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A NOTE ON PERIODIC SOLUTIGNS OF SOME
NONAUTONOIMOUS DIFFERENTIAL EQUATIONS

M.R. GROSSINHO AND L, SANCHEZ

We prove the existence of nontrivial periodic solutions of some
nonlinear ordinary differential equations with time-dependent

coefficients using variational methods.

0. Introduction and statement of the results

In this work we study the existence, under suitable conditions, of

nontrivial T-periodic solutions of the following nonlinear equations:

(0.1) X - a(t)x - B(t)x2 + y(t)x3 0

(0.2) £+ a(t)x - B(t)x2 + Y(t)x3 0

where o, 8 and Yy are measurable T-periodic functions such that if we
denote by a , 4, ¢ and (C the infimum and supremum of a and vy ,

respectively, and B = "B"Lm , then

(0.3) 0O<aSoa(t) SKAd<e, 0<e<S<y(t) £C<»® and B <

.

The study of these equations was suggested by a paper of Cronin (4)
which deals with an equation related with the biomathematical model of the
aneurysm of the circle of Willis introduced by Austin [Z2]. 1In fact
equation (0.2) is the homogeneous analogue of the equation studied in [4]
for the case in which o , B and Yy are positive constants. Also in [4]

there is a forcing term of the type KX-:cos(wt) .
Solutions of (0.1) and (0.2) will always be considered in the sense
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of Cl-functions, x , such that % exists almost everywhere and
x(t) = x(t+T) .

For the sake of simplification of computation we shall deal with the
case of period 27m . The results, however, apply to every period T with

obvious modifications.

Abstract results concerning the existence of nontrivial periodic
solutions of nonlinear problems have recently appeared in the literature
(see [3], (5] and [7]). However they do not apply to equations (0.1l) or
(0.2). We also observe that, if a , 8 and vy are constants, (0.1) and

(0.2) can be studied using the phase plane.
We prove the following theorems:

THEOREM 0.1. Let o , B and y be measurable 2rm-periodic functions
that satisfy (0.3). Then equation (0.1) has a nontrivial 2u-periodic
solution.

THEOREM 0.2. Let o , B and vy be measurable 2mn-periodic functions
that satisfy (0.3) and such that

(0.4) < as<4c< (m+l)2 for some integer m >0 ,
and
(0.5) B2<26c, where 6 =a-n .

2 !

Then equation (0.2) has a nontrivial 2m~-periodic solution.

This work is divided into two parts in which we prove theorems 0.1 and
0.2, respectively. Those proofs have an analogous structure and we use
similar notations in both. The arguments and computations of section 1 are,
however, much simpler than those of section 2. We consider the interval
[0,21] and first we solve the projections of (0.1) and (0.2) onto spaces
of finite dimension using in the case of (0.1) a "Mountain Pass Lemma"
({11) and in (0.2) a generalization of that lemma ([6]). Then, after
adequate estimates, we pass to the limit. We observe that working with the
finite dimensional approach the boundary conditions are well defined
(see (1.2) and (2.2)) and the variational principles that we use are

simpler.
NOTATIONS. Throughout this paper we use the standard spaces LP(O,ZH),

Cp(0,2n) , and the Sobolev spaces Hp(O,Zn) = Wp’2(0,2n) which we denote
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simply by P , @ ana H . We use the symbols |-|p and ﬂ-ﬂp to

denote the usual norms of Lp and Hp , respectively.

1. Equation (0.1)

Consider the interval [0,2m] and the equation
(1.1) i - atu - 81 + Yy =0,
with the periodic conditions
(1.2) u(0) = u@m , uf0) = u(m ,

where a , B and Yy are measurable 27-periodic functions that satisfy

(0.3).
Proof of Theorem 0.1. The proof is divided in three steps:
Step 1: Approximate solution in finite dimension

For each positive integer N consider the finite dimensional space

N .
T, = ) ckezkt : ¢, € C and the sun is reall

k=N
and the functional JN : YN »> R defined by
2T 12 1 2 1 301 P
Iy ) =j Glul +su@)u + 388N - r()u)de .

0

It is easy to see that every critical point of JN is a solution of the

equation
. 2 3
(1.3) - a(t)z=Py(Bt)x - y(t)x")
where PN is the orthogonal projection of L2(0,2ﬂ) onto YN . So we are
going to look for critical points of JN . The tool we use is the

"Mountain Pass Lemma"” contained in [7].

By HOlder's inequality and (0.3) we have for u € YN

a 2 B 3 C
syt > 1ul} - 813 - §

4 2 2
>3 luly > luly (a-a,lul,-a |ul5)

(where al,az,a are positive constants) which implies that there exist

3
r,p >0 such that J(u) >0 if 0 < |u|2<r and J(u) =p > 0 if
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|u|2 = r . On the other hand, denoting by ".“a the norm
2m 5 5 n
ﬂu“a = (J (lul +a(B)u )dE)? , since YN has finite dimension, we derive
0
1 2 B 3 e 4 2 2
< Ayl = - = < -
Iy < Sl + Sluly - Zlul, < Jul; @graglul -aqlul3)

(where a4 . a5 and a6 are positive constants) which implies that

(1.4) JN(u) < 0 for |u12 large enough ,
and therefore there is Wy € YN such that
(1.5) loyl, > r ana Jyw, =o0 .
In particular there is wN in YN such that
(1.5) IwNI2 >r and Jywy) =0,
. _ c . - . .
and obviously we can take wN w Yl since JN|Y1 Jl . This fact will
be useful in step 2. 1Inequality (1.4) and the fact that Y has finite

N
dimension show that the Palais-Smale condition is trivially satisfied in

[0,+®) . Then by the "Mountain Pass Lemma" ([7]) JN has a nonzero

critical point, Uy o and a corresponding critical value bN characterized

by:

(1.6) bN = inf max JN(g(y)) >0,
gE€T y€10,1]

where

Ty = {g€C(l0,13, Y,y = g0 =0, g(1) = w} .

Step 2: Estimates for uy

Now we are going to prove that there are positive constants independent

of N , Al and A2 , such that
(1.7) bw Il < 4.,

(1.8) Ju
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let bN be the critical value that corresponds to the critical

point of JN ’ uN . From its variational characterization (1.6) and from

thmtma,&rte[mH,QW)=tw€FNwe®ﬂw

(1.9) 0 <by= inf max Jg(g(t)) < max Jy(tw) = Jl(zfz)

geFN t€[0,1] t€[0,1])
where  is an element of Y in which max J.(f w) 1is achieved.

1 1
t€10,1]
If we denote by ¢.,.) the duality bracket between YN and its dual, by
(1.9) and by the fact that Uy is a critical point of JN we have
0 <by=duy) - = ('), uy
N N 3 NN

27 27
1 ¢ 2 2 1 4 ~
= el <
3 Io (luNl -+uuN) t 33 Jo Yuy Jl(w) ’

which implies the existence of a constant Bl (independent of N ) such
that

. lu I <
(1.10) uN o Bl

and, since "-"u is equivalent to the standard Hl—norm, by the Sobolev

imbedding theorem, together with (0.3) and (1.3) it follows easily that

. . 2 3
IuN(2 < ugrougl, + fougl, < IPN(BuN—yuN)|2 +B,<B,,

where 82 and B3 are positive constants independent of N . Hence (1.7)

holds.

As for (1.8), we observe that, since Uy is a critical point of JN

in YN , we have

27
’ _ o 42 2 3__4
T () yuy) = Jo (]uNl +ouy +Buy —yuy) =0 .
Therefore by (0.3)

2

2 3 4 2
0 < aIuN|2 < B|uN|3 + CIuN|4 < (Bluﬂlm + Clumlm) luN|2 ,

which implies (1.8) since uN 0.
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Step 3: Passing to the limit
By (1.7) and imbedding theorems, (uN) has a subsequence (which we

still denote (uN)) such that

u, > u in H

U, >u in ¢ .
N

Estimate (1.8) ensures that u 1is nonzero. Since

2 3 2 3 . 2
PN(BuN =Yuy) > BuT - yuo in L,

(1.3) shows that u satisfies the equation

(1.9) U - ou - Bu2 + yu3 = 0

. . 2 L. . Cl

in the L sense. The periodicity of uN and Uy and the -convergence
obviously imply

(1.10) u(0) = u(2m , u() = u2mn) .

(1.9) and (1.10) show that u can be extended to (-«,+®) as a Cl-function,

with period 27 , solving equation (0.1). This ends the proof.
REMARK 1. we observe that if o , B and y are CP—functions,
solutions of equation (0.1) are classical solutions, more precisely,
solutions of class CP+2 .
2. Equation (0.2)
Consider the interval [0,2n] and the equation
. 2 3
(2.1) U+ a(tlu - B(Hu + y(B)u” =0
with the periodic conditions
(2.2) u(0) = u(2m , u(0) = u(2w)
where o , B and y are functions that satisfy (0.3).

In the proof of Theorem (0.2) we use the following result, which
follows easily from a theorem of Rabinowitz [6], and which is a

generalization of the "Mountain Pass Lemma"
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THEQREM 2.1. Let H be a finite dimensional Hilbert space and
H ,H. subspaces of H such that H, = HL . Suppose that J € Cl(H,R)

1°72 1
and J(x) <O for every xz € H . If there are constants r. >r, >0
such that J(z) >0 in (B, \ {oh) NH)) and Jx <0 in H \ B,
2 1

then J has a critical point in {x € H : J(x) > 0} and a corresponding

eritical value characterized by

¢ = inf max_ Jhi(x)) >0
hET x€H_MB
3 rl

vhere, choosing y € H, , Hy = H @ span {y} and

r =1{he€ ClHy N B ,H) :hix) =2 <If J(x) <0}
y

Proof of Theorem 0.2. BAs in Theorem 0.1 we divide the proof into

three steps:
Step 1: Approximate solution in finite dimension

For each positive integer N such that N2 > A consider the finite
dimensional space defined in the first step of the proof of Theorem 0.1,

Y. , and the functional JN : Y. > R defined by

N n

2% |' 2

_ ul” _aft) 2 B(t) 3 _y(t) 4
Iylu) = Jo = 5 U v u T v )dt .
Analogously to (1.3) every critical point of JN is a solution of the
equation
" 2 3

(2.3) Z+ al)x = PuB(t)x - y(t)x™) ,

and therefore we are going to look for critical points of JN .
et m be as in the statement of Theorem (0.2) and consider the
following subspaces of YN :

2

N .
Y;:{ ) cketktey s k2> mn?)

k= v

m .

- kt
Y. = { z e, e ey } .
ke k N
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+ -
i = ® .
It is clear that YN YN YN

We claim that:

< €Y
(2.4) JN(u) 0 for every u YIV
and
(2.5) there are constants ry > r, > 0 such that JN(u) >0

in Yo n3B_ \ {0}) ana J.(w) <O in Y, \ B .
v r o
2 1
In fact if uEYI_V we have

m 27
2,,2 3 4
Jyw) < ) |ck| kK ~-ay + I %—u --}u )

k=-m 0
Dodegl? [T ul? - gt
< 7(m"-a) e +J E lul® - €45
m K o 3 4
2m 2
_ 2m-a B _ec 2
_Jou(z +3 lul - 70

+
which, by condition (0.5), implies (2.4). As for (2.5), take u € 'YIV .

Computing JN(u) we have

N 2m
Jp =1 T e Pl 4 J E® -1
k=1 0
k2>(m+l)2

2
(m+l) " -A 2 B 3 C 4
> luly -3 el - 7 luly

2 2
= - -
This inequality implies the first statement of (2.5). As for the second
one it is obtained as in the proof of Theorem 0.1 (see (1.4)). Hence, by

Theorem 2.1, JIV has a critical point in YIV and corresponding critical

value Cy characterized by

(2.6) ey = inf _ max _ JN(h(u)) >0,
heI‘N LE(YNstpan{y})ﬂBrl
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+
where y € YN and

ry=1n¢€ C(‘YI_V ® span{y}) N Brl'yzv’ s hw) =u if Jyu) <0}

Step 2: Estimates for Uy
As in the proof of Theorem 0.1 we are going to prove that there are

constants independent of N , 4 and A2 , such that

1
<
(2.7) lIuNII2 < Al
and
> .
(2.8) |u1v|m 4y >0
let ey be the critical value that corresponds to the critical point
of JN P Uy - We claim that
<
(2.9) ey S B1
and
<
(2.10) |“1v|4 B, ,
where Bl and B2 are positive constants independent of N . 1In fact,
using the characterization of ey (2.6) and the fact that h(u) = u € FN,
we have
0 < ey = inf _ max _ JN(h(u))
hEFN uG(YNQSpan{y})ﬂB
1
< _ max _ JN(u)
wEQWQSPan{y})FB
r
1
< _max JN(u)
u€Y ®span{y}
We observe that (2.5) guarantees the existence of max J.o(u) .

uEY;Qspan{y} N

Suppose that the maximum is achieved at aN . Take y = cos jt where J

. . P 2 2 - T ikt )

is an integer such that =47 2 (ml)” . Then u, = z e, € + Acosgt
k=-m
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m 27
- 2 2 m,.2,.2 B
0< e, < JN(uN) <k_—§.m (k -a)lckl T+ EA (J -a) + fo (3

10} v
-2 B -3 e -4
< lgyly + 3 lgyls - 7 layly
Then
c - 14 - 42 B |- 3
2z |“iv|4 < lwyly +3 lulvla ’

which implies the existence of a constant B3 , independent of N , such

that
u <
(2.11) ]uN|4 By .
Let CN = JN(uN) . If we get a bound for cN , (2.9) is proved since
S- R . - . v . . 3
Cy Sy Using the fact that Uy is a critical point of JN in

Y& ® span{y} and HSlder's inequality, we get

- - 1 - -
< = - = !
ey S oy ey 3 (JN(uN) ,uN)

27

= 8_8, -3, x_y 74
Io (-3 up + G- uy)
B - 3 e - 4

< = = <
e Iyl + 7 lyly <B)

because of (2.11). Then (2.9) is proved. The fact that u

IV is a critical

point of JN in YN and (2.9) imply

1
= = - = '
Bl ey JN(uN) Z(JN(MIV)'HIV)
2n
3 Y .4
= (- =u, + ~u,)
ATET
B 3 e 4
> -2 <
& luyls + 7 lwyly -

Therefore
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B

3
g lu

e 4 _
7 luylyg <8+ i3

which implies (2.10).

Now using (2.10), a Galiardo-Nirenberg interpolation and the Sobolev
imbedding theorem we are going to prove (2.7). Throughout this proof we
denote by k several positive constants independent of N . By (2.3) ,

(2.10) and HSlder's inequality we have
. < |y
bl < lay + oy

+ o uyl

P 2

2 3
< Py uy -y yp |, + K

A

2 3
BIuNI2 + CIule + k

2

< Kluyl, luyl? + &
< kluyl, + &
then
(2.12) |uN|2<k+k |“N|m .
27
Write Uy in the form Uy = ay + aN where I ﬁN = 0 and ay is a

0

constant. Since ﬁN vanishes for some to € [0,2n] we can apply the

Gagliardo-Nirenberg interpolation to @

N :
Bos ik
~ P ~ 3
(2.13) luNl°° < M|uN|4 |uN|2 .
By (2.10) and HBlder's inequality
1
(2.14) IaNI < 5= l”lvll <k .

By (2.13), (2.14) and (2.10) we have
(2.15) Iu]\]loo <k + [aN|w
<k+M[aﬁ|ﬁﬁ
via Myl
Sk + M (kt|uy )g lu |§
w4 w'2

L
Sk +k IuN|2 .
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By (2.12) and (2.15) we get

(2.16) IuN

1
* 3
|2 <k +k |uN|2 .
Since |&N|2 < Iﬁle , from (2.16), (2.10) and HSlder's inequality we
conclude that (2.7) holds.

As for (2.8), we observe that from the variational characterization
of the eigenvalues and by (0.4) it follows that A = 0 1is not an eigenvalue

of the linear problem
u+ altu = Au ,
() - u@2m) = u(o) - u(2w) =0 .

From this fact, it is easy to see, arguing by contradiction, that there

is k > 0 such that
|u-+au|2 > k|u|2

2 . . . . c
for every u € H that satisfies the periodic conditions (2.2). Then,

using (2.3),
Klugl, < 1Py8 w2 -y uh |,
< B luyl, + € luyl) luyl,
which implies (2.8), since uN 20 .
Step 3: Passing to the 1imit
This is analogous to step 3 of the proof of Theorem 0.1l.

This ends the proof.

REMARK 2.1. As in the case of remark 1.1, the regularity of the
solution thus obtained depends on the regularity of the coefficient

functions o , B and vy .
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