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INHERENTLY NONFINITELY BASED SOLVABLE ALGEBRAS 

KEITH KEARNES AND ROSS WILLARD 

ABSTRACT. We prove that an inherently nonfinitely based algebra cannot generate 
an abelian variety. On the other hand, we show by example that it is possible for an 
inherently nonfinitely based algebra to generate a strongly solvable variety. 

1. Introduction. Let A be an algebra with finitely many basic operations and let 
E(A) denote the set of equations true in A. A is said to be finitely based if there is a finite 
subset Eo Ç Z(A) such that Eo and Z have the same models. Otherwise, A is said to be 
nonfinitely based. A variety of finite type is said to be finitely based or nonfinitely based 
according to whether or not it is the class of models of some finite set of equations. By a 
result of Birkhoff [3], A is finitely based if and only if the variety it generates, ^(A), is 
finitely based. 

A is said to be inherently nonfinitely based if it is finite but is not a member of any 
locally finite, finitely based variety. Since 1/(A) is locally finite if A is finite, an inherently 
nonfinitely based algebra is always nonfinitely based. 

The property of being inherently nonfinitely based is more stable than the property of 
being merely nonfinitely based. For example, suppose that A and B are finite algebras 
with £(B) Ç Z(A). If A is inherently nonfinitely based, then B is, too. On the other hand, 
whether B is finitely based is independent of whether A is finitely based. For another 
example of the relative stability of the inherent nonfinite basis property we refer the 
reader to [4]. There it is shown that even when A is finitely based, an expansion of A 
obtained by adding one new constant to the language of A may be nonfinitely based. But 
no such expansion can be inherently nonfinitely based. 

An algebra A is said to be abelian if there exists an equivalence relation on the set A x A 
which (i) is compatible with the fundamental operations of A (applied coordinatewise), 
and (ii) has the set {(a, a) : a G A} as a single equivalence class. The results of this paper 
are motivated by Problem 3 of [5] which asks whether there is a finite abelian algebra 
which is nonfinitely based. We do not know the answer to this question. What we prove 
here is that if every member of ^(A) is abelian, then A cannot be inherently nonfinitely 
based. On the other hand, we give an example of an inherently nonfinitely based algebra, 
G3, such that ^(G*) is 2-step strongly solvable. 
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2. Hamiltonian varieties. An algebra A is said to be Hamiltonian if every nonempty 
subuniverse of A is a class of some congruence of A. A variety is Hamiltonian if every 
member is. If A x A is Hamiltonian, then clearly A is abelian; hence every Hamiltonian 
variety is abelian. Conversely, Kiss and Valeriote [7] have proved that if a variety is 
abelian and locally finite, then it is Hamiltonian. 

THEOREM 1 (KLUKOVÏTS, [8]). A variety V is Hamiltonian if and only if, for every 
term t(x, z) in the language of V, there is a ternary term gl such that V satisfies the 
equation 

g(t(x,z),x,y) =t(y,z). m 

The term g* from the previous theorem is called a Klukovits term for t (at x), and also 
a Klukovits term for V. Observe that if V is Hamiltonian, f(x,y,z) is a term and g* is a 
Klukovits term for t at x, then t(x, y, z) = g'Uiy, y, I), y, x\ is an equation of V. From this 
we get that if t depends on both x and y, then t is ^-equivalent to a term constructible 
from g* and a term f(y, y, z) depending on fewer distinct variables than t depends on. 
Thus, any term is ^-equivalent to a term composed from a unary term and Klukovits 
terms. 

LEMMA 2. If '1/ is a Hamiltonian variety and |/<V(3)| = n < u, then for each A E V 
and each a,b EA the integer n is a bound on the size of the Cg^a, b)-blocks. 

PROOF. Quasi-order A by < where x < y iff x E Sg^û, b, y). Define an equivalence 
relation 0 = {(x, y)EAxA\x<y and y < x}. For each y € A the set {x E A | x < y} 
has cardinality at most «, so the ^-equivalence classes have at most «-elements each. We 
now proceed to show that Cg*(a, b) CO which will finish the proof. 

Choose (c,J) E CgA(«,b). Since the universe of S = Sçfi{a,b,c) is a block of a 
congruence 7 on A and a,b ES, it follows that (c, J) E Cg^a, &) Ç 7. Hence d belongs 
to the 7-class containing c and that class is just S. Therefore d E Sg^(a, b, c) and d < c. 
Similarly, c < d and so (c, d) E 0. Since (c,d) E Cg^a, &) was chosen arbitrarily, 
CgA(a,b)C6. m 

THEOREM 3 (BERMAN, [2]). A Hamiltonian variety whose 3-generatedfree algebra 
is finite is locally finite. 

PROOF. A Hamiltonian variety is equivalent to a variety whose basic operations have 
arity < 3 since the clone of a Hamiltonian variety is generated by its unary terms and its 
3-variable Klukovits terms. Therefore, without loss of generality, we may assume that 
our variety has finitely many basic operations. 

Assume now that V is a 3-finite, Hamiltonian variety with finitely many basic opera­
tions which is not locally finite. We will show that this assumption leads to a contradiction. 
V contains a finitely generated, infinite algebra B. Any congruence on B of finite index 
is compact, because it is the kernel of a homomorphism from a finitely generated algebra 
onto a finitely presentable algebra. Hence the set of congruences on B of infinite index is 
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closed under unions of chains. Now we use Zorn's Lemma to find a maximal congruence 
6 E Con B of infinite index. Then A = B/0 is a finitely generated, infinite member of V 
with the property that A / a is finite whenever a > 0. Choose distinct a,b E A. Since 
A/ C%^(a,b) is finite, Cg^a,^) has only finitely many congruence classes. Each class 
has < |Zv(3)| elements. But this is impossible if A is infinite. The assumption on which 
the construction of A was based was the assumption that V is not locally finite and so 
we have proved the theorem. • 

REMARK. In fact, Berman shows that \Fv(ri)\ < (\F<v(3)\)n~ for n > 3. 

LEMMA 4. A Hamiltonian variety of finite type with definable principal congruences 
is contained in a finitely based Hamiltonian variety. 

PROOF. Let V be a Hamiltonian variety with definable principal congruences. This 
means there is a finite set of formulas n = {7T/(x, y ; M, v)\iE /} each of the form 

3z[(x=pi(ruzj) A (j\(Pj(rpz) =«+i(0-+i^))) A {Pni^z) = y)] 

where {r;, ij} = {w, v} for all j , such that for each A E V we have (a, b) E Cg^(c, d) 
iff 7T|(a, b\ c, d) for some / E /. Define </> to be the formula \/ieI 7r,*. Let *F be a sentence 
asserting that for all c and d, {(«, &) | </>(<z, b\ c, d)} is a congruence containing (c, J). 
(There is such a sentence since V is of finite type.) By compactness, there is a finitely 
based supervariety WD V where *F holds. ^ has definable principal congruences and, 
in fact, (j> is a formula which defines principal congruences in (W. 

For each / E / and each/?; occuring in 717 there is a Klukovits term g y for pj. V satisfies 
the equation 

gij(pi(XiZ),x,y) =Pi(y,z)-

Let U be the subvariety of *W which is axiomatized by these equations and the equations 
of (W. U is finitely based, has </> as a formula which defines principal congruences and 
contains V. We proceed to show that 11 is Hamiltonian. 

Suppose that A E 11 and that B is a nonempty subuniverse of A. Let f3 = CgA(B x B). 
If B is the union of all the Cg^(c, deblocks for c,d E B, then B is a /?-block. Therefore, 
if 5 is not a /?-block, then we can find c,d E B and (a, Z?) E CgA(c, J) with a E B and 
Z? E A — B. Since <̂ >(a, b\c,d) holds there must exist an i E /, a /?, occurring in 717 and 
a z E Am such that Pj(c,z) E B and Pj(d,z) fi B (or else the same condition with c 
and d switched). But Pj(d,z) = g//(jp/(c,z),c,d), which is in 5 since 5 is a subuniverse 
containing /?y(c, z\ c and J. This contradiction shows that B is a congruence block and, 
since A and B were arbitrary, that U is Hamiltonian. • 

THEOREM 5. Every locally finite, abelian variety with finitely many basic operations 
is contained in a finitely based, locally finite, abelian variety. 
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PROOF. If V is locally finite and abelian, then it is Hamiltonian by the principal result 
of [7]. Kiss [6] proves that V has the congruence extension property. Therefore, by the 
results in [1], V has definable principal congruences. Now we are in a position to apply 
Lemma 4. We may conclude that V is contained in a finitely based Hamiltonian variety 
11. 11 has a finitely based subvariety, W, containing V and such that F^(3) is finite. <W 
is finitely based, Hamiltonian (therefore abelian), and locally finite by Theorem 3. • 

COROLLARY 6. An abelian variety contains no inherently nonfinitely based mem­
bers, m 

3. An inherently nonfinitely based strongly solvable algebra If A is an algebra 
with congruences a, f} satisfying a < /?, then )3 is said to be strongly abelian over a if for 

all {n + l)-ary polynomial operations p of A and all a = b and cf- = d{ = £;, 1 <i <n, 

p(a, c) = /?(/?, d) implies p(a, e) = p(b, e). 

If the implication is replaced by /?(#, c) = p(a, d) implying p(b, c) = /?(&, 5), then /? 
is said to be abelian over a. It is known that the strongly abelian property implies the 
abelian property but not conversely, and that A is abelian (as defined in the Introduction) 
if and only if U is abelian over 0,4 (for more details, see [5]). 

A is said to be m-step strongly solvable if there exist congruences 0^ = ao < cx\ < 
• • • < am = \A with ai+i strongly abelian over a, for all / < m. By a groupoid we mean 
an algebra consisting of a set with one binary operation. In this section we shall construct 
a finite 2-step strongly solvable groupoid which is inherently nonfinitely based. 

LEMMA 7. Any groupoid satisfying (xy)z = (uv)w is 2-step strongly solvable. 

PROOF. Let A be a groupoid satisfying (xy)z = (uv)w. Let C = {ab : a,b E A} and 
\i = C2 U 0A. Clearly \L is a congruence of A and U is strongly abelian over p, because 
multiplication in A is constant modulo /i. 

Next, suppose that s(x,y) and t(x,y) are (n + m)-ary groupoid terms and à E Am. 
Let/(Jc) and g(x) denote the restrictions to Cn of the polynomial operations sAÇx,â) 
and ^(jc, a) respectively, and let h(x) =f(x) • g(x). Observe that if h is nonconstant (as a 
function Cn —> Q, then necessarily g is also nonconstant, s is a variable y„ and a£ E A \ C. 
Therefore, an n-ary polynomial operation of A whose restriction to Cn is nonconstant 

must have the form a\ yii^ • • ar-\(arXj) • • •) j with ax; € A \ C. 

We now prove that \x is strongly abelian over 0^. Suppose/? is an (n+1 )-ary polynomial 
n n n -

operation of A, that a = b and c/ = J/ = et for 1 < i < n, and that p(a, c) = /?(^, J) 
while/?(«,^) ^p{b,e). Obviously a f b and hence a,b € C (as a = b). Since we are 
allowing p to be a polynomial operation, we can assume that |{ct, di, e,}| > 2 and hence 
c/, d/, /̂ E C for each i. Therefore, the restriction of p to Cn+l is nonconstant. But then p 
can depend on only one variable, contradicting the above assumptions. • 
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We next define a nice class of groupoids satisfying (xy)z = (uv)w. Suppose V is a 
nonempty set, S is a set of partial maps V —•> V, W* is a set disjoint from V, and/: W* —• S 
is a surjective map, written x*—*fx. Choose oo fL VUW*. Define a groupoid A = (A, •) 
as follows. 

A = VUW*U{oo} 

x.y = lfx(y) i{xew*andyedom(fx) 

I oo otherwise. 

Clearly A |= (xy)z = (uv)w. Moreover, the equational theory of A is tractable. Let us 
say that a groupoid term is nontrivial if it is a variable or a right-associated product of 
variables in which the right-most variable occurs only once, and is trivial otherwise. If 
x\,X2,... <,xn (n > 1) are (not necessarily distinct) variables, w is the semigroup word 
x\X2 "-xn, and j is a variable not occurring in w, then we use [w, y] to denote the nontrivial 
groupoid term x\ f^f* * • (xny) " '))• The proof of the next lemma is straightforward. 

LEMMA 8. Suppose A is the groupoid defined above from the data V, S, W,f. Suppose 

further that some a € S has a fixed point. Let Partial(V) be the semigroup of all partial 

maps V —• V under composition. Then for any groupoid terms s and t, A |= s = t if and 

only if one of the following is true: 

(1) s and t are both trivial; 

(2) s and t are the same variable; 
(3) s = [w, y] and t = [v/, y] where w and w' are nonempty semigroup words in n 

variables, y is a variable not occurring in w or w'y and Partial(V) \= w(â) - wf(â) 
for all à e Sn. 

Now we come to our construction, which is a simple variation of a construction due 
to Shallon [9]. By a graph we mean a pair G = (V, E) where V is a nonempty set and E 
is a symmetric binary relation on V. If G = ( V, E) is a graph, let V* = {v* : v E V} be a 
set disjoint from V and in bijective correspondence with V via v i—• v*, and let G* be a 
groupoid with universe 

G* = VUV*U{oo} 

(where oo ^ V U V*), in which multiplication is given by 

a* • b = a if a, b E V and aEb 

x • y = oo in all other cases. 

We call G* a graph *-algebra. We say that G and G* are looped if E is reflexive. Observe 
that every looped graph *-algebra is of the kind described in Lemma 8. 
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If w is any nonempty semigroup word built from variables, define 

V(w) = the set of variables occurring in w 

E(w) = {(x, xf) : x, x* 6 V(w), x^x!, and xxf or x/x is a subword of w} 

L(w) = the left-most variable in w 

R(w) = the right-most variable in w 

Data(w) = (V(w),E(w),L(w),R(w)) 

Also let G3 = (V, E) be the graph with V = {0,1,2} and £ = V2 \ {(0,2), (2,0)}. The 
proof of the next lemma is straightforward, and is similar to the proofs of Theorems 1 (i) 
and 2' in [9]. 

LEMMA 9. Suppose G is a looped graph. 

(1) If G* (= s = t, then either s, t are both trivial or s, t are the same variable or 
s = [w, y] and t = [w7, y] for some w, w', y. 

(2) Suppose w, wf are words and y is a variable occurring in neither w nor wf. If 
Data(w) = Data(w') then G* =̂ [w, v] = [w',y]. 

(3) IfG = G3 then the converse to item (2) is true. 
(4) If G is connected, has more than one vertex, and no two vertices of G have the 

same neighborhood, then G* is subdirectly irreducible with monolith \i defined in 
Lemma 7. 

The following corollary may be of independent interest (cf [5], Problem 5). 

COROLLARY 10. VCGql) is 2-step strongly solvable, contains all looped graph *-
algebras, and is residually large. There is no cardinal upper bound to the sizes of the 
blocks of the monoliths of subdirectly irreducible members of V(G*). 

Finally, following [9] we prove 

THEOREM 11. G3 is inherently nonfinitely based. 

PROOF. We shall display, for each n > 0, a nonlocally finite groupoid Bn which 
satisfies all of the «-variable equations true in G3. (This will suffice, since if *W is a 
finitely based variety which contains G3, then W will also contain Bn for sufficiently 
large n, so *W will not be locally finite.) Let 

W={0, 1,2,...,#!} 

w* = {o*,r,...,«*} 
E = {(a, b) € W2 : a - b = - 1 , 0 or +1 (mod n + 1)} 

G = (W,E). 
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Thus G is a looped (n + l)-cycle. Define Bn to be the groupoid whose universe is 
ZUW*U {00} and in which multiplication is given by: if a E W and b € Z, then 

I b— \ \fa = b—\ (mod n + 1) 
b if a = b (mod n+ 1) 

& + 1 if a = & + 1 (mod n + 1) 
while JC • j = 00 in all other cases. 

Clearly Bn is infinite but is generated by the finite subset W* U {0}, and hence is not 
locally finite. Note that Bn is a groupoid of the kind described in Lemma 8. Suppose that 
s(x\,..., xn) and t(x\,..., xn) are two groupoid terms in the specified variables such that 
G3 \= s = t. We wish to show that Bn (= s = t. By Lemmas 8 and 9, it suffices to consider 
the case when s = [w,j] and t = [w',j] where y = xn and w, w' are nonempty words 
satisfying Data(w) = Data(w') and V(w) = {x\,..., x„_i}. Let L(w) = x\ and R(w) = jcr. 
Let OTI, . . . , an e Bn be given. If or, ^ W* for some / = 1 , . . . , n — 1, or if an £ Z, 
then sBn(â) = 00 = ^"(â). Suppose a, = a* E W* for 1 < i < n and an = c G Z. 
Choose art 6 W so that c = an (mod n + 1). If for some (x^Xj) € E(w) it happens that 
(a/, cij) £ E, or if (an an) f£ E, then again sBn(à) = 00 = ^«(â). 

Finally, suppose that (a,, a,) € E whenever (x^Xj) € ^(w), and that (ar, an) E E. We 
argue as in [9]. Since \W\ = n + 1, there exists fr € W such that fr £ {a\,..., art}; say 
0 ^ {a\,..., an}. The word wxn (read right-to-left) together with the assignments 1—• at 
describe a path in G from an to a\. This path never passes through the vertex 0, that is, it 
is restricted to the looped rc-chain which is obtained from G be deleting 0. It follows that 

sBn(aï,. . . , a*n_x, c) = fl/ + (c - an). 

Since Data(vv) = Data(w>;) the same argument shows that 

t*H(a*u . . . , «*_!, c) = A/ + (c - an). 

Thus Bn (= s = t as desired. • 
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