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Abstract

Let L be a countable language. We say that a countable infinite L-structure M admits an invariant
measure when there is a probability measure on the space of L-structures with the same underlying
set as M that is invariant under permutations of that set, and that assigns measure one to the
isomorphism class of M. We show that M admits an invariant measure if and only if it has trivial
definable closure, that is, the pointwise stabilizer in Aut(M) of an arbitrary finite tuple of M fixes
no additional points. When M is a Fraïssé limit in a relational language, this amounts to requiring
that the age of M have strong amalgamation. Our results give rise to new instances of structures
that admit invariant measures and structures that do not.

2010 Mathematics Subject Classification: 03C98 (primary); 60G09, 37L40, 05C80, 03C75, 62E10,
05C63 (secondary)

1. Introduction

Randomness is used to construct objects throughout mathematics, and structures
resulting from symmetric random constructions often exhibit structural
regularities. Here we characterize, in terms of a combinatorial criterion, those
countable structures in a countable language that can be built via a random
construction that is invariant under reorderings of the elements.
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A probabilistic construction is exchangeable when its distribution satisfies
the symmetry condition of being invariant under permutations of its elements.
When an exchangeable construction almost surely produces a single structure
(up to isomorphism), we say that the structure admits an invariant measure.
Such structures often exhibit regularity properties such as universality or
ultrahomogeneity. Two of the most important randomly constructed structures
with these regularities are Rado’s countable universal ultrahomogeneous graph
and Urysohn’s universal separable ultrahomogeneous metric space. The Rado
graph may be generated as a random graph by independently choosing edges
according to the Erdős–Rényi construction [21], and Urysohn space arises via
(the completion of) an exchangeable countable metric space, by a construction of
Vershik [60, 61].

Because these examples have such rich internal structure, it is natural to ask
which other objects admit invariant measures. One formulation of this question
was posed by Cameron in [9, Section 4.10]. Petrov and Vershik [52] have
recently shown, using a new type of construction, that the countable universal
ultrahomogeneous Kn-free graphs all admit invariant measures. In the present
work, we combine methods from the model theory of infinitary logic with ideas
from Petrov and Vershik’s construction to give a complete characterization of
those countable infinite structures in a countable language that admit invariant
measures. Specifically, we show that a structure M admits an invariant measure
if and only if the pointwise stabilizer in Aut(M) of any finite set of elements of
M fixes no additional elements, a condition known as having trivial definable
closure.

Many natural examples of objects admitting invariant measures are
generic, in the sense of being Fraı̈ssé limits, that is, the countable universal
ultrahomogeneous object for some class of finite structures [27, Section 7.1]. One
may ask what additional regularity properties must hold of Fraı̈ssé limits that
admit invariant measures. Fraı̈ssé limits arise from amalgamation procedures for
‘gluing together’ finite substructures. Our result implies that a Fraı̈ssé limit in a
countable relational language admits an invariant measure if and only if it has
strong amalgamation, a natural restriction on the gluing procedure that produces
the limit.

Our characterization gives rise to new instances of structures that admit
invariant measures, and structures that do not. We apply our results to existing
classifications of ultrahomogeneous graphs, directed graphs, and partial
orders, as well as other combinatorial structures, thereby providing several
new examples of exchangeable constructions that lead to generic structures.
Among those structures for which we provide the first such constructions
are the countable universal ultrahomogeneous partial order [55] and certain
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countable universal graphs forbidding a finite homomorphism-closed set of finite
connected graphs [15]. Structures for which our results imply the nonexistence
of such constructions include Hall’s countable universal group [27, Section 7.1,
Example 1], and the existentially complete countable universal bowtie-free
graph [41].

1.1. Background. The Rado graph R, sometimes known as the ‘random
graph’, is (up to isomorphism) the unique countable universal ultrahomogeneous
graph [53]. It is the Fraı̈ssé limit of the class of finite graphs, with a first-order
theory characterized by so-called ‘extension axioms’ that have a simple syntactic
form. It is also the classic example of a countable structure that has a symmetric
probabilistic construction, namely, the countably infinite version of the Erdős–
Rényi random graph process introduced by Gilbert [24] and Erdős and Rényi [21].
For 0 < p < 1, this process determines a random graph on a countably infinite
set of vertices by independently flipping a coin of weight p for every pair of
distinct vertices, and adding an edge between those vertices precisely when the
coin flip comes up heads. Denote this random variable by G(N, p). The random
graph G(N, p) is almost surely isomorphic to R, for any p such that 0 < p < 1.
Moreover, each G(N, p) is exchangeable, that is, its distribution is invariant under
arbitrary permutations of the vertices, and so there are continuum-many different
invariant measures concentrated on R (up to isomorphism). It is natural to ask
which other structures admit random constructions that are invariant in this way.

Consider the Henson graph H3, the unique (up to isomorphism) countable
universal ultrahomogeneous triangle-free graph [25]. Like the Rado graph, it
has a first-order theory consisting of extension axioms, and can be constructed
as a Fraı̈ssé limit. Does it also admit an invariant measure? In contrast with
R, no countable random graph whose distribution of edges is independent and
identically distributed (i.i.d.) can be almost surely isomorphic to H3. But this
does not rule out the possibility of an exchangeable random graph almost surely
isomorphic to H3. Its distribution would constitute a measure on countable
graphs, invariant under arbitrary permutations of the underlying vertex set, that
is concentrated on the isomorphism class of H3.

One might consider building an invariant measure concentrated on (graphs
isomorphic to) H3 by ‘approximation from below’ using uniform measures on
finite triangle-free graphs, by analogy with the invariant measure concentrated
on R obtained as the weak limit of uniform measures on finite graphs. The
distribution of finite Erdős–Rényi random graphs G(n, 1

2 ) is simply the uniform
measure on graphs with n labeled vertices; the sequence G(n, 1

2 ) converges in
distribution to G(N, 1

2 ), which is almost surely isomorphic to R. So to obtain
an invariant measure concentrated on H3, one might similarly consider the weak
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limit of the sequence of uniform measures on finite triangle-free labeled graphs
of size n, that is, of the distributions of the random graphs G(n, 1

2 ) conditioned on
being triangle-free. However, by work of Erdős et al. [20] and Kolaitis et al. [40],
this sequence is asymptotically almost surely bipartite, and so its weak limit
is almost surely not isomorphic to H3. Hence, as noted in [52], this particular
approach does not produce an invariant measure concentrated on H3.

Petrov and Vershik [52] provided the first instance of an invariant measure
concentrated on the Henson graph H3 (up to isomorphism); they also did likewise
for Henson’s other countable universal ultrahomogeneous Kn-free graphs, where
n > 3. They produced this measure via a ‘top down’ construction, building a
continuum-sized triangle-free graph in such a way that an i.i.d. sample from its
vertex set induces an exchangeable random graph that is almost surely isomorphic
to H3.

In this paper, we address the question of invariant measures concentrated on
arbitrary structures. Given a countable language L and a countable infinite L-
structure M, we ask whether there exists a probability measure on the space
of L-structures with the same underlying set as M, invariant under arbitrary
permutations of that set, assigning measure one to the isomorphism class of
M. We provide a complete answer to this question, by characterizing such L-
structures M as precisely those that have trivial group-theoretic definable closure,
that is, those structures M for which the pointwise stabilizer in Aut(M) of any
finite tuple a from M fixes no elements of M except those in a. We use infinitary
logic to establish a setting in which, whenever M has trivial definable closure,
we can construct continuum-sized objects that upon sampling produce invariant
measures concentrated on M. When M does not have trivial definable closure,
we show that such invariant measures cannot exist.

Our results build on several ideas from [52]. In particular, Petrov and Vershik
show that if a continuum-sized graph satisfies certain properties, then sampling
from it produces an invariant measure concentrated on H3 (and similar results
for R and the other Henson Kn-free graphs); they then proceed to construct such
continuum-sized graphs. We identify a certain type of continuum-sized structure
whose existence guarantees, using a similar sampling procedure, an invariant
measure concentrated on a target countable structure; we then construct such
a continuum-sized structure whenever the target structure has trivial definable
closure.

Underlying Petrov and Vershik’s construction of invariant measures, as well
as ours, is the characterization of countable exchangeable (hyper)graphs as
those obtained via certain sampling procedures from continuum-sized structures.
These ideas were developed by Aldous [4], Hoover [28], Kallenberg [33] and
Vershik [59] in work on the probability theory of exchangeable arrays. More
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recently, similar machinery has come to prominence in the combinatorial theory
of limits of dense graphs via graphons, due to Lovász and Szegedy [46] and others.
For an equivalence between these characterizations, see Austin [5] and Diaconis
and Janson [17]. The standard recipe of [5] provides a more general formulation
of the correspondence between sampling procedures on continuum-sized objects
and arbitrary countable exchangeable structures.

In the present paper, we are interested primarily in determining those
countable infinite structures for which there exists at least one invariant measure
concentrated on its isomorphism class. In the case of countable graphs, our
construction in fact provides a new method for building graphons. In particular,
the graphons we build are random-free, in the sense of [32, Section 10]. Therefore,
our construction shows that whenever there is an invariant measure concentrated
on the isomorphism class of a countable graph, there is such a measure that
comes from sampling a random-free graphon.

Within mathematical logic, the study of invariant measures on countable first-
order structures goes back to work of Gaifman [22], Scott and Krauss [56], and
Krauss [42]. For a discussion of this earlier history and its relationship to Hoover’s
work on exchangeability, see Austin [5, Sections 3.8 and 4.3]. Our countable
relational setting is akin to that explored more recently in extremal combinatorics
by Razborov [54]; for details see [5, Section 4.3] and [6].

Other works in model theory have examined aspects of probabilistic
constructions. Droste and Kuske [19] and Dolinka and Mašulović [18] describe
probabilistic constructions of countable infinite structures, though without
invariance. Usvyatsov [58] has also considered a relationship between invariant
measures and notions of genericity in the setting of continuous first-order logic,
especially with respect to Urysohn space.

1.2. Main results. Our main theorem characterizes countable infinite
structures M that admit invariant measures as those for which the pointwise
stabilizer, in Aut(M), of an arbitrary finite tuple of M fixes no additional points.
For a countable language L , let StrL be the Borel measure space of L-structures
with underlying set N. (This is a standard space on which to consider measures
invariant under the action of the permutation group S∞; we provide details in
Section 2.3.) Then we have the following result.

THEOREM 1.1. Let L be a countable language, and let M be a countable infinite
L-structure. The following are equivalent:

(1) There is a probability measure on StrL , invariant under the natural action
of S∞ on StrL , that is concentrated on the set of elements of StrL that are
isomorphic to M.
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(2) The structure M has trivial group-theoretic definable closure, that is, for
every finite tuple a ∈ M, we have dclM(a) = a, where dclM(a) is the
collection of elements of M that are fixed by all automorphisms of M fixing
a pointwise.

Note that every finite structure admits a natural probability measure that is
invariant under permutations of the underlying set. But also every finite structure
has nontrivial definable closure, and so the statement of this theorem does not
extend to finite structures.

Our main result is the equivalence of (1) and (2); but further, an observation
of Kechris and Marks shows the additional equivalence with (3) in Theorem 1.2
below.

For any structure N ∈ StrL , we write Aut(N ) for its automorphism group
considered as a subgroup of S∞, and take the action of Aut(N ) on StrL to be that
given by the restriction of the natural action of S∞.

THEOREM 1.2. Properties (1) and (2) from Theorem 1.1 are also equivalent to
the following:

(3) There is some N ∈ StrL that has trivial group-theoretic definable closure
and is such that there is an Aut(N )-invariant probability measure on StrL

concentrated on the set of elements of StrL that are isomorphic to M.

Note that (3) is ostensibly weaker than (1), as in general an Aut(N )-invariant
measure need not be S∞-invariant.

A structure M is said to be ultrahomogeneous when every partial isomorphism
between finitely generated substructures of M extends to an automorphism
of M. Define the age of a countable L-structure M to be the class of all
finitely generated L-structures that are isomorphic to a substructure of M. The
age of any countable infinite ultrahomogeneous L-structure has the so-called
amalgamation property, which stipulates that any two structures in the age can
be ‘glued together’ over any common substructure, preserving this substructure
but possibly identifying other elements. Countable infinite ultrahomogeneous L-
structures have been characterized by Fraı̈ssé as those obtained from their ages
via a canonical ‘back-and-forth’ construction using amalgamation; they are often
called Fraı̈ssé limits and are axiomatized by Π2 ‘extension axioms’. (For details,
see [27, Theorems 7.1.4, 7.1.7].)

A standard result [27, Theorem 7.1.8] (see also [9, Section 2.7]) states that
when M is a countable infinite ultrahomogeneous structure in a countable
relational language, M has trivial definable closure precisely when its age
satisfies the more stringent condition known as the strong amalgamation property,
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which requires that no elements (outside the intersection) are identified during the
amalgamation. Note that in [27, Section 7.1], strong amalgamation is shown to
be equivalent to a property known as ‘no algebraicity’, which is equivalent to our
notion of (group-theoretic) trivial definable closure for structures in a language
with only relation symbols (but not for structures in a language with constant or
function symbols). Thus we obtain the following corollary to Theorem 1.1.

COROLLARY 1.3. Let L be a countable relational language, and let M be a
countable infinite L-structure. Suppose M is ultrahomogeneous. The following
are equivalent:

(1) There is a probability measure on StrL , invariant under the natural action
of S∞ on StrL , that is concentrated on the set of elements of StrL that are
isomorphic to M.

(2′) The age of M satisfies the strong amalgamation property.

At the Workshop on Homogeneous Structures, held at the University of Leeds
in 2011, Anatoly Vershik asked whether an analogue of the notion of a continuum-
sized topologically universal graph [52] exists for an arbitrary Fraı̈ssé limit. We
propose our notion of a (continuum-sized) Borel L-structure strongly witnessing
a theory, defined in Section 3, as an appropriate analogue.

Our results then show that such a Borel L-structure can exist for a Fraı̈ssé
limit precisely when its age has the strong amalgamation property. If the age of a
Fraı̈ssé limit M in a countable relational language L has the strong amalgamation
property, then the proof of our main result involves building a Borel L-structure
that, just like a topologically universal graph, has a ‘large’ set of witnesses for
every (nontrivial) extension axiom. On the other hand, when the age of M does
not have the strong amalgamation property, such a Borel L-structure cannot exist;
according to the machinery of our proof, it would necessarily induce an invariant
measure concentrated on M, violating Corollary 1.3.

1.3. Outline of the paper. We begin, in Section 2, by describing our setting
and providing preliminaries. Throughout this paper we work in a countable
language L . We first describe the infinitary language Lω1,ω(L). In particular, we
recall the notion of a Scott sentence, a single infinitary sentence in Lω1,ω(L) that
describes a countable structure up to isomorphism (among countable structures).
We then define a certain kind of infinitary Π2 sentence, which we call pithy Π2,
and which can be thought of as a ‘one-point’ extension axiom. We go on to
describe the measure space StrL and define the natural action of S∞ on StrL , called
the logic action. Using these notions, we explain what is meant by an invariant
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measure and what it means for a measure to be concentrated on a set of structures.
We then recall the group-theoretic notion of definable closure and its connection
to the model theory of Lω1,ω(L). Next, for any given countable L-structure M,
we describe its canonical language LM and canonical structure M; the latter
is essentially equivalent to M, but is characterized (among countable structures)
by a theory TM consisting entirely of ‘one-point’ extension axioms. We show
that M admits an invariant measure if and only if M does, and that M has
trivial definable closure if and only if M does. Finally, we review some basic
conventions from probability theory.

In Section 3, we prove the existence of an invariant measure concentrated on
an L-structure M that has trivial definable closure. We do so by constructing an
invariant measure concentrated on its canonical structure M.

The invariant measures that we build in Section 3 each come from sampling
a continuum-sized structure. Our method uses a similar framework to that
employed by Petrov and Vershik in [52] for graphs. The first-order theory of the
Henson graph H3 is generated by a set of Π2 axioms that characterize it up to
isomorphism among countable graphs. Petrov and Vershik construct an invariant
measure concentrated on H3 by building a continuum-sized structure that realizes
a ‘large’ set of witnesses for each of these axioms.

In our generalization of their construction, we build a continuum-sized structure
that satisfies TM in a particularly strong way, analogously to [52]. Specifically,
given a Π2 sentence of the form (∀x)(∃y)ψ(x, y) in TM, we ensure that for
every tuple a in the structure, the sentence (∃y)ψ(a, y) has a ‘large’ set of
witnesses, whenever ψ(a, b) does not hold for any b ∈ a. The construction
proceeds inductively by defining quantifier-free types on intervals, interleaving
successive refinements of existing intervals with enlargements by new intervals
that provide the ‘large’ sets of witnesses. This is possible by virtue of TM having
a property we call duplication of quantifier-free types, which occurs precisely
when M has trivial definable closure. The continuum-sized structure built in this
way is such that a random countable structure induced by sampling from it, with
respect to an appropriate measure, will be a model of TM almost surely, thereby
producing an invariant measure concentrated on M.

Section 4 provides the converse, for an arbitrary countable language L: If a
countable infinite L-structure has nontrivial definable closure, it cannot admit an
invariant measure. This is a direct argument that does not require the machinery
developed in Section 3. In fact, we present a generalization of the converse, due
to Kechris and Marks, which states that such an L-structure cannot even admit an
Aut(N )-invariant measure for any N ∈ StrL having trivial definable closure.

In Section 5, we apply Theorem 1.1 and Corollary 1.3 to obtain examples
of countable infinite structures that admit invariant measures, and those that do
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not. We describe how any structure can be ‘blown up’ into one that admits an
invariant measure and also into one that does not. This allows us to give examples
of countable structures having arbitrary Scott rank that admit invariant measures,
and examples of those that do not admit invariant measures. We then analyze
definable closure in well-known countable structures to determine whether or not
they admit invariant measures.

We conclude, in Section 6, with several connections to the theory of graph
limits, and additional applications of our results.

2. Preliminaries

Throughout this paper we use uppercase letters to represent sets, lowercase
letters to represent elements of a set and lowercase boldface letters to represent
finite tuples (of variables, or of elements of a structure). The length |x| of a tuple
of variables x is the number of entries, not the number of distinct variables, in
the tuple, and likewise for tuples of elements. We use the notation (x1, . . . , xk)

and x1 · · · xk interchangeably to denote a tuple of variables x of length k that has
entries x1, . . . , xk , in that order, and similarly for tuples of elements. When it
enhances clarity, we write, for example, (x, y) for (x1, x2, y1, y2), when x = x1x2

and y = y1 y2. For an n-tuple a ∈ An , we frequently abuse notation and write
a ∈ A.

2.1. Infinitary logic. We begin by reviewing some basic definitions from
logic. A language L , also called a signature, is a set L := R ∪ C ∪ F , where
R is a set of relation symbols, C is a set of constant symbols, and F is a set
of function symbols, all disjoint. For each relation symbol R ∈ R and function
symbol f ∈ F , fix an associated positive integer, called its arity. We take the
equality symbol, written=, to be a logical symbol, not a binary relation symbol in
L . In this paper, all languages are countable. Given a language L , an L-structure
M is a nonempty set M endowed with interpretations of the symbols in L . We
sometimes write x ∈M in place of x ∈ M .

We now describe the class Lω1,ω(L) of infinitary formulas in the language L .
For more on infinitary logic and Scott sentences, see [38], [7], or [50, Section 2.4].
For the basics of first-order languages, terms, formulas, and theories, see [50,
Section 1.1].

DEFINITION 2.1. The class Lω1,ω(L) is the smallest collection of formulas that
contains all atomic formulas of L; the formulas (∃x)ψ(x) and ¬χ , where ψ(x),
χ ∈ Lω1,ω(L); and the formula

∧
i∈I ϕi , where I is an arbitrary countable set,

ϕi ∈ Lω1,ω(L) for each i ∈ I , and the set of free variables of
∧

i∈I ϕi is finite.
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A formula of Lω1,ω(L) may have countably infinitely many variables, but only
finitely many that are free. Note that the more familiar Lω,ω(L), consisting of
first-order formulas, is the restriction of Lω1,ω(L) where conjunctions are over
finite index sets I . As is standard, we will freely use the abbreviations ∀ := ¬∃¬
and

∨ := ¬∧¬, as well as binary ∧ and ∨, in formulas of Lω1,ω(L). We will
sometimes refer to formulas of Lω1,ω(L) as L-formulas.

A sentence is a formula with no free variables. A (countable) theory of Lω1,ω(L)
is an arbitrary (countable) collection of sentences in Lω1,ω(L). Note that a theory
need not be deductively closed.

For a formula ϕ(x1, . . . , xn) of Lω1,ω(L) whose free variables are among x1,

. . . , xn , all distinct, the notation M |H ϕ(a1, . . . , an) means that ϕ(x1, . . . , xn)

holds in M when x1, . . . , xn are instantiated, respectively, by the elements a1,

. . . , an of the underlying set M . For a theory T , we write M |H T to mean that
M |H ϕ for every sentence ϕ ∈ T ; in this case, we say that M is a model of T .
We write T |H ϕ to mean that the sentence ϕ is true in every L-structure that is a
model of T . As a special case, we write |H ϕ to mean ∅ |H ϕ, that is, the sentence
ϕ is true in every L-structure. When ψ(x) is a formula with free variables among
the entries of the finite tuple x, we write |H ψ(x) to mean |H (∀x)ψ(x).

A key model-theoretic property of Lω1,ω(L) is that any countable L-structure
can be characterized up to isomorphism, among countable L-structures, by a
single sentence of Lω1,ω(L).

PROPOSITION 2.2 (see [7, Corollary VII.6.9] or [50, Theorem 2.4.15]). Let L be
a countable language, and let M be a countable L-structure. There is a sentence
σM ∈ Lω1,ω(L), called the (canonical) Scott sentence of M, such that for every
countable L-structure N , we have N |H ϕ if and only if N ∼=M.

2.2. Pithy Π2 theories. Countable theories consisting of ‘extension axioms’
will play a crucial role in our main construction in Section 3. In fact, we will
work with a notion of ‘one-point extension axioms’, which allows us to realize
witnesses for all possible finite configurations, one element at a time. In a sense
that we make precise in Section 2.5, an arbitrary countable structure is essentially
equivalent to one (in a different language) admitting an axiomatization consisting
only of one-point extension axioms.

DEFINITION 2.3. A sentence in Lω1,ω(L) is Π2 when it is of the form
(∀x)(∃y)ψ(x, y), where the (possibly empty) tuple xy consists of distinct
variables, and ψ(x, y) is quantifier-free. A countable theory T of Lω1,ω(L) is Π2

when every sentence ϕ ∈ T is Π2.
In our main construction, it will be convenient to work with a restricted kind of

extension axiom, which we call pithy.
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DEFINITION 2.4. A Π2 sentence (∀x)(∃y)ψ(x, y) ∈ Lω1,ω(L), where ψ(x, y)
is quantifier-free, is said to be pithy when the tuple y consists of precisely one
variable. A countable Π2 theory T of Lω1,ω(L) is said to be pithy when every
sentence in T is pithy. Note that we allow the degenerate case where x is the
empty tuple and the Π2 sentence is of the form (∃y)ψ(y).

Note that a pithy Π2 sentence can be written uniquely in the form
(∀x)(∃y)ψ(x, y), where ψ is quantifier-free, and where the free variables of
ψ are among the entries of xy.

2.3. The logic action on the measurable space StrL . Let L be an arbitrary
countable language. Define StrL to be the set of L-structures that have underlying
set N. For every formula ϕ(x1, . . . , x j) ∈ Lω1,ω(L) and n1, . . . , n j ∈ N, where j
is the number of free variables of ϕ, define

Jϕ(n1, . . . , n j)K := {M ∈ StrL :M |H ϕ(n1, . . . , n j)}.
The set StrL becomes a measurable space when it is equipped with the Borel σ -
algebra generated by subbasic open sets of the form:

JR(n1, . . . , n j)K

where R ∈ L is a j-ary relation symbol and n1, . . . , n j ∈ N;

Jc = nK

where c ∈ L is a constant symbol and n ∈ N; and

J f (n1, . . . , nk) = nk+1K

where f ∈ L is a k-ary function symbol and n1, . . . , nk+1 ∈ N.
For any sentence ϕ of Lω1,ω(L), the set JϕK is Borel, by [37, Proposition 16.7].

Given a countable L-structure M, recall that the Scott sentence σM ∈ Lω1,ω(L)
determines M up to isomorphism among countable structures. Therefore,
JσMK = {N ∈ StrL : N ∼=M}, the isomorphism class of M in StrL , is Borel.

Denote by S∞ the permutation group of N. There is a natural group action,
called the logic action, of S∞ on StrL , induced by permutation of the underlying
set N; for more details, see [37, Section 16.C]. Note that the orbit of an L-structure
M ∈ StrL under this action is the isomorphism class of M in StrL . We call a
(Borel) measure µ on StrL invariant when it is invariant under the logic action,
that is, for every Borel set X ⊆ StrL and every g ∈ S∞, we have µ(X) = µ(g · X).
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Given a subgroup G of S∞, written G 6 S∞, a (Borel) measure µ is G-invariant
when it is invariant under the restriction of the logic action to G.

Let µ be a probability measure on StrL . We say that µ is concentrated on
a Borel set X ⊆ StrL when µ(X) = 1. We are interested in structures up
to isomorphism, and for a countable infinite L-structure M, we say that µ is
concentrated on M when µ is concentrated on the isomorphism class of M
in StrL . We say that M admits an invariant measure when such an invariant
measure µ exists. Note that when we say that µ is concentrated on some class of
structures, we mean that µ is concentrated on the restriction of that class to StrL .

2.4. Definable closure. Our characterization of structures admitting invariant
measures is in terms of the group-theoretic notion of definable closure.

An automorphism of an L-structure M is a bijection g : M → M such that

RM(g(a1), . . . , g(a j)
)

if and only if RM(a1, . . . , a j)

for every relation symbol R ∈ L of arity j and all elements a1, . . . , a j ∈M,

g(cM) = cM

for every constant symbol c ∈ L , and

f M(g(b1), . . . , g(bk)
) = g

(
f M(b1, . . . , bk)

)
for every function symbol f ∈ L of arity k and elements b1, . . . , bk ∈M.

We write Aut(M) to denote the group of automorphisms of M.

DEFINITION 2.5. Let M be an L-structure, and let a ∈ M. The definable
closure of a in M, denoted dclM(a), is the collection of b ∈M that are fixed by
all automorphisms of M fixing a pointwise, that is, the set of b ∈M for which
the set {

g(b) : g ∈ Aut(M) s.t. (∀a ∈ a) g(a) = a
}

is a singleton, namely {b}.

This notion is sometimes known as the group-theoretic definable closure. For
countable structures, it has the following equivalent formulation in terms of the
formulas of Lω1,ω(L) that use parameters from the tuple a.

Given an L-structure M and a tuple a ∈ M, let La denote the language L
expanded by a new constant symbol for each element of a. Then letMa denote the
La-structure given by M with the entries of a named by their respective constant
symbols in La.
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LEMMA 2.6 (see [27, Lemma 4.1.3]). Let L be a countable language, and let M
be a countable L-structure with a ∈M. Then b ∈ dclM(a) if and only if there is
a formula ϕ ∈ Lω1,ω(La) with one free variable, whose unique realization in Ma
is b, that is,

Ma |H ϕ(b) ∧ [(∀x, y)(ϕ(x) ∧ ϕ(y))→ x = y].

When the first-order theory of M is ℵ0-categorical, it suffices to consider
only first-order formulas ϕ ∈ Lω,ω in Lemma 2.6 (see [27, Corollary 7.3.4]); in
this case, group-theoretic definable closure coincides with the standard notion of
model-theoretic definable closure.

DEFINITION 2.7. We say that an L-structure M has trivial definable closure
when the definable closure of every tuple a ∈M is trivial, that is, dclM(a) = a
for all a ∈M.

Note that if M has trivial definable closure, then L cannot have constant
symbols, and every function of M is a choice function (or selector), that is, for
every function symbol f ∈ L and every a ∈M, we have f M(a) ∈ a.

It is sometimes more convenient to work with (group-theoretic) algebraic
closure.

DEFINITION 2.8. Let M be an L-structure, and let a ∈ M. The algebraic
closure of a in M, denoted aclM(a), is the collection of b ∈ M whose orbit
under those automorphisms of M fixing a pointwise is finite. In other words,
aclM(a) is the set of b ∈M for which the set{

g(b) : g ∈ Aut(M) s.t. (∀a ∈ a) g(a) = a
}

is finite. We say that M has trivial algebraic closure when the algebraic closure
of every tuple a ∈M is trivial, that is, aclM(a) = a for all a ∈M.

Note that an L-structure has trivial algebraic closure if and only if it has trivial
definable closure. This fact will be useful in Section 5 when we find examples of
structures admitting invariant measures.

2.5. The canonical language and structure. We now define the canonical
language LA and canonical structure A associated to each structure A ∈ StrL .
We will see that the canonical structure admits an invariant measure precisely
when the original structure does, and has trivial definable closure precisely when
the original does. In the proof of our main theorem, this will enable us to work
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in the setting of canonical structures. We will also establish below that canonical
structures admit pithy Π2 axiomatizations, a fact which we will use in our main
construction in Section 3. For more details on canonical languages and structures,
see, for example, [8, Section 1.5].

DEFINITION 2.9. Let A ∈ StrL . For each k ∈ N let∼k be the equivalence relation
on Nk given by

x ∼k y if and only if (∃g ∈ Aut(A)) g(x) = y.

Define the canonical language for A to be the (countable) relational language
LA that consists of, for each k ∈ N and ∼k-equivalence class E of A, a k-ary
relation symbol RE . Then define the canonical structure for A to be the structure
A ∈ StrLA

in which, for each ∼k-equivalence class E of A, the interpretation of
RE is the corresponding orbit E ⊆ Nk .

By the definition of LA, the Aut(A)-orbits of tuples in A are Lω1,ω(LA)-
definable in A. In fact, as we will see in Lemma 2.13, these orbits are already
Lω1,ω(L)-definable in A. We begin by noting the folklore result that the canonical
structure A has elimination of quantifiers.

LEMMA 2.10. Let A ∈ StrL , and consider its canonical structure A. Then for
all k ∈ N, every Aut(A)-invariant subset of Nk is the set of realizations of some
quantifier-free formulaψ(x) ∈ Lω1,ω(LA). In particular, for every formula ϕ(x) ∈
Lω1,ω(LA), as the set of its realizations is Aut(A)-invariant, there is a quantifier-
free formula ψ(x) ∈ Lω1,ω(LA) such that

A |H ϕ(x)↔ ψ(x)

holds.

The following definition of (Lω1,ω-)interdefinability extends that of the standard
notion of interdefinability from the setting of ℵ0-categorical theories (see, for
example, [3, Section 1]). In particular, two structures are interdefinable when
they have the same underlying set (not necessarily countable) and the same Lω1,ω-
definable sets.

Let L0 and L1 be countable languages. Let N0 be an L0-structure and N1 an
L1-structure having the same underlying set (not necessarily countable).

DEFINITION 2.11. An Lω1,ω-interdefinition (or simply, interdefinition) between
N0 and N1 is a pair (Ψ0, Ψ1) of maps

https://doi.org/10.1017/fms.2016.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.15


Invariant measures concentrated on countable structures 15

Ψ0 : Lω1,ω(L0)→ Lω1,ω(L1) and
Ψ1 : Lω1,ω(L1)→ Lω1,ω(L0)

satisfying, for j ∈ {0, 1},
N1− j |H Ψ j ◦ Ψ1− j(η) ↔ η,

N1− j |H ¬Ψ j(χ) ↔ Ψ j(¬χ),
N1− j |H

∧
i∈I

Ψ j(ϕi) ↔ Ψ j

(∧
i∈I

ϕi

)
, and

N1− j |H (∃x)Ψ j(ψ(x)) ↔ Ψ j
(
(∃x)ψ(x)),

where η ∈ Lω1,ω(L1− j) and χ, ψ(x) ∈ Lω1,ω(L j), where I is an arbitrary
countable set and each ϕi ∈ Lω1,ω(L j), and such that the free variables of Ψ j(ξ)

are the same as those of ξ for every ξ ∈ Lω1,ω(L j).
We say that N0 and N1 are interdefinable via (Ψ0, Ψ1) when (Ψ0, Ψ1) is an

interdefinition between N0 and N1 such that for every k ∈ N and every formula
ψ(x) ∈ Lω1,ω(L0) with k free variables, we have

{m ∈ Nk :N0 |H ψ(m)} = {m ∈ Nk :N1 |H Ψ0(ψ)(m)}.
We say that N0 and N1 are interdefinable when they are interdefinable via some
interdefinition.

Note that N0 and N1 are interdefinable precisely when, for every k ∈ N, a set
X ⊆ Nk is definable in N0 (without parameters) by an Lω1,ω(L0)-formula if and
only if it is definable in N1 (without parameters) by an Lω1,ω(L1)-formula.

LEMMA 2.12. Suppose (Ψ0, Ψ1) is an interdefinition between N0 and N1, and
let N ′0 be an L0-structure (not necessarily countable) that satisfies the same
Lω1,ω(L0)-theory as N0. Then there is a unique L1-structure N ′1 such that N ′0 and
N ′1 are interdefinable via (Ψ0, Ψ1). In particular, N ′1 satisfies the same Lω1,ω(L1)-
theory as N1.

Proof. Let N ′1 be the unique structure with the same underlying set as N ′0 such
that for any atomic L1-formula ψ , the set of realizations of ψ in N ′1 is precisely
the set of realizations of Ψ1(ψ) in N ′0. Because N ′0 satisfies the same sentences of
Lω1,ω(L0) as N0, by considering Definition 2.11 one can see that (Ψ0, Ψ1) is an
interdefinition between N ′0 and N ′1; further, N ′1 is the only such L1-structure. It is
immediate that N ′1 satisfies the same sentences of Lω1,ω(L1) as N1.

We will use the following folklore result in the proof of our main theorem.
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LEMMA 2.13. Let A ∈ StrL and let A be its canonical structure. Then A is
interdefinable with A.

In fact, one can show that for A ∈ StrL0 and B ∈ StrL1 , the structures A and B
are interdefinable if and only if LA = LB and A = B. Along with Lemma 2.13,
this implies that a structure in StrL is characterized up to interdefinability by its
canonical structure.

As an immediate corollary of Lemmas 2.12 and 2.13, we see that given A ∈
StrL and an arbitrary L-structure N having the same Lω1,ω(L)-theory as A, there
is a unique LA-structure with which N is interdefinable via the interdefinition
given in Lemma 2.13 between A and A. When N ∈ StrL , this LA-structure is
N , the canonical structure of N ; in Corollary 3.22, we will call the analogous
LA-structure N even when N is uncountable.

We now show that interdefinability preserves whether or not a countable
structure admits an invariant measure and also whether or not it has trivial
definable closure.

LEMMA 2.14. Suppose A ∈ StrL0 and B ∈ StrL1 are interdefinable. Then A
admits an invariant measure if and only if B does.

Proof. Let (Ψ0, Ψ1) be an interdefinition between A and B. We first define a Borel
map

ι : {C ∈ StrL0 : C ∼= A} → {D ∈ StrL1 : D ∼= B}
that commutes with the logic action. For every C ∈ StrL0 isomorphic to A, let ι(C)
be the L1-structure, given by Lemma 2.12, that has the same Lω1,ω(L1)-theory as
B. Since ι(C) and B are countable, they are in fact isomorphic. Further, since (Ψ0,

Ψ1) is an interdefinition between C and ι(C), it follows that ι is a bijection. Recall
that the σ -algebra of StrL1 is generated by sets of the form Jϕ(n1, . . . , n j)K, for
ϕ ∈ Lω1,ω(L1) and n1, . . . , n j ∈ N, where j is the number of free variables in ϕ.
By the definition of ι, we have

ι−1(Jϕ(n1, . . . , n j)K
) = JΨ1(ϕ)(n1, . . . , n j)K,

which is a Borel set in StrL0 . Hence the map ι is Borel.
Observe that for every g ∈ S∞ and C ∈ StrL0 isomorphic to A, we have ι(g·C)=

g · ι(C), which is interdefinable with g · C. Hence for every invariant probability
measure µ concentrated on A, its pushforward along ι is an invariant probability
measure concentrated on B. By symmetry, A admits an invariant measure if and
only if B does.
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In particular, taking B = A, we see that a countable structure admits an
invariant measure if and only if its canonical structure does.

LEMMA 2.15. Suppose A ∈ StrL0 and B ∈ StrL1 are interdefinable. Then A has
trivial definable closure if and only if B does.

Proof. Suppose A does not have trivial definable closure. Let a, b ∈ N with b 6∈ a
and b ∈ dcl(a). By Lemma 2.6, there is a formula ϕ ∈ Lω1,ω((L0)a) whose
unique realization in Aa is b. Note that Aa and Ba are interdefinable. Hence
there is a corresponding Lω1,ω((L1)a)-formula whose unique realization in Ba is b,
witnessing the nontrivial definable closure of a in B. Therefore, B does not have
trivial definable closure either. The result follows by symmetry.

By Lemmas 2.14 and 2.15, for countable structures, the properties of having
trivial definable closure, and of admitting an invariant measure, are determined
up to interdefinability. Further, by Lemma 2.13, each of these properties holds of
a countable structure if and only if the respective property holds of its canonical
structure, and hence is determined completely by its automorphism group.

Finally, we show that for every countable structure, there is a pithyΠ2 theory in
its canonical language that characterizes its canonical structure up to isomorphism
among countable structures. From this, it will follow that the canonical structure
is ultrahomogeneous.

DEFINITION 2.16. We say that an L-structure M is ultrahomogeneous if any
isomorphism between two finitely generated substructures of M extends to an
automorphism of M.

PROPOSITION 2.17. Let A ∈ StrL . There is a countable Lω1,ω(LA)-theory, every
sentence of which is pithy Π2, and all of whose countable models are isomorphic
to the canonical structure A.

Proof. Consider the Lω1,ω(LA)-theory consisting of the following pithy Π2

axioms, for each k ∈ N:

· (∀x) (RE(x)↔
∧{¬RG(x) : RG 6= RE is a k-ary relation symbol in LA}

)
;

· (∀x) ∨{RG(x) : RG is a k-ary relation symbol in LA}; and

· (∀x) (RE(x) → (∃y) RF(x, y)
)
;
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where |x| = k, and RE and RF are, respectively, k- and (k + 1)-ary relation
symbols in LA such that

A |H (∀xy)
(
RF(x, y)→ RE(x)

)
.

It is immediate that A satisfies this theory. Furthermore, for any two countable
models of the theory, the first two axioms require that every k-tuple in either
model realizes exactly one k-ary relation. Hence given two k-tuples a,b of
A satisfying the same relation, we may use the third axiom to construct an
automorphism of A mapping a to b, by a standard back-and-forth argument. This
establishes that the theory has one countable model up to isomorphism.

Note that the above argument further shows the standard result that A
is ultrahomogeneous. The pithy Π2 theory of Proposition 2.17 can therefore
be thought of as an infinitary analogue of a Fraı̈ssé theory. In particular, as
with Fraı̈ssé theories in first-order relational languages, the age of A has
strong amalgamation precisely when A has trivial definable closure. (For more
details on Fraı̈ssé theories, see [27, Section 7.1].) Therefore, even if A is
not ultrahomogeneous itself, Corollary 1.3 could be applied to a structure that
is essentially equivalent to A, namely the canonical structure A. Indeed, by
Lemma 2.15, A has strong amalgamation precisely when A has trivial definable
closure.

2.6. Basic probability notions. Throughout this paper, we make use of
conventions from measure-theoretic probability theory to talk about random
structures having certain almost-sure properties. For a general reference on
probability theory, see, for example, [35].

Let (Ω,G,P) be a probability space, and suppose (H,H) is a measurable space.
Recall that an H-valued random variable Z is a (G,H)-measurable function
Z : Ω → H . Such a function Z is also sometimes called a random element in
H . The distribution of Z is defined to be the probability measure P ◦ Z−1.

Given a property E ∈ H, we say that E holds of Z almost surely, abbreviated
a.s., when P

(
Z−1(E)

) = 1. Sometimes, in this situation, we say instead that
E holds of Z with probability one. For example, given a random element Z in
StrL and a Borel set JϕK, where ϕ is a sentence of Lω1,ω(L), we say that JϕK
holds of Z a.s. when P

(
Z−1(JϕK)

) = P
({w ∈ Ω : Z(w) |H ϕ}) = 1. In fact, we

will typically not make the property explicit, and will, for instance, write that the
random structure Z |H ϕ a.s. when P

({w ∈ Ω : Z(w) |H ϕ}) = 1; this probability
is abbreviated as P{Z |H ϕ}.

In the proof of our main theorem, when we show that a measure µ on StrL is
concentrated on the set of models in StrL of some sentence ϕ, we will do so by
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demonstrating that, with probability one, Z |H ϕ, where Z is a random structure
with distribution µ.

A sequence of (H -valued) random variables is said to be independent and
identically distributed, abbreviated i.i.d., when each random variable has the
same distribution and the random variables are mutually independent. When this
distribution is m, we say that the sequence is m-i.i.d.

3. Existence of invariant measures

We now show the existence of invariant measures concentrated on a countable
infinite structure having trivial definable closure. We prove this in Theorem 3.21,
which constitutes one direction of Theorem 1.1, the main result of this paper.

The following is an outline of our proof; in the presentation below we
will, however, develop the machinery in the reverse order. Let M ∈ StrL be
a countable infinite L-structure having trivial definable closure, and LM its
canonical language and M its canonical structure, as in Section 2.5. Let TM
be a countable pithy Π2 theory of Lω1,ω(LM) all of whose countable models are
isomorphic to M, as in Proposition 2.17. We show, in Section 3.5, that such
a theory TM has a property that we call duplication of quantifier-free types. In
Sections 3.3–3.4, we use this property to build a Borel LM-structure P that
strongly witnesses TM. Roughly speaking, this means that P is an LM-structure
with underlying set R, whose relations are Borel, such that for every pithy Π2

sentence (∀x)(∃y)ϕ(x, y) ∈ TM and tuple a ∈ P of the appropriate length, either
there is a ‘large’ set of elements b ∈ P such that ϕ(a, b) holds, or else there is
some b ∈ a such that ϕ(a, b) holds; in either case, (∃y)ϕ(a, y) is ‘witnessed’.
In Sections 3.1–3.2, we show how to use a Borel LM-structure that strongly
witnesses TM to produce an invariant measure concentrated on the set of models
of TM that are in StrLM

. By the initial choice of TM, this invariant measure on
StrLM

is concentrated on M. By results of Section 2.5, we obtain an invariant
measure on StrL concentrated on M.

3.1. Sampling from Borel L-structures. We begin by introducing a certain
kind of L-structure with underlying set R, whose relations and functions are Borel
(with respect to the standard topology on R). Our definition is motivated by Petrov
and Vershik’s notion of a Borel graph [52, Definition 1]. The model theory of such
Borel structures has earlier been studied by Harvey Friedman (published in [57]).
For a survey, including more recent work, see [51, Section 1].

DEFINITION 3.1. Let P be an L-structure whose underlying set is R. We say
that P is a Borel L-structure if for all relation symbols R ∈ L , the set
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{a ∈ P j : RP(a)} is a Borel subset of R j , where j is the arity of R; and for
all function symbols f ∈ L , the function f P : Pk → P is Borel (equivalently,
the graph of f P is Borel), where k is the arity of f .

Note that although structures with underlying set R will suffice for our
purposes, we could have defined the notion of a Borel L-structure more generally,
for other measure spaces.

Our first goal in Section 3.1 is to define a sampling procedure that, given a
Borel L-structure with certain properties, yields an invariant measure on StrL . We
begin with several definitions.

Given an L-structure N of arbitrary cardinality, we write Clo(N ) to denote the
set of those sequences in N ω that contain all constants of N and are closed under
the application of functions of N . Such a sequence is precisely an enumeration
(possibly with repetition) of the underlying set of some countable substructure of
N . Note that whenever L is relational, or when N has trivial definable closure,
we have Clo(N ) = N ω (but not conversely). We say that N is samplable when
Clo(N ) = N ω. Observe that N is samplable precisely when L has no constant
symbols and every function is a choice function.

Next we describe a map taking an element of Clo(N ) to an L-structure with
underlying set N. In the case when N is samplable, we will apply this map
to a random sequence of elements of N to induce a random L-structure with
underlying set N.

DEFINITION 3.2. Suppose N is an L-structure (of arbitrary cardinality). Define
the function FN : Clo(N ) → StrL as follows. For A = (ai)i∈ω ∈ Clo(N ), let
FN (A) be the L-structure with underlying set N satisfying

FN (A) |H R(n1, . . . , n j) if and only if N |H R(an1, . . . , an j )

for every relation symbol R ∈ L and for all n1, . . . , n j ∈ N, where j is the arity
of R; satisfying

FN (A) |H (c = n) if and only if N |H (c = an)

for every constant symbol c ∈ L and for all n ∈ N; satisfying

FN (A) |H f (n1, . . . , nk) = nk+1 if and only if N |H f (an1, . . . , ank ) = ank+1

for every function symbol f ∈ L and for all n1, . . . , nk+1 ∈ N, where k is the arity
of f ; and for which equality is inherited from N, that is,

FN (A) |H (m 6= n)

just when m and n are distinct natural numbers.
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When the sequence A ∈ Clo(N ) has no repeated entries, FN (A) ∈ StrL is
isomorphic to a countable infinite substructure of N . In fact, this will hold a.s. for
the random L-structures that we construct in Section 3.2.

Recall the definition of the Borel σ -algebra on StrL in Section 2.3. Define a
subbasic formula of Lω1,ω(L) to be a formula of the form x1 = x2, R(x1, . . . , x j),
c = x1, or f (x1, . . . , xk) = xk+1, where R ∈ L is a relation symbol and j its arity,
c ∈ L is a constant symbol, f ∈ L is a function symbol and k its arity, and the xi

are distinct variables.

LEMMA 3.3. Let P be a Borel L-structure. Then FP is a Borel measurable
function.

Proof. It suffices to show that the preimages of subbasic open sets of StrL are
Borel. Let ζ be a subbasic formula of Lω1,ω(L) with j free variables, and let n1,

. . . , n j ∈ N. We wish to show that F−1
P
(
Jζ(n1, . . . , n j)K

)
is Borel.

Let πn1,...,n j : Pω → P j be the projection map defined by

πn1,...,n j

(
(ai)i∈ω

) = (an1, . . . , an j );
this map is Borel. Then

F−1
P

(
Jζ(n1, . . . , n j)K

)
= π−1

n1,...,n j

({a ∈ P j : P |H ζ(a)}),
as both sides of the equation are equal to{

(ai)i∈ω ∈ Pω : P |H ζ(an1, . . . , an j )
}
.

By Definition 3.1 we have that {a ∈ P j : P |H ζ(a)} is Borel. Hence
F−1

P
(
Jζ(n1, . . . , n j)K

)
is also Borel, as desired.

We now show how to induce an invariant measure on StrL from a samplable
Borel L-structure P . Suppose m is a probability measure on R. Denote by m∞

the corresponding product measure on Rω, that is, the distribution of a sequence
of independent samples from m. Note that m∞ is invariant under arbitrary
reordering of the indices. We will obtain an invariant measure on StrL by taking
the distribution of the random structure with underlying set N corresponding to
an m-i.i.d. sequence of elements of P .

This technique for constructing invariant measures by sampling a continuum-
sized structure was used by Petrov and Vershik [52], and the following notation
and results parallel those in [52, Section 2.3]. A similar method of sampling
is used in [46, Section 2.6] to produce the countable random graphs known
as W-random graphs from continuum-sized graphons; for more details on the
relationship between these notions and our construction, see Section 6.1.
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DEFINITION 3.4. Let P be a Borel L-structure, and let m be a probability
measure on R. Define the measure µ(P,m) on StrL to be

µ(P,m) := m∞ ◦F−1
P .

When P is samplable, m∞
(
F−1

P (StrL)
) = 1, and so µ(P,m) is a probability

measure, namely the distribution of a random element in StrL induced via FP
by an m-i.i.d. sequence on R.

The following lemma makes precise the sense in which the invariance of m∞

(under the action of S∞ on Rω) yields the invariance of µ(P,m) (under the logic
action).

LEMMA 3.5. Let P be a Borel L-structure, and let m be a probability measure
on R. Then the measure µ(P,m) is invariant under the logic action.

Proof. It suffices to verify that µ(P,m) is invariant on a π -system (that is, a family
of sets closed under finite intersections) that generates the Borel σ -algebra on StrL ,
by [62, Lemma 1.6.b]. We first show that µ(P,m) is invariant on subbasic open
sets determined by subbasic formulas of Lω1,ω(L) along with tuples instantiating
them. We then show its invariance for the π -system consisting of sets determined
by finite conjunctions of such subbasic formulas.

Let ζ be a subbasic formula of Lω1,ω(L) with j free variables, and let n1, . . . ,

n j ∈ N. Consider the set Jζ(n1, . . . , n j)K, and let g ∈ S∞. Note that

Jζ(g(n1), . . . , g(n j))K =
{
g ·N :N ∈ Jζ(n1, . . . , n j)K

}
,

where · denotes the logic action of S∞ on StrL . We will show that

µ(P,m)
(
Jζ(g(n1), . . . , g(n j))K

) = µ(P,m)(Jζ(n1, . . . , n j)K
)
. (?)

We have

F−1
P
(
Jζ(g(n1), . . . , g(n j))K

) = π−1
g(n1),...,g(n j )

({a ∈ P j : P |H ζ(a)})
and

F−1
P
(
Jζ(n1, . . . , n j)K

) = π−1
n1,...,n j

({a ∈ P j : P |H ζ(a)}).
Because m∞ is invariant under the action of S∞ on Rω (given by permuting
coordinates of Rω), the Borel subsets

F−1
P
(
Jζ(g(n1), . . . , g(n j))K

)
https://doi.org/10.1017/fms.2016.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.15


Invariant measures concentrated on countable structures 23

and
F−1

P
(
Jζ(n1, . . . , n j)K

)
of Rω have equal m∞-measure, and so (?) holds.

Now consider subbasic formulas ζ1, . . . , ζk of Lω1,ω(L) with j1, . . . , jk free
variables, respectively, and let j ′ := ∑k

i=1 jk . Denote the conjunction of these
formulas on nonoverlapping variables by

ϕ(x1, . . . , x j ′) := ζ1(x1, . . . , x j1) ∧ · · · ∧ ζk(x j ′− jk+1, . . . , x j ′),

where x1, . . . , x j ′ are distinct variables. We have

Jϕ(n1, . . . , n j ′)K = Jζ1(n1, . . . , n j1)K ∩ · · · ∩ Jζk(n j ′− jk+1, . . . , n j ′)K,

for all n1, . . . , n j ′ ∈ N (not necessarily distinct), and from this we see that

Jϕ(g(n1), . . . , g(n j ′))K
= Jζ1(g(n1), . . . , g(n j1))K ∩ · · · ∩ Jζk(g(n j ′− jk+1), . . . , g(n j ′))K.

Hence
F−1

P
(
Jϕ(g(n1), . . . , g(n j ′))K

)
and

F−1
P
(
Jϕ(n1, . . . , n j ′)K

)
have equal measure under m∞. Hence µ(P,m) is invariant under the logic action.

Recall that a measure on R is said to be continuous (or nonatomic) if it assigns
measure zero to every singleton. When m is continuous, samples from µ(P,m) are
a.s. isomorphic to substructures of P .

LEMMA 3.6. Let P be a samplable Borel L-structure and let m be a continuous
probability measure on R. Then µ(P,m) is a probability measure on StrL that
is concentrated on the union of isomorphism classes of countable infinite
substructures of P .

Proof. As noted before, because P is samplable, m∞
(
F−1

P (StrL)
) = 1, and so

µ(P,m) is a probability measure. Let A = (ai)i∈ω be an m-i.i.d. sequence of R.
Note that the induced countable structure FP(A) is now a random L-structure,
that is, a StrL-valued random variable, whose distribution is µ(P,m). Because
m is continuous, and since for any k 6= ` the random variables ak and a` are
independent, the sequence A has no repeated entries a.s. Hence FP(A) is a.s.
isomorphic to a countable infinite (induced) substructure of P .
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3.2. Strongly witnessing a pithy Π2 theory. We have seen how to construct
invariant measures on StrL by sampling from a samplable Borel L-structure. We
now describe a property that will give us sufficient control over such measures to
ensure that they are concentrated on the set of models, in StrL , of a given countable
pithy Π2 theory T of Lω1,ω(L). For this we define when a Borel L-structure P
and a measure m witness T , generalizing the key property of Petrov and Vershik’s
universal measurable graphs in [52, Theorem 2]. From this, we define when P
strongly witnesses T , a notion that we find more convenient to apply.

We begin by defining the notions of internal and external witnesses.

DEFINITION 3.7. Let M be an L-structure containing a tuple a, and let ψ(x, y)
be a quantifier-free formula of Lω1,ω(L), all of whose free variables are among xy.
We say that an element b ∈M is a witness for (∃y)ψ(a, y) when M |H ψ(a, b).
We say that such an element b is an internal witness when b ∈ a, and an external
witness otherwise.

Recall that a measure m on R is said to be nondegenerate when every
nonempty open set has positive measure.

DEFINITION 3.8. Let P be a Borel L-structure and let m be a probability measure
on R. Suppose T is a countable pithy Π2 theory of Lω1,ω(L). We say that the pair
(P,m) witnesses T if for every sentence (∀x)(∃y)ψ(x, y) ∈ T , and for every
tuple a ∈ P such that |a| = |x|, we have either

(i) P |H ψ(a, b) for some b ∈ a; or

(ii) m({b ∈ P : P |H ψ(a, b)}) > 0.

We say that P strongly witnesses T when, for every nondegenerate probability
measure m on R, the pair (P,m) witnesses T .

Intuitively, the two possibilities (i) and (ii) say that witnesses for (∃y)ψ(a, y)
are easy to find: Either an internal witness already exists among the parameters a,
or else witnesses are plentiful elsewhere in the structure P , according to m.

Strong witnesses simply allow us to work without keeping track of a measure m.
In fact, when we build structures P that strongly witness a theory, in Section 3.4,
we will be more concrete, by declaring entire intervals to be external witnesses.

These definitions generalize two of the key notions in [52]. Let LG be the
language of graphs. A universal measurable graph (X,m, E) as defined in [52,
Definition 3] roughly corresponds to a Borel LG-structure (X, E) with vertex set
X and edge relation E for which ((X, E),m) witnesses the theory of the Rado
graph R. A topologically universal graph (X, E) as defined in [52, Definition 4]
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roughly corresponds to a Borel LG-structure that strongly witnesses the theory of
R by virtue of entire intervals being witnesses. Theorem 3.10 and Corollary 3.11
below are inspired directly by Petrov and Vershik’s constructions.

We will use (continuum-sized) samplable Borel L-structures strongly
witnessing a countable pithyΠ2 theory T to produce random countable structures
that satisfy T almost surely. However, we first note that the property of strongly
witnessing such a T is powerful enough to ensure that a samplable Borel
L-structure is itself a model of T .

LEMMA 3.9. Let P be a samplable Borel L-structure, and let T be a countable
pithy Π2 theory of Lω1,ω(L). If P strongly witnesses T , then P |H T .

Proof. Fix a pithy Π2 sentence (∀x)(∃y)ψ(x, y) ∈ T . Suppose a ∈ P , where
|a| = |x|. If possibility (i) of Definition 3.8 holds, then there is an internal witness
for (∃y)ψ(a, y), that is, there is some b ∈ a such that P |H ψ(a, b). Otherwise,
possibility (ii) holds, and so the set {b ∈ P : P |H ψ(a, b)} of external witnesses
has positive m-measure for an arbitrary nondegenerate probability measure m on
R; in particular, this set is nonempty. Either way, for all a ∈ P we have P |H
(∃y)ψ(a, y), and therefore P |H (∀x)(∃y)ψ(x, y). Thus P |H T .

When the measure m is continuous, samples from µ(P,m) are a.s. models of T .

THEOREM 3.10. Let T be a countable pithy Π2 theory of Lω1,ω(L), and let P be
a samplable Borel L-structure. Suppose m is a continuous probability measure
on R such that (P,m) witnesses T . Then µ(P,m) is concentrated on the set of
structures in StrL that are models of T .

Proof. Let A = (ai)i∈ω be an m-i.i.d. sequence of elements of P . Recall that by
the proof of Lemma 3.6, µ(P,m) is the distribution of the random structure FP(A),
and so we must show that FP(A) |H T a.s. Because T is countable, it suffices by
countable additivity to show that for any sentence ϕ ∈ T , we have FP(A) |H ϕ
a.s.

Recall that T is a countable pithy Π2 theory. Suppose (∀x)(∃y)ψ(x, y) ∈ T ,
and let k = |x| (which may be 0). Our task is to show that, with probability one,

FP(A) |H (∀x)(∃y)ψ(x, y).

Fix t1 · · · tk ∈ N. We will show that, with probability one,

FP(A) |H (∃y)ψ(t1 · · · tk, y). (†)

Consider the random tuple at1 · · · atk . Because P strongly witnesses T , by
Definition 3.8 it is surely the case that either

https://doi.org/10.1017/fms.2016.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.15


N. Ackerman, C. Freer and R. Patel 26

(i) for some ` such that 1 6 ` 6 k, the random real at` is an internal witness for
(∃y)ψ(at1 · · · atk , y), that is,

P |H ψ(at1 · · · atk , at`),

or else

(ii) the (random) set of witnesses for (∃y)ψ(at1 · · · atk , y) has positive measure,
that is,

m
({b ∈ R : P |H ψ(at1 · · · atk , b)}) > 0.

In case (i), we have
FP(A) |H ψ(t1 · · · tk, t`),

where ` is as above, and so (†) holds surely.
Now suppose case (ii) holds, and condition on at1 · · · atk . Then

β := m
({b ∈ R : P |H ψ(at1 · · · atk , b)})

is a positive constant. For each n ∈ N not among t1, . . . , tk , the random element
an is m-distributed, and so the events

P |H ψ(at1 · · · atk , an)

each have probability β. These events are also mutually independent for such n,
and so with probability one, there is some s ∈ N for which

FP(A) |H ψ(t1 · · · tk, s).

Therefore, in this case, (†) holds almost surely.

Finally, we show that given a Borel L-structure strongly witnessing T , we can
construct an invariant measure concentrated on the set of models of T in StrL .

COROLLARY 3.11. Let T be a countable pithy Π2 theory of Lω1,ω(L), and let
P be a samplable Borel L-structure. Suppose that P strongly witnesses T . Then
there is an invariant measure on StrL that is concentrated on the set of structures
in StrL that are models of T .

Proof. Let m be a nondegenerate probability measure on R that is continuous (for
example, a Gaussian or Cauchy distribution). By Lemmas 3.5 and 3.6, µ(P,m) is
an invariant measure, and by Theorem 3.10, it is concentrated on the set of models
of T in StrL .
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Our constructions of invariant measures all employ a samplable Borel L-
structure P that strongly witnesses a countable pithy Π2 theory T . We note that
the machinery developed in Section 3.2 could have been used to build invariant
measures via the substantially weaker condition that, for a given probability
measure m, for each expression (∃y)ψ(a, y) for which (∀x)(∃y)ψ(x, y) ∈ T ,
there are witnesses in P only for m-almost all tuples a. However, in this case,
P need not be a model of T (in contrast to Lemma 3.9), nor need (P,m) even
witness T . Also, while we defined the notion of witnessing only for L-structures
on R, we could have developed a similar notion for L-structures whose underlying
set is an m-measure one subset of R.

Next we find conditions that allow us to construct samplable Borel L-structures
that strongly witness T . When all countable models of T are isomorphic to a
particular countable infinite L-structure M, we will thereby obtain an invariant
measure concentrated on the isomorphism class of M in StrL .

3.3. Duplication of quantifier-free types. We now introduce the notion of
a theory having duplication of quantifier-free types. We will see in Section 3.4
that when L is a countable relational language and T is a countable pithy Π2

theory of Lω1,ω(L), duplication of quantifier-free types guarantees the existence of
a samplable Borel L-structure strongly witnessing T . However, for the definitions
and results in Section 3.3, we do not require L to be relational.

We first recall the notion of a quantifier-free type, which can be thought of
as giving the full description of the subbasic formulas that could hold among
the elements of some tuple. In first-order logic this is typically achieved with an
infinite consistent set of formulas, but in our infinitary context, a single satisfiable
formula of Lω1,ω(L) suffices.

DEFINITION 3.12. Suppose x is a finite tuple of variables. Define a (complete)
quantifier-free type p(x) of Lω1,ω(L) to be a quantifier-free formula in Lω1,ω(L),
whose free variables are precisely those in x, such that the sentence (∃x)p(x) has
a model, and such that for every quantifier-free formula ϕ(x) ∈ Lω1,ω(L), either

|H p(x)→ ϕ(x) or |H p(x)→ ¬ϕ(x)
holds.

Note that because we require this condition only for quantifier-free formulas ϕ,
it suffices for p(x) to be a quantifier-free formula such that whenever ζ(x) is a
subbasic formula, and whenever y is a tuple of length equal to the number of free
variables of ζ such that every variable of y is in the tuple x, either

|H p(x)→ ζ(y) or |H p(x)→ ¬ζ(y).
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By taking countable conjunctions, we see that every tuple in every L-structure
satisfies some complete quantifier-free type (in the sense of Definition 3.12). This
justifies our use of the word type for a single formula.

We will often call complete quantifier-free types of Lω1,ω(L) simply quantifier-
free types, and sometimes refer to them as quantifier-free Lω1,ω(L)-types.
Although we have required that a quantifier-free type p(x) have free variables
precisely those in x, when there is little possibility of confusion we will sometimes
omit the tuple x and refer to the quantifier-free type as p.

We say that a quantifier-free type p(x) is consistent with a theory T when
T ∪ (∃x)p(x) has a model. A tuple a in an L-structure M, where |a| = |x|, is said
to realize the quantifier-free type p(x) when M |H p(a); in this case we say that
p(x) is the quantifier-free type of a (as it is unique up to equivalence).

Suppose that p(x) and q(y) are quantifier-free types, where y is a tuple of
variables containing those in x. We say that q extends p, or that p is the
restriction of q to x, when |H q(y)→ p(x).

DEFINITION 3.13. A quantifier-free type p(x1, . . . , xn) is said to be
nonredundant when it implies the formula

∧
16i< j6n(xi 6= x j).

Note that every quantifier-free type is equivalent to the conjunction of a
nonredundant quantifier-free type and equalities of variables, as follows. Suppose
q is a quantifier-free type. Let S be the set containing those formulas (u = v), for
u and v free variables of q , such that q implies (u = v). Then q is equivalent to

r ∧
∧
η∈S

η

for some nonredundant quantifier-free type r .
The following notion will be used in the stages of Construction 3.18 that we

call ‘refinement’.

DEFINITION 3.14. We say that a theory T has duplication of quantifier-free
types when, for every nonredundant quantifier-free type p(x, z) consistent with
T , there is a nonredundant quantifier-free type q(x, y, z) consistent with T such
that

|H q(x, y, z)→ (
p(x, z) ∧ p(y, z)

)
,

where p(y, z) denotes the quantifier-free type p(x, z) with all instances of the
variable x replaced by the variable y.

Equivalently, when T does not have duplication of quantifier-free types, there
is some nonredundant quantifier-free type p(x, z) consistent with T and some
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model M of T containing a tuple (a,b) realizing p such that the only way for a
tuple (a′,b) in M to also realize p is for a′ to equal a.

3.4. Construction of a Borel L-structure strongly witnessing a theory.
Throughout Section 3.4, let L be a countable relational language and let T be
a countable pithy Π2 theory of Lω1,ω(L) that has duplication of quantifier-free
types. We now construct a Borel L-structure P that strongly witnesses T . This
construction is inspired by [52, Theorem 5], in which Petrov and Vershik build
an analogous continuum-sized structure realizing the theory of the Henson graph
H3. We begin with an informal description.

We construct P by assigning, for every increasing tuple of reals, the quantifier-
free type that it realizes. This will determine the quantifier-free type of every tuple
of reals, and hence determine the structure P on R, as we now explain.

DEFINITION 3.15. Given (strictly) increasing tuples of reals c and d, we say that
c isolates d when every left-half-open interval whose endpoints are consecutive
entries of c contains exactly one entry of d, that is, for 0 6 j < `,

d j ∈ (c j , c j+1],
where c = c0 · · · c` and d = d0 · · · d`−1.

For example, the triple (1, 2, 5) isolates the pair (2, 3).
Let c be an arbitrary tuple of reals (not necessarily in increasing order, and

possibly with repetition). The quantifier-free type of c is determined by the
quantifier-free type of the increasing tuple containing all reals of c along with the
relative ordering of the entries of c. For example, let p(x, y, z) be the quantifier-
free type of (1, 2, 5). Then the quantifier-free type of (2, 2, 1, 5) is the unique (up
to equivalence) formula q(y, w, x, z) implied by p(x, y, z) ∧ (y = w). Hence
in order to determine the quantifier-free type of every tuple of reals, and thereby
define a structure P on R, it suffices to assign the quantifier-free types of all
increasing tuples.

In Construction 3.18, we will build our Borel L-structure P inductively, making
sure that P strongly witnesses T . At stage i > 0 of the construction we will define
the following quantities:

· ri = (r i
0, . . . , r

i
|ri |−1), the increasing tuple of all rationals mentioned by the end

of stage i ;

· pi , the quantifier-free type of ri ; and

· vi = (vi
0, . . . , v

i
|ri |), an increasing tuple of irrationals that isolates ri .
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We call the left-half-open intervals(−∞, vi
0

]
,
(
vi

0, v
i
1

]
, . . . ,

(
vi
|ri |−1, v

i
|ri |
]
,
(
vi
|ri |,∞

)
the intervals determined by vi .

We will define the vi so that they form a nested sequence of tuples of irrationals
such that every (increasing) tuple that a given vi isolates, including ri , is assigned
the same quantifier-free type pi at stage i . The sequence of tuples {v j } j∈ω will
be such that the set of reals

⋃
j∈ω v j is dense in R. Thus for every tuple of reals

a, all of its entries occur in some increasing tuple isolated by vi for some i , and
so its quantifier-free type will eventually be defined. This motivates the following
definitions.

DEFINITION 3.16. For each stage i , define Bi to be the set of tuples c ∈ R such
that there is some increasing tuple d ∈ R that vi isolates and that contains every
entry of c.

Note that Bi ⊆ Bi ′ for i 6 i ′, and that
⋃

j∈ω B j contains every tuple of reals.
By the end of stage i , we will have defined the quantifier-free type of every

tuple that vi isolates, and hence by extension, of every tuple in Bi . For example, if
(1, 2, 5) ∈ Bi , then (2, 2, 1, 5) ∈ Bi also, and by the end of stage i the quantifier-
free type of (1, 2, 5) will be determined explicitly, and of (2, 2, 1, 5) implicitly, as
described above.

Next we define an equivalence relation on Bi , which we call i-equivalence. By
the end of stage i , tuples in Bi that are i-equivalent will have been assigned the
same quantifier-free type.

DEFINITION 3.17. Let i > 0. We say that two tuples c,d ∈ Bi of the same length
` are i-equivalent, denoted c ≈i d, if for all j 6 `, the j th entry of c and j th
entry of d both fall into the same interval determined by vi . Any two elements of
Bi of different lengths are not i-equivalent.

For example, each left-half-open interval (vi
j , v

i
j+1] determined by vi , where

0 6 j < |ri |, is the i-equivalence class of any element in the interval.
Note that i ′-equivalence refines i-equivalence for i ′ > i , in the sense that

given two elements of Bi that are not i-equivalent, they are also not i ′-equivalent.
Furthermore, our construction will be such that for any two distinct i-equivalent
tuples in Bi , there is some i ′ > i for which they are not i ′-equivalent.

In the construction, we will assign quantifier-free types in such a way that P
strongly witnesses T . Specifically, for every a ∈ Bi and every pithy Π2 sentence
(∀x)(∃y)ψ(x, y) ∈ T , if there is no internal witness for (∃y)ψ(a, y), then at some
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stage i ′ > i we will build a left-half-open interval I , disjoint from Bi , consisting
of i ′-equivalent elements all of which are external witnesses for (∃y)ψ(a, y). This
will imply that for any c ≈i ′ a, every b ∈ I will witness (∃y)ψ(c, y), since ab ≈i ′

cb and i ′-equivalent tuples realize the same quantifier-free type.
We will build these external witnesses in the even-numbered stages of the

construction; we call this process enlargement, because we extend the portion of
the real line to which we assign quantifier-free types. In the odd-numbered stages,
we perform refinement of intervals, so that distinct i-equivalent tuples in P are
eventually not i ′-equivalent for some i ′ > i ; this ensures that each expression
(∃y)ψ(a, y) will be witnessed with respect to all possible a ∈ P . In fact, as we
have noted earlier, by the end of stage i , we will have assigned the quantifier-free
type of every tuple in Bi in such a way that i-equivalent tuples have the same
quantifier-free type.

CONSTRUCTION 3.18. Fix an enumeration {ϕi}i∈ω of the sentences of T such
that every sentence of T appears infinitely often. Because T is a pithy Π2 theory,
for each i , the sentence ϕi is of the form

(∀x)(∃y)ψi(x, y),

where ψi is a quantifier-free formula whose free variables are precisely xy, all
distinct, and where x is possibly empty. Consider the induced enumeration {ψi}i∈ω,
and for each i , let ki be one less than the number of free variables of ψi . Also fix
an enumeration {qi}i∈ω of the rationals.

We now give the inductive construction. For a diagram, see Figure 1. The key
inductive property is that at the end of each stage i , the quantifier-free type pi is
consistent with T , extends pi−1 (for i > 1), and is the (nonredundant) quantifier-
free type of every tuple that vi isolates, including ri .

Stage 0: Set r0 to be the tuple (0), let p0 be any quantifier-free unary type
consistent with T , and set v0 to be the pair

(−√2,
√

2
)
.

Stage 2i + 1 (Refinement): In stage 2i + 1, we will construct a tuple r2i+1 of
rationals, a tuple v2i+1 of irrationals, and a nonredundant quantifier-free type p2i+1

consistent with T in such a way that these extend r2i , v2i , and p2i , respectively. In
doing so, we will refine the intervals determined by v2i , and assign the quantifier-
free type of every increasing tuple that v2i+1 isolates. By extension, this will
determine the quantifier-free type of every tuple in B2i+1, that is, of every tuple c
all of whose entries are contained in some tuple that v2i+1 isolates, in such a way
that (2i + 1)-equivalent tuples are assigned the same quantifier-free type.
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Figure 1. An illustration of Construction 3.18. (a) Suppose that we start stage
2i + 1 with the tuple r2i =

(
r 2i

0 , r
2i
1 , r

2i
2

)
of rationals and the tuple v2i =

(
v2i

0 , v
2i
1 ,

v2i
2 , v

2i
3

)
of irrationals. (b) Suppose that the rational qi falls between v2i

2 and r 2i
2 .

(c) By the end of stage 2i + 1, the rational qi has become r 2i+1
2 , and the rationals

and irrationals to its right are reindexed. (d) Suppose that in stage 2i + 2 we
need two intervals of external witnesses for (∃y)ψi(a, y) as a ranges among ki -
tuples all of whose entries are entries of r2i+1. Then we select two new rational
witnesses r 2i+2

4 and r 2i+2
5 to the right of v2i+1. (e) At the end of stage 2i + 2, we

choose irrational interval boundaries v2i+2
5 (between r 2i+2

4 and r 2i+2
5 ) and v2i+2

6 (to
the right of r 2i+2

5 ).

Define r2i+1 to be the increasing tuple consisting of the entries of r2i along with
qi . We need to define the quantifier-free type p2i+1 of r2i+1 so that it extends p2i ,
the quantifier-free type of r2i . There are three cases, depending on the value of qi .

Case 1: The ‘new’ rational qi is already an entry of r2i . In this case, there is
nothing to be done, as r2i+1 = r2i , and so we set p2i+1 := p2i .

Case 2: We have qi ∈ (−∞, v2i
0 ] ∪ (v2i

|r2i |,∞), that is, the singleton tuple (qi)

is not in B2i . If qi < v2i
0 , let p2i+1(x0, . . . , x|r2i |) be any nonredundant quantifier-

free type consistent with T that implies p2i(x1, . . . , x|r2i |). Similarly, if qi > v2i
|r2i |,

let p2i+1(x0, . . . , x|r2i |) be such that it implies p2i(x0, . . . , x|r2i |−1). Such quantifier-
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free types p2i+1 must exist, because p2i is consistent with T and we have not
yet determined the set of relations that hold of any tuple that has an entry lying
outside the interval (v2i

0 , v
2i
|r2i |].

Case 3: Otherwise. Namely, qi ∈ (v2i
j , v

2i
j+1] for some j such that 0 6 j < |r2i |,

and qi 6= r 2i
j . Note that v2i isolates each of the tuples

r 2i
0 · · · r 2i

|r2i |−1 and r 2i
0 · · · r 2i

j−1 qi r 2i
j+1 · · · r 2i

|r2i |−1

and hence by our construction, the tuples both satisfy the same quantifier-free
type p2i . By our assumption that T has duplication of quantifier-free types, and
because p2i is nonredundant, there must be a nonredundant quantifier-free type
p2i+1(x0, . . . , x|r2i |) consistent with T that implies

p2i(x0, . . . , x j , x j+2, . . . , x|r2i |) ∧ p2i(x0, . . . , x j−1, x j+1, . . . , x|r2i |).

Whichever case holds, now let v2i+1 be any increasing tuple of irrationals that
contains every entry of v2i and isolates r2i+1. Consider the subtuple of variables
z ⊆ x0 · · · x|r2i | that corresponds to the positions of the entries of r2i within r2i+1.

In each case above, p2i+1(x0, . . . , x|r2i |) is a nonredundant quantifier-free type
consistent with T whose restriction to z is p2i(z). Hence we may assign the
quantifier-free type of every increasing tuple that v2i+1 isolates (including r2i+1)
to be p2i+1. By extension, this determines the quantifier-free type of every tuple
in B2i+1.

Stage 2i + 2 (Enlargement): In stage 2i + 2, we will construct a tuple r2i+2 of
rationals, a tuple v2i+2 of irrationals, and a nonredundant quantifier-free type
p2i+2 consistent with T in such a way that these extend r2i+1, v2i+1, and p2i+1,
respectively. As we do so, we will enlarge the portion of the real line to which we
assign quantifier-free types. At the end of the stage we will have determined the
quantifier-free type of every tuple in B2i+2, in such a way that (2i + 2)-equivalent
tuples are assigned the same quantifier-free type.

Our goal is to provide witnesses for (∃y)ψi(a, y), where ψi(x, y) is from our
enumeration above, for each ki -tuple of reals a ∈ B2i+1, that is, each ki -tuple
whose quantifier-free type is determined by p2i+1. We extend the nonredundant
quantifier-free type p2i+1(x0, . . . , x|r2i+1|−1) to a nonredundant quantifier-free type
p2i+2(x0, . . . , x|r2i+1|−1,w) so that for every tuple a such that (∃y)ψi(a, y) has
no internal witness, there is an entry of w whose realizations provide external
witnesses.

Let {z`}16`6Ni be an enumeration of those tuples of variables (possibly with
repetition) of length ki all of whose entries are among x0, . . . , x|r2i+1|−1. We now
define, by induction on `, intermediate nonredundant quantifier-free types

s`(x0, . . . , x|r2i+1|−1,u`),
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for 0 6 ` < Ni , that are consistent with T and such that each s`+1 implies s`. As
we step through the tuples of variables of length ki , if we have already provided a
‘witness’ for (∃y)ψi(z`+1, y) then we will do nothing; otherwise, we will extend
our quantifier-free type to provide one, as we now describe.

Let s0 := p2i+1, and let u0 be the empty tuple of variables. Now consider step
` < Ni of the induction, so that s0, . . . , s` have been defined. If there is a variable
t among x0 · · · x|r2i+1|−1 or among u` such that s`(x0, . . . , x|r2i+1|−1,u`) implies
ψi(z`+1, t), then let s`+1 := s` and u`+1 := u`. If not, then because s` is consistent
with T and (∀x)(∃y)ψi(x, y) ∈ T , there must be some nonredundant quantifier-
free type s`+1 consistent with T that has one more variable, w`+1, than s`, such
that s`+1 implies both s` and ψi(z`+1, w`+1); in this case, let u`+1 := u`w`+1. Let

p2i+2(x0, . . . , x|r2i+1|−1,w) := sNi (x0, . . . , x|r2i+1|−1,w),

where w := uNi . Note that p2i+2(x0, . . . , x|r2i+1|−1,w) is a nonredundant quantifier-
free type that is consistent with T and extends p2i+1(x0, . . . , x|r2i+1|−1).

Next, choose |w|-many rationals greater than all entries of r2i+1, and define r2i+2

to be the increasing tuple consisting of r2i+1 and these new rationals. Let v2i+2

be an arbitrary increasing tuple of irrationals that contains every entry of v2i+1

and isolates r2i+2. Finally, for every increasing tuple that v2i+2 isolates (including
r2i+2), declare its quantifier-free type to be p2i+2. As with the refinement stages,
this determines by extension the quantifier-free type of every tuple in B2i+2, that is,
of every tuple c all of whose entries are contained in some tuple that v2i+2 isolates.
In particular, for any tuple a ∈ B2i+1 of length ki such that (∃y)ψi(a, y) does
not have internal witnesses, we have constructed a left-half-open interval (v2i+2

j ,

v2i+2
j+1 ], for some j such that 0 6 j < |r2i+2|, consisting of external witnesses for
(∃y)ψi(a, y). This ends the stage, and the construction.

We now verify that this construction produces a structure with the desired
properties.

THEOREM 3.19. Let L be a countable relational language, let T be a countable
pithyΠ2 theory of Lω1,ω(L) that has duplication of quantifier-free types, and let P
be the L-structure obtained via Construction 3.18. Then P is a samplable Borel
L-structure that strongly witnesses T .

Proof. We first show that P is a Borel L-structure. Fix a relation symbol R ∈ L ,
and let k be the arity of R. We must show that {a ∈ Pk : P |H R(a)} is Borel. For
each i > 0 define

Xi := {a ∈ Pk : P |H R(a) and a ∈ Bi}.
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Recall that by our construction, the set of reals
⋃

j∈ω v j is dense in R, and so every
tuple of reals is in

⋃
j∈ω B j . Therefore,

{a ∈ Pk : P |H R(a)} =
⋃
j∈ω

X j .

In particular, it suffices to show that X j is Borel for each j .
Fix some i > 0, and note that for every a, a′ ∈ Bi such that a ≈i a′, we have

P |H R(a) if and only if P |H R(a′),

because i-equivalent tuples are assigned the same quantifier-free type.
Furthermore, for every a ∈ Bi , the set

{c ∈ Bi : c ≈i a}
is a k-fold product of left-half-open intervals. Hence Xi is Borel, and so P is a
Borel L-structure. Moreover, P is samplable because L is relational.

We now show that P strongly witnesses T . Let m be an arbitrary nondegenerate
probability measure on R. Consider a pithy Π2 sentence

(∀x)(∃y)ξ(x, y) ∈ T,

and let a be a tuple of reals such that |a| = |x|, where |x| could possibly be zero.
Suppose (∃y)ξ(a, y) does not have an internal witness. Let `∗ be the least stage

such that a ∈ B2`∗+1. Because each sentence of T appears infinitely often in the
enumeration {ϕ j } j∈ω, there is some ` > `∗ such that ϕ` = (∀x)(∃y)ξ(x, y), and
hence such that ξ = ψ`.

Since a ∈ B2`+1, at stage 2` + 2 there is some real b such that P |H ψ`(a, b).
Furthermore, we have ensured that there is a left-half-open interval of reals b′ such
that b′ ≈2`+2 b and hence such that P |H ψ`(a, b′). Because m is nondegenerate,
this collection of external witnesses for (∃y)ξ(a, y) has positive m-measure.
Hence (P,m) witnesses T . As m was an arbitrary nondegenerate probability
measure on R, the Borel L-structure P strongly witnesses T , as desired.

3.5. Invariant measures from trivial definable closure. We are now ready
to prove the positive direction of our main theorem, Theorem 1.1. We have seen,
in Section 3.4, that if a countable pithy Π2 theory T in a countable relational
language L has duplication of quantifier-free types, then there exists a samplable
Borel L-structure strongly witnessing T . We show below that when T has a
unique countable model M (up to isomorphism), duplication of quantifier-free
types is moreover implied by M having trivial definable closure; we prove the
converse for relational languages in Corollary 4.4. In fact, we have the following
stronger result.
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LEMMA 3.20. Let T be a countable theory of Lω1,ω(L) such that every countable
model of T has trivial definable closure. Then T has duplication of quantifier-free
types.

Proof. Suppose p(x, z) is a nonredundant quantifier-free Lω1,ω(L)-type
consistent with T . Because every model of T has trivial definable closure,

T |H p(x, z)→ (∃y)(p(y, z) ∧ (y 6= x)
)
.

Hence there is some nonredundant quantifier-free Lω1,ω(L)-type q(x, y, z) such
that

T |H q(x, y, z)→ (
p(x, z) ∧ p(y, z)

)
,

and so T has duplication of quantifier-free types.

We now use Theorem 3.19 and Lemma 3.20 to prove the positive direction of
Theorem 1.1.

THEOREM 3.21. Let L be a countable language and let M be a countable
infinite L-structure. If M has trivial definable closure, then there is an invariant
probability measure on StrL that is concentrated on the isomorphism class of M
in StrL .

Proof. Without loss of generality, we may assume that M ∈ StrL . Let M be the
canonical structure of M and LM its canonical language. By Proposition 2.17,
there is a pithy Π2 Lω1,ω(LM)-theory TM all of whose countable models are
isomorphic to M. By Lemmas 2.13 and 2.15 and the fact that M has trivial
definable closure, the unique (up to isomorphism) countable model M of TM has
trivial definable closure. Hence by Lemma 3.20, the theory TM has duplication of
quantifier-free types.

Since LM is relational, by Theorem 3.19 there is a samplable Borel LM-
structure Q strongly witnessing TM. Therefore, by Corollary 3.11 there is an
invariant probability measure on StrLM

that is concentrated on the set of countable
LM-structures that are isomorphic to M, that is, those that are models of TM.
Finally, by Lemmas 2.13 and 2.14, there is an invariant probability measure on
StrL that is concentrated on M.

Although the proof of Theorem 3.21 produces a samplable Borel LM-structure,
where LM may be quite different from L (in particular, LM is always infinite and
relational), we can obtain essentially the same invariant measure via a samplable
Borel L-structure. We will use this fact in Section 6.1.
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COROLLARY 3.22. Let L be a countable language and let M be a countable
infinite L-structure. If M has trivial definable closure, then there is a
samplable Borel L-structure P such that for any continuous nondegenerate
probability measure m on R, the invariant measure µ(P,m) is concentrated on the
isomorphism class of M in StrL .

Proof. Let m be an arbitrary continuous nondegenerate probability measure on R,
and let M, LM, TM, and Q be as in the proof of Theorem 3.21. In particular, Q
strongly witnesses TM, and so by Theorem 3.10, the invariant measure µ(Q,m) is
concentrated on M.

Note that, by Lemma 3.9, Q and M have the same Lω1,ω(LM)-theory. By
Lemma 2.13, M and M are interdefinable; let (Ψ0, Ψ1) be an interdefinition
between M and M. As in Lemma 2.12, let P be the L-structure that is
interdefinable with Q via the interdefinition (Ψ0, Ψ1), so that P = Q, using the
notation described after Lemma 2.13. In particular, P and M have the same
Lω1,ω(L)-theory.

Let ϕ(x) be an arbitrary Lω1,ω(LM)-formula. By Lemma 2.10, there is some
quantifier-free Lω1,ω(LM)-formula ψϕ(x) such that

M |H ϕ(x)↔ ψϕ(x).

Because P and M have the same Lω1,ω(LM)-theory, we also have

P |H ϕ(x)↔ ψϕ(x).

Hence any countable substructure of P isomorphic to M must in fact be an
Lω1,ω(LM)-elementary substructure of P .

As every Lω1,ω(LM)-definable set in P is equivalent to a quantifier-free
definable set, every definable set inP is Borel. However, everyLω1,ω(L)-definable
set in P is an Lω1,ω(LM)-definable set in P and so every Lω1,ω(L)-definable set
in P is Borel. Hence for any subbasic formula ζ of Lω1,ω(L), the set in P defined
by ζ is Borel. Thus P is a Borel L-structure.

Because M has trivial definable closure, L has no constant symbols and every
function of M is a choice function. Since P satisfies the same Lω1,ω(L)-theory
as M, every function of P is also a choice function. Hence P is samplable.

By Lemmas 3.5 and 3.6, we have that µ(P,m) is an invariant probability measure
on StrL that is concentrated on the union of isomorphism classes of countable
infinite substructures of P . It remains to show that µ(P,m) is concentrated on
the isomorphism class of M, using the fact that µ(P,m) is concentrated on the
isomorphism class of M.
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Suppose a countable infinite set N ⊆ R is such that the substructure N ∗ of P
having underlying set N is isomorphic to M. We will show that the substructure
N × of P having underlying set N is isomorphic to M. Again as in Lemma 2.12,
let N be the L-structure that is interdefinable with N ∗ via the interdefinition
(Ψ0, Ψ1), so that N = N ∗. As noted above, N is an Lω1,ω(LM)-elementary
substructure of P . Therefore, for any Lω1,ω(LM)-formula ϕ(x),{

a ∈ N : P |H ϕ(a)} = {a ∈ N :N |H ϕ(a)}. (‡)

By (‡) and the fact that (Ψ0, Ψ1) is an interdefinition between P and P , and
between N and N , we have{

a ∈ N × : P |H ψ(a)} = {a ∈ N : P |H Ψ0(ψ)(a)
}

= {a ∈ N :N |H Ψ0(ψ)(a)
}

= {a ∈ N :N |H Ψ1(Ψ0(ψ))(a)
}

= {a ∈ N :N |H ψ(a)}
for every Lω1,ω(L)-formula ψ(x). Further, as N × is a substructure of P , for every
quantifier-free Lω1,ω(L)-formula ψ(x), we have{

a ∈ N × :N × |H ψ(a)} = {a ∈ N × : P |H ψ(a)},
and so {

a ∈ N × :N × |H ψ(a)} = {a ∈ N :N |H ψ(a)}.
Hence N = N ×, and so N × is isomorphic to M, as N is isomorphic to M.

By the fact that µ(P,m) is concentrated on the isomorphism class of M in StrLM
,

we have
m∞

({
A ∈ Rω : FP(A) ∼=M

}) = 1,

as µ(P,m) = m∞ ◦ F−1
P . Now suppose A ∈ Rω is such that FP(A) ∼= M, and

consider the set N ⊆ R of entries of A. By the above, the substructure N × of P
having underlying set N is isomorphic to M, and so FP(A) ∼=M. Hence{

A ∈ Rω : FP(A) ∼=M
} ⊆ {A ∈ Rω : FP(A) ∼=M

}
,

and so
m∞

({
A ∈ Rω : FP(A) ∼=M

}) = 1.

Therefore, µ(P,m) is concentrated on the isomorphism class of M in StrL .

https://doi.org/10.1017/fms.2016.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.15


Invariant measures concentrated on countable structures 39

4. Nonexistence of invariant measures

In this section, we complete the proofs of Theorems 1.1 and 1.2. We begin
by considering the converse of Theorem 3.21, namely, that for any countable
language L , a countable infinite L-structure having nontrivial definable closure
cannot admit an invariant measure.

Suppose a countable L-structure M admits an invariant measure. If there exists
an element b ∈ dclM(∅), then for every n ∈ N the measure assigns the same
positive probability to the event that n satisfies the quantifier-free type of b, which
is not possible. More generally, M having nontrivial definable closure leads to a
contradiction, as we show below; a special case of this has been observed in [9,
(4.29)].

In fact, an even more general result holds. Upon taking the special case of G =
S∞, Theorem 4.1 below completes the proof of our main result by establishing that
property (1) implies property (2) in Theorem 1.1. Indeed, initially we proved only
this special case. However, Alexander Kechris and Andrew Marks noticed that
with minor modifications to our original proof, the stronger result Theorem 4.1
holds. We have included this with their permission.

THEOREM 4.1. Let L be a countable language, and let M be a countable infinite
L-structure. Suppose that G 6 S∞ is the automorphism group of a structure
in StrL that has trivial definable closure. If there is a G-invariant probability
measure µ on StrL that is concentrated on the isomorphism class of M, then M
must have trivial definable closure.

Proof. Without loss of generality, we may assume that M ∈ StrL . Suppose, for
a contradiction, that there is a tuple a ∈ M and an element b ∈ M such that
b ∈ dclM(a) − a. By considering the Scott sentence of the structure obtained by
expanding M by constants for the tuple a (see, for example, [39, Theorem 3.3.5]),
we can find a formula p(x, y) ∈ Lω1,ω(L) such that M |H p(a, b) and whenever
M |H p(c, d) there is an automorphism of M taking ab to cd pointwise.

In particular,
M |H (∃xy)p(x, y).

Since the measure µ is concentrated on M, hence on L-structures that satisfy
(∃xy)p(x, y), we have

µ
(
J(∃xy)p(x, y)K

) = 1.

By the countable additivity of µ, there is some tuple mn ∈ N such that
µ(Jp(m, n)K) > 0. Fix such an mn and let α := µ(Jp(m, n)K).

Note that if M |H p(a, c) for some c ∈ N, then there is an automorphism of
M that fixes a pointwise and sends b to c; hence, as b ∈ dcl(a), such an element
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c is equal to b. Therefore, we have

M |H (∀xy1 y2)
(
(p(x, y1) ∧ p(x, y2))→ (y1 = y2)

)
.

Hence for j, k ∈ N,
Jp(m, j)K ∩ Jp(m, k)K = ∅

whenever j 6= k, and so

µ
(
J(∃y)p(m, y)K

) =∑
j∈N
µ
(
Jp(m, j)K

)
.

Now let

X := { j ∈ N : (∃g ∈ G)
(
(g(m) = m) ∧ (g(n) = j)

)}
.

By the G-invariance of µ, for all j ∈ X we have

µ
(
Jp(m, j)K

) = α.
However, because G is the automorphism group of a structure having trivial
definable closure, X is infinite. But

1 > µ
(
J(∃y)p(m, y)K

)
>
∑
j∈X

µ
(
Jp(m, j)K

) =∑
j∈X

α,

which is a contradiction as α > 0 and X is infinite.

Consider the properties (1), (2), and (3) of Theorems 1.1 and 1.2. Theorem 4.1
establishes that (3) implies (2), and Theorem 3.21 shows that (2) implies (1).
Finally, (1) trivially implies (3), by considering the unique countable infinite
structure in the empty language, which has automorphism group S∞. Hence the
proof of Theorem 1.2 is complete.

Kechris and Marks also observed that the equivalence of properties (2) and
(3) from Theorem 1.2 can be established more easily than the full theorem, in
particular while entirely avoiding the machinery of Section 3. We again include
the argument with their permission.

COROLLARY 4.2 (Kechris–Marks). Let L be a countable language, and let M
be a countable infinite L-structure. The following are equivalent:

(2) The structure M has trivial group-theoretic definable closure, that is, for
every finite tuple a ∈ M, we have dclM(a) = a, where dclM(a) is the
collection of elements b ∈ M that are fixed by all automorphisms of M
fixing a pointwise.
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(3) There is some N ∈ StrL that has trivial group-theoretic definable closure
and is such that there is an Aut(N )-invariant probability measure on StrL

concentrated on the set of elements of StrL that are isomorphic to M.

Proof. We already have that (3) implies (2) by Theorem 4.1. But that (2) implies
(3) follows by taking G = Aut(M) and µ to be a Dirac delta measure on
the structure M itself (where we again take M to be in StrL without loss of
generality).

As an immediate corollary of Theorem 4.1, we see that any countable infinite
structure that admits an invariant measure cannot have constants, and all of its
functions must be choice functions. This observation has been used in [2] to
classify those commutative n-semigroups as well as those ultrahomogeneous n-
semigroups that admit an invariant measure.

COROLLARY 4.3. Let L be a countable language, and let M be a countable
infinite L-structure. Suppose that either L has constant symbols or that there is
a function symbol f ∈ L and tuple a ∈M for which f M(a) 6∈ a. Then there is
no invariant probability measure on StrL that is concentrated on the isomorphism
class of M.

Note that this implies that Corollary 1.3, which characterizes those Fraı̈ssé
limits in relational languages that admit invariant measures, does not extend
to structures with constants or functions. This is demonstrated, for example,
by Hall’s countable universal locally finite group, whose age has the strong
amalgamation property [27, Section 7.1, Example 1], but which does not have
group-theoretic trivial definable closure.

Finally, Theorem 4.1 has the following consequence, which (for relational
languages) extends Lemma 3.20 on the relationship between trivial definable
closure and duplication of quantifier-free types.

COROLLARY 4.4. Let L be a countable relational language, and let T be a
countable pithy Π2 theory of Lω1,ω(L) that has a unique countable model M
(up to isomorphism). Then M has trivial definable closure if and only if T has
duplication of quantifier-free types.

Proof. From Lemma 3.20 it is immediate that if M has trivial definable closure
then T must have duplication of quantifier-free types.

For the other direction, suppose that T has duplication of quantifier-free types.
By Theorem 3.19 there is a samplable Borel L-structure strongly witnessing T ,
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which by Corollary 3.11 induces an invariant probability measure concentrated on
the set of models of T in StrL . Hence there is an invariant measure concentrated
on M. But Theorem 4.1 then implies that M has trivial definable closure.

5. Structures admitting invariant measures

We now consider several important classes of structures, and examine whether
or not the structures in these classes admit invariant measures. In Section 5.1,
we show how any countable infinite structure is a quotient of one with trivial
definable closure, and of one without. We use this fact to construct countable
structures of arbitrary Scott rank that have trivial definable closure and hence
admit invariant measures, and to construct ones that do not. In Section 5.2, we
apply our main results, Theorem 1.1 and Corollary 1.3, to examine certain well-
known countable infinite structures, and ask whether or not they admit invariant
measures. We make use of existing classifications to provide complete lists of
countable infinite ultrahomogeneous partial orders, permutations, directed graphs,
and graphs, for which such invariant measures exist.

5.1. Structures with an equivalence relation. Suppose we are given a
countable infinite structure in a countable relational language with a binary
relation symbol. Further, suppose that this symbol is interpreted as an equivalence
relation such that every equivalence class has at least two elements. Consider the
quotient map on the underlying set that is induced by this equivalence relation.
In the case where this quotient map respects the remaining relations (in a sense
that we will make precise), we can characterize when the original structure does
or does not have trivial definable closure. On the other hand, starting with an
arbitrary countable infinite structure in a countable relational language, we can
‘blow up’ each element into an equivalence class, and characterize when the
resulting structure has trivial definable closure.

We will thereby see, in Corollary 5.4, that every countable structure in a
countable relational language is the quotient of one with trivial definable closure,
and of one without. We then apply this result to further yield Corollary 5.5, and
obtain structures of arbitrary Scott rank that admit invariant measures, as well as
ones that do not.

We begin by describing what it means for an equivalence relation to respect the
remaining relations in the language.

DEFINITION 5.1. For a relational language L , define L+ := L ∪ {≡}, where ≡ is
a new binary relation symbol. Let N be an L+-structure. We say that ≡ respects
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L in N if for each k-ary (nonequality) relation symbol R ∈ L ,

N |H (∀x1, . . . , xk, y1, . . . , yk)∧
16i6k

(xi ≡ yi)→
(
R(x1, . . . , xk)↔ R(y1, . . . , yk)

)
.

Such a relation ≡ is often referred to as an equality.

When ≡ respects L in N , the structure N cannot ‘L-distinguish’ between ≡-
equivalent elements. In particular, there is a quotient structure induced by the ≡
relation on the underlying set.

For a countable infinite L+-structure N in which ≡ respects L , and where
every≡-equivalence class has at least two elements, the size of the≡-equivalence
classes completely determines whether or not N admits an invariant measure.

LEMMA 5.2. Suppose N is a countable infinite L+-structure such that≡ respects
L in N and such that no≡-equivalence class has only one element. The following
are equivalent:

(1) Every ≡-equivalence class of N has infinitely many elements.

(2) There is an invariant measure on StrL+ that is concentrated on the
isomorphism class of N .

Proof. Assume that (1) holds. Whenever c, c′ ∈ N are such that N |H (c ≡ c′),
define gc,c′ : N → N to be the map that interchanges c and c′ but is constant on
all other elements of N . Since ≡ respects L , the map gc,c′ is an automorphism
of N .

Suppose, for a contradiction, that there are a, b ∈N such that b ∈ dclN (a)− a.
Each ≡-equivalence class has infinitely many elements, and so there must be
some b′ ∈ N satisfying b′ 6∈ ab and N |H (b ≡ b′). Now, gb,b′ fixes a pointwise
by construction. Because b ∈ dclN (a), the map gb,b′ also fixes b. Hence b =
gb,b′(b) = b′, a contradiction. Therefore, N has trivial definable closure, and so
by Theorem 1.1, N admits an invariant measure.

For the converse, assume that (1) fails. Let A ⊆ N be a finite ≡-equivalence
class. By hypothesis, A has at least two elements. Hence for each a ∈ A, the set
A − {a} is nonempty, and so a ∈ dclN (A − {a}). Therefore, N has nontrivial
definable closure, and so (2) fails by Theorem 1.1.

From Lemma 5.2 we can see that, in a sense, every countable infinite L-
structure is ‘close to’ one that admits an invariant measure, and also to infinitely
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many that do not. Specifically, if we take a countable infinite L-structure and
‘blow up’ every element into n-many elements, where n is a cardinal satisfying
1 < n 6 ℵ0, then the resulting structure admits an invariant measure if and only
if n = ℵ0.

DEFINITION 5.3. Let L be a relational language, and let M be a countable
infinite L-structure with underlying set M . Suppose n is a cardinal satisfying
1 6 n 6 ℵ0. Define M+

n to be the L+-structure with underlying set M × n such
that

M+
n |H (a, j) ≡ (a′, j ′) if and only if a = a′,

for every (a, j), (a′, j ′) ∈ M × n, and

M+
n |H R

(
(a1, j1), . . . , (ak, jk)

)
if and only if M |H R(a1, . . . ak),

for every relation R ∈ L and every (a1, j1), . . . , (ak, jk) ∈ M × n, where k is the
arity of R.

In the case when M is a graph, this construction is known as the lexicographic
product of M with the empty graph on n vertices.

Note that ≡ is an equivalence relation on M+
n that respects L in M+

n . Hence
we may take the quotient of M+

n by ≡ to obtain a structure isomorphic to M.
Moreover, every ≡-equivalence class of M+

n has n-many elements.
As an immediate corollary of Lemma 5.2 we have the following.

COROLLARY 5.4. Let L be a relational language, let M be a countable infinite
L-structure, and let n be a cardinal such that 1 < n 6 ℵ0. Then M+

ℵ0
admits an

invariant measure, while for 1 < n < ℵ0, the structure M+
n does not admit an

invariant measure.

Note that this shows that every countable structure in a countable language is
interpretable (see, for example, [50, Definition 1.3.9]) in a structure that admits
an invariant measure, as well as in a structure that does not.

The Scott rank of a structure provides a measure of the complexity of the Scott
sentence of the structure. (For details, see [23].) Corollary 5.4 provides a method
by which to build countable structures of arbitrary Scott rank that admit invariant
measures, as well as ones that do not.

COROLLARY 5.5. Let α be an arbitrary countably infinite ordinal. Define T α to
be a countable linear order isomorphic to the well-order (α,∈) of height α. Then
the structure (T α)+ℵ0

has Scott rank α and admits an invariant measure, whereas
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for 1 6 n < ℵ0, the structure (T α)+n has Scott rank α and does not admit an
invariant measure.

Proof. For 1 6 n 6 ℵ0, the structure (T α)+n has Scott rank α, as can be seen by
a simple back-and-forth argument with (T β)+n for β < α. For 1 < n 6 ℵ0, the
result follows by Corollary 5.4. When n = 1, the result follows from the fact that
the least element of (T α)+1 is in the definable closure of the empty set.

5.2. Classifications and other examples. Here we examine certain well-
known countable infinite structures, and note whether or not they admit invariant
measures. In some cases, such as the countable universal ultrahomogeneous
partial order, our results provide the first demonstration that the structure admits
an invariant measure. In several instances, the existence of invariant measures
was known previously, though our results provide a simple way to check this.
For example, it has been known nearly since its initial construction that the Rado
graph R admits an invariant measure, and Petrov and Vershik [52] have more
recently constructed invariant measures concentrated on the Henson graph H3

and on the other countable universal ultrahomogeneous Kn-free graphs.
Our results may be used to determine whether a particular structure admits

an invariant measure either by checking directly whether it has trivial definable
closure and applying Theorem 1.1, or, in the case of an ultrahomogeneous
structure in a relational language, by determining whether its age has strong
amalgamation and applying Corollary 1.3. It will be convenient sometimes to
use the fact that a structure has trivial definable closure if and only if it has trivial
algebraic closure, as mentioned in Section 2.4.

In the examples below, all graphs, directed graphs, and partial orders are
considered to be structures in a language with a single binary relation symbol.

5.2.1. Countable infinite ultrahomogeneous partial orders. These have been
classified by Schmerl [55] as follows.

(a) The rationals, (Q, <).

(b) The countable universal ultrahomogeneous partial order.

(c) The countable infinite antichain.

(d) The antichain of n copies of Q (1 < n 6 ω).

(e) The Q-chain of antichains, each of size n (1 6 n < ω).

(f) The Q-chain of antichains, each of size ω.
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All but (e) admit invariant measures: Their amalgamation problems can be solved
by taking the transitive closure and, when needed, linearizing, and so their ages
exhibit strong amalgamation. Example (e) clearly has nontrivial algebraic closure,
and so does not admit an invariant measure.

5.2.2. Countable infinite ultrahomogeneous permutations. Finite permutations
have a standard interpretation as structures in a language with two binary relation
symbols [10] (see [14, Section 4.1] for a discussion). A permutation σ on {1,
. . . , n} can be viewed as two linear orders, < and �, on {1, . . . , n}, where
< is the usual order, and � is the permuted order, that is, σ(a) � σ(b) if
and only if a < b. One may extend this perspective on permutations to the
infinite case, and consider structures that consist of a single infinite set endowed
with two linear orders. Such structures describe relative finite rearrangements
without completely determining a permutation on the infinite set. The countable
infinite ultrahomogeneous permutations, so defined, have been classified by
Cameron [10] as follows.

(a) The rationals, that is, where each linear order has order type Q and they are
equal to each other.

(b) The reversed rationals, that is, where each linear order has order type Q and
the second is the reverse of the first.

(c) Rational blocks of reversed rationals, that is, where each linear order is the
lexicographic product of Q with itself, and the second order is the reverse of
the first within each block.

(d) Reversed rational blocks of rationals, that is, where each linear order is the
lexicographic product of Q with itself, and the second order is the reverse of
the first between the blocks.

(e) The countable universal ultrahomogeneous permutation.

All five have trivial definable closure and hence admit invariant measures.

5.2.3. Countable infinite ultrahomogeneous tournaments. A tournament is a
structure consisting of a single irreflexive, binary relation,→, such that for each
pair a, b of distinct vertices, either a → b or b → a, but not both. For example,
any linear order is a tournament. The countable infinite ultrahomogeneous
tournaments have been classified by Lachlan [43] as follows.

(a) The rationals, (Q, <).

(b) The countable universal ultrahomogeneous tournament, T∞.
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(c) The circular tournament S(2), also known as the local order, which consists
of a countable dense subset of a circle where no two points are antipodal,
with x → y if and only if the angle of x Oy is less than π , where O is the
center of the circle.

The ages of all three exhibit strong amalgamation (see [13, Section 2.1]).

5.2.4. Countable infinite ultrahomogeneous directed graphs. A directed graph
is a structure consisting of a single irreflexive, binary relation, →, that is
asymmetric, that is, such that for each pair a, b of distinct vertices, a → b
and b → a do not both hold. The countable infinite ultrahomogeneous directed
graphs have been classified by Cherlin [13] (see also [12] for the imprimitive
case). Macpherson [49] describes the classification as follows (with some overlap
between classes).

(a) The countable infinite ultrahomogeneous partial orders.

(b) The countable infinite ultrahomogeneous tournaments.

(c) Henson’s countable infinite ultrahomogeneous directed graphs with
forbidden sets of tournaments.

(d) The countable infinite ultrahomogeneous directed graph omitting In , the
edgeless directed graph on n vertices (1 < n < ω).

(e) Four classes of directed graphs that are imprimitive, that is, for which there
is a nontrivial equivalence relation definable without parameters.

(f) Two exceptional directed graphs: a shuffled 3-tournament S(3), defined
analogously to the local order (defined above in 5.2.3(c)) with angle 2π/3,
and the dense local partial order P(3), a modification of the countable
universal ultrahomogeneous partial order.

The structures in (a) and (b) are discussed above, in Sections 5.2.1 and 5.2.3,
respectively.

Henson [26] described the class (c) of 2ℵ0 -many nonisomorphic countable
infinite ultrahomogeneous directed graphs with forbidden sets of tournaments.
The age of each has free amalgamation, that is, its amalgamation problem can
be solved by taking the disjoint union over the common substructure and adding
no new relations. Free amalgamation implies strong amalgamation; hence on
Henson’s ultrahomogeneous directed graphs there are invariant measures.

The ages of the structures in (d) have strong amalgamation.
The first imprimitive class in (e) consists of the wreath products T [In] and

In[T ] where T is a countable infinite ultrahomogeneous tournament (as discussed
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above in Section 5.2.3) and 1 < n < ω. Each T [In] has nontrivial definable
closure because there is a definable equivalence relation, each class of which has
n elements. Each In[T ] has trivial definable closure because it is the disjoint union
of copies of an infinite tournament that has strong amalgamation.

The second imprimitive class in (e) consists of Q̂ and T̂∞, modifications of the
rationals and the countable universal ultrahomogeneous tournament, respectively,
in which the algebraic closure of each point has size 2, namely itself and the
unique other point to which it is not related. Hence neither directed graph has
trivial definable closure.

The third imprimitive class in (e) consists of directed graphs n ∗ I∞, for 1 <
n 6 ω, which are universal subject to the constraint that nonrelatedness is an
equivalence relation with n classes. All such directed graphs have trivial definable
closure.

The fourth imprimitive class in (e) consists of a semigeneric variant of ω ∗ I∞
with a parity constraint, which also has trivial definable closure.

The ages of S(3) and P(3) exhibit strong amalgamation.

5.2.5. Countable infinite ultrahomogeneous graphs. These have been classified
by Lachlan and Woodrow [44] as follows.

(a) The Rado graph R.

(b) The Henson graph H3 and the other countable universal ultrahomogeneous
Kn-free graphs (n > 3), and their complements.

(c) Finite or countably infinite union of Kω, and their complements.

(d) Countably infinite union of Kn (for 1 < n < ω), and their complements.

The ages of the structures in (a) through (c) all have strong amalgamation; in fact,
for the Rado graph, Henson’s H3 and other Kn-free graphs, and the complement
of Kω, the amalgamation is free. Hence the structures in (a) through (c) all admit
invariant measures. The structures in (d) clearly have nontrivial algebraic closure,
and so do not admit invariant measures.

5.2.6. Countable universal C-free graphs. Let C be a finite set of finite
connected graphs. A graph G is said to be C-free, or to forbid C , when no member
of C is isomorphic to a (graph-theoretic) subgraph of G, that is, when no member
of C embeds as a weak substructure of G. A countable infinite C-free graph G
is said to be universal when every countable C-free graph is isomorphic to an
induced subgraph of G, that is, embeds as a substructure of G. When there is a
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universal such graph, there is one (up to isomorphism) that is distinguished by
being existentially complete.

Only a limited number of examples are known of finite sets C of finite
connected graphs for which a countable universal C-free graph exists (see the
introduction to [15] for a discussion). The best known are when C = {Kn},
for n > 3; Henson’s countable universal ultrahomogeneous Kn-free graph is
universal for countable graphs that forbid {Kn}. We consider two other families
here.

(a) The set C is homomorphism-closed, that is, closed under maps that preserve
edges but not necessarily nonedges. For example, take C to be the set of cycles of
all odd lengths up to a fixed 2n+1. Cherlin et al. [15, Theorem 4] have shown that
for a homomorphism-closed set C , an existentially complete countable universal
C-free graph exists and has trivial algebraic closure. Hence these graphs admit
invariant measures. Such graphs have also been considered in [30].

(b) The singleton set C = {Km
u

Kn} for some m, n > 2, where Km
u

Kn is the
graph on m + n − 1 vertices consisting of complete graphs Km and Kn joined
at a single vertex. For example, K3

u
K3 is the so-called bowtie. An existentially

complete countable universal (Km
u

Kn)-free graph exists if and only if min(m,
n) = 3 or 4, or min(m, n) = 5 but m 6= n ([41], [15], and [16]). Any such
graph has nontrivial algebraic closure because, by existential completeness, it
must contain a copy K of Km+n−2, but for any vertex v ∈ K, the algebraic closure
of {v} in the graph is all of K.

5.2.7. Trees and connected graphs with finite cut sets. A tree is an acyclic
connected graph. No tree can have trivial algebraic closure because there exists
a unique finite path between any two distinct vertices of the tree. Similarly, no
connected graph with a cut vertex (a vertex whose removal disconnects the graph)
can have trivial algebraic closure. More generally, if a connected graph contains
a finite cut set (a finite set whose removal disconnects the graph), then it cannot
have trivial algebraic closure.

5.2.8. Rational Urysohn space. A rational metric space is a metric space all
of whose distances are rational. The class of all finite rational metric spaces,
considered in the language with one relation symbol for each rational distance, is
a Fraı̈ssé class. Its Fraı̈ssé limit is known as the rational Urysohn space, denoted
QU (for details see [11]). The completion of QU is the Urysohn space, the
universal ultrahomogeneous complete separable metric space.

The space QU admits an invariant measure, as can be seen from our results,
since the class of finite rational metric spaces has strong amalgamation. Vershik,
in [60] and [61], has earlier constructed invariant measures concentrated on a
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collection of countable metric spaces whose completions are also Urysohn space.
For a construction of several related invariant measures, see [1].

6. Applications and further observations

We conclude the paper with some observations and applications of our results.
We describe, in Section 6.1, some of the theory of dense graph limits and its
connections to our setting.

Our main theorem, Theorem 1.1, completely characterizes those single orbits
of S∞ on which an invariant measure can be concentrated. In Section 6.2, we ask
which other Borel subsets of StrL , consisting of multiple orbits, are such that some
invariant measure is concentrated on them, and we make some observations based
on our machinery.

Finally, in Section 6.3, we note a corollary of our result for sentences of Lω1,ω

that have exactly one model (countable or otherwise).

6.1. Invariant measures and dense graph limits. As remarked in the
introduction, our constructions in the case of graphs can be viewed within the
framework of the theory of dense graph limits. Here we describe this connection
and some of its consequences.

6.1.1. Invariant measures via graphons and W -random graphs. We now
describe how invariant measures arise in the context of dense graph limits. We
begin with some definitions from [46]; for more details, see also [17], and [45].

A graphon is defined to be a symmetric measurable function
W : [0, 1]2 → [0, 1]. In what follows, we will take all graphons to be Borel
measurable. Let LG be the language of graphs, that is, a language consisting of
a single binary relation symbol E , representing the edges. Let TG be the theory
in the language LG that says that E is symmetric and irreflexive. A graph may
be considered to be an LG-structure that satisfies TG . An invariant measure on
graphs is then precisely an invariant measure on StrLG that is concentrated on the
set of models of TG in StrLG .

Given a graphon W , the W -random graph G(N,W ) can be thought of as
a random element of StrLG , defined as follows. Let {Xk}k∈N be an independent
sequence of random variables uniformly distributed on the unit interval. Then for
i, j ∈ N with i < j , let E(i, j) hold with independent probability W (X i , X j); for
each i , require that E(i, i) not hold; and for each i > j , let E(i, j) hold if and
only if E( j, i) does. For example, when W is a constant function p where 0 <
p < 1, then G(N,W ) is essentially the Erdős–Rényi graph G(N, p), described
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in Section 1.1. Notice that for any graphon W , the distribution of G(N,W ) is an
invariant measure on graphs.

Not only is the distribution of G(N,W ) invariant for an arbitrary graphon
W , but so are the mixtures, that is, convex combinations, of such distributions.
Conversely, Aldous [4] and Hoover [28] showed, in the context of exchangeable
random arrays, that every invariant measure on graphs is such a mixture, thereby
completely characterizing the invariant measures on graphs. This characterization
has also arisen in the theory of dense graph limits; for details see [17] and [5].

An analogous theory to that of graphons has been developed for other
combinatorial structures such as partial orders [31] and permutations [29].
The standard recipe described in [5] extends this machinery to the general case of
countable relational languages of bounded arity. When L has bounded arity, our
notion of Borel L-structure, from Section 3.1, can be viewed as a specialization
of certain structures that occur in the standard recipe. In particular, any Borel
LG-structure that is a model of TG corresponds to a graphon, as we will now see.
Recall that because LG is relational, every Borel LG-structure is samplable.

6.1.2. Borel LG-structures and random-free graphons. Borel LG-structures that
are models of TG (that is, graphs) are closely related to a particular class of
graphons. Here we describe this relationship and use it to deduce a corollary
about W -random graphs whose distributions are concentrated on single countable
graphs.

A graphon W is said to be random-free [32, Section 10] if for a.e.
(x, y) ∈ [0, 1]2 we have W (x, y) ∈ {0, 1}. (See also the simple arrays of [34]
and 0–1 valued graphons in [47].) When W is random-free, the W -random graph
process amounts, in the language of [52], to ‘randomization in vertices’ but not
‘randomization in edges’.

We now describe a correspondence between Borel LG-structures satisfying TG

and random-free graphons. Let α be an arbitrary Borel measurable bijection from
the open interval (0, 1) to R, and let mα be the distribution of α(U ) where U is
uniformly distributed on [0, 1]. Given a Borel LG-structure P that satisfies TG ,
define the random-free graphon WP as follows. For (x, y) ∈ (0, 1)2 let

WP(x, y) = 1 if and only if P |H E
(
α(x), α(y)

)
,

and for (x, y) on the boundary of [0, 1]2 let WP(x, y) = 0. The distribution of
G(N,WP) is precisely µ(P,mα), as defined in Definition 3.4. Conversely, given
a graphon W that is Borel and random-free, one can easily build a Borel LG-
structure PW satisfying TG such that the distribution of G(N,W ) is µ(PW ,mα).

By Corollary 3.22, if a countable graph admits an invariant measure, then it
admits one of the form µ(P,m), where P is a Borel LG-structure. In particular,
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the corresponding random-free graphon WP is such that the distribution of
G(N,WP) is an invariant measure concentrated on the given graph. This leads
to the following corollary.

COROLLARY 6.1. Let M be a countable infinite graph. Suppose there is some
graphon W such that the distribution of G(N,W ) is concentrated on M. Then
there is a random-free graphon W ′ such that the distribution of G(N,W ′) is also
concentrated on M.

Proof. The distribution of G(N,W ) is an invariant measure concentrated on M.
Therefore by Theorem 1.1, the graph M must have trivial definable closure. By
Corollary 3.22, there is a Borel LG-structure P such that µ(P,m) is concentrated
on M whenever m is a continuous nondegenerate probability measure on R. As
above, let α : (0, 1) → R be a Borel bijection and let WP be the random-free
graphon induced by the given correspondence. Then the distribution of G(N,WP)

is µ(P,mα), and hence is also concentrated on M.

In fact, for an arbitrary countable relational language L , our procedure for
sampling from a Borel L-structure essentially arises in [5] as a standard recipe in
which all but the first ‘ingredient’ are deterministic maps. In this setting, one can
prove an analogue of Corollary 6.1 for arbitrary countable infinite L-structures.

The best-known graphons W for which G(N,W ) is isomorphic to the Rado
graph are the constant functions W ≡ p for 0 < p < 1, that is, those given by the
Erdős–Rényi construction. However, these are not the only such graphons. Petrov
and Vershik [52] were the first to describe invariant measures concentrated on the
Rado graph that correspond to random-free graphons. Figure 2 is a visualization
of a random-free graphon W , built essentially by the methods of [52] and the
present paper, for which G(N,W ) is a.s. isomorphic to the Rado graph,

6.2. Multiple isomorphism classes. In this paper, we have focused on the
problem of identifying those countable infinite L-structures M such that some
invariant measure is concentrated on the isomorphism class of M in StrL , that is,
on the orbit under the logic action of any structure in StrL isomorphic to M. But
it is natural to investigate those larger subsets of StrL , consisting of the union of
multiple orbits, on which an invariant measure may be concentrated. For example,
Austin [5, Question 3.27] asks for a characterization of first-order theories T such
that any invariant measure concentrated on the set of models of T in StrL must
come from a standard recipe having a property akin to being random-free.

There are clearly invariant measures on StrL that are not concentrated on
any single structure, as can be seen by taking mixtures of invariant measures
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Figure 2. An illustration of a random-free graphon W such that G(N,W ) is a.s.
isomorphic to the Rado graph. (The thin gray strips on the right and bottom
represent regions not drawn in detail—not values of the graphon between 0 and 1.)

concentrated on different structures. But if there is a countable set of structures on
which such an invariant measure is concentrated, then we can see by conditioning
that there must be some invariant measure concentrated on one of these structures.

LEMMA 6.2. Let L be a countable language, and let T be a theory of Lω1,ω(L)
that has at most countably many countable infinite models (up to isomorphism).
Suppose µT is an invariant measure on StrL that is concentrated on the set of
models of T in StrL . Then there is a countable model M of T such that some
invariant measure µM is concentrated on the isomorphism class of M in StrL .

Proof. Because µT is countably additive and T has only countably many
countable infinite models, there must be some countable infinite structure M |H T
such that its isomorphism class M̃ := {N ∈ StrL :N ∼=M} has positive µT -
measure. Recall that M̃ is a Borel set. Let µM be µT conditioned on this positive
measure set, that is,

µM(A) := µT
(

A | M̃) = µT
(

A ∩ M̃)
/µT

(
M̃
)

for every Borel set A ⊆ StrL . Then µM is a probability measure on StrL

concentrated on the isomorphism class of M.
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Moreover, µM is invariant, as we now show. Suppose g ∈ S∞, and let A be an
arbitrary Borel subset of StrL . Because M̃ is an S∞-invariant subset of StrL , we
have

µT
(
g(A) ∩ M̃) = µT

(
g(A) ∩ g(M̃)

)
,

and because µT is an invariant measure, we have

µT
(
g(A ∩ M̃)

) = µT
(

A ∩ M̃)
.

Since g(A)∩g(M̃) = g(A∩M̃), we have µM(g(A)) = µM(A), as desired.

One may ask, more specifically, given a samplable Borel L-structure P and a
continuous nondegenerate probability measure m on R, the minimum number of
isomorphism classes on whose union the measureµ(P,m) is concentrated. When P
strongly witnesses a theory T of Lω1,ω(L) having just one countable infinite model
up to isomorphism, then there is just one isomorphism class by design. However,
if P strongly witnesses a pithy Π2 theory T of Lω1,ω(L) that has nonisomorphic
countable infinite models, then the situation is more complicated. In this case, still
P |H T by Lemma 3.9, but the induced invariant measure might be concentrated
on a union of multiple isomorphism classes of models of T , but not on any single
such class.

However, as we state in Corollary 6.3, this is not possible if the measure
is concentrated on a countable union of isomorphism classes. By countable
additivity, any invariant measure on StrL that is concentrated on a union
of countably many isomorphism classes, but not on a single class, must be
nonergodic. But every measure of the form µ(P,m) is ergodic, as we now explain.

The ergodic invariant measures on graphs are precisely those induced by
sampling from a single graphon, rather than a mixture of such (see [17,
Corollary 5.4] and [48, Proposition 3.6]). Aldous had earlier characterized
the ergodic invariant measures on hypergraphs in a similar way (see [4,
Proposition 3.3] or [36, Lemma 7.35]). This characterization has a generalization
to countable infinite languages, for example, via the setting of Kallenberg’s
extension of the Aldous–Hoover theorem ([36, Lemma 7.22] and [36,
Lemma 7.28]). In particular, it can be shown that measures of the form µ(P,m) are
ergodic, and so the following corollary holds.

COROLLARY 6.3. Let P be a samplable Borel L-structure, and suppose m is
a continuous nondegenerate probability measure on R. If µ(P,m) is concentrated
on some countable union of isomorphism classes in StrL , then in fact µ(P,m) is
concentrated on a single isomorphism class.
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In other words, for any samplable Borel L-structure P , the measure µ(P,m),
as defined in Section 3.1, is concentrated on either one or uncountably many
isomorphism classes. For an investigation of some circumstances with continuum-
many isomorphism classes, see [1].

6.3. Continuum-sized models of Scott sentences. We conclude with a
somewhat unexpected corollary of the machinery that we have developed. A
countable structure M is said to be absolutely characterizable when its Scott
sentence σM has no uncountable models, and hence characterizes M up to
isomorphism among all structures, not just among countable structures (see [39,
Section 1.3]). Our results imply that there is no invariant measure concentrated
on such a structure.

COROLLARY 6.4. Let L be a countable language and let M ∈ StrL . Suppose that
σM, the Scott sentence of M, has no continuum-sized models. Then there is no
invariant measure on StrL that is concentrated on the isomorphism class of M.

Proof. Suppose there exists an invariant measure concentrated on M. Then by
Theorem 4.1, M has trivial definable closure. Let M be the canonical structure
of M and LM be the canonical language. By Lemmas 2.13 and 2.15, M also has
trivial definable closure.

By Proposition 2.17, there is a pithy Π2 Lω1,ω(LM)-theory TM all of whose
countable models are isomorphic to M. Hence by Theorem 3.19 there exists
a (continuum-sized) Borel LM-structure Q strongly witnessing TM. But then
Q |H TM, by Lemma 3.9. By Lemma 2.12, using the interdefinition given
in Lemma 2.13 between M and M, there is a (continuum-sized) L-structure
interdefinable with Q, which has the same Lω1,ω(L)-theory as M, and which
hence satisfies σM.

Finally, this shows that if the Scott sentence σM of a countable infinite
structure M has no continuum-sized models (for example, if M is absolutely
characterizable), then M must have nontrivial definable closure.
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