WEAK PROPER DISTRIBUTION OF VALUES OF MULTIPLICATIVE FUNCTIONS IN RESIDUE CLASSES

WŁADYSŁAW NARKIEWICZ

(Received 17 March 2011; accepted 1 February 2012; first published online 4 February 2013)

Communicated by F. Pappalardi

Dedicated to the memory of Alf van der Poorten

Abstract

For a class of multiplicative integer-valued functions f the distribution of the sequence f(n) in restricted residue classes modulo N is studied. We consider a property weaker than weak uniform distribution and study it for polynomial-like multiplicative functions, in particular for $\varphi(n)$ and $\sigma(n)$.

2010 *Mathematics subject classification*: primary 11N37; secondary 11A35. *Keywords and phrases*: multiplicative functions, Euler function, sum of divisors, Ramanujan τ -function.

1. Introduction

Let *X* be a set partitioned into finitely many disjoint classes, say $X = \bigcup_{j=1}^{N} X_j$, let *A* : *a*₁, *a*₂,... be an infinite sequence of elements of *X*, and put

$$F_{i}(x) = |\{n \le x : a_{n} \in X_{i}\}|.$$

The sequence A is said to be uniformly distributed in classes X_i , provided

$$\lim_{x \to \infty} \frac{F_j(x)}{x} = \frac{1}{N}$$

holds for j = 1, 2, ..., N. If this happens, then the ratios

$$\frac{F_{j_1}(x)}{F_{j_2}(x)} \tag{1.1}$$

tend to unity. We shall consider a weaker condition, requiring only that each ratio (1.1) tends to a positive limit. If this holds, then we shall say that the sequence A is *properly distributed* in classes X_i .

In this paper we shall deal with the proper distribution of values of arithmetical functions in residue classes j modulo N satisfying (j, N) = 1 (restricted residue classes

^{© 2013} Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

modulo *N*). This is interesting only for functions *f* for which the set $\{n : (f(n), N) = 1\}$ is infinite.

A necessary and sufficient condition for uniform distribution of the sequence $f(n) \mod N$ in restricted residue classes modulo N (*weak uniform distribution*) has been given in [3] (see also [5]). It implies in particular that the values of the Euler function $\varphi(n)$ are weakly uniformly distributed in restricted residue classes modulo N if and only if (N, 6) = 1. This criterion has been applied for the sum of divisors $\sigma(n)$ in [9] and for $\sigma_k(n)$ in [4, 6, 7].

Some time ago Dence and Pomerance [2] considered the Euler function $\varphi(n)$ modulo 3 and showed that the ratio

$$\frac{|\{n \le x : \varphi(n) \equiv 1 \mod 3\}|}{|\{n \le x : \varphi(n) \equiv 2 \mod 3\}|}$$

tends to a positive value, thus $\varphi(n)$ has a weak proper distribution modulo 3.

We shall show that the method used in [3, 5] can be applied to obtain criteria for this property to hold for a large class of polynomial-like multiplicative functions and arbitrary moduli. We shall consider integer-valued multiplicative functions f which are polynomial-like, that is, for primes p satisfy the condition

$$f(p^k) = V_k(p), \tag{1.2}$$

where $k = 1, 2, \ldots$, with $V_k(T) \in \mathbb{Z}[T]$.

For an integer $N \ge 3$ and (k, N) = 1 let $F_f(N, k; x)$ denote the number of integers $n \le x$ satisfying

$$f(n) \equiv k \mod N,$$

and let $F_f(N; x)$ be the number of $n \le x$ with (f(n), N) = 1. We assume that the last condition is satisfied for infinitely many *n*. Moreover, let

$$\varrho_f(N,k) = \lim_{x \to \infty} \frac{F_f(N,k;x)}{F_f(N;x)}$$

be the 'probability' of an integer *n* with (f(n), N) = 1 having f(n) in the residue class *k* mod *N*, provided this limit exists. We shall say that the function *f* is *weakly properly distributed* modulo *N* if there are infinitely many *n* with (f(n), N) = 1, and for each *k* prime to *N* the number $\rho_f(N, k)$ is positive. We shall establish the existence of $\rho_f(N, k)$ for a large class of integer-valued multiplicative functions and give a criterion for weak proper distribution. We shall also obtain a formula permitting one to evaluate $\rho_f(N, k)$. It will turn out in particular that the Euler function $\varphi(n)$ is weakly properly distributed modulo *N* for every odd *N*, the sum of divisors $\sigma(n)$ has this property for every $N \ge 3$, but the function $\mu_3(n)\sigma(n)$, where $\mu_3(n)$ denotes the characteristic function of cube-free integers, is weakly properly distributed modulo *N* only in the case where it is weakly uniformly distributed modulo *N*, which happens if and only if $6 \nmid N$.

2. Notation

We shall utilize in the case (N, k) = 1 the function

$$g(N, k; s) = \sum_{p \equiv k \mod N} \frac{1}{p^s} - \frac{1}{\varphi(N)} \log \frac{1}{s-1},$$

which can be continued to a function regular in Re $s \ge 1$. Its value at s = 1, which will appear later in certain formulas, has the explicit form

$$g(N,k;1) = \frac{1}{\varphi(N)} \sum_{\chi \neq \chi_0} \overline{\chi(k)} \log L(1,\chi) - \frac{\alpha(N)}{\varphi(N)} - \beta(N,k), \qquad (2.1)$$

where

$$\alpha(N) = \log \frac{N}{\varphi(N)}$$

and

$$\beta(N,k) = \sum_{j=2}^{\infty} \frac{1}{j} \sum_{p^j \equiv k \mod N} \frac{1}{p^j}$$

For $m \ge 2$ and (k, N) = 1 we shall need also the equality

$$\sum_{p \equiv k \mod N} \frac{1}{p^{sm}} - \frac{1}{\varphi(N)} \log \frac{1}{s - 1/m} = g(N, k; ms) - \frac{\log m}{\varphi(N)}$$
(2.2)

valid for Re s > 1/m.

By $\mu_k(n)$ $(k \ge 2)$ we shall denote the characteristic function of the set of *k*-free integers, so $\mu_2(n) = \mu^2(n)$.

The group of restricted residue classes mod *N* will be denoted by G(N), by χ we shall denote Dirichlet characters modulo *N*, and χ_0 will be the principal character. We shall consider integer-valued multiplicative function *f* satisfying the condition (1.1). For j = 1, 2, ... put

$$R_i(f, N) = \{V_i(x) \mod N : (xV_i(x), N) = 1\}$$

and denote by $r_f(N)$ the smallest value of j for which $R_j(f, N)$ is nonempty, provided it exists. If all sets $R_j(f, N)$ are empty, then put $r_f(N) = \infty$.

If $r_f(N) = \infty$, then the condition $(f(p^j), N) = 1$ for some $j \ge 1$ and prime p implies that $p \mid N$, hence in this case the condition (f(n), N) = 1 can be satisfied only if all prime factors of n divide N, and this implies that

$$F_f(N; x) = O(\log^{\omega(n)} x),$$

 $\omega(n)$ denoting the number of distinct prime divisors of *N*. We shall always assume that $r = r_f(N)$ is finite. Moreover, put

$$M_f(N) = \{x \mod N : (xV_r(x), N) = 1\},\$$

and denote by $m_f(N)$ the ratio $|M_f(N)|/\varphi(N)$. By $\Lambda_f(N)$ we shall denote the subgroup of G(N) generated by $R_r(f)$. The letter p will be restricted to prime numbers.

Note that if $r = r_f(N)$ is finite, then

$$F_f(N; x) = (c(f, N) + o(1)) \frac{x^{1/r}}{\log^{1-m} x}$$

with some c(f, N) > 0 and $m = m_f(N)$. This follows from Delange's tauberian theorem [1] and the equality

$$\sum_{n=1}^{\infty} \frac{\chi_0(f(n))}{n^s} = g_f(N; s) \exp\left(\sum_{\substack{p \nmid N \\ (V_r(p), N) = 1}} \frac{1}{p^{rs}}\right) = \frac{h_f(N; s)}{(s - 1/r)^m},$$

valid for Re s > 1/r, with $g_f(N; s)$, $h_f(N; s)$ regular for Re $s \ge 1/r$ and not vanishing at s = 1/r.

3. Main result

We shall establish the following theorem.

THEOREM 3.1. Let N be a fixed integer and let f be an integral-valued multiplicative function satisfying (1.2). Assume that $r = r_f(N) < \infty$ and denote by Ω the set of characters modulo N which are equal to 1 on the group $\Lambda = \Lambda_f(N)$. For $j \in R = R_r(f)$ let U_j be the set of solutions of the congruence

$$V_r(x) \equiv j \mod N$$
,

so that

$$\bigcup_{j\in R} U_j = M_f(N),$$

and put $m = m_f(N)$. Finally, put

$$\begin{aligned} \alpha_{\chi}(s) &= \prod_{p \mid N} \left(1 + \sum_{j=1}^{\infty} \frac{\chi(f(p^j))}{p^{js}} \right) \\ &\cdot \exp\left(\sum_{p \nmid N} \sum_{j=2}^{\infty} \frac{(-1)^{j+1}}{j} \frac{\chi^j(f(p^r))}{p^{jrs}} \right) \\ &\cdot \exp\left(\sum_{j \in \mathbb{R}} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)} \right) \right) \end{aligned}$$

(i) If (k, N) = 1, then for Re s > 1/r one has, with some integer t,

$$\Phi_k(N; s) := \sum_{\substack{n \\ f(n) \equiv k \mod N}} \frac{1}{n^s} = \frac{1}{\varphi(N)} \frac{c_k(s)}{(s-1/r)^m} + \sum_{j=1}^l \frac{\lambda_j(s)}{(s-1)^{\mu_j}},$$

where

$$c_k(s) = \sum_{\chi \in \Omega} \overline{\chi(k)} \alpha_{\chi}(s),$$

 $\lambda_1(s), \ldots, \lambda_t(s)$ are regular for Re $s \ge 1/r$, and μ_j are complex numbers satisfying Re $\mu_j < m$.

(ii) If $c_k(1/r) \neq 0$, then

$$F_f(N,k;x) = \left(\frac{rc_k(1/r)}{\varphi(N)\Gamma(m)} + o(1)\right) \frac{x^{1/r}}{\log^{1-m}x}.$$

If $c_k(1/r) = 0$ but $c_k(s)$ does not vanish identically, then, with a certain u,

$$c_k(s) = (s - 1/r)^u c'_k(s)$$

with $c'_k(s)$ regular for Re $s \ge 1/r$, $c'_k(1/r) \ne 0$, and

$$F_f(N, k; x) = \left(\frac{rc'_k(1/r)}{\varphi(N)\Gamma(m-u)} + o(1)\right) \frac{x^{1/r}}{\log^{1+u-m} x}$$

(iii) The ratio $\rho_f(N, k)$ exists for each k prime to N, is equal to

$$\varrho_f(N,k) = \frac{1}{\varphi(N)} \frac{c_k(1/r)}{\alpha_{\chi_0}(1/r)},$$

and depends only on the coset $k\Lambda$.

(iv) The function f is weakly properly distributed modulo N if and only if, for each k prime to N, one has $c_k(1/r) \neq 0$.

4. Proof of Theorem 3.1

PROOF. Our starting point is the equality

$$\Phi_k(N;s) = \frac{1}{\varphi(N)} \sum_{\chi} \overline{\chi(k)} F_{\chi}(s), \qquad (4.1)$$

with

$$F_{\chi}(s) = \sum_{n=1}^{\infty} \frac{\chi(f(n))}{n^s} = \prod_{p} \left(1 + \sum_{j=1}^{\infty} \frac{\chi(f(p^j))}{p^{js}} \right),$$

the series and the product being absolutely convergent for Re s > 1/r in view of the definition of r.

The behavior of $F_{\chi}(s)$ is determined in the following lemma.

LEMMA 4.1. *For* Re s > 1/r,

$$F_{\chi}(s) = \frac{\alpha_{\chi}(s)}{(s-1/r)^{m(\chi)}},$$

[5]

where

$$m(\chi) = \frac{1}{\varphi(N)} \sum_{j \in \mathbb{R}} |U_j| \, \chi(j).$$

The function $\alpha_{\chi}(s)$ is regular for Re $s \ge 1/r$, and vanishes at s = 1/r if and only if there is a prime p dividing N and satisfying $p \le 2^r$ with

$$\sum_{j=1}^{\infty} \frac{\chi(f(p^j))}{p^{j/r}} = -1.$$

In the case r = 1 this is possible only if, for $j = 1, 2, ..., \chi(f(2^j)) = -1$. Explicitly,

$$\alpha_{\chi}(s) = B_{\chi}(s)C_{\chi}(s) \exp\left(h_{\chi}(s) + \sum_{j \in \mathbb{R}} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)}\right)\right),$$

with

$$B_{\chi}(s) = \prod_{p|N} \left(1 + \sum_{j=1}^{\infty} \frac{\chi(f(p^j))}{p^{js}} \right),$$
(4.2)

$$C_{\chi}(s) = \prod_{p \nmid N} \frac{1 + \sum_{j=r}^{\infty} \chi(f(p^{j}))p^{-js}}{1 + \chi(f(p^{r}))p^{-rs}},$$
(4.3)

$$h_{\chi}(s) = \sum_{p \nmid N} \sum_{j=2}^{\infty} \frac{(-1)^{j+1}}{j} \frac{\chi^{j}(f(p^{r}))}{p^{jrs}}$$

If $\chi \in \Omega$, then neither $h_{\chi}(s)$ nor the sum

$$\sum_{j \in R} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)} \right)$$

depend on χ , hence in this case one can write

$$\alpha_{\chi}(s) = D_f(N; s) B_{\chi}(s) C_{\chi}(s),$$

with $D_f(N; s)$ regular for Re $s \ge 1/r$ and nonvanishing at s = 1/r.

PROOF. Observe first that for $j \le r - 1$ one can have $\chi(f(p^j)) \ne 0$ only for *p* dividing *N*. Therefore we can write

$$F_{\chi}(s) = A_{\chi}(s)B_{\chi}(s)C_{\chi}(s)$$

with

$$A_{\chi}(s) = \prod_{p \notin N} \left(1 + \frac{\chi(f(p^r))}{p^{rs}} \right).$$

[6]

In view of

$$\left|1 + \frac{\chi(f(p^r))}{p^{rs}}\right| \ge 1 - \frac{1}{p^{r\operatorname{Re} s}} \ge \frac{1}{2}$$

 $A_{\chi}(s)$ does not vanish in Re s > 1/r, hence we can write

$$A_{\chi}(s) = \exp\left(\sum_{p \nmid N} \frac{\chi(f(p'))}{p^{rs}} + h_{\chi}(s)\right);$$

.

note that by virtue of

$$\sum_{p \nmid N} \frac{\chi(f(p^r))}{p^{rs}} = \sum_{p \nmid N} \frac{\chi(V_r(p))}{p^{rs}} = \sum_{j \in \mathbb{R}} \chi(j) \sum_{\substack{p \\ V_r(p) \equiv j \bmod N}} \frac{1}{p^{rs}}$$

and (2.2) we obtain

$$\sum_{p \nmid N} \frac{\chi(f(p^r))}{p^{rs}} = m(\chi) \log \frac{1}{s - 1/r} + \sum_{j \in \mathbb{R}} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)} \right).$$

Thus

$$A_{\chi}(s) = \frac{a_{\chi}(s)}{(s-1/r)^{m(\chi)}},$$

with

$$a_{\chi}(s) = \exp\left(h_{\chi}(s) + \sum_{j \in R} \chi(j) \sum_{i \in U_j} g(N, i, rs)\right)$$

Note that if χ lies in Ω , then $a_{\chi}(s)$ does not depend on χ . Indeed, in this case, for $p \nmid N$,

$$\chi(f(p^r)) = \begin{cases} 1 & \text{if } (V_r(p), N) = 1, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\sum_{j \in R} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)} \right) = \sum_{i \in M} g(N, i, rs) - \frac{m \log r}{\varphi(N)}$$

The functions $B_{\chi}(s)$ and $C_{\chi}(s)$ are both regular for Re $s \ge 1/r$, and we have $C_{\chi}(1/r) \ne 0$. The function $B_{\chi}(s)$ may vanish at s = 1/r, and this happens if, for some prime p,

$$\sum_{j=1}^{\infty} \frac{\chi(f(p^j))}{p^{j/r}} = -1,$$

forcing $p \le 2^r$. In the case r = 1 this can happen only if, for every $j \ge 1$,

$$\chi(f(2^j)) = -1.$$

It would be convenient to present the product $B_{\chi}(s)$ in another form. If $d = \prod_{j=1}^{k} p_j$ is a square-free divisor of *N* and *S*_d is the set of integers whose prime divisors divide *d*,

then

180

$$B_{\chi}(s) = \sum_{d|N} \mu^2(d) \sum_{m \in S_d} \frac{\chi(f(m))}{m^s}.$$

Indeed, it suffices to observe that if $W_{\chi}(p) = \sum_{j=1}^{\infty} \chi(f(p^j))p^{-s}$, then

$$B_{\chi}(s) = \sum_{d|N} \mu^2(d) \prod_{p|d} W_{\chi}(p)$$

Putting

$$\alpha_{\chi}(s) = B_{\chi}(s)C_{\chi}(s) \exp\left(h_{\chi}(s) + \sum_{j \in \mathbb{R}} \chi(j) \sum_{i \in U_j} \left(g(N, i, rs) - \frac{\log r}{\varphi(N)}\right)\right),$$

we get the assertion of the lemma.

Using (4.1) and Lemma 4.1,

$$\Phi_k(N;s) = \frac{1}{\varphi(N)} \sum_{\chi} \overline{\chi(k)} \frac{\alpha_{\chi}(s)}{(s-1/r)^{m(\chi)}}.$$
(4.4)

Observe now that we have $\text{Re}(m(\chi)) \leq \text{Re}(m(\chi_0)) = m$, with equality occurring only if for $j \in R$ one has $\chi(j) = 1$, that is, $\chi \in \Omega$, and therefore we may write, with some *t*,

$$\Phi_k(N;s) = \frac{1}{\varphi(N)} \frac{\sum_{\chi \in \Omega} \overline{\chi(k)} \alpha_{\chi}(s)}{(s-1/r)^m} + \sum_{j=1}^t \frac{\lambda_j(s)}{(s-1)^{\mu_j}},$$

where $\lambda_j(s)$ are regular for Re $s \ge 1/r$ and μ_j are complex numbers satisfying Re $\mu_j < r$. This establishes (i), and (ii) follows immediately by the tauberian theorem of Delange.

We now prove (iii) and write $\rho_k = \rho_f(N, k)$ for short. If the sum $c_k(s)$ does not vanish at s = 1/r, then in view of

$$\sum_{(k,N)=1} c_k(s) = \sum_{\chi \in \Omega} \alpha_{\chi}(s) \sum_{(k,N)=1} \overline{\chi(k)} = \varphi(N) \alpha_{\chi_0}(s)$$

and

$$\alpha_{\chi_0}(1/r) > 0$$

the application of Delange's tauberian theorem gives

$$\varrho_k = \frac{c_k(1/r)}{\varphi(N)\alpha_{\chi_0}(1/r)}$$

If $c_k(1/r) = 0$, but $c_k(s)$ does not vanish identically, then with some $t \ge 1$ we can write

$$c_k(s) = (s - 1/r)^t H(s),$$

where H(s) is regular for Re $s \ge 1$ and $H(1/r) \ne 0$. Delange's theorem now gives $\rho_k = 0$.

[8]

If $c_k(s)$ vanishes identically, then $\rho_k = 0$. This is a simple corollary of Delange's theorem (see, for example, [3, Lemma 2]).

Because $c_k(s)$ depends only on the coset $k\Lambda$, so does ρ_k .

The assertion (iv) follows immediately from (ii).

REMARK 4.2. To obtain a more explicit formula for $c_k(1/R)$ one may utilize (2.2).

COROLLARY 4.3. If Λ is of index 2 in G(N), then $\Omega = \{\chi_0, \chi\}$, where χ is a real character modulo N, and f is weakly properly distributed modulo N if and only if

$$\alpha_{\gamma_0}(1/r) \neq \pm \alpha_{\gamma}(1/r). \tag{4.5}$$

PROOF. In this case

$$c_k(s) = \begin{cases} \alpha_{\chi_0}(s) + \alpha_{\chi}(s) & \text{if } k \in \Lambda, \\ \alpha_{\chi_0}(s) - \alpha_{\chi}(s) & \text{otherwise,} \end{cases}$$

hence (4.5) is equivalent to $c_k(1/r) \neq 0$. It remains to apply part (iv) of Theorem 3.1. \Box

5. Some special cases

Checking the conditions for weak proper distribution given in Theorem 3.1 may sometimes be awkward. The next theorem gives a simpler criterion in the case of polynomial-like multiplicative functions f with $r_f(N) < \infty$ and $f(p^n) = 0$ for $n \ge r + 1$.

THEOREM 5.1. Let $N \ge 3$, let f be an integer-valued polynomial-like multiplicative function satisfying $r = r_f(N) < \infty$ and denote by V(T) the polynomial satisfying $f(p^r) = V(p)$ for prime p. Assume, moreover, that for $n \ge r+1$ and all primes p one *has* $f(p^n) = 0$.

The function f is weakly properly distributed modulo N if and only if for every k prime to N there exists an (r + 1)-free integer m all of whose prime factors divide N and which satisfies $f(m) \in k\Lambda$, Λ being the subgroup of G(N) generated by the set $R = \{V(x) \mod N : (xV(x), N) = 1\}$. For $k \in \Lambda$ this condition is satisfied with m = 1.

PROOF. Since $f(p^n)$ vanishes for $n \ge r+1$ we use (4.2), (4.3) and (4.4) to obtain for $\chi \in \Omega$ the equalities

$$C_{\chi}(1/r) = 1$$

and

$$B_{\chi}(1/r) = \prod_{p|N} \left(1 + \sum_{j=1}^{r} \frac{\chi(f(p^{j}))}{p^{j/r}} \right).$$

For a square-free divisor $d = p_1 p_2 \cdots p_k$ of *N* denote by S_d the set of all integers of the form $\prod_{j=1}^k p_j^{a_j}$ with $0 \le a_j \le r$. Lemma 4.1 shows now that we can write

$$\alpha_{\chi}(1/r) = D_f(N) \prod_{p|N} \left(1 + \sum_{j=1}^r \frac{\chi(f(p^j))}{p^{j/r}} \right),$$

with a positive constant $D_f(N)$ depending only on f and N. Therefore

$$\frac{c_k(1/r)}{D_f(N)} = \sum_{\chi \in \Omega} \overline{\chi(k)} \alpha_{\chi}(1/r) = \sum_{d \mid N} \mu^2(d) \sum_{m \in S_d} \frac{\chi(f(m))}{m^{1/r}}$$

Since

$$\sum_{\chi \in \Omega} \chi(f(m))\overline{\chi(k)} = \begin{cases} |\Omega| & \text{if } f(m) \in k\Lambda, \\ 0 & \text{otherwise,} \end{cases}$$

one obtains that $c_k(1/r)$ does not vanish if and only if there exists an (r + 1)-free integer m all of whose prime factors divide N and which satisfies $f(m) \in k\Lambda$. Now apply Theorem 3.1.

COROLLARY 5.2. Let $N = q^k$ be a prime power, and let f be a polynomial-like multiplicative function with $r = r_f(N) < \infty$. Moreover, denote by q_n the sequence of (r + 1)-free integers.

- (i) If the index of Λ in G(N) exceeds 2, then the sequence $f(q_n)$ is not weakly properly distributed modulo N.
- (ii) If the index of Λ is equal to 2, then the sequence will be weakly properly distributed modulo N if and only if for some $j \leq r$ one has $(f(q^j), N) = 1$ and $f(q^j) \notin \Lambda$.

PROOF. (i) Apply Theorem 5.1 to the function $g(n) = \mu_{r+1}(n)f(n)$, note that $r_f(N) = r_g(N)$ and observe that the only (r + 1)-free divisors of N are $1, q, \ldots, q^r$, hence the condition of the theorem can be satisfied only by k lying in at most two different cosets with respect to Λ .

(ii) Immediate by Theorem 5.1.

The following corollary can sometimes be used to simplify the proof that a particular function is weakly properly distributed modulo N.

COROLLARY 5.3. Let $N \ge 3$, let f be an integer-valued polynomial-like multiplicative function with $r = r_f(N) < \infty$ and $f(p^r) = V(p)$ for a polynomial V(T) and put $g(n) = \mu_{r+1}(n)f(n)$. If g(n) is weakly properly distributed modulo N, so is f(n).

PROOF. The function g is polynomial-like, and since for $i \le r$ one has $g(p^i) = f(p^i)$ the equality $g(p^r) = V(p)$ follows, hence the sets $R_r(f)$ and $R_r(g)$ coincide, thus $r_g(N) = r$ and $m_f(N) = m_g(N) = m$, say. Equality (2.1) leads to

$$F_f(N; x) = (c_1 + o(1)) \frac{x^{1/r}}{\log^{1-m} x}, \quad F_g(N; x) = (c_2 + o(1)) \frac{x^{1/r}}{\log^{1-m} x}$$

with positive c_1, c_2 . If g is weakly properly distributed modulo N, then, for (k, N) = 1,

$$F_g(N, k; x) = (c(k) + o(1)) \frac{x^{1/r}}{\log^{1-m} x}$$

[10]

with c(k) > 0, and in view of

$$F_g(N, k; x) \le F_f(N, k; x)$$

and part (iii) of Theorem 3.1 we obtain that f is weakly properly distributed mod N. \Box

Note that the converse implication may fail. Indeed, we shall see in Theorem 6.2 that although $\sigma(n)$ is for every *N* weakly properly distributed modulo *N*, the function $\mu_3(n)\sigma(n)$ does not share this property.

6. Applications

6.1. Euler function. We now utilize Corollary 5.3 to deal with the Euler function. It suffices to consider only odd moduli, because if *N* is even, then $(\varphi(n), N) = 1$ holds only for n = 1.

THEOREM 6.1. Euler's function $\varphi(n)$ is weakly properly distributed modulo N for every odd integer N.

PROOF. Let $N \ge 3$ be an odd integer. If $3 \nmid N$, then $\varphi(n)$ is weakly uniformly distributed modulo N by [9], hence we may henceforth assume that $3 \mid N$. In this case $1 \in R_1 \neq \emptyset$ holds, hence $r_{\varphi}(N) = 1$, and the set $R_1(N)$ consists of all a modulo N satisfying (a, N) = 1 and $a \not\equiv -1 \mod p$ for every prime divisor of N, thus

$$m = m_{\varphi}(N) = \prod_{p|N} \left(1 + \frac{1}{p-1}\right).$$

Lemma 5.3 shows that it suffices to prove weak proper distribution modulo *N* for the function $f(n) = \mu^2(n)\varphi(n)$.

Let Λ denote the subgroup of G(N) generated by R, and let Ω be the family of characters attaining the value 1 in Λ . Denote by H the subgroup { $a \mod N : a \equiv 1 \mod 3$ } of G(N). Since 3 | N every element of $a \in R$ lies in H, thus $\Lambda \subset H$. We will show that $\Lambda = H$. Write $N = \prod_{i=1}^{k} p_i^{a_i}$ with $p_1 = 3$ and note that every element $x \in \Lambda$ can be considered as a vector

$$x = [x_1, x_2, \ldots, x_k]$$

with $x_i \in G(p_i^{a_i})$, $x \equiv x_i \mod p_i^{a_i}$ and $x_1 \equiv 1 \mod 3$. Given $x \in \Lambda$ in this form choose for i = 2, 3, ..., k an element $c_i \in G(p_i^{a_i})$ with

$$c_i \not\equiv -1 \mod p_i, \quad c_i \not\equiv -x_i \mod p_i,$$

and put

$$y_i = \begin{cases} c_i & \text{if } x_i \equiv -1 \mod p_i, \\ x_i & \text{otherwise,} \end{cases}$$
$$z_i = \begin{cases} c_i^{-1} & \text{if } x_i \equiv -1 \mod p_i, \\ 1 & \text{otherwise,} \end{cases}$$

and

184

$$y = [1, y_2, \dots, y_k], \quad z = [x_1, z_2, \dots, z_k].$$

Since $y, z \in R$ and x = yz, we obtain $x \in \Lambda$. Since Λ is of index 2 in G(N) and $2 \notin \Lambda$, the cosets of G(N) with respect to Λ are Λ and 2Λ . Since 3 | N and $\varphi(3) = 2 \in 2\Lambda$, the assertion follows from Theorem 5.1.

6.2. Sum of divisors. We now consider $\sigma(n)$, the sum of divisors.

THEOREM 6.2.

- (i) The function $\sigma(n)$ is weakly properly distributed modulo N for every $N \ge 3$.
- (ii) The function $f(n) = \mu_3(n)\sigma(n)$ is weakly properly distributed modulo N if and only if it is weakly uniformly distributed modulo N, that is, $6 \nmid N$.

PROOF. (i) If $6 \nmid N$, then $\sigma(n)$ is weakly uniformly distributed modulo 6 by [9], so we may assume that $6 \mid N$. Let $N = \prod_{p \mid N} p^{a_p}$ with $a_2, a_3 \ge 1$. In this case we have $V_1(T) = T + 1$, $V_2(T) = T^2 + T + 1$, hence $R_1 = \emptyset$, and $1 \in R_2 \neq \emptyset$. We have

$$R_2 = \{1 + x + x^2 \mod N : (x(1 + x + x^2), N) = 1\},\$$

and since the congruence

$$1 + X + X^2 \equiv 0 \mod p \tag{6.1}$$

has one solution for p = 3, two solutions for $p \equiv 1, 7 \mod 12$, and no solutions for other primes,

$$m = \frac{1}{2} \prod_{p \equiv 1,7 \mod 12} \left(1 - \frac{1}{p-1}\right).$$

Since all elements of R_2 are congruent to 1 mod 6,

$$\Lambda \subset H = \{x \mod N : x \equiv 1 \mod 6\}.$$

Observe now that in fact there is equality here. Indeed, let $x = \langle x_p \rangle_p \in H$, with p ranging over prime divisors of N, and $x_p \in G(p^{a_p})$, $x_p \equiv x \mod p^{a_p}$. For primes $p \mid N$ congruent to 1 or 7 modulo 12 denote by u_p , v_p the solutions of the congruence (6.1) and choose $c_p \in G(p^{a_p})$ with $c_p \not\equiv u_p$, v_p , $-x_p \mod p$. For these primes put

$$y_p = \begin{cases} c_p & \text{if } x_p \equiv u_p, v_p \mod p, \\ x_p & \text{otherwise,} \end{cases}$$
$$z_p = \begin{cases} x_p c_p^{-1} & \text{if } x_p \equiv u_p, v_p \mod p, \\ 1 & \text{otherwise,} \end{cases}$$

and for the remaining $p \mid N$ put

$$y_p = \begin{cases} x_p & \text{if } p \nmid 6, \\ 1 & \text{if } p \mid 6, \end{cases}$$

and $z_p = 1$. Then $y = \langle y_p \rangle_p$ and $z = \langle z_p \rangle_p$ lie in R_2 , hence $x = yz \in \Lambda$. This shows that $\Lambda = H$ and it follows that the index of Λ in G(N) is equal to 2. Thus $\Omega = \{\chi_0, \chi_3\}$,

where χ_3 is the character mod N induced by the quadratic character modulo 3. If $p \equiv 1 \mod 3$ and $(\sigma(p^j), N) = 1$, then

$$\chi_0(\sigma(p^j)) = \begin{cases} 1 & \text{if } j \equiv 0, 1 \mod 3, \\ 0 & \text{if } j \equiv 2 \mod 3, \end{cases}$$

and

$$\chi_3(\sigma(p^j)) = \begin{cases} 1 & \text{if } j \equiv 0 \mod 3, \\ -1 & \text{if } j \equiv 1 \mod 3, \\ 0 & \text{if } j \equiv 2 \mod 3. \end{cases}$$

If $p \equiv 2 \mod 3$ and $(\sigma(p^j), N) = 1$, then

$$\chi_0(\sigma(p^j)) = \chi_3(\sigma(p^j)) = \begin{cases} 1 & \text{if } 2 \mid j, \\ 0 & \text{if } 2 \nmid j. \end{cases}$$

1

Since moreover, $\chi_0(3^j) = \chi_1(3^j) = 1$, we get, utilizing the notation used in Lemma 4.1,

$$\begin{split} A_{\chi_0}(s) &= A_{\chi_3}(s) = \prod_{\substack{p \nmid N, p \equiv 2 \mod 3 \\ (1+p+p^2, N) = 1}} \left(1 + \frac{1}{p^{2s}}\right), \\ B_{\chi_0(s)} &= B(N; s) \prod_{\substack{p \mid N \\ p \equiv 1 \mod 3}} \left(1 + \sum_{\substack{3 \leq j \equiv 0, 1 \mod 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}}\right), \\ B_{\chi_3(s)} &= B(N; s) \prod_{\substack{p \mid N \\ p \equiv 1 \mod 3}} \left(1 + \sum_{\substack{3 \leq j \equiv 0 \mod 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}} - \sum_{\substack{3 \leq j \equiv 1 \mod 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}}\right), \end{split}$$

where B(N; s) is a function regular for $\text{Re} \ge 1/2$ and not vanishing at 1/2. Finally,

$$C_{\chi_0}(s) = C(N; s) \prod_{\substack{p \nmid N \\ p \equiv 1 \text{ mod } 3}} \left(1 + \sum_{\substack{2 \le j \equiv 0, 1 \text{ mod } 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}} \right)$$

and

$$C_{\chi_3}(s) = C(N; s) \prod_{\substack{p \nmid N \\ p \equiv 1 \text{ mod } 3}} \left(1 + \sum_{\substack{3 \le j \equiv 0 \text{ mod } 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}} - \sum_{\substack{3 \le j \equiv 1 \text{ mod } 3 \\ (\sigma(p^j), N) = 1}} \frac{1}{p^{js}} \right),$$

with C(N; s) regular for $\text{Re} \ge 1/2$ and not vanishing at 1/2.

Since $A_{\chi_0}(s) = A_{\chi_3}(s) = g(s)(s - 1/2)^{-m}$ with g(s) regular for $\text{Re } s \ge 1/r$ and nonvanishing at s = 1/r, we obtain

$$\alpha_{\chi_0}(1) \neq \pm \alpha_{\chi_3}(1),$$

and by Corollary 4.3 assertion (i) follows.

(ii) Since, for 3-free *n*, f(n) coincides with $\sigma(n)$,

$$r_f(N) = r_{\sigma}(N) = \begin{cases} 1 & \text{if } 6 \nmid N, \\ 2 & \text{if } 6 \mid N. \end{cases}$$

If $6 \nmid N$, then

$$R = R_1(f, N) = \{x \mod N : p \nmid x(x-1) \text{ for } p \mid N\}$$

and the argument used in the proof of (i) leads to $\Lambda = G(N)$, hence f is weakly uniformly distributed modulo N.

Now assume that 6 | N. From the proof of (i) one infers the equality

$$\Lambda = \{ a \in G(N) : x \equiv 1 \mod 6 \},\$$

hence the index of Λ is equal to 2. Were *f* weakly properly distributed modulo *N*, then according to Theorem 5.1 there would exist an integer

$$d = p_1 \cdots p_k (q_1 \cdots q_l)^2$$

with primes p_i , q_j dividing N, satisfying ($\sigma(d^2)$, N) = 1 and

$$\sigma(d^2) = f(d^2) \equiv 5 \mod N.$$

Since for every prime p one has (1 + p, N) > 1, as N is divisible by 6, therefore k = 0, and there exists a prime q dividing d with $(1 + q + q^2, N) = 1$ and $1 + q + q^2 \equiv 5 \mod 6$, thus $q^2 + q \equiv 4 \mod 6$. This is obviously impossible, hence f(n) is not properly weakly distributed modulo N.

6.3. Ramanujan τ -function. Our last example deals with the Ramanujan τ -function, defined by

$$\sum_{n=1}^{\infty} \tau(n) X^n = X \prod_{j=1}^{\infty} (1 - X^j)^{24}.$$

It has been shown by Serre [8] (see also [5, Theorem 5.18]) that $\tau(n)$ is weakly uniformly distributed modulo N if and only if either N is odd and not divisible by 7, or N is even and $(N, 7 \cdot 23) = 1$. In particular, $\tau(n)$ is weakly uniformly distributed modulo p for every prime $p \neq 7$. Nevertheless, it turns out that its distribution modulo 7 is not too bad.

THEOREM 6.3. The function $\tau(n)$ is weakly properly distributed modulo 7.

PROOF. In 1931, Wilton [10] established the congruence

$$\tau(n) \equiv n\sigma_3(n) \mod 7,$$

where

$$\sigma_3(n) = \sum_{d|n} d^3,$$

[14]

hence it suffices to show that the function $f(n) = n\sigma_3(n)$ is weakly properly distributed modulo 7.

For this function we obtain $V_1(X) = X^4 + X$, thus $R_1 = \{1, 2, 4\}$, hence r = 1 and $\Lambda = R_1$ is of index 2. Thus $\Omega = \{\chi_0, \chi_7\}, \chi_7$ being the quadratic character modulo 7. Denote by *P* the set of primes *p* with *p* mod $7 \in \Lambda$.

In view of $7 | f(7^j)$ for $j \ge 1$ we get $B_{\chi_0} = B_{\chi_7} = 1$. Moreover, for both characters $\chi \in \Omega$,

$$1 + \frac{\chi(f(p))}{p} = \begin{cases} 1 + 1/p & \text{if } p \in P, \\ 1 & \text{otherwise,} \end{cases}$$

hence

$$C_{\chi_0}(1) = \prod_{p \notin P} \left(1 + \sum_{\substack{j \ge 2 \\ 7 \nmid f(p^j)}} \frac{1}{p^j} \right) \prod_{p \in P} \left(\left(1 + \sum_{\substack{j \ge 2 \\ 7 \nmid f(p^j)}} \frac{1}{p^j} \right) \frac{p}{p+1} \right),$$

and

$$C_{\chi_{7}}(1) = \prod_{p \notin P} \left(1 + \sum_{\substack{j \ge 2\\ 7 \nmid f(p^{j})}} \frac{\chi_{7}(f(p^{j}))}{p^{j}} \right) \prod_{p \in P} \left(\left(1 + \sum_{\substack{j \ge 2\\ 7 \nmid f(p^{j})}} \frac{\chi_{7}(f(p^{j}))}{p^{j}} \right) \frac{p}{p+1} \right).$$

Since the character χ_7 is real and $\chi_7(f(29^2)) = \chi_7(3) = -1$,

$$C_{\chi_7}(1) < C_{\chi_0}(1),$$
 (6.2)

and the observation that $7 \nmid f(p)$ implies $\chi_7(f(p)) = 1$ leads to the equality

$$h_{\chi_0}(1) = h_{\chi_7}(1). \tag{6.3}$$

Noting, finally, that the sum

$$\sum_{j \in R} \chi(j) \sum_{i \in \Lambda_j} g(N, i, 1)$$

does not depend on χ , as for $j \in R$ we have $\chi_0(j) = \chi_7(j) = 1$, and using (6.2) and (6.3) we arrive at

$$\alpha_{\chi_0} > \alpha_{\chi_7}(1),$$

and the assertion follows from Corollary 4.3.

References

- [1] H. Delange, 'Généralisation du théorème de Ikehara', Ann. Sci. Éc. Norm. Supér. (3) 78 (1954), 213–242.
- [2] T. Dence and C. Pomerance, 'Euler's function in residue classes', *Ramanujan J.* 2 (1999), 7–20.
- [3] W. Narkiewicz, 'On distribution of values of multiplicative functions in residue classes', *Acta Arith.* **12** (1967), 269–279.

[16]

- W. Narkiewicz, 'Distribution of coefficients of Eisenstein series in residue classes', *Acta Arith.* 43 (1983), 83–92.
- [5] W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Mathematics, 1087 (Springer, Berlin–Heidelberg–New York–Tokyo, 1984).
- [6] W. Narkiewicz and F. Rayner, 'Distribution of values of $\sigma_2(n)$ in residue classes', *Monatsh. Math.* **94** (1982), 133–141.
- [7] F. Rayner, 'Weak uniform distribution for divisor functions, Parts I and II', Math. Comp. 50 (1988), 335–342; 51 (1988), 331–337.
- [8] J.-P. Serre, 'Divisibilité de certains fonctions arithmétiques', *Enseign. Math.* 22 (1976), 227–260.
- [9] J. Śliwa, 'On distribution of values of $\sigma(n)$ in residue classes', *Colloq. Math.* **27** (1973), 283–391; correction p. 332.
- [10] J. R. Wilton, 'Congruence properties of Ramanujan's function $\tau(n)$ ', *Proc. Lond. Math. Soc.* (2) **31** (1930), 1–10.

WŁADYSŁAW NARKIEWICZ, Institute of Mathematics, Wrocław University, Plac Grunwaldzki 2-4, PL-50-384 Wrocław, Poland e-mail: narkiew@math.uni.wroc.pl