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A geometry or geometric structure (G, X) is a homogeneous space X together with
a transitive action on X by a Lie group G, which acts as the symmetry group of
the geometry. This concept was originally introduced by Klein in his celebrated
Erlangen program and rapidly developed by Ehresmann and many others. When
X and G are chosen appropriately, one recovers many classical geometries such
as hyperbolic (SO(1, n),Hn), Euclidean (Rn o O(n), En) or spherical (O(n + 1), Sn)
geometry. A (G,X)-manifold M is a manifold endowed with a (G,X)-structure, namely
an atlas of charts in the model space X, whose transition functions are restrictions of
elements of G. Associated to every (G,X)-structure is a developing map and holonomy
representation

dev : M̃ → X and hol : π1(M)→ G,

such that
hol(γ) · dev(x) = dev(γ · x) for γ ∈ π1(M) and x ∈ M̃.

The developing pair (dev, hol) is uniquely determined up to conjugation by an element
of G, and so it is an invariant of the (G, X)-structure on M. Furthermore, the
Ehresmann–Thurston principle implies that sufficiently nearby (G, X)-structures are
completely determined by their holonomy representations. On the other hand, it is a
rather complicated task to determine whether a representation ρ : π1(M)→G arises as
the holonomy of some (G, X)-structure.

As more and more connections between topology and geometry were discovered,
(G, X)-structures have become a central topic in the study of manifolds (see, for
example, [4, 7]). In a recent paper [7], Fock and Goncharov put together ideal
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triangulations and Thurston’s ideas to fill in the gap between representations and
geometry of surfaces. Given a surface S and a group G, they use flags to parametrise
decorated representations of π1(S ) in G. Decorated representations are representations
enriched with some geometry, which are only one step away from being (G, X)-
structures. When G = PGL(3,R), they show that most of these representations can
be promoted to holonomies of convex projective structures on S , geometric structures
modelled on projective (PGL(3,R),RP2) geometry [8]. Generalisations of these flag
parametrisations to 3-manifolds are the Ptolemy coordinates of Garoufalidis, Thurston
and Zickert [10] for G = SL(m, C), and the shape coordinates of Garoufalidis,
Goerner and Zickert [9] for G = PGL(m,C). Some of these coordinate systems were
independently developed by Bergeron, Falbel and Guilloux [2] for G = PGL(3,C),
following the work of Falbel [5] on Cauchy–Riemann (S3,PU(2, 1)) structures (CR for
short).

In this thesis, we propose a different way to extend Fock and Goncharov’s
coordinate system to dimension three, for a special class of manifolds. The spaces
we are interested in are punctured surface bundles, orientable manifolds which are the
interior of compact 3-manifolds with boundary a union of tori. They are fibre bundles
over the circle, with fibre space a punctured surface.

This thesis concentrates on the case where the surface is a once-punctured torus.
The figure-eight knot complement is one such example. Most of these manifolds are
hyperbolic and exhibit important combinatorial properties. In particular, Floyd and
Hatcher showed that each hyperbolic once-punctured torus bundle admits a canonical
realisation as an ideal triangulation, called the monodromy ideal triangulation [6].
The importance of this decomposition relies on its rich combinatorial structure, but
also on its geometric properties. For instance, it was employed by Guéritaud [11],
together with Casson’s volume maximisation principle for angle structures, to prove
hyperbolicity.

We show that a subset of the set of conjugacy classes of decorated representations
is a subvariety of (C \ {0,−1})8, using the fact that the monodromy ideal triangulation
is constructed by layering tetrahedra over a once-punctured torus. In particular,
we give a concrete description of this algebraic variety in terms of fixed points
of some explicit functions, called edge flips. This provides a coordinate system in
eight complex variables of the character variety of a hyperbolic once-punctured torus
bundle. Although related to the work in [2], our approach gives a different point of
view. As an immediate consequence, we find that every hyperbolic once-punctured
torus bundle has a special representation ρP, whose decorated character [ρP] is shown
to have special properties. The representation ρP is irreducible and its image lies inside
a subgroup of PGL(3,C), sometimes called the Eisenstein–Picard modular group. It is
the subgroup of PU(2, 1) with entries in the ring of integers in the imaginary quadratic
number field Q[

√
−3]. In particular, this implies that the image of ρP is discrete and

one might wonder if it could be realised as the holonomy of a geometric structure.
In [5], Falbel finds the same representation ρP in the case of the figure-eight knot

complement K8, the simplest hyperbolic once-punctured torus bundle. He shows that
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ρP is the only representation of π1(K8) in PU(2, 1) whose restriction to the peripheral
subgroup is faithful and purely parabolic. Moreover, he constructs a branched CR
structure on K8 whose holonomy is ρP. Such CR structures are modelled on the
three-sphere S3 ⊂ C2 together with the action of PU(2, 1), its group of biholomorphic
transformations. They are branched when the charts are locally branched coverings.

Inspired by the work of Falbel and Thurston, we modify the monodromy ideal
triangulation of each once-punctured torus bundle to a new ideal cell decomposition.
This decomposition is made up of tetrahedra and 3-cells that we call slabs,
CW complexes obtained by deformation retracting the base of a square pyramid onto
one of its sides. In the case of the figure-eight knot complement, Falbel uses one of
these slabs implicitly, as part of a generalised tetrahedron. The CR structure thus
constructed consists of charts that are not embeddings of the tetrahedra, and it does
not generalise further. On the other hand, we geometrically realise each ideal cell by
embedding it in CR space and use the malleability of slabs to build CR structures
on almost all once-punctured torus bundles [3]. For this to work, six geometrically
different types of slabs will be defined. A collection of the main results is summarised
in the following theorem.

Theorem. Let M f be a hyperbolic once-punctured torus bundle. Then M f admits
an ideal cell decomposition D f that is geometrically realisable in CR space. It
corresponds to a branched CR structure, whose branch locus is the set of edges of
D f .

Moreover, the restriction of its associated decorated holonomy to the fundamental
group 〈α, β〉 of the base once-punctured torus does not depend on the monodromy
automorphism f . It is the decorated character [ρP,ΦP], where

ρP(α) =

 ω 0 0
−1 ω −ω
ω 0 −1

 , ρP(β) =

1 −ω −1
0 ω 0
0 ω −ω

 and ω = −
1
2

(1 +
√
−3).

In particular, its Fock-Goncharov coordinates are

Ψ f ([hol f , dev(0)
f ]) = (ω,ω, ω, ω, ω, ω, ω, ω).

In the end, we also analyse the branch locus and give simple descriptions of the
ramification orders in terms of the combinatorics of the ideal cell decomposition.

The work done in this project has the potential to further extend to more general
punctured surface bundles, as they also admit layered triangulations. Even though the
number of coordinates (and the complexity of the problem) increases as the Euler
characteristic of the punctured surface decreases, we do not see any theoretical barriers
in the parametrisations of decorated characters. On the contrary, it is not clear whether
one could construct CR structures in a similar way, as the new cell decompositions
described here rely on the fact that the base surface is a once-punctured torus. We
intend to address this problem in future work using the veering triangulations of
Agol [1].
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