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This paper investigates the stability of a fully parabolic—parabolic-fluid (PP-fluid) system of the
Keller—Segel-Navier—Stokes type in a bounded planar domain under the natural volume-filling
hypothesis. In the limit of fast signal diffusion, we first show that the global classical solutions of the
PP-fluid system will converge to the solution of the corresponding parabolic—elliptic-fluid (PE-fluid)
system. As a by-product, we obtain the global well-posedness of the PE-fluid system for general
large initial data. We also establish some new exponential time decay estimates for suitable small
initial cell mass, which in particular ensure an improvement of convergence rate on time. To further
explore the stability property, we carry out three numerical examples of different types: the nontrivial
and trivial equilibriums, and the rotating aggregation. The simulation results illustrate the possibility
to achieve the optimal convergence and show the vanishment of the deviation between the PP-fluid
system and PE-fluid system for the equilibriums and the drastic fluctuation of error for the rotating
solution.
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1 Introduction

Keller—Segel system and fast signal diffusion limit. Chemotaxis, the biased movement of cells
along spatial gradients of chemical cues, plays an important role in numerous biological cir-
cumstances such as bacterial aggregation, spatial pattern formation, embryonic morphogenesis,
immune response and also tumour-induced angiogenesis. The most basic mathematical model
for chemotaxis was originally derived in 1953 by Patlak [25] and then in 1970 by Keller and
Segel [13]. The main unknowns in this so-called Keller—Segel model are the nonnegative cell
density » and chemical concentration ¢, which satisfy the parabolic—parabolic reaction-diffusion
equations:

8,n=tlAn—V~(nSVc), xe, t>0, (wD)

0,c=TAc—c+n, xe, t>0,
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where 1) is the positive cell diffusivity and t, stands for the positive diffusivity of the chemical.
In many realistic modelling situations, the chemotactic sensitivity S has to be allowed to depend
on the cell density » and on the chemical concentration c.

The celebrated Keller—Segel system (1.1) has been well-studied with regard to biological
implications, but beyond this, during the last decades quite a thorough comprehension of its
mathematical features has grown in various directions. For instance, a striking feature of system
(1.1) appears to be the occurrence of some solutions blowing up in finite time ([11]), which is
commonly viewed as mathematically expressing numerous processes of spontaneous cell aggre-
gation which can be observed in experiments. In the spatially two-dimensional framework, in
particular, it was shown in [24, 11] that system (1.1) possesses some solutions which blow up in
finite time provided that the initially present total mass fQ n(x, 0) is large enough, whereas solu-
tions remain bounded whenever |; o 1(x, 0) is small; as a precise value distinguishing the respec-
tive mass regimes either allowing for or suppressing explosions, the critical mass m. = 87 could
be identified in the spatially radial setting or €2 = R?. Such explosion phenomena can be ruled out
when S is related to the prototypical assumption of volume-filling effect. Precisely, it has been
shown in [12] that for the two-dimensional no-flux boundary value problem of system (1.1) with
n-dependent sensitivities S(n), all solutions are global and uniformly bounded provided that

Cs

S(n) < with a>0 1.2
0= (1.2)
for some positive constant Cs, while the solution may blow up if @ C R? is a ball and
C
Sn) > —— with  «<0.
(I4n)

Due to the experimental facts, the diffusion coefficient 7, of the chemoattractant c is usually

assumed to be large and the ratio between the diffusivity of the cells and of the chemoattractant

7]

€:1=—

%)
can be regarded as a relaxation time scale such that ! is the rate towards equilibrium. Then
taking into account the different time scales of the two diffusion processes and replacing ;¢ with

t in the original parabolic—parabolic (PP) system (1.1), we obtain

1
omn=An— I—V . (nS(n)Vc),
1
(1.3)

1
€dic=Ac— —c+ —n.
17) 1%)

The formal choice € = 0 in (1.3) will lead to a corresponding parabolic—elliptic (PE) system:

1
om=An— t—V . (nS(n)Vc),
1

(1.4)

1 1
0=Ac— —c+ —n,
(%) T

which describes the chemical concentration evolution in a quasi-stationary approximation.
The PE system substantially differs from its fully PP system due to the circumstance that the
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former cross-diffusive interaction involves a certain memory. The theory of the PE system
(1.4) is relatively well developed. For instance, a comprehensive picture was obtained in [27]
for the two-dimensional PE system (1.4): the Dirac mass formation and finiteness of blow-up
points were derived without substantial restrictions. Even in the 2D mass critical case, in which
solutions to the Cauchy problem of the minimal PE system (1.4) exist globally but blow up in
infinite time, it is known that the spatial profile near the corresponding blow-up time 7' = oo is
essentially dictated by Dirac distributions (see [3, 9]).

Several nice analytical results in [2, 17, 18, 26] showed the stability properties of solutions to
Keller—Segel system in the whole space R? as € — 0: solutions of the PP system (1.3) converge
in some special cases (e.g. for ¢(x, 0) = 0, for some finite time 7 or for small initial data) to those
of the PE system (1.4) (see also [8, 23] for the initial-boundary value problem). These partially
solved an old question raised by Biler [1]. Recently, Liu et al. [20] proposed a semi-discrete
scheme based on a symmetrisation reformation and showed that their new scheme is stable as
€ — 0 provided that the initial condition does not exceed certain threshold, and it asymptotically
preserves the quasi-static limit in the transient regime.

Keller—Segel-(Navier—)Stokes system and fast signal diffusion limit. Partially motivated by
the striking experiments in [28], the typical models describing the interaction between popu-
lations of chemotactically migrating individuals and viscous fluid environments have become
the best-studied models in mathematical biology (see [6, 36]). In [14, 15], Kiselev and Ryzhik
considered the effect chemotactic attraction on reproduction of some invertebrates, such as sea
urchins, anemones and corals. In particular, they investigated the phenomenon of broadcast
spawning whereby males and females release sperm and egg gametes into the surrounding flow.
For the coral spawning problem, there is experimental evidence that eggs release a chemical that
attracts sperm (see [4, 5]). This leads us to investigate the PP-fluid model:

on+u-Vn=An—-V - (nSVc),

€dc+u-Ve =Ac—c+n,

(1.5)
ou+k(u-Vu+VP=Au+nVep,

V-u=0

and to consider the effect of the surrounding fluid on the chemotaxis, where the additional
unknowns are the fluid velocity u and the associated pressure P. Here the given potential func-
tion ¢ = ¢(x, t) arose from the chemotactic boycott effect and the coefficient ¥ € R measured the
strength of nonlinear fluid convection.

Due to the possible singularity in the fluid-free case as mentioned before, it is natural to require
a volume-filling hypothesis of the form (1.2) to establish global solvability for the PP-fluid sys-
tem (1.5) and its variants (see [29, 34, 37, 41]). For « = 1, in particular, it has been revealed
in [29] that under the rotational chemotactic assumption of the form S = S(x, n, c) (see [39])
satisfying the natural volume-filling hypothesis

C
1S(x, n, 0)] < ——
(1+n)

(1.6)

with some positive constant Cg, there exist global bounded classical solutions to the 2D homoge-
neous Neumann—Neumann—Dirichlet initial-boundary value problem of system (1.5) whenever
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a > 0, which is accurately consistent with the case of fluid-free system (1.1). A corresponding
3D setting possesses a globally defined weak solution whenever o > % (see [16]). For k =0, on
the other hand, Lorz [21] illustrated the behaviour of the 2D PE-fluid system

on+u-Vo=An—-V - (nSVc),

u-Ve =Ac—c+n,

(1.7)
ou+ k(- -V)Yu+ VP =Au+nVeo,

V-u=0

(i.e. € =0 in (1.5)) with different numerical examples and in particular gave the numerical
evidence that above the critical mass of 87 solutions still exist for PE-fluid system (1.7).
Recently, Zheng [42] proved that if o > 0, then the associated initial-boundary-value problem
(1.7) possesses a global bounded classical solution for any sufficiently smooth initial data (7, 1)
satisfying some compatibility conditions. The Dirichlet boundary effects for the signal have also
been investigated in [31, 32, 33].

In the last 2 years, two rigorous stability analyses for the chemotaxis-fluid system have been
done by [30, 19]. In particular, Wang et al. [30] affirmed that under some assumptions on the
model ingredients, that is,

sup (| Veell o, ryraqy < 0 and sup |ue |l oo, )27 () < 00
€ €
with some X € (2, 0], ¢ > d and r > max {2, d } fulfilling % + %{ < %, there exists a subsequence
for solutions (7., c., u) to the initial-boundary value problem of the fully PP-fluid system

dne +ue - Vne = Ane — V - (neS(x, ne, ceo)Vee) +f(x, ne, ce),

€0ice +ue - Vee = Ace — ¢ + ne,

(1.8)
oiue + k(ue - Ve + VP = Auc +n. Vo,

V-ou=0

converging to the solution of its PE-fluid counterpart

on+u-Vo=An—V . (nS(x, n, c)Vc) +f(x,n0),
u-Ve=Ac—c+n,

ou+k(-VYu+VP=Au+nVe,

V-u=0

in Q x (0, T) as € — 0, where k¥ € R and @ C RY (d > 1) is a smoothly bounded convex domain.
Then under the volume-filling assumption (1.6) with « > 0, the first two authors [19] established
an algebraic convergence rate of the fast signal diffusion limit for the PP-Stokes system (i.e.,
k =0 1in (1.8)) with f =0 and general large initial data and removed the restriction to asserting
convergence only along some subsequence in [30].
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Main results. In the present work, we will further consider the stability in a full Keller—Segel—
Navier—Stokes system. Precisely, we investigate the convergence of solutions of the PP-fluid

system
one +ue - Vo = Ane — V - (neS(x, e, cé)Vce), xe, t>0,
€0ice +ue - Vee = Ace — ¢ + ne, xe, t>0,
oue + (ue - VYue + VP = Auc +n. Vo, xe, t>0,
V-u =0, xeQ, t>0, (9
(Vn6 —nS(x, ne,c€)~Vc€) -v=Vec.-v=0, u.=0, x€ed, t>0,
ne(x,0) =np(x), ce(x,0)=co(x), u(x,0)=up(x), xe2
to the solution of the corresponding PE-fluid system
3,n+u~Vn=An—V-(nS(x,n,c)Vc), xeQ, t>0,
u-Ve=Ac—c+n, xe, t>0,
ou+ (u-Vyu+VP=Au+nVe, xeQ, t>0,
(1.10)
V-u=0, xeQ, t>0,
(Vn—nS(x,n,c)~Vc)~v=Vc-v=0, u=0, x€od2, t>0,
n(x, 0) = no(x), u(x, 0) = up(x), x e

in a setting as general as possible, where Q C R? is a bounded domain with smooth boundary.
Throughout this paper, we will suppose that the chemotactic sensitivity function S = (Sij)zx )
satisfies the requirements of regularity and the volume-filling hypothesis

Cs

Sii(x, ne, c.) € C2(2 x [0, 00) x [0, 0o and S, ne,c)| < ————
5, e, c0) € C2(@ x [0, 00) x [0, 00)) S5 nes e = o

(1.11)

for some constants Cs > 0 and & > 0, and that the initial data and the potential function fulfil

nge Wr*(Q), ny>0 and ny#£0 in

coeWH®(Q), ¢>0 and c¢oy#£0 in €,
(1.12)
uoeWz’m(Q; Rz) with V-up=0 in  and uy=0 on 9%,

@ € WHX(Q).

With the above framework, it was shown in [29] that for each fixed € >0, system (1.9)
admits a unique global bounded classical solution (n,, ¢, u, P) satisfying n. > 0 and ¢, > 0 in
Q x (0, 00).

Our aim is threefold: firstly, we show the global classical solutions (7, c., ue, Pc) (not just
a subsequence) of the full PP-fluid system (1.9) will converge to the solution (n, ¢, u, P) of
the corresponding PE-fluid system (1.10) as € — 0. As a by-product, we obtain the global well-
posedness of the PE-fluid system (1.10) for general large initial data. Secondly, we establish
exponential time decay estimates of (n, ce, u.) uniformly in € for small initial cell mass, which
in particular ensure an improvement of convergence rate with at most %—order growth on time .
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Thirdly, we further investigate the convergence behaviour on € and ¢ through the numerical
simulations of three different types of solution: the nontrivial and constant equilibriums, and the
rotating aggregation (see Remark 5.1 for discussion).

Without loss of generality, we only need to focus on the case of 0 <« < % Under these
assumptions, our main results are the following.

Theorem 1.1. Let Q@ C R? be a bounded domain with smooth boundary. Suppose that (1.11)—
(1.12) hold for o > 0, and that (n¢, cc, ue, P¢) solves the PP-fluid system (1.9) classically in Q x
(0, 00). Then there exists a unique classical solution (n, ¢, u, P) to the PE-fluid system (1.10) in
Q2 x (0, co) with the property that

1
Ine(-, 1) = n(, Dl 20y + 165 8) — nC, 20,0120 < Crelez,
1
llce (-, 8) = cC )l 200120 = C elez,
1
lue (-, 1) — ul-, Dl oo() + llue(-, s) — u(:, s)||L2((0,t);W1w2(Q)) <Cielez

or all t € (0, 00) and some uniform positive constant Cy. For each 6 € (1, 3) and p > 2, we also
204
have

1
4% ue (-, 1) — A%u:, D2 = Cree,
1
(s ) — n(-, D) < Czees
for all t € (0, 00) and some positive constants C, := Cy(0) and Cs := C3(p).
Our second result further reveals that the above exponential growth in time # can be improved

as at most %—order growth for small initial cell mass based on some new exponential time decay
estimates of (#., c., u¢) uniformly in €. For simplicity, we will set 7 := ‘lﬁ fQ no(x)dx.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists § > 0 such that if

70ll21(e) <9,

then the solutions (ne,ce,ue) to the PP-fluid system (1.9) satisfy the exponential time decay
estimates uniformly in €

176, £) = Mol ooy + llee (s 1) = Tiollyr.p(y + llue(:, Dllzoe(@) < Cre™

for any p > 1 and all t € (0, 00) with some positive constants . and Ci. Moreover, there exists
some uniform positive constant C, with the property that

11
ne(-, ) — n(:, t)”LZ(Q) + lIneC, s) = n(., S)”LZ((OJ);WI»Q(Q)) =G(1+10)2ez,
11
llce (5 8) — (o ) 20,012y < Co(1 +1)2€2,
11
e (-, 1) — uC, D2y + e, 8) = uC, Hll 2w 20 < Co(1 +1)2€2

forall t € (0, 00). Furthermore, for each 0 € (%, %) and p > 2, we have

3 1
14%uc (-, 1) = A%u(-, D) 20y < C3(1 + D)€,
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and

L2
7, 1) = n(-, Dllp) < Ca(1 4 1)2€7

for all t € (0, 00) with some positive constants Cs := C3(0) and Cy4 := Cy(p).

Remark 1.1. In the current two-dimensional setting, Theorem 1.2 also improved the decay esti-
mates obtained by [40] in the sense that we removed the smallness restriction on ||Vco |l 2oy and

lluoll 2 (c2)-

Key steps in our analysis. In Section 3, we concentrate upon the global existence of classical
solution (n, ¢, u, P) to the PE-fluid system (1.10) as a limit of some subsequence of solu-
tions (7, Cc, Ue, P¢) to the PP-fluid system (1.9). Thus, we need to derive some e-independent
estimates for (n, ce, ue, Pe).

Unlike the PP-Stokes system studied in [19], the current mass conservation property
e, Dl 1) = lInoll 1) and the regularity of [|lce(-, )l11(q) (Lemma 2.1) cannot immediately
provide the bounds for u, due to the convective term in equation (1.9);. Instead, we will first
analyse a combinational functional of the form

+ Kellce

2 2
_Z””g”Lz(Q) ”Lz(Q)

for some K > 0 to gain the uniform L? space-time bounds for Va® and Ve, with respect to €
(Lemma 3.1), which ensures the L? spatial bound for u, and the L? space-time bound for Vi,
(Lemma 3.2). We next improve our knowledge on the space-time Z” uniform bound for ¢, for
any p > 2 (Lemma 3.3). Based on the above conclusions, we shall further establish the key L?
boundedness of Vu, by an entropy-like estimate involving the combinational functional of the

form
/nelnne—i—Ke/ |Vc€|2+M/ |Vu,|?
Q Q Q

for some positive constants K and M (Lemma 3.4), which guarantees the time-independent spa-
tial Z” uniform bound for u. for any p > 1 with respect to € (Lemma 3.5). Thereafter, we will
track the time evolution of the combinational functional

”ns('a t)”ié(ﬂ) + E”vcs('s t)”iZ(Q)

for some s in Lemma 3.6. Then following from an induction argument (Corollary 3.1), we reach
the L* regularity of n. (Corollary 3.2), which together with the damping effect of c. provides the
uniform L? bound (Lemma 3.7) and the eventual L¢ bound for V¢, (Lemma 3.8). These bounds
imply the convergence of some subsequence of (#., c, U, P.) (Lemma 3.9).

In Section 4, we shall first derive a linear growth estimate

f
//810605C(1+t)
0 JQ

for the mixed components ¢, and ¢ using some subtle difference quotient estimates and the max-
imal regularity for parabolic equations and Stokes equation (Lemma 4.1). Then the basic energy
methods and the variation-of-constants representation provide the convergence rate for general
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large initial data (Lemma 4.2-Lemma 4.5). Then we show that the solution (%, c., u¢) of the
PP-fluid system (1.9) exponentially decays to the constant steady state (7, 7, 0) uniformly in €
for appropriate small initial cell mass with 7 := ‘lﬁ Jo no(x)dx (Lemmas 4.6, 4.7, Corollary 4.1,

Lemma 4.8), which ensures that we can improve the growth in time ¢ as at most %—order by
investigating the time evolution of the mixed functional

Klne(-, 0) = n(, D)l 12q) + €llce(, Dl gy + e 1) = uC, Dl 7 g

for some K > 0 (Lemma 4.9). The standard smoothing effect of Stokes semigroup and some
energy estimates also entail the higher convergence of . (Corollary 4.2 and Lemma 4.10) and
ne (Lemma 4.11).

Notation: In the rest of this paper, we will suppose that (%, c., u., P.) is a classical solution to
the PP-fluid system (1.9) in € x (0, co) with € € (0, 1). The positive constants C, Cy, C,, - - - are
independent of € and ¢.

2. Preliminaries

In this section, we collected a few preliminaries. We begin with the mass conservation of cell
density.

Lemma 2.1. Suppose that (1.11)—(1.12) hold. Then for all € € (0, 1),
e Dl 1) = 1m0l 1) for all 7€ (0, 00), (2.1)
and

llce, Dl @) < max {lInoll ;1) llcollziq)} for all e (0, 00). (2.2)

Proof. The mass conversation (2.1) of n. can be obtained by taking an integration of equation
(1.9); over Q2. Similarly, integrating equation (1.9), over 2 and using a comparison argument,
we can obtain the L! boundedness (2.2) of c.. O

Lemma 2.2. Suppose that (1.11)—(1.12) hold and that ||nc(-, t)|l1s@) < K, (¢ € (0, 00)), for some

s> 1 and K > 0. Then there exists a positive constant C depending only on s, K and c( such that
foralle €(0,1),

llce(, Hllzsy < C for all e (0, 00).

Proof. Multiplying equation (1.9), by ¢!~ and integrating by parts over €2, we have

d ) ) ) -1 o1 )
S—/C’z—f-(s—l)/ci_chEIz#—/cizfneci_lgs /Ci+—/ni
sdt Jo Q Q Q s Ja s Ja

and thus
d
6—/c‘Z—G—s(s—l)/c‘;_2|V06|2+/C‘Z§/n‘Z§K“
dt Jo Q Q Q
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for all # € (0, 00). By a basic calculation, we deduce that

/ (-, 1) <max {/ I KS} for all ¢€ (0, 00).
Q Q
This completes the proof of Lemma 2.2. ]

Lemma 2.3. (Lemma 3.4 in [38]) Leta > 0, T > 0 and y € C°([0, T)) N C'(0, T) be such that
V(&) + ay(t) < g(f) for all 7€(0,7),

where the nonnegative function g€ L) (R) has the property that % fttﬂ g(s)ds <b for all

loc

t€(0,T) with some t > 0 and b > 0. Then

b
() < 3(0) + l—t_ for all te[0,T).
— e at

3. Global existence of the PE-fluid system

In this section, we will establish the global existence of classical solution to the PE-fluid system
(1.10) through a limit procedure in the PP-fluid system (1.9), which is highly nontrivial due to
the loss of uniform parabolicity in ¢, equation. Our key idea is to obtain some necessary spatio-
temporal estimates using a series of subtle coupled functional evolution estimates and bootstrap
arguments.

3.1 The space-time L? bound for Vi, and L” bound for c,

Lemma 3.1. Suppose that (1.11)—(1.12) hold. Then there exists some positive constant C such
that for all € € (0, 1), we have

t+1 t+1
/ / |Vn?)*<C  and f / Ve ) <C  forall ¢>0. (3.1
t Q t Q

Proof. We first multiply equation (1.9); by n2*~!, integrate by parts over Q and use the

solenoidality of u. and the Young inequality to deduce that

1 d " .
o Qng —|—(1—2a)/9n§ 2\ Vn

1
=—— | u.-Vr* +(l —Za)/ n2* 'V - (S(x,ne, ce) - Vee)
200 Q Q

=(1- 20{)/ nﬁa_IVng . (S(x, Me, Ce) Vce)
Q

1-2
< a/nga72|vné|2+
2 Ja

1—-2
<= / 22V 2+ Cy / Ve, (3:2)
2 Q Q

1 —-2a

Cf‘/ nga(l+”e)72a|vce|2
Q
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for all # > 0, where we also used the upper estimate (1.11) for S. To compensate the rightmost
summand herein properly, we multiply equation (1.9), by ¢, and utilise the solenoidality of u,

again to find that
2dt/c —i—/ |Vc5|2 /c —/ngcE forall ¢>0. (3.3)

For any fixed 6 (l , ﬁ), we use the Holder inequality to obtain

1
nece < ||nclliocanllcell e = ||n¥|¥ cell o forall ¢>0.
/Q eCe < Inelloqellcell e I E”Lg(ﬂ)” e”Lm(Q)

Since the Sobolev embedding W'2(Q) — LFJG%I(Q) and (2.2) imply that

2
llce |l 6
Lo

< G| Veeljog + Calicellfig, = C2 / Ve +C; forall >0,
1@ Q

we make use of the Young inequality to deduce that
/nece<i||ce||2 0 ||n ||“ /|Vce|2+—+—|| “ua (34
Q - 2C L7-1(Q) - 2 @ (Q)

for all # > 0. In order to guarantee that the last summand here can be absorbed by the dissipated
quantity in (3.2), we next apply the Gagliardo—Nirenberg inequality and the mass conservation
(2.1) to see that

G, " 2 2(6-1) % N 2 2(6—1)
—||n%|“ < C4||Vn? ng + Cy||nZ || ¢ <Cs||Vn? +C 35
3 ey < CalvaZllsig Il 4+ Calilly < CslIViglig, +Cs G9)

for all # > 0, whereupon substituting (3.4) and (3.5) into (3.3), we have
2(0-1)
€— / e +/ Ve |? _|_2/ c. <2Cs||Vn? ||L2(Q) + Cs forall >0

with Cg :=2Cs + % This together with (3.2) entails that

d 1/2“+2cf +
ar | 2« )" 1€ ),

2(9—1)

f|Vce|2+4a/c€
Q Q

n?+C;  forall t>0

1-2
<4C1C5||Vn Il +2C1Cq < 3

LZ(Q)

and thus that

d lf 2 42C / 2+
—{—— 1 n €
dt 2 Q € ! QCE

for all # > 0. Here we used the Young inequality in the last inequality of (3.6) due to 90[;91 €(0,1),
which follows from 6 € (1, = o[) Then by setting

/Q|Vc€|2+4C1/Qc§§C7 (3.6)

y(t) = ”na( t)”LZ(Q) + 26‘16 ”CE( t)”LZ(Q)a

1 —2u
8(0) = == IV (s Dl 2y + Crl Vel Dl ),
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and noticing that 4Cye [, 2 <4C) [, ¢? due to the fact € € (0, 1), we can conclude from (3.6)
that

V(O +20() +g(0) < Cr. (3.7)

Since g(#) is nonnegative, we deduce from an ordinary differential inequality comparison
argument that

<Cy:= L2 +2C o o & 3.8
y(t)_ g ‘= max _EHnOHLZ(Q)—'— 1||CO||L2(Q>57 ( . )

for all # > 0, which together with (3.7) yields that

t+1 t+1
/ g(s)ds < () — y(t + 1) — 2 / Ws)ds + C;

for all 7> 0. Due to « € (0, 5), we see from the Hlder inequality and the mass conservation
(2.1) that

| |1 —2a |Q|172a

1 o« 2
_y(t) =< %””le (’t)”LZ(Q) ”ne( t)“Ll(Q) T”nO”LI(Q)’

which together with (3.8) yields that

t+1 t+1 +1
4a2 / /|Vn 2 +C1/ /|V05| —/ g(8)ds < Cip:=Cs +3Co + (4

for all # > 0, which entails (3.1). O

Lemma 3.2. Suppose that (1.11)—(1.12) hold. Then there exists some positive constant C such
that for all € € (0, 1) we have

+1
lue (-, Dl 2 < C and / / Vu > <C for all #>0. 3.9
t Q

Proof. For any fixed 6 € (1, T a) we test equation (1.9); by u, and employ the Holder inequality,

the Sobolev embedding W'-2(Q) — Lf?(%l (R2), the Poincaré inequality and the Young inequality
to obtain that

d 2 2
3 e s+ 1V = [ eV,
<||V 00 n u
V@Il e||L9(Q)|| ll QL(Q)
< Cillnellzo@) I Vel 2

2

||Vue|| for all ¢> 0.

1 2
12(Q) 7||n€||L8(Q)
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By means of the Young inequality and (3.5), we have

2
2 2 2 2 2 o
gl + 1Vt < Clnelfogy = ClImNT,

2(871)

<G|IVAY| 27+ Cy < /an 1>+ C; for all +>0 (3.10)

LZ(Q)

due to 221 € (0, 1). Noticing that

t+1
f (f |Vn (., s)* + c3> ds < Cy
t Q

due to Lemma 3.1, we then see from (3.10) and Lemma 2.3 that
Cy

e, DlIF2gy < Cs = lluoll o) + T forall £>0
and thus that
t+1 1+1
[ [ 19uoras < s g, + / < [ v+ c3> ds = Cy o= gl + Cs
t Q
for all # > 0. This completes the proof of Lemma 3.2. 0

We next intend to improve our knowledge on the space-time 7 bound for ¢, for any p > 2.
Indeed, for 2 < p < 3, the following lemma is a direct result of Lemma 3.1.

Lemma 3.3. Suppose that (1.11)—(1.12) hold. Then for each p > 2, we can find C > 0 such that
forall e €(0,1),

+1
/ / E(,5)ds<C for all #>0.
t Q

Proof. Testing equation (1.9), by c’e’*l, we obtain using the Holder inequality that

€ed 5 4p—1 52 -1 g 2
_d_ ”cEZ ”Lz(Q) + 5 ”Vcé ”Lz(Q) + ”Cé2 ”LZ(Q) = nécg S ”né ||LF(Q)I|CEZ ” Zp(pfl)r
t P? Q LPr=T) (@)

for any > 1 and all # > 0. It then follows from the Gagliardo—Nirenberg inequality, the Young
inequality and (2.2) that

ed dp—1) _ ¢ L
||cg 12y + o IVEZ 7o) + 162 172

IVee ll ooy lledll 5+l ,

L2()

p 2241, 20-1) » 2(p 1
< Cilinellr@ >

LP (Q) L ()

p  2pr=2r+1) r—1
= Cl ”né ||LV(Q) <||VC€ ||L2(Q) ”c()HLl(Q) + ”C()”LI(Q))

p 2pr— 2r+1)
Ivee + 1)

S C2||n€||Lr(Q) LZ(Q)

IA

4p—1) 2 2
= 1Vel 172y + Cillnell gy + €3 forall >0,
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and thus that
d 5o 52 7T
Ed_t”cs ||L2(Q) +pllce ”LZ(Q) SPC3||"5||U(Q) +pGs for all > 0. (3.11)
Taking r = Z :iz and applying the Gagliardo—Nirenberg inequality again, Lemma 3.1 and the

mass conservation (2.1), we have

t+1 pr t+1 2
n =1
[ wmazd = wag,
S R
sc [ (o )
; L7 (@) L7 (@)

t+1 2a 2ra
=Q/ QmmemM@+MMWJ
t

<C;s for all ¢>0. (3.12)

Consequently, setting

r P
y(t) ZEHCEZ (91‘)”22(9)9 g(t) =p||C€2 (70”12‘2(9): h(t) _pC3||n€( t)”LV(Q) +PC39

we can use (3.11) and the fact p||cE G, > py(¢) for any € € (0, 1) to deduce that

t) ||L2(Q)
V(@ +py(0) =y (1) +g(1) < h(1)
for all # > 0 and thus from Lemma 2.3 and (3.12) that

Cs
PG p—

6 6
§O 30) + = el g, + Ty < Cri= e I

for all # > 0 with Cg := pC5Cs 4 pCs, which also implies that
t+1 1+1
/ g(s)ds <y(t) —y(t+ 1)+ / h(s)ds < C7 4+ Cs for all #>0.
t t

This completes the proof of Lemma 3.3.

3.2 A time-independent spatial Z” bound for ..

In this subsection, we derive further regularity of u.. Precisely, we will show the boundedness of
llue (-, Dl 1r(e) for all p > 1, which is based on the boundedness of || Vu(-, )| ;2(q) obtained by a
key entropy-like estimate.

Lemma 3.4. Suppose that (1.11)—(1.12) hold. Then there exists some positive constant C such
that for all € € (0, 1) we have

Proof. We will deduce our desired result by investigating the combinational functional of the

form
/nglnne—i—Ke/ |Vc€|2+M/ |Vu,|?
Q Q Q

with positive constants K and M to be determined.
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For this purpose, since ||A%u6 l22() = Ve ll12(q)» We first apply the Helmholtz projection P
to both sides of equation (1.9);, multiply the result with Au,, integrate by parts over €2 and use the
Hélder inequality, the L?> boundedness of P, the Gagliardo—Nirenberg inequality and the Young
inequality to obtain

Zde |V”e| +/ |A”e|

< IP(ue - V”e)”LZ(Q)”Aue ||L2(Q) + ||P(nev¢)”L2(Q)”AuE ||L2(Q)

< Cilluell 4o I Ve 2oy 1te | 200y + IV Loy el 200 1At 20

1
<C (nue Iyl Vil + e ||Lz<m) (nAueu Bl Vel + nwean(m)

MNAuell 20y + Callnell 2o |1 Aue |l 120
for all ¢ > 0. Here we used (3.9) in the last inequality. Then, we have
d 2 4 2 2
E”VMGHLZ(Q) S 2C3||Vu6”L2(Q) +2C3||Vu€”L2(Q) +2C3||n€||L2(Q) for all t> 0 (313)
We next estimate the last term on the right-hand side of (3.13). Due to 7, > 0 in Q x (0, 00), we

may test (1.9); by In n, 4 1 to see from the integration by parts over 2 and the Young inequality,
as well as the upper estimate (1.11) for S, that

Ve |?
7 /nglnne /' el /VnE (S(x,ne,cg)-Vce)

Vn > 1 2
§§/| el +_/ne S(xaneace) ~|VC€|2
v 2
_2/ Vel /n€(1+n€)_2°‘|VcE| forall >0
and thus that
d V|2
/nglnne—i— /l el < /112’2"‘|Vc5|2 for all 7> 0. (3.14)
dt Q 2 Jo ne Q
Noticing that
|Va|?
/ 1 = IVnella gy < Call V/nell o g lIN/el o) + Callv/mella g, < Cs / ~— +Gs
Q Q €

for all £ > 0 by the Gagliardo—Nirenberg inequality and the mass conservation (2.1), we deduce
from the Young inequality that

2 4Cs
which together with (3.14) implies that

C§ 1 2 2 1 =
— [Vee|” < — n 4+ Cs | |Vee|TH2« for all >0,
Q Q

1
7 /nelnng+m §§+C6/S;|Vc€|l+% for all #>0. (3.15)
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For the right-hand side of (3.15), we see from the Gagliardo—Nirenberg inequality and the Young
inequality again that

1 1 4
3 Co [ Ve ™ = 2+ ColVe 75
2 Q 2 L1528 ()
1+C7|IAC [ o lleell iz + Clle IIH%
2 € LZ(Q) Ce Lotl(Q) € Lé(Q)
1 1
< f|AC€|2+C8||CE||a1 +Cy  forall >0
16Cs Jq LT (Q)
due to @ € (0, 1), and thus that
/nelnné+ﬁ ng_ 16C5/|AC€| +Cg||c€|| 1 +Cg for all 7>0. (3.16)

To deal with the first integral on the right-hand side of (3.16), we test (1.9); by —Ac,. and
integrate by parts over €2 to get

/|Vce|2 /|Ac€|2 /|Vc€|2 /nEAcE /(ug Veeo)Ac for all > 0.

(3.17)

For the first integral on the right-hand side of (3.17), it is clear that

1
—/HEACES—/ |Ac5|2+/nf for all ¢>0. (3.18)
Q 4 Jg Q

On the other hand, for the second integral on the right-hand side of (3.17), we apply the Holder
inequality to obtain

/(“e Ve )Ace < IACell 2o lluell 4@yl Veell 4 for all 7> 0. (3.19)
Q

Since

> o1 2 1 2 2
|Dce|* = = VIVeel|” v — VAc:-Vee == VIVeel v+ | (Ace)
Q 2 Jae Q 2 Jaa Q

by the integration by parts and V¢, - v = 0, we can use the geometric property
V|Ve|? - v <2Cq|Vee | (3.20)

with Cq an upper bound for the curvatures of 92 (see Lemma 4.2 in [22]), the trace theorem and
the Gagliardo—Nirenberg inequality to see that

ID%cell o) < CallVeellfa g, + I1AC 72 g,

< CallVel? 3, +1Aceliag

.:;

<Gy (uchg ||L2(Q)||cg||L1(m + ||c€||§1(9)) + Al g

Cio
||D2ce o)+ 5+ (leelig + 1Acelyg)  forall 1e(0,00)
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and thus that
1Dy = Cro(lleclZigy + 1 AcelZagy)  forall re@,00.  (321)
It then follows from the Gagliardo—Nirenberg inequality that

Ve < CillD?cell 2o I Veell 2 + Cii ||Vce||§2(9)

2
||L4(Q)
1
= CIIC]ZO(”CE “il(Q) + ”Acé ”iZ(Q)) ”Vcé ||L2(Q) + Cll ||VC€ ||L2(Q)
<CnlAce ||L2(Q)||Vce ||L2(Q) + C2l|Vee ||L2(Q) + Ci2llVee ||L2(Q) for all 7>0,

which together with (3.19) by the Gagliardo—Nirenberg inequality, the Poincaré inequality and
Lemma 3.2 entails that

/(”e - Vee)Ace
Q

=Ci (IIACEIILz(Q)IIVCeIILz(Q) + ”ACGHLZ(Q)”VCEHLZ(Q) + ”Ace”Lz(Q)che”Lz(Q)) e ll 24

1
S C14 <|| ACE ||L2(Q) ”VCE ||L2(Q) + ” ACG ”LZ(Q) ” VCG ”LZ(Q)) ” Vué ||L2(Q) ”l/le ”22(9)
+ CullAcell 2@ I Veell 2 Viell 2
1
= gl Acclllg) + Cusll Vielza g I Vee gy + Cisll Vit 2y I Veell e

1
@ T 5 1Veelizg) + Croll Vel gy I Veellfz gy + Croll Vel (3.22)

1 2
= gllAcel

for all t > 0. Combining (3.18), (3.22) and (3.17), we can deduce that

d
e—f |Vc5|2+/ IAc€|2+/ IVc5|2§2/n2
dt Jo Q Q Q
+2C5 (/ WF)-U |Vce|2>+zc16/ Ve
Q Q Q

for all ¢t > 0, which together with (3.16) and (3.13) yields that

d/ln /| 2t /| )+ 2+1/|Vc|2
n n

ar \Jo, "M T Tec, Ce 3203(:5 Ul ) T6cs Jo ™ T T6cs S, Y e
c

=g ([rwwe ) (e o) g (frwer) ([ rowr 1)

+ Csllce IIEL + G
La (Q)

1
= Vu|* (4C5C Veo|? 2c/ Vu|* +4C5Ci6 +2C
32C3C5f9| Ue| ( 3 16/;2| Ce|” +2G Q| ue|” +4CCi6 + 2G5

1
+ Gslleell®y +Cyg
LE(Q)
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for all # > 0. Thus, by taking K := ﬁ with M = m and setting

y(t)::/nslnne—i—Ke/ |Vc€|2—|—M/ |Vuc|?, g(t)::Kf n§+1</ [Vee|?
Q Q Q Q Q

and

1
W) == 4C5Cig / Ve +26; / Vi +4C5Ci6 +2C5,  m(t)i=Cyllecll®,  + Cs,
Q Q La ()

we have
V() + g < h(t) {y(l) + |—§e2| } ~+ m(f) for all 7> 0. (3.23)
Here we used the fact that
— /Q ne Inne < |—S:|, forall >0 (3.24)

dueto & Ing& > —1 forall & > 0.
According to the Gagliardo—Nirenberg inequality, the mass conservation (2.1) and
Lemma 3.1, we can achieve that

t t 2
/ Il ds= / I, ds
—1 —1

L1—«a () _ La(I—a) (Q)

2(1—a)

t t 2
<Cir [N IO 7 ds+ Cor [ G, ds
1 L7 (@) -1 L7 (@)

loz
a(
t
<Cis / 198, 5) s + Cis
t—1

<Cy for all #>1.

This together with Lemmas 3.1 and 3.2 implies that

t
/H <||”le(',3)||illa(m+||VCe('sS)||i2(Q)+||Vue('>s)||iz(gz)) ds<Cy  forall t>1,

and thus that for each fixed 7 > 0, we can find 7, = 7,(t; €) > 0 such that ¢, € ((r — 1)+, 7) and

Ine (21 o TIVe 172y + Ve, )12

1
I—a (

2 2 2
S C21 ‘=max {C209 ”n()” 1 )+ ||VCO||L2(Q) + ”vuOHLZ(Q)} .

LT=a(Q

By means of the elementary inequality & In & < la;eo‘é = for all £ > 0, we infer that

l—a = l—a iy
/ By ) Iy ) < 2 / P (1) < Cpp 1= LT
Q ae Q oe

and thus that

W(t) < Coz:=Cyp + KCyy + MCy.
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On the other hand, we can see from Lemmas 3.1, 3.2 and 3.3 that

t t
/ h(S)dS :/ (4C3C16 / |VC€(-,S)|2 +2Cs / |Vu€(~,s)|2 +4C53C6 + 2C3> ds < Cyy
-1 t—1 Q Q2

and

t t 1
/ m(s)ds = / (cgnce(-,s)n“l +c8)dssczs
—1 —1 Lo ()

for all # > 1. Thus integrating (3.23) from ¢, to ¢, we can deduce that

Q t
702 (e + el rone . [7 10
e t

*

Q t
< <C23 + u)ecz“ +/ eC24m(s)ds < Cy for all ¢>0.
e f
Whereupon, this together with (3.24) yields our desired conclusion. g

Lemma 3.5. Suppose that (1.11)—(1.12) hold. Then for all p > 1, we can find some positive
constant C such that for all € € (0, 1),

lue(, Ollzr@) < C for all ¢€(0,00).

Proof. This is a direct consequence of Lemma 3.4, the Sobolev embedding W'?(Q) < L(Q)
and the Poincaré inequality. g

3.3 Time-independent spatial L* bounds for n, and V..

We now improve our knowledge on the spatial regularity of . by utilising a very subtle induction
argument for n,, which together with the damping effect of ¢, will provide the key uniform L2
bound for Ve,.

Lemma 3.6. Suppose that (1.11)~(1.12) hold. For any fixed 7€ (1, 52-) and p > 1, if it holds
that for all € € (0, 1),

7, Dllr@) <K and llceC, Dllr@) <K (3.25)

with some positive constant K, then for any

207 +2—2
se(max{1,2a+f—z], 2a+p(p+ or a)>,
r

p+2r

we have
lneC, Hllsy < C for all 1€ (0,00)

with some positive constant C.
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Proof. Firstly, testing equation (1.9); by n{~!, integrating by parts over Q2 and making use of the
Young inequality, the Holder inequality and the upper estimate (1.11) for S, we have

ijt/n +<s_1)/ - 2|Vn€|2—<s—1>/ Ve (St ne, cve)

(s—1
< )/nleVnelz—l-(s—l)Cé/ nT Ve, |
4 Q Q

and thus that

d o3 —1 s ‘
—fniJr ¢ )/ |Vnez|25S(S—1)C§/n:_2a|VcE|2
dt Q S Q Q

<s(s — 1)C? (f = 200) </ |Vc€|r—> (3.26)

for all # € (0, 0o). For the first integral on the right-hand side of (3.26), we can deduce that

1 A 2(s—2a)
T(s—2a) T % As22) % "(5(:233!_)[) S (s—2a) 20‘ T
e =|n o) <C | |Vn . —I— P
( fQ E I s 5 Co (101,357 1175+l
F(s—2a)—,
s 5 7S
<G (/ |Vn§|> +c2 (3.27)
Q

for all ¢ € (0, 00) by (3.25) and 5 > 2« + 1’%, while for the second one, we have

z\7 2
[Vee| T = [ Vel
Q LV* ()

p+2; G 1)217 2

2 p+2) p+

<G (IID el el ey + ||ce||m))
2rip+2) )+r2 (—l)p

2
<Cu | (Neell?y o, + 1 Acell? l elllﬁf’g’ + llecellr@
LY(Q) L2(Q) ()

p+2r
5 r(p+2)
Cs (/ |Ac| ) + Cs (3.28)
Q

for all ¢ € (0, 00) by (3.21) and (3.25). Thus, by substituting (3.27) and (3.28) into (3.26), we can

obtain
d 3(s—1 s
Ly (s )/ |VnZ 2
Q N

dt
F(s— 2a) p T(s—2a)—p
7S

s r(p+2) s
e (/ |Vn3|2> (/ |Ac5|2) e (/ |w3|2>
Q
W
+C7</ [Ace| ) +C

for all ¢ € (0, 00). Noticing that

A(s—2a) p s(p+27)
— <1 and 0< ————— <
s (@ +2)(p + 2ar7)
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p(p+20742—20a)
dueto 1 <s<2a+—p+2¢

d 3(s—1 s
— [ ne+ G )/IVn3|2
dt Q N Q
s(p+27) p+2F
%2 2 (P+2)Qar+p) 5 "p+2)
I~ 4+ Cs |Acc| + Gy |Ace| + Cg
Q Q

f|2+f e + Co
Q

, we can use the Young inequality twice to obtain that

for all # € (0, co) and thus that

d L 2As-
—/ oy 2 )/W 12 < /|A05|2+C9 (3.29)
dt Q

for all ¢ € (0, 00).

On the other hand, in order to absorb the integral on the right-hand side of (3.29), we multiply
equation (1.9), by —Ac, and integrate on €2 to obtain that

d
f—/ |vc€|2+/ |Ac€|2+/ |Vc€|2=—/ néAcé—l—/.(ue-Vce)Ace (3.30)
2dt Q Q Q Q Q

for all ¢ € (0, 00). Since the interpolation and the mass conservation (2.1) imply that

s

s 4 2 s 4
2 2s 2s 2 s
/n€= lné 1, < Cyoll Vi IILZ(Q)IIne2 I°,  +Cuollnéll¥,
Q L3(Q) L5 (@) L5 (@)

s—1 3
< C11||Vne “LZ(Q) +Cn < Z_S/ |V |* + Ciy forall ¢€(0,00),
Q

/neAcs_ /IAQI +fn <—/ [Ace|? +—/ |Vn€| +Cpp 3.31)

for all # € (0, 0o). Similarly, it follows from

we have

IVeellpaq) < Crall Acel + Cisllcell i) = C14||Ace“ +Cus

LZ(Q)”CGHLI(Q) LZ(Q)

and the boundedness of [|uc(-, 7)|| 4, obtained in Lemma 3.5 that
/(ue -Ve)Ace < ||u€||L4(Q)||VC€||L4(Q)||AC€ ||L2(Q)
Q
< Cuallucll 4 (||ACe||Lz(Q) + ||ACe||L2(Q)) 