors, and the remaining uncertainty
surrounding the actions of EPA, suggest that there is a
need for n-3 LCP oils that are a purified or enriched source
of either EPA or DHA. An increasing number of studies
are being published on the cardioprotective effects of DHA
TAG from algal sources, either Crypthecodinium cohnii
or Schizochytrium sp. (Martek Biosciences Corporation,
Columbia, MD, USA). Supplements, infant formula, infant
foods and certain other food categories (dairy, bakery, eggs
and non-alcoholic beverages) fortified with algal DHA are
now available to buy in many countries. The potential
benefits of algal DHA supplements for subgroups that have
low intakes, such as vegetarians, should be a high priority
for investigation. EPA TAG-enriched oils and purified
EPA ethyl ester oils are available but currently a large
amount of effort is being directed by industry towards
the development of non-fish oil-derived EPA. As more
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DHA- and EPA-only products become available, partly as
a result of concern over the sustainability of fish oil sup-
plies and partly in response to consumer demand for non-
fish sources, future research can be focused on establishing
the most effective doses of DHA and EPA for improve-
ment of cardiovascular risk factors. This will inform
dietary advice on the optimal intake for life-long health,
and should enable a decision to be made on the most
effective supplement dose to be taken over short periods
to reduce risk factors such as hypertriglyceridaemia or
hypertension in various at-risk populations. It will be
important to bear in mind that not all individuals will
respond to DHA and/or EPA in the same way, and ongoing
nutrigenetic and gender research will be crucial in defining
future advice regarding dietary and supplementary EPA
and DHA. The role of dietary n-3 LCP in cardiovascular
health is an area of nutritional science/medicine that has
undergone more investigation than most during the past 30
or more years, yet the gaps in our understanding of this
field remain substantial.
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