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Abstract
In practical applications, many robots equipped with embedded devices have limited computing capabilities. These
limitations often hinder the performance of existing dynamic SLAM algorithms, especially when faced with occlu-
sions or processor constraints. Such challenges lead to subpar positioning accuracy and efficiency. This paper
introduces a novel lightweight dynamic SLAM algorithm designed primarily to mitigate the interference caused
by moving object occlusions. Our proposed approach combines a deep learning object detection algorithm with a
Kalman filter. This combination offers prior information about dynamic objects for each SLAM algorithm frame.
Leveraging geometric techniques like RANSAC and the epipolar constraint, our method filters out dynamic feature
points, focuses on static feature points for pose determination, and enhances the SLAM algorithm’s robustness in
dynamic environments. We conducted experimental validations on the TUM public dataset, which demonstrated
that our approach elevates positioning accuracy by approximately 54% and boosts the running speed by 75.47% in
dynamic scenes.

1. Introduction
Simultaneous localization and mapping (SLAM) is pivotal for robots aiming to achieve self-localization,
tracking, and mapping in unfamiliar settings, as depicted in Fig 1. SLAM technology has entrenched
its importance in sectors like intelligent robotics, virtual reality, and autonomous driving [1, 2]. Visual
SLAM in static environments has made considerable advancements, and its methods can be classified
into feature-based and direct approaches, depending on the pose estimation principles.

Feature-based SLAM methods identify prominent feature points within images and assign them
unique descriptors. ORB-SLAM3 [3] stands as a prime example, showcasing the robustness and preci-
sion of these methods in feature matching. However, in environments with low texture, the scarcity of
feature points can lead to mismatch issues or even loss of tracking. Additionally, despite their importance,
the computation of descriptors is expensive and might impede real-time performance.

Direct methods operate on the presumption of photometric consistency between consecutive frames.
They employ pixel intensities for feature point matching and determine pose using pixel gradients and
orientations [4]. Methods such as SVO [5] and LSD-SLAM [6] serve as prime examples of this approach.
By avoiding computing descriptors, they achieve greater computational efficiency, leading to rapid real-
time responses. Yet, their performance may degrade with changing lighting conditions or variations in
photometric properties.

Practically, static environments are rarely encountered. Dynamic objects, which can cause inconsis-
tent motion of feature points, complicate the scene. Such dynamic objects encompass not just freely
moving objects but also entities exhibiting relative motion to a supposedly static backdrop, for example,
the water jet in the field of view of a firefighting robot, the excavator arm within the viewpoint of an
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Figure 1. Several application scenarios of SLAM1.

autonomous driving excavator, or other large obstacles that appear in the field of view. These moving
objects can detrimentally affect the accuracy of SLAM systems [7, 8]. Feature-based SLAM algorithms,
which lean heavily on feature points, might deduce incorrect pose changes when these dynamic points
interfere.

Addressing the SLAM challenge in dynamic settings generally takes one of two routes: geometric
or deep learning-based methods. Geometric methods capitalize on the intrinsic differences between
dynamic and static points, determining their three-dimensional spatial positions and motion alterations,
for example, using epipolar constraint or probabilistic methods to eliminate a small portion of dynamic
interference points, such as the RANSAC [9, 10] algorithm. However, this method is only suitable for
cases where the number of dynamic points is small. If dynamic points constitute over 50% of the total,
this method may have adverse effects.

Deep learning methods primarily use object detection or semantic segmentation algorithms to rec-
ognize dynamic objects in images, providing prior information about dynamic points for SLAM.
Object detection algorithms focus on estimating the approximate locations of target objects, usually

1These images are sourced from the internet. If there is any copyright infringement, please inform us to remove them.
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represented by bounding boxes. Meanwhile, semantic segmentation goes a step further, providing a
detailed pixel-by-pixel classification of these entities.

This paper focuses on the challenges posed by moving objects in dynamic SLAM. We introduce
a novel approach that combines a lightweight object detection algorithm with geometric techniques,
including Kalman filtering, RANSAC, and epipolar constraints. This approach aims to eliminate
dynamic feature points, enhancing both the positioning accuracy and computational efficiency of
dynamic SLAM.

The organization of the subsequent sections of the paper is as follows: section 2 provides an overview
of the research status both domestically and internationally, section 3 presents the overall framework
and specific algorithms of the proposed approach, section 4 validates the proposed algorithms through
experiments, and finally, section 5 concludes the paper.

2. Related work
Machine learning and deep learning, gaining tremendous momentum in recent years, have introduced
novel techniques into the domain of SLAM, most notably in dynamic SLAM. For traditional static
SLAM algorithms, combining deep learning can enable end-to-end feature point extraction or cam-
era pose estimation, which can save the cost of feature point extraction, feature matching, and pose
computation. Furthermore, deep learning is also used to address SLAM problems in dynamic scenes
by pre-training deep learning algorithms to detect specific targets and provide prior information about
the target’s position in SLAM, helping to understand complex dynamic scenes. This can assist SLAM
algorithms in accurately removing dynamic object features, thereby improving the robustness of SLAM
algorithms in dynamic scenes [11].

Usually, object detection or semantic segmentation algorithms are used to obtain prior information, so
based on this, deep learning methods can be divided into two categories. The difference is that the object
detection algorithms provide approximate object positions, while the semantic segmentation algorithms
provide pixel-level segmentation results of the target object

Berta Bescos et al. proposed DynaSLAM [12] in 2018, which is based on ORBSLAM2 and Mask-
RCNN algorithm. When obtaining new image frames, DynaSLAM uses a semantic segmentation
algorithm to directly remove regions with obvious dynamic objects, such as “people, animals, and
vehicles," and then perform lightweight tracking on the remaining regions. Moving objects are seg-
mented and judged using multi-geometry methods, and the static background is repaired. However, due
to the possibility of non-existent static scenes or invalid depth information in historical frames’ dynamic
regions, this method may result in cracks in the generated static map.

Chao Yu et al. proposed DSSLAM [13], which uses ORBSLAM2 as the base framework and
SegNet algorithm as the semantic segmentation algorithm. When dynamic objects are segmented, the
corresponding feature points are set as potential dynamic points, and a two-step strategy is used to deter-
mine if the point is a dynamic point: first, each feature point in the segmentation area is filtered, and if the
feature point is too close to the edge of the segmentation area or the pixel difference in the surrounding
3 × 3 image block is too large, it is deleted. Then Random Sample Consensus(RANSAC) is combined
to calculate the most suitable fundamental matrix with the maximum number of inliers. The point is
judged as a dynamic point based on epipolar line distance. The authors combine the dynamic/static sta-
tus of feature points with the dynamic/static status of segmented objects. If a certain point is determined
as a dynamic point, the entire segmented area will be considered as a dynamic object. If the number of
dynamic points on a dynamic object is greater than a certain threshold, all feature points on the dynamic
object will be deleted.

Fangwei Zhong et al. proposed a Detect-SLAM based on the object detection algorithm [14], which
utilizes prior information provided by the object detection algorithm to extract features from moving
objects and only uses static features for subsequent tracking processes and map construction. To improve
the efficiency of the algorithm, the authors only detect dynamic objects in keyframes and classify all
feature points in other ordinary frames based on motion probability, greatly improving the real-time
performance of the algorithm.
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Fethi Demim et al [15–19] proposed a series of methods based on the Smooth Variable Structure
Filter (SVSF) to solve the dynamic slam problem. Their hypothesis is that a feature that is moving with
an important velocity is considered that is out of date and it cannot maintain much useful information.

Kenye L et al [20] utilized deep neural networks, or DNN-based object detection modules, to acquire
bounding boxes. Subsequently, they employ a depth-first search algorithm on the detected semantics to
generate a lower-resolution binary mask image. This process effectively represents the segmentation of
the foreground from the static background.

Scona et al. proposed a surface element-based RGBD-SLAM algorithm called StaticFusion [21],
which can estimate camera poses and segment static objects in the current frame at near real-time speed,
and construct dense maps using information from historical static objects. However, this algorithm heav-
ily relies on static features during initialization, and if there are too many dynamic objects in the scene
during the initialization stage, it may cause initialization failure of the system.

MaskFusion [22], postulated by Runz et al., is an object-level RGBD-SLAM system for dynamic
environments. Grounded in the Mask-RCNN algorithm, it segments and tracks objects in RGBD images.
Unlike traditional SLAM algorithms that primarily focus on static scenes, MaskFusion seamlessly inte-
grates dynamic object pose tracking while preserving the static scene’s integrity. Despite its innovative
approach, the algorithm grapples with certain limitations: Mask-RCNN’s slow segmentation speed,
potential pose output delays, and a drop in real-time efficiency when dynamic objects are predominant.

In 2020, Facil et al. proposed VDO-SLAM [23], which integrates the camera and IMU and uses the
YOLOv3 algorithm as the object detector to identify dynamic objects in the scene, achieving tracking
and map updating of dynamic objects. The core idea is to use a multi-sensor fusion approach that com-
bines geometric methods with deep learning methods to achieve high-precision calculation of camera
poses in dynamic scenes, which also plays an important role in navigation tasks for robots.

Although the above-mentioned dynamic SLAM algorithms based on semantic segmentation algo-
rithms have high accuracy, they consume a large number of resources during algorithm execution
and require superior hardware configurations. In practical application environments, especially out-
door environments, most of the embedded devices have limited computing capabilities, these dynamic
SLAM algorithms based on semantic segmentation cannot run in real-time. The algorithm proposed in
this paper significantly improves algorithm efficiency while ensuring accuracy comparable to dynamic
SLAM algorithms based on object detection algorithms. It not only enables the algorithm to be deployed
on embedded devices with limited computing capabilities but also provides the possibility for the
algorithm to ensure real-time performance while expanding subsequent functions.

3. Dynamic SLAM based on object tracking in occluded environment
3.1. Algorithm framework and SLAM system implementation principle
The algorithm proposed in this paper is mainly designed for outdoor scenarios in practical applications,
such as firefighting robots, remote-controlled construction machinery, etc. The system utilizes a dis-
tributed architecture. At the operational end, devices such as the Raspberry Pi, characterized by limited
computational capabilities, manage the pan-tilt camera’s direction adjustments and image acquisition.
The SLAM algorithm is deployed on a high-performance server at the remote control end. The operation
end and remote control end communicate through a ROS system via 5G network or local area network.
The specific algorithm flow is shown in Fig 2.

The main framework of the algorithm proposed in this paper is based on OV2SLAM [24], which is a
lightweight SLAM system with stronger real-time performance compared to the classical feature-based
ORBSLAM2, as shown in Fig. 2. The entire SLAM system framework consists of five threads, including
the dynamic object tracking thread, visual front-end thread, mapping thread, state optimization thread,
and loop detection thread.

In the algorithm, when the images captured by the operation terminal arrive at the control termi-
nal, they are simultaneously input into the visual front-end thread and the dynamic object tracking
thread. The dynamic object tracking thread implements object tracking using YOLOv5s and Kalman
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Figure 2. Schematic diagram of the improved algorithm system.

filter fusion. This thread is trained on the COCO dataset and self-built engineering dataset to accurately
recognize potential dynamic objects in the images. It combines IOU matching with the predicted val-
ues from the Kalman filter to achieve tracking of the two-dimensional position of dynamic objects. The
results are used to update the Kalman filter and generate outputs.

The visual front-end thread only extracts FAST [25] corners and uses sparse LK optical flow [26]
to track these feature points. This approach, compared to matching and tracking feature points using
corners and descriptors, saves the computational cost of descriptor extraction, making the system more
lightweight and faster. During the system initialization stage, the same strategy as ORBSLAM2 [27] is
adopted. In the monocular case, the essential matrix is computed using the method of epipolar geometry
from the first two frames, followed by triangulation to obtain 3D points. In the case of stereo vision,
after matching the FAST corners in both left and right images using optical flow, 3D points are directly
computed.

During the local map tracking stage, the system focuses on the current keyframe and its immediately
covisible keyframes, creating a compact local map. This approach prioritizes real-time performance,
albeit at the expense of tracking accuracy. Subsequently, bounding box data of likely dynamic objects,
sourced from the target tracking thread, allows for the categorization of FAST corners within the current
keyframe. These corners are deemed potential dynamic or static based on their location relative to the
bounding box, with those inside considered dynamic and those outside as static. A motion consistency
check, leveraging static points for reference, is then conducted on these potential dynamic points. This
process distinguishes true static from dynamic points, integrating the former into the existing static
point collection. Conversely, dynamic points undergo a deletion of their historical data, including 2D
coordinates, connections to local map points, and covisibility links.

In the loop detection thread, unlike the offline training dictionary using DBOW in ORBSLAM2, the
algorithm adopts the strategy of iBowLCD [28] to build the dictionary online. During the mapping and
tracking process, the dictionary is incrementally updated, and candidate keyframes are verified using
kNN-BF matching, EM-RANSAC, and P3P-RANSAC. The hypothesis pose of the current keyframe is
optimized using motion-only bundle adjustment (BA). Finally, the optimization thread performs bun-
dle adjustment (BA) only on the current keyframe and map points affected by loop closure, which
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significantly reduces the optimization scope compared to the full BA used in ORBSLAM2, thereby
improving real-time performance.

3.2. The object tracking based on YOLOv5s and Kalman filtering
The object tracking thread is based on the YOLOv5s algorithm and Kalman filter, which provides prior
information about potential dynamic objects for the SLAM thread.

The Yolov5s algorithm is the algorithm with the smallest depth and the smallest width of the feature
map in the Yolov5 series. Compared to its predecessor YOLOv4, YOLOv5 slightly falls behind in per-
formance, but it has shorter training time and smaller model size, resulting in significant improvements
in flexibility and inference speed. In batched inference, YOLOv5s can even achieve an inference speed
of up to 140FPS, making it the current state-of-the-art in the field of object detection. In terms of data
augmentation, YOLOv5 uses three types of data augmentation through data loaders, including scaling,
color space adjustment, and mosaic augmentation. For anchor box selection, YOLOv4 uses the cluster-
ing method, while YOLOv5 uses adaptive anchor box calculation. In terms of loss calculation, YOLOv5
still uses BCEloss for class loss and confidence loss, the same as YOLOv4. However, for localization
loss, YOLOv5 uses GIOU LOSS instead of CIOU LOSS used in YOLOv4, resulting in slightly lower
performance compared to CIOU LOSS.

The proposed object tracking algorithm in this paper integrates YOLOv5s and Kalman filter, as shown
in Algorithm 1. In robot motion or engineering machinery motion, due to the vibration of the machine
itself or uneven ground, it often leads to severe image jitter or too fast motion speed, which can result in
the camera’s capture rate not keeping up. As a result, the collected images may appear blurred, and the
object detection algorithm may not accurately recognize the target objects or even fail to detect them
directly. At this time, using a Kalman filter to provide a predicted position of the existing target object
can effectively solve the problem of short-term failure of the object detection algorithm.

The objects that are maintained and predicted by the Kalman filter are the bounding boxes of dynamic
objects, and the state vector is composed of x = [

cx, cy, w, h, dx, dy, dw, dh
]T , where cx and cy represent

the horizontal and vertical coordinates of the center point of the target bounding box, respectively, and
w and h represent the width and height of the target bounding box, respectively. dx, dy, dw, and dh
represent the differential quantities of the aforementioned state variables. The state equation is{

xk = Fxk−1 + wk

Zk = Hxk + vk

(1)

where xk is the state estimate at k moment, Zk is the observation vector. wk is the process noise, and vk

is the measurement noise.

More specifically, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z =

⎡
⎢⎢⎢⎢⎣

cx

cy

w

h

⎤
⎥⎥⎥⎥⎦,

and H =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎦.
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Algorithm 1 Object Tracking Based on YOLOv5s and Kalman Filter
Input: Input Images = img_src
Output: Final Bounding Boxes = final_bboxes
IOU_THRESHOLD = 0.4
vKalmanFilter = None
vBoundingBoxes = None
final_bboxes = None
bboxes, symbol_success = YOLOV5s_detector(src_img)//use YOLOV5s to detect object
if symbol_success == 1 then

for bbox in range(bboxes) do
symbol_new = check_if_new_object(bbox, vBoundingBoxes)//check if new
if symbol_new == 1 then

KalmanFlter_Initialization(bbox, vBoundingBoxes)//if new, initialize a new KalmanFliter
final_bboxes add(bbox)

else
predic_bbox = KalmanFlter_Predict//KalmanFliter provide predict bbox
score = IOU_Match(bbox, predic_bbox)//compute score of IOU
if score > IOU_THRESHOLD then

KalmanFlter_Correction(bbox)//if success, use it to correct KalmanFliter
final_bboxes add(bbox)

else
final_bboxes add(predic_bbox)

end if
end if

end for
else

if it has lost too many frames then
Reset

else
for KalmanFilter in range(vKalmanFilter) do

predic_bbox = KalmanFlter_Predict//use KalmanFliter’s predict result as final
final_bboxes add(predic_bbox)

end for
end if

end if

For each frame of the image, the Kalman filter provides a predicted value based on the Kalman
prediction formula (2):

{
x̂−

t = Fx̂t−1

P−
t = FPt−1FT + Q

(2)

where x̂−
t is the prior state estimate, F is the state matrix, P−

t is the prior state covariance, and Q is the
state noise covariance.

If the object detection algorithm fails to output the two-dimensional position information of dynamic
objects due to issues such as image blur, the predicted values provided by the Kalman filter are directly
used as the final result.
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If the object detection algorithm is able to function properly and output the two-dimensional bounding
box of the detected targets, then an Intersection over Union (IOU) matching is performed between this
two-dimensional position information and the bounding boxes provided by all the Kalman filters, as
follows:

IOU = A ∩ B

A ∪ B
(3)

where A and B are two bounding boxes for comparison, and IOU presents the IOU score.
If IOU > 0.4, it is considered a successful match, and the object is considered an existing object. The

bounding box with the highest IOU matching result is taken as the tracking result, and the corresponding
Kalman filter is updated using the updated as⎧⎪⎪⎨

⎪⎪⎩
Kt = P−

t HT
(
HP−

t HT + R
)−1

x̂t = x̂−
t + Kt

(
zt − Hx̂−

t

)
Pt = (I − KtH)P−

t

(4)

where Kt is the Kalman gain, H is the observation matrix, R is the observation noise covariance, x̂t

is the posterior state estimate, zt is the observation vector, and Pt is the posterior state covariance
matrix.

On the contrary, if there is no successful match, the object is considered as a newly appearing target.
Then, a Kalman filter is initialized to continuously track this target in the subsequent process, and the
initialization data is provided by the object detection algorithm. In addition, due to the fixed position of
the “excavator arm” in special engineering scenarios, that is, when the object label is “Arm," the initial
position is preset as

Xarm = [
0.75 ∗ col 0.5 ∗ row 0.3 ∗ col 0.5 ∗ row 0 0 0 0

]T

At the same time, the objects are continuously tracked in each frame. If tracking fails for 12
consecutive frames, the target is considered lost, and the corresponding Kalman filter is destructed.
Similarly, the target is considered lost if the center point coordinates move out of the frame or if the
width and height become negative. In these cases, the Kalman filter corresponding to the lost target is
destructed.

Figure 3(a) shows the results of using IOU matching. The purple rectangular boxes represent the
stored tracked targets’ bounding boxes. In the experiment, when a person is occluded for a long time
and reappears, the bounding box provided by YOLO cannot be matched with the stored bounding box
information using IOU matching, resulting in tracking loss. The person walking out of the occluded
area will be treated as a new target. Fig 3(b) shows the experimental results of tracking the bounding
box position using the Kalman filter. The Kalman filter predicts the next frame’s position based on the
movement of the bounding box. When the target is occluded, the predicted bounding box position does
not stay in place but follows the past movement trend to predict the next frame’s position. When the
target walks out of the occluded area, IOU matching can be successful, and the target can be re-tracked
after a short period of loss.

3.3. Motion consistency detection
The use of rectangle information provided by the dynamic object tracking thread can categorize the
feature points in the SLAM into two types: static feature points and potential dynamic feature points.
Static points, due to their stable spatial positions, can ensure good pose estimation accuracy in SLAM.
On the other hand, dynamic points are moving with respect to the camera and their spatial positions in
the local map change over time. Using these dynamic points for pose estimation may introduce errors.
However, blindly removing potential dynamic feature points is not desirable, as there may be a significant
number of static points among them. If the static points outside the rectangle are not sufficient to support

https://doi.org/10.1017/S0263574724000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000420


Robotica 9

Tracking with IOU Matching Tracking with Kalman Filter

(a) (b)

Figure 3. Comparison of different tracking results.

pose estimation, it may result in tracking failure of the entire SLAM system. Therefore, it is necessary
to accurately classify static and dynamic points from these potential dynamic feature points, and make
the most use of these static points whenever possible.

First, for the static points already determined outside the rectangle, epipolar geometry constraints
are applied using equation (6), and the most fitting essential matrix is obtained using the RANSAC
algorithm E:

xT
2 t∧Rx1 = 0 (5)

E = t∧R (6)

where E is the essential matrix, t is the translation matrix and R is the rotation matrix. Calculating the
essential matrix requires the use of the eight-point algorithm [29]:

For each pair of matched 2D image points x1 = (
u1 v1 1

)T and x2 = (
u2 v2 1

)T , the epipolar
geometry can be obtained through the following equation:

(
u2 v2 1

)
⎛
⎜⎝

e1 e2 e3

e4 e5 e6

e7 e8 e9

⎞
⎟⎠

⎛
⎜⎝

u1

v1

1

⎞
⎟⎠ = 0 (7)

where E =
⎛
⎜⎝

e1 e2 e3

e4 e5 e6

e7 e8 e9

⎞
⎟⎠ is the sought-after essential matrix. Expanding the equation yields:

e1u1u2 + e2u1v1 + e3u1 + e4u2v1 + e5v1v2 + e6v1 + e7u2 + e8v2 + e9 = 0 (8)

Let �e = (
e1 e2 e3 e4 e5 e6 e7 e8 e9

)T , the equation can be further transformed into:(
u1u2 u2v1 u2 u1v2 v1v2 v2 u1 v1 1

) �e = 0 (9)

Due to scale equivalence, the degrees of freedom can be reduced by 1, and only 8 pairs of such
matching points are needed to solve for the essential matrix.
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Figure 4. Epipolar line distance of reprojected points.

To obtain the most fitting essential matrix using the RANSAC algorithm:

Algorithm 2 Object Tracking Based on YOLOv5s and Kalman Filter
Input: 2D matched points = vPoints, inlier threshold = INLIER_THRESHOLD, iterations number
= NUM_ITERATIONS, inlier ratio threshold = INLIER_RATIO_THRESHOLD
Output: best_model, max_inliers
best_model = None
max_inliers = 0
for i in range(NUM_ITERATIONS) do

ranPoints = randomly_select_8_pairs(vPoints)
essential_matrix = calculate_essential_matrix(ranPoints)
inliers = compute_inliers(essential_matrix, INLIER_THRESHOLD)
if inliers > max_inliers then

best_model = essential_matrix
max_inliers = inliers

end if
if max_inliers > (INLIER_RATIO_THRESHOLD ∗ total_points) then

break
end if

end for

After obtaining the essential matrix E, the distance from points to the epipolar line can be calculated
to determine if they are dynamic points. As shown in Fig 4, point P is the 3D point triangulated from
the previous frame’s point P1. Ideally, the projection of the static point P onto the current frame P2

should lie on its epipolar line. However, due to disturbances and errors, the actual projection point P′
2

may deviate from the epipolar line by a certain distance. If the distance between P′
2 and the epipolar line

is too large, we have reason to believe that point P is a dynamic point.
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The distance D from the keypoints of the current frame to the epipolar line can be calculated as

D =
∣∣xT

2 Fx1

∣∣√
‖X‖2 + ‖Y‖2

(10)

where x1 and x2 are a pair of matched points, F is the fundamental matrix,X and Y are the normal
vectors of the epipolar lines. If the calculated distance D is greater than the threshold Dth, the point is
considered as a dynamic point. If it is smaller than the threshold Dth, the point is considered as a static
point. Dynamic points are removed, and static points are merged.

4. Experimental analysis
4.1. TUM dataset
In order to verify the robustness of the proposed algorithm for trajectory estimation in dynamic scenes,
experiments were conducted using the TUM public dataset. The TUM dataset, provided and researched
by the Technical University of Munich, includes ground truth trajectories obtained from a precise motion
capture system. This dataset is widely recognized among the SLAM community and is commonly used
as a benchmark for evaluating SLAM algorithms. Due to the focus of this article on the dynamic SLAM
problem, the experiment does not consider datasets that do not contain or only contain a small num-
ber of dynamic targets in the scene. The dataset sequences used in this study include the following
six sequences: sitting_static, sitting_xyz, sitting_halfsphere, walking_static, walking_xyz, and walk-
ing_halfsphere. The “sitting” related sequences represent low dynamic scenes, where people in the
frame are simply sitting and talking without much movement. The “walking” related sequences rep-
resent high-dynamic scenes, where two people in the frame are walking back and forth. The “static”
related sequences represent scenes where the camera position remains relatively unchanged, and the
“xyz” related sequences represent scenes where the camera position moves along the xyz axis. The
“half-sphere” related sequences represent scenes where the camera position moves along the surface of
a sphere and rotates. For convenience, in the following text, “fr3” is used to represent freiburg3, “s” is
used for sitting, “w” is used for walking, and “half” is used for half-sphere.

The proposed algorithm in this paper was run on the computer with an Intel i5-10300 CPU, GTX-
1050Ti GPU, 16 GB RAM, and 4 GB VRAM. The operating system used was Ubuntu 18.04 with ROS
(Robot Operating System) version melodic.

4.2. Pose error experiment
The evaluation metric used in this paper to assess the accuracy of SLAM pose estimation is the Absolute
Trajectory Error (ATE), which is calculated as

ATEall =
√√√√ 1

N

N∑
i=1

∥∥∥log
(
T−1

gt,i , Testi,i

)∨∥∥∥2

2
(11)

where T−1
gt,i and Testi,i represent the ground truth trajectory and the estimated trajectory that needs to be

evaluated, respectively. ATE represents the coordinate error between the trajectory points of the tested
SLAM system and the ground truth trajectory, reflecting the alignment or overlap between the estimated
trajectory and the ground truth trajectory. ATE is a direct method for evaluating the accuracy of the
SLAM trajectory, providing a quantitative measure of the alignment between the estimated trajectory
and the ground truth trajectory.

The algorithm proposed in this paper is a target detection-based SLAM algorithm, and the compara-
tive algorithms include the DynaSLAM algorithm based on semantic segmentation and the static SLAM
algorithm ov2slam. Since the TUM dataset does not provide stereo data, single-camera datasets were
used for experiments. Pose error analysis was performed using the evo tool, which compares the SLAM
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fr3_w_static

fr3_w_xyz

fr3_w_half

fr3_s_static

fr3_s_xyz

fr3_s_half

(a)

(b)

(c)

(e)

(d)

(f)

Figure 5. Trajectory error plot.

trajectory with the ground truth poses provided by the TUM dataset. Each algorithm was run 10 times on
each TUM sequence, and the average value of ATE was recorded. The experimental results are shown
in the Figs. 5–7 and Table I.

From the analysis in Table I, it can be observed that for low dynamic scenes (sitting), as shown in
Fig 5(a) and Fig 5(b), the motion of people in the scene is minimal, resulting in a small number of
dynamic feature points. Therefore, simple geometric methods such as epipolar geometry and RANSAC
can be used to remove these few dynamic points, resulting in good performance. This leads to the fact
that the improved algorithm in this chapter, compared to the original OV2SLAM algorithm, does not
show significant improvement, and fails to fully reflect the importance of capturing prior information
on dynamic objects using YOLO.
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fr3_s_static fr3_w_static

fr3_s_xyz fr3_w_xyz

fr3_s_half fr3_w_half

(a) (b)

(c) (d)

(e) (f)

Figure 6. XYZ axis error plot.
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fr3_s_static fr3_w_static

fr3_s_xyz fr3_w_xyz

fr3_s_half fr3_w_half

(a) (b)

(c) (d)

(e) (f)

Figure 7. Euler angle error plot.
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Table I. Absolute trajectory error (ATE) analysis comparison.

OV2SLAM DynaSLAM ours

mean RMSE mean RMSE mean RMSE
fr3_s_static 0.0162 0.0106 0.0036 0.0040 0.0080 0.0094
fr3_s_xyz 0.1482 0.1754 0.0092 0.0105 0.0342 0.0482
fr3_s_half 0.2553 0.3144 0.0496 0.0564 0.1067 0.1523
fr3_w_static 0.0173 0.0203 0.0055 0.0062 0.0158 0.0189
fr3_w_xyz 0.2427 0.2811 0.0823 0.0906 0.1033 0.1327
fr3_w_half 0.3442 0.4141 0.0933 0.1011 0.1419 0.1751

Table II. Running time of different stage(ms).

Feature extraction Dynamic detection Tracking threads
DynaSLAM 17.6417 165.1883 26.2347
ours 6.8114 22.1885 3.9504

In high-dynamic scenes (walking), the performance of the original OV2SLAM algorithm using only
simple geometric methods starts to degrade, as people in the scene are moving more freely, resulting
in more dynamic feature points. However, with the prior information on dynamic objects provided by
YOLO, the improved algorithm shows better performance in such dynamic scenes, as shown in Fig 5(d)
to Fig 5(f). In the fr3_w_xyz sequence, the improved algorithm achieves a 52.79% improvement in pose
accuracy compared to the original OV2SLAM algorithm. In the fr3_w_half sequence, the improvement
is 57.71%.

It is worth noting that in fr3_w_xyz, the two persons in the scene appear simultaneously in several
frames and occupy over 70% of the image. In the improved algorithm, the potential points within the
bounding box are not processed in the current frame. However, the static points used for pose estimation
outside the bounding box are not sufficient to support subsequent computations, resulting in temporary
tracking failures in a few frames, which leads to suboptimal performance in fr3_w_xyz.

In contrast, DynaSLAM uses a pixel-level semantic segmentation algorithm that can determine
dynamic points in the current frame, resulting in higher pose estimation accuracy. Compared to the
improved algorithm, DynaSLAM achieves an increase of 31.72% and 42.26% in accuracy on fr3_w_xyz
and fr3_w_half sequences, respectively.

4.3. Algorithm time analysis
The advantage of the algorithm proposed in this paper is its lightweight nature, which allows it to run
smoothly on embedded devices with limited computing capabilities. This makes the algorithm suitable
for a wider range of practical applications in real-world scenarios.

The algorithm’s runtime was tested on the fr3_w_half sequence by conducting 10 experiments
and averaging the results. A comparison was made with DynaSLAM, and the time taken for vari-
ous stages, including feature point extraction (which includes descriptor computation for DynaSLAM),
dynamic object detection, and per-frame tracking, was recorded. The experimental results are presented
in Table II.

In terms of feature point extraction, DynaSLAM uses the same strategy as ORBSLAM2, which
involves extracting both corner points and computing descriptors. In contrast, our algorithm only extracts
FAST corner points, resulting in a 61.39% reduction in runtime for the feature point extraction stage. For
dynamic object detection, DynaSLAM utilizes the Mask-RCNN algorithm, which is resource-intensive
and not real-time, with a detection time of 165.1883 ms per frame. On the other hand, our algorithm
employs a lightweight object detection algorithm, yolov5s, which only takes 22.1885 ms per frame for
detection, resulting in an 86.57% reduction in runtime for dynamic object detection. Due to the dynamic
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object detection being typically implemented in a separate thread that is asynchronous with the SLAM
thread, in DynaSLAM, on average, one priori information from the dynamic object detection thread
is obtained for every 4 frames. In contrast, our algorithm can obtain priori information from dynamic
object detection for every 2 frames on average. Additionally, since we use a Kalman filter to estimate
the position of the dynamic object bounding box, even if the current frame does not have prior infor-
mation from the object detection algorithm, the Kalman filter can provide an estimated value for the
dynamic object bounding box to ensure that priori information is available for every frame. As for
the tracking thread, DynaSLAM inherits from ORBSLAM2 and computes the pose after descriptor
matching, while our algorithm inherits from ov2slam and utilizes optical flow, eliminating the need
for descriptor matching and reducing runtime by 84.94%. In terms of total runtime, considering only
feature point extraction and per-frame tracking, our method reduces runtime by 75.47% compared to
DynaSLAM.

5. Conclusion
This paper proposes a lightweight dynamic SLAM algorithm that utilizes optical flow and object
tracking to save system resources. By combining geometric and object detection methods to exclude
dynamic points, the algorithm is able to robustly operate in dynamic scenes. Experimental results show
that the improved algorithm achieves a 52.79% increase in pose accuracy compared to the original
OV2SLAM algorithm on dynamic datasets, and sacrifices an average of about 35% accuracy compared
to DynaSLAM and other SLAM algorithms based on semantic segmentation algorithms, in exchange
for speed. Our algorithm achieves an overall speed improvement of 75.47% and can run in real-time
even on embedded devices with limited computing capabilities. However, there are limitations in this
algorithm, such as the requirement of 2 frames to differentiate dynamic points. If there are too many
dynamic objects in the scene, all feature points on dynamic objects may be labeled as potential dynamic
points, which do not participate in the pose calculation of the current frame. This may result in poor
tracking performance or even tracking failure when the number of static points involved in the tracking
process is too low. Future work will address this issue by optimizing potential dynamic point selec-
tion steps or adding more features (such as line features [30]), in order to incorporate these points into
the attitude calculation process as early as possible. In addition, it is also possible to consider enhanc-
ing object detection techniques and combining multi-sensor fusion techniques or SVSF method, etc to
enhance the robustness of SLAM to dynamic environments.
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