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Abstract

We study the exact asymptotics for the distribution of the first time, τx , a Lévy process Xt

crosses a fixed negative level −x. We prove that P{τx > t} ∼ V (x)P{Xt ≥ 0}/t

as t → ∞ for a certain function V (x). Using known results for the large deviations
of random walks, we obtain asymptotics for P{τx > t} explicitly in both light- and
heavy-tailed cases.
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1. Introduction

Let {Xt }t≥0 be a Lévy process with the characteristic function E{eiθXt } = et�(θ) for all
t ≥ 0, where � is given by the Lévy–Khinchine formula [29]

�(θ) = iAθ − 1

2
σ 2θ2 +

∫ +∞

−∞
(eiθx − 1 − iθx1[−1,1])�(dx).

For x ≥ 0, let
τx = min{t ≥ 0 : Xt < −x}

be the first passage time. Throughout, we assume that the Lévy process Xt drifts to −∞ almost
surely (a.s.). Due to Rogozin’s criterion [27] (see also [4, p. 167] or [29, Theorem 48.1]),
Xt → −∞ if and only if ∫ ∞

1
t−1

P{Xt ≥ 0} dt < ∞. (1.1)

This assumption implies that τx is a proper random variable with a finite expectation:

τx < ∞ a.s., E{τx} < ∞.

The aim of this paper is to study the asymptotical behaviour of

P{τx > t}
when x > 0 is fixed and t → ∞.
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Asymptotics for first passage times 65

A similar problem may be addressed in discrete time, where an analogue of Lévy processes
is random walks. If we denote by Sn = ξ1 + · · · + ξn a random walk with independent and
identically distributed (i.i.d.) increments and assume that Sn → −∞ a.s., then an analogue
of τx is the stopping time νx = min{n ≥ 1 : Sn < −x}. Asymptotics for the tail of νx were
studied by various authors in many cases. In [15] these asymptotics were found for x = 0; it
was shown that P{ν0 > n} ∼ P{Sn ≥ 0}/n as n → ∞ if the right-hand side is a subexponential
sequence (for the definition, see Section 2). In [5] and [13] the asymptotics for the tail of
νx have been found when x > 0. In these papers the authors considered separately several
classes of distribution of ξ : regularly varying distributions, distributions satisfying Cramér’s
condition, and light-tailed distributions that do not satisfy Cramér’s condition. For each of
these classes, they showed that P{νx > n} is asymptotically proportional to P{Sn ≥ 0}/n using
large deviation asymptotics for P{Sn ≥ 0}. In [9] (see also [8]) it was shown that the same
asymptotic equivalence holds for the so-called semiexponential distributions with parameter
smaller that 1

2 (see the definition in [8]). In [22] the latter result has been generalised to the
case of semiexponential distributions with parameter smaller than 1. We also note that in [22]
x may depend on n. We also mention the paper [7] where the same problem was studied under
Cramér’s assumptions and in the case when x may depend on n.

For Lévy processes, the asymptotics for τx have not received much attention so far. We
are aware of only the paper [21], where these asymptotics were obtained for the light-tailed
distributions. However, necessary and sufficient conditions for the existence of moments of τx

were obtained in [14].
In this paper we extend the approach proposed in [5] and [13]. Our main results are

Theorems 2.1 and 2.2. Theorem 2.1 states that, under some natural assumptions,

P{τx > t} ∼ V (x)
P{Xt ≥ 0}

t

as t → ∞ for a function V (x) depending only on x. Theorem 2.2 shows that, under identical
conditions for both Lévy processes and random walks,

P{νx > n} ∼ Vrw(x)
P{Sn ≥ 0}

n
, P{τx > t} ∼ V (x)e−γ (t−[t]) P{X[t] ≥ 0}

t

for some γ ≥ 0, where by [t] we denote the integer part of t (the largest integer smaller than t),
and the functions V (x) and Vrw(x) depend only on x.

We would like to point out that, for the case of Lévy processes, both conditions of Theorem 2.2
and its result are given in terms of the values of the process at discrete times. Therefore, the
problem of finding asymptotics for P{τx > t} and P{νx > n} is reduced to finding asymptotics
for P{Sn ≥ 0}, or P{S̃n ≥ na}, where a = −E{ξ1} and S̃n = Sn + na is a random walk with
zero drift. This is a problem of large deviations of sums of i.i.d. random variables which is
extensively studied in the literature. We apply known results to obtain explicit asymptotics
in various cases. It appears that in all cases when asymptotics for P{Sn > 0} can be found
explicitly, the conditions of Theorem 2.2 are satisfied and, hence, asymptotics for the tail
distribution of τx and νx can also be found explicitly.

We would like to note that our main results provide a unified approach for finding asymptotics
of τx and νx . We do not make specific assumptions on the distribution of the increments of a
Lévy process or a random walk.

After formulating our main results, we give corollaries for specific distributions. We consider
distributions with heavy tails (such that E{eεξ1} = ∞ for all ε > 0) and distributions with light

https://doi.org/10.1239/jap/1363784425 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784425


66 D. DENISOV AND V. SHNEER

tails (for which the latter condition is not fulfilled) separately. It was pointed out by various
authors that, for the problem of large deviations of sums of heavy-tailed random variables, one
should indicate two classes of distributions: those with tails lighter and heavier than e−√

t (we
say that the tail of a distribution F is lighter than a function f if F(t)/f (t) → 0 as t → ∞
and heavier than a function f if F(t)/f (t) → ∞). Not surprisingly, the boundary e−√

t arises
in our investigation as well.

Theorem 2.2 can also be applied to the case of light-tailed distributions under some further
assumptions. In particular, the conditions of Theorem 2.2 are fulfilled if the distribution of ξ1
satisfies the so-called Cramér’s (or classical) conditions. With the help of Theorem 2.2 we can
also cover the so-called intermediate case, when ξ1 has a distribution with a light tail but does
not satisfy Cramér’s condition.

Another motivation for our work was to find asymptotics for the busy period in a stable
M/G/1 queue. Let A1, A2, . . . and B1, B2, . . . be two mutually independent sequences, each
consisting of i.i.d. random variables. Assume that the {Ai} are interarrival times and that
the {Bi} are service times. We assume throughout that E{B1}/E{A1} = ρ < 1, so that the
system is stable. We use standard notation: an M/G/1 system consists of Ai exponential
random variables and a GI/GI/1 system consists of a general i.i.d. sequence {Ai}. Define
N(t) = max{n : A1 + · · · + An ≤ t}. Put X0 = 0 and

Xt =
N(t)∑
i=1

Bi − t. (1.2)

Then the busy period of the system with initial work x > 0 may be defined as

bp(x) = inf{t : Xt < −x}.
Hence, in an M/G/1 queue finding asymptotics for the tail of bp(x) is equivalent to finding
asymptotics for the tail of τx when Xt is a compound Poisson process without negative jumps,
and, thus, our results may be applied.

The tail behaviour of the busy period in these systems has been a subject of interest for
many researchers. Under Cramér-type assumptions, asymptotics for the M/G/1 and GI/G/1
settings were respectively studied in [1] and [24]. Most of the papers on the tail behaviour of
the busy period are devoted to studying the case when B1 has a subexponential distribution.
All these papers investigate the asymptotic behaviour of bp—a generic busy period, or a busy
period of the queue under the condition that the first customer arriving at the system finds it
empty. In [11], it was shown that if B1 has a regularly varying distribution then

P{bp > t} ∼ E{ν0}P{B1 > (1 − ρ)t} (1.3)

as t → ∞. This result was generalised in [30] to the case of a GI/GI/1 queue and under the
assumption that the tail B(t) = P{B1 > t} satisfies an extended regular variation condition
(see [6]).

Later on, it was shown in [3] and [18] that the asymptotics in (1.3) hold for the GI/GI/1 model
in the case when B1 belongs to another subclass of heavy-tailed distributions which includes
the Weibull distributions with parameter α < 1

2 . The tails of the distributions considered in [3]
and [18] are heavier than e−√

t . As is shown in [2] (see also [17]), the latter condition is crucial
for the asymptotics in (1.3) to hold.

The results of Theorem 2.2 allow us to find asymptotics for P{bp(x) > t} in the M/G/1 queue
for both light- and heavy-tailed distributions. Moreover, we are able to obtain these asymptotics
when P{B > t} is lighter than e−√

t but still heavier than any exponential distribution, and in
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this case no results have been known until now. Using the results on the tail asymptotics of
the distribution of bp(x), we can also obtain results for the tail asymptotics of the distribution
of bp.

We would like to underline the main contributions of this paper once again. Firstly,
Theorem 2.2 provides a unified approach to finding asymptotics for the tails of τx and νx

under rather general assumptions on the distribution of the increments. The conditions as
well as the results of this theorem even for the Lévy processes are formulated in terms of the
behaviour of P{Sn > 0}, which is a well-studied large deviations problem. Secondly, using
some known results on large deviations, we find explicit asymptotics for the tails of τx and νx ,
all of which are new in the case of τn and some of which are new in the case of νx . Thirdly, our
results could be applied to finding asymptotics for the tail distribution of a busy period of an
M/G/1 queue—a very important problem in queueing theory—and, in particular, we present
new results concerning these asymptotics in the case when the service time distribution has a
heavy tail which is lighter than e−√

t .
The rest of the paper is organised as follows. In Section 2 we present Theorems 2.1 and

2.2 that reduce the problem of finding asymptotics for P{τx > t} and P{νx > n} to studying
the asymptotics of P{Sn ≥ 0}. In Section 3 we consider four classes of distributions: heavy-
tailed distributions I (with tails heavier than e−√

t ), heavy-tailed distributions II (with tails
lighter than e−√

t ), distributions satisfying Cramér’s condition, and distributions forming an
intermediate case (distributions with light tails not satisfying Cramér’s condition). For each of
these cases, we give known results on the asymptotics of P{Sn > 0}, show that the conditions
of Theorem 2.2 are satisfied, and derive results on the tail asymptotics of the distributions of τx

and νx . Appendix A is devoted to the proofs of Theorems 2.1 and 2.2, and in Appendix B we
present some known results on Lévy processes that are used in our paper.

2. Main results

In this section we present Theorems 2.1 and 2.2 which connect the asymptotics for τx and
νx with the asymptotics for P{Sn ≥ 0}. We start with some preliminaries.

Definition 2.1. A function f : R
+ → R

+ belongs to the class Sd(γ ) with γ ≥ 0 if f (t) > 0
for all large enough t , and

lim
t→∞

f (t − y)

f (t)
= eγy for any y ∈ R, (2.1)

lim
t→∞

f ∗2(t)

f (t)
= lim

t→∞

∫ t

0 f (t − y)f (y) dy

f (t)
= 2d = 2

∫ ∞

0
eγyf (y) dy. (2.2)

The class Sd := Sd(0) is called the class of subexponential densities.

A discrete-time analogue of this definition is as follows.

Definition 2.2. A sequence {an}n≥0 belongs to the class Ss(γ ) with γ ≥ 0 if an > 0 for all
large enough n, and

lim
n→∞

an−1

an

= eγ , (2.3)

lim
n→∞

a∗2
n

an

≡ lim
n→∞

∑n
i=0 aian−i

an

= 2d = 2
∞∑
i=0

aie
γ i .

The class Ss := Ss(0) is called the class of subexponential sequences.
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Theorem 2.1. Let the function

P{Xt ≥ 0}
t

, t ≥ 1,

belong to the class Sd(γ ). In addition, assume that there exists an α ≥ 0 such that

lim
t→∞

P{Xt ≥ 0}
P{Xt ≥ y} = eαy for any fixed y. (2.4)

Then

P{τx > t} ∼ V (x)
P{Xt ≥ 0}

t

as t → ∞ for any x being a point of continuity of the function

V (x) ≡

⎧⎪⎨⎪⎩
E{τx}, γ = α = 0,

eαx

∫ ∞

0
eγ t

E{eαNt ; |Nt | ≤ x} dt, otherwise,
(2.5)

where Nt = inf0≤s≤t Xs .

Note that the second formula in (2.5) reduces to E{τx} in the case α = γ = 0.
In the next theorem we deal with both random walks and Lévy processes under identical

assumptions.

Theorem 2.2. Assume that either a Lévy process Xt or a random walk Xn is given. Let the
sequence

P{Xn ≥ 0}
n

, n ∈ N,

belong to the class Ss(γ ). In addition, assume that there exists an α ≥ 0 such that

lim
n→∞

P{Xn ≥ 0}
P{Xn ≥ y} = eαy for any fixed y, n ∈ N.

Then, for a Lévy process Xt ,

P{τx > t} ∼ V (x)e−γ (t−[t]) P{X[t] ≥ 0}
t

as t → ∞ for any x, where V (x) is defined in Theorem 2.1.
For a random walk Xn,

P{νx > n} ∼ Vrw(x)
P{Xn ≥ 0}

n

as n → ∞, where

Vrw(x) =

⎧⎪⎪⎨⎪⎪⎩
Eνx, γ = α = 0,

eαx
∞∑

k=0

eγ k
E{eαNk ; |Nk| ≤ x}, otherwise,

with Nk = min0≤l≤k Xl .

Result 2.1. The conditions of Theorem 2.1 and (or) the conditions of Theorem 2.2 imply that
e−γ = E{eαX1}. The proof of this fact is given in Appendix A. Note also that this fact implies
that α = 0 if and only if γ = 0. This corresponds to the subexponential case.
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3. Explicit results

In the previous section we presented results that link the tail asymptotics of τx and νx

with the large deviation probabilities for sums of i.i.d. random variables. The results of the
previous section are, however, not explicit as they are given in terms of the large deviation
probabilities and as the knowledge of more large deviation probabilities is also required to
check the conditions of Theorem 2.2. This section is devoted to the derivation of explicit
asymptotics for a (very) large number of distributions. It consists of four subsections. All these
subsections have a similar structure: we define a class of distributions for which we present
known results on large deviations of sums of random variables. After that, with the help of these
results, we show that the conditions of Theorem 2.2 are satisfied and, as a result, we obtain the
asymptotics for the tail distributions of τx and νx .

First, we prove Theorem 3.2 in which we study the case when − ln P{X1 > t} = o(
√

t)

(corresponding to the distributions with tails heavier than e−√
t ). Furthermore, in Theorem 3.4,

we analyse the case when − ln P{X1 > t} is regularly varying with parameter α ∈ [ 1
2 , 1)

(corresponding to the distributions with tails that are heavy but lighter than e−√
t ). Then,

in Theorem 3.5 we give the asymptotics for Cramér’s case. This includes (partially) the
distributions with exponential tails and tails that are lighter than exponential. Finally, in
Theorem 3.7 we analyse distributions with exponential tails that are not covered by Cramér’s
case. As corollaries, we give corresponding results for the tail asymptotics of the busy period
of an M/G/1 queue.

3.1. Heavy-tailed distributions I

The result below follows directly from Corollary 2.1 of [12].

Theorem 3.1. Let Sn = ∑n
i=1 ξi be a random walk. Let E{ξ1} = 0 and E{|ξ1|κ} < ∞ for

some κ ∈ (1, 2]. Assume that
F(n − n1/κ )

F (n)
→ 1 (3.1)

as n → ∞, and also assume that

ε(n) ≡ sup
x≥2n1/κ

P{ξ1 > n1/κ , ξ2 > n1/κ , S2 > x}
F(x)

= o

(
1

n

)
(3.2)

as n → ∞. Then
P{Sn > na} ∼ nP{ξ1 > na}

as n → ∞ for any a > 0.

For the tail asymptotics of τx and νx the following is true.

Theorem 3.2. Assume that either a Lévy process Xt or a random walk Xn is given. Let
E{X1} = −a < 0, and assume that the distribution of the random variable X1 + a satisfies the
conditions of Theorem 3.1. Then

P{τx > t} ∼ E{τx}P{X1 > ta} ∼ E{τx}�(ta) as t → ∞,

P{νx > n} ∼ E{νx}P{X1 > na} as n → ∞.

Remark 3.1. Note that Theorem B.2 in Appendix B implies that in the case of a Lévy process,
in order to verify the conditions of Theorem 3.1, instead of considering the random variable X1,

https://doi.org/10.1239/jap/1363784425 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784425


70 D. DENISOV AND V. SHNEER

one may consider any random variable ξ1 such that P{ξ1 > t} = F(t) ∼ �(t) as t → ∞.
Indeed, it is easy to prove that if conditions (3.1) and (3.2) hold for a random variable ξ1, they
also hold for a random variable η1 such that P{ξ1 > t} ∼ P{η1 > t} as t → ∞. This is useful
as, when dealing with a Lévy process, the distribution of an individual increment is not always
known explicitly.

Remark 3.2. Note that the conditions of Theorem 3.2 imply that F(y − √
y) ∼ F(y). It,

in turn, implies that − ln F(y) = o(
√

y). Thus, we again have the Weibull distribution with
parameter 1

2 as a boundary.

Remark 3.3. It follows from the results of [12] that regularly varying distributions and Weibull-
type distributions with parameter smaller than 1

2 satisfy the conditions of Theorem 3.1.

Proof of Theorem 3.2. We first check the conditions of Theorem 2.2. It follows from
Theorem 3.1 that P{Xn ≥ 0} ∼ P{Xn+1 ≥ 0} and P{Xn ≥ y} ∼ P{Xn ≥ 0}. It is then
easy to check that P{Xn ≥ 0}/n is a subexponential sequence.

It follows from Theorem 3.1 and Theorem 2.2 that

P{Xt ≥ 0} ∼ P{X[t] ≥ 0} = P{X[t] + [t]a ≥ [t]a} ∼ [t]P{X1 ≥ [t]a}.
Hence,

P{τx > t} ∼ E{τx}P{Xt ≥ 0}
t

∼ E{τx}P{X1 ≥ [t]a} ∼ E{τx}P{X1 > ta}.

This completes the proof.

We also present a direct corollary of Theorem 3.2.

Corollary 3.1. Consider the M/G/1 system defined in the introduction. Let E{Bκ
1 } < ∞ and

E{Aκ
1} < ∞ for some κ ∈ (1, 2]. Assume that the distribution of B1 satisfies conditions (3.1)

and (3.2). Then

P{bp(x) > t} ∼ x

EA1

1

1 − ρ
P{B1 > (1 − ρ)t}

as t → ∞ for any fixed x > 0.

Proof. In the case of an M/G/1 system, X1 = ∑N(1)
i=1 Xi − 1 (see (1.2)). Hence, E{X1} =

ρ − 1 and P(X1 > t) ∼ P(B1 > t)/EA1 as t → ∞. Theorem 3.2 yields

P{bp(x) > t} ∼ E{bp(x)}P{B1 > (1 − ρ)t}
as t → ∞. It remains to note that Ebp(x) = x/(1 − ρ) (this can be obtained from, e.g. [10,
Equation (4.94), p. 261]). This completes the proof.

3.2. Heavy-tailed distributions II

Define g(x) = − ln F(x). In this subsection we consider the case

lim sup
g(x)√

x
> 0.

For this, we use [28, Theorem 5a].
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Theorem 3.3. ([28, Theorem 5a].) Let P{ξ1 > y} ∼ e−g(y) as y → ∞ with a doubly differen-
tiable function g such that g′′(y) does not decrease for y ≥ yo and yg′′(y) ∼ (β − 1)g′(y) as
y → ∞ for some β ∈ (0, 1). Let

k = max

{
l ∈ {1, 2, . . .} : lim sup

z→∞
g(z)

zl/(l+1)
> 0

}
. (3.3)

Let

E{ξ} = 0, E{ξ2} = 1, E{|ξ |k+3} < ∞,

R(y) = g(y) + (t − y)2

2n
−

k∑
i=1

λi−1
(t − y)i+2

ni+1 .

Let y∗ be the maximal solution of R′(y) = 0. Then y∗ ≤ t − √
n and

P{Sn > t} ∼ n

√
1

nR′′(y∗)
exp {−R(y∗)} as n → ∞

uniformly in t > 1.6η(n), where η(z) is such that η2(z)/g(η(z)) ∼ z as z → ∞. Here, the λi

are the coefficients of Cramér’s series (see [26] for the definition).

Remark 3.4. Note that the conditions of Theorem 3.3 imply that g′′(y) is a regularly varying
function with parameter β − 2. This fact follows from the monotonicity of g′′ and Karamata’s
theorem. Then g′(y) is regularly varying with parameter β − 1 and g(y) is regularly varying
with parameter β. Also, under these conditions, η(z) may be equivalently defined as a function
such that |g′′(η(z))| ∼ β(1−β)/z as z → ∞. Therefore, η(z) is a monotone regularly varying
function with parameter 1/(2 − β).

Remark 3.5. In the statement of [28, Theorem 5a] it is not stated that y∗ ≤ t − √
n, but one

can find this assertion in the proof of [28, Lemma 3a].

We find it difficult to apply Theorem 3.3 directly, since it gives the asymptotics in terms
of the maximal solution to an equation. Therefore, we use the approach developed in [17] to
simplify this equation.

Lemma 3.1. Suppose that the conditions of Theorem 3.3 hold. Let tn → ∞ be a sequence
such that tn ≥ 1.6η(n). Let yn be any sequence such that yn ∼ tn and

R′(yn) = o

(
1√
n

)
. (3.4)

Then

P{Sn > tn} ∼ n

√
1

nR′′(yn)
exp {−R(yn)} as n → ∞.

Also, for any sequence εn = o(
√

n),

P{Sn > tn} ∼ P{Sn > tn + εn}.
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Proof. First, we note that, since g′′ is monotone and regularly varying, it is true that

R′(y + z) − R′(y) = zR′′(y)(1 + o(1)), y → ∞, z = o(y).

Also, R′′(yn) = (g′′(yn) + 1/n)(1 + o(1)) and

|g′′(yn)| ≤ |g′′(1 + o(1)tn)|
≤ (1 + o(1))|g′′(1.6η(n))|
≤ (1 + o(1))|g′′(η(n))|
= (1 + o(1))β(1 − β)

n

≤ 1

4n
.

Then

R′(yn + ε
√

n) = R′(yn) + ε
√

nR′′(yn) ≥ o

(
1√
n

)
+ 3/4ε√

n
> 0,

R′(yn − ε
√

n) = R′(yn) − ε
√

nR′′(yn) ≤ o

(
1√
n

)
− 1/4ε√

n
< 0,

for any ε > 0. Since R′ is continuous, there exists a sequence βn ∈ (yn −o(
√

n), yn +o(
√

n)),
such that R′(βn) = 0 and βn ∼ tn. Furthermore, if there exists another solution β ′

n > βn

then, with necessity, β ′
n ∼ tn ∼ βn. But, this is not possible since R′′(y) is positive on the

interval (βn, tn).
To prove the first statement of the lemma, note that

R(yn) − R(βn) = R′(βn)(βn − yn) + (1 + o(1))R′′(βn)
(βn − yn)

2

2

= (1 + o(1))R′′(βn)
(βn − yn)

2

2

∼ O

(
1

n

)
o(

√
n)2

= o(1).

To prove the second statement of the lemma, we note that if βn is a solution sequence of the
equation R1(βn) = 0 for the first sequence tn, then the corresponding equation for the sequence
tn + εn is R2(βn) = o(1/

√
n). Then we just apply the first statement of the lemma. This

completes the proof.

We shall now concentrate on the case tn = na, the case needed for our purposes.

Corollary 3.2. Suppose that the conditions of Theorem 3.3 hold. Let tn = na, where a > 0.
Let yn be any sequence such that yn ∼ tn, and assume that condition (3.4) holds. Then

P{Sn > na} ∼ n exp {−R(yn)} as n → ∞.

Also,
P{Sn > na} ∼ P{Sn > na + εn}

for any sequence εn = o(
√

n).
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Proof. This is just a reformulation of Lemma 3.1. We only note that in this case
R′′(yn) ∼ 1/n.

Lemma 3.2. Under the conditions of Theorem 3.3, let tn = na. Define a sequence

y(0)
n = na, y

(j)
n = y

(j−1)
n − nR′(y(j−1)

n ).

Then
P{Sn > na} = n exp{−R(y

(j)
n )}

as n → ∞ for any j ≥ 1/(2k).

Proof. We have
|y(1)

n − y(0)
n | = n|R′(na)| = ng′(na).

This implies that y
(2)
n ∼ na. Assume that we have proved that y

(i)
n ∼ na for all i < j . Then,

using regular variation of g′′, we obtain

|y(j)
n − y

(j−1)
n | = n|R′(yj−1

n ) − R′(yj−2
n )|

= (1 + o(1))n|g′(yj−1
n ) − g′(yj−2

n )|
= (1 + o(1))n|g′′(na)||yj−1

n − y
j−2
n |

= o(n). (3.5)

Therefore, we can argue by induction that

|y(j)
n − y

(j−1)
n | = O(1)(n|g′′(na)|)j−1ng′(na) = O(1)n(g′(n))j = O(1)n

(
g(n)

n

)j

for j ≥ 1. By making use of condition (3.3), we obtain

|y(j+1)
n − y

(j)
n | = o(1)n

(
n1−1/(k+2)

n

)j+1

= o(1)n1−(j+1)/(k+2) = o(
√

n), (3.6)

provided j ≥ k/2. Then

R′(y(j)
n ) = y

(j)
n − y

(j+1)
n

n
= o(

√
n)

n
= o

(
1√
n

)
.

This completes the proof.

Lemma 3.3. Assume that the conditions of Lemma 3.2 hold. Then the sequence an =
P{Sn ≥ 0}/n is subexponential.

Proof. It follows from Lemma 3.2 that an ∼ e−R(y
(j)
n ) for sufficiently large j . We shall

prove that

lim
n→∞

nR′(y(j)
n )

R(y
(j)
n )

= β (3.7)

for any j . This will imply that the sequence an is subexponential due to the sufficient conditions
given in [19]. We prove (3.7) by induction. If j = 0 then R(y

(j)
n ) = g(y

(j)
n ) and (3.7) holds

since g is a regularly varying function with parameter β. Assume that (3.7) holds for some j .
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Note that (3.6) implies that R′(y(j)
n ) = (y

(j)
n − y

(j+1)
n )/n is regularly varying, and, hence,

taking (3.7) into account, R(y
(j)
n ) is also regularly varying. Recall that y(j)

n ∼ na for each j and
that y

(j)
n − y

(j+1)
n = o(n) (see (3.5)). Then R(y

(j+1)
n ) = R(y

(j)
n + (y

(j+1)
n − y

(j)
n )) ∼ R(y

(j)
n )

and also R′(y(j+1)
n ) ∼ R′(y(j)

n ). Hence, (3.7) holds for j +1 as well. This completes the proof.

We now give the result for the asymptotic behaviour of the tails of τx and νx .

Theorem 3.4. Assume that either a Lévy process {Xt } or a random walk Xn is such that
E{X1} = −a < 0. Let the conditions of Theorem 3.3 hold for the distribution of the random
variable X1 + a. Let R′(y(t)) = o(1/

√
t). Then

P{τx > t} ∼ E{τx} exp {−R(y(t))} as t → ∞,

P{νx > n} ∼ E{νx} exp {−R(y(n))} as n → ∞.

Remark 3.6. Note that, as in the previous case, Theorem B.2 in Appendix B implies that in the
case of a Lévy process, in order to verify the conditions of Theorem 3.3, instead of the random
variable X1, one may consider a random variable ξ1 such that P{ξ1 > t} = F(t) ∼ �(t) as
t → ∞.

Proof of Theorem 3.4. We use Theorem 2.2 again. First, it follows from Corollary 3.2 that
P{Xn > y} ∼ P{Xn > 0} ∼ P{Xn+1 > 0}. Second, according to Lemma 3.3, the sequence
αn = P{Xn > 0}/n is subexponential. Then we can just apply Theorem 2.2. This completes
the proof.

Corollary 3.3. Let P{B1 > y} ∼ e−g(y). Assume that g and B1 satisfy the conditions of
Theorem 3.4 with a = 1 − ρ. Then the asymptotics are given by

P{bp(x) > t} ∼ x

E{A}(1 − ρ)
exp {−R(y(t))} as t → ∞.

Proof. The proof is a repetition of that of Corollary 3.1 and is thus omitted.

We can apply Lemma 3.2 to obtain tail asymptotics for the distributions of τx and νx explicitly.
In particular, the following corollary holds.

Corollary 3.4. Under the conditions of Theorem 3.4, let g(y) = o(y3/4). Then

P{τx > t} ∼ E{τx} exp {−R(ta − tg′(ta))} as t → ∞.

If P{B1 > t} ∼ e−tβ , 1
2 < β < 1, then, for k = [1/(1 − β)] and some positive constants

D1, . . . , Dk > 0,

P{τx > t} ∼ E{τx} exp{−(at)β + D1t
2β−1 + · · · + Dkt

kβ−k+1}.

Similar corollaries can be formulated for νx and bp(x).

3.3. Cramér’s case

Let m(s) = E{esX1} be the moment generating function of X1.

Theorem 3.5. Assume that either a Lévy process {Xt } or a random walk Xn is such that
E{X1} = −a < 0. Let solution α to the equation m′(s) = 0 exist, and assume that m′′(α) < ∞.
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Put γ = ln m(α). Assume also that the distribution of X1 is nonlattice. Then

P{τx > t} ∼ V (x)
1√

2πt3/2σ̂ (α)α
e−γ t as t → ∞,

P{νx > n} ∼ 1√
2πn3/2σ̂ (α)α

e−γ n as n → ∞.

Proof. It follows from the Petrov theorem (see [25, Theorem 2]) that an = P{Xn ≥ 0}/n ∼
e−γ n/(

√
2πn3/2σ̂ (α)α). Then an ∈ Ss(γ ). Indeed, an−1/an → eγ and

n−1∑
k=1

akan−k

an

≤ C

n−1∑
k=1

(
n

k(n − k)

)3/2

≤ 4C

n−1∑
k=1

1

k3/2 < 4C

∞∑
k=1

1

k3/2

for some constant C. It follows from the dominated convergence theorem that a∗2
n /an →

2
∑∞

n=1 eγ nan. Also, Petrov’s theorem implies that

P{Xn ≥ y}
P{Xn ≥ 0} ∼ e−αy as n → ∞.

Therefore, we can apply Theorem 2.2 to obtain the statement of the theorem.

Corollary 3.5. Let α > 0 be a solution to the equation λm′
B(α) = 1 such that σ̂ 2 =

λm′′
B(α) < ∞. Put γ = α − λ(mB(α) − 1). Then

P{bp(x) > t} ∼ 1√
2πσ̂ 2γ t3/2

xeαxe−γ t as t → ∞.

Proof. It is clear that α and γ are exactly the same as in Theorem 3.5. Therefore, it suffices
to find V (x). Since e−γ = E{eαX1}, the process exp{αXt + γ t} is a martingale with mean 1.
Then, since Xτx = −x, we have

1 = E{eαXτx +γ τx } = e−αx
E{eγ τx }.

Hence, C(x) = γ −1(E{eγ τx } − 1) = γ −1(eαx − 1), and it follows from (A.7) below that

V (x) = C(x) + αeαx

∫ x

0
e−αyC(y) dy = α

γ
xeαx.

This completes the proof.

3.4. Intermediate case

We now proceed to the intermediate case, i.e. when the equation m′(s) = 0 does not have a
positive solution but m(s) < ∞ for some s > 0. In this case we shall assume that P{ξ1 > t} =
e−αtG(t) for all positive t , where α > 0 and G(t) is a tail of some heavy-tailed distribution.
Introduce the random walk {S̃n} (called the adjunct random walk in [5]) whose increments have
the distribution

F̃ (dy) = 1

m(α)
eαyF (dy),

and define δ = −E{S̃1}. The following result on large deviations may be found in [12]. It is
a generalization of the result of [5] where asymptotics for the large deviation probabilities are
obtained under the assumption that G(t) is a regularly varying function.
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Theorem 3.6. Assume that P{ξ1 > t} = e−αtG(t) for all positive t , where α > 0 and G(t)

satisfies the conditions of Theorem 3.1. Let E{ξ1} < 0, and assume that m′(s) �= 0 for
0 < s ≤ α. Assume also that δ < ∞. Put e−γ = m(α). Then

P{Sn > x} ∼ 1

m(α)
e−γ ne−αxnG(x + nδ)

as n → ∞ uniformly in x such that x ≥ −n(δ − ε).

Remark 3.7. It is easy to see that the conditions of Theorem 3.6 imply that δ > 0.

Using Theorem 3.6, we can obtain the following result for the tail asymptotics of τx and νx .

Theorem 3.7. Assume that {Xt } is a Lévy process or a random walk such that the distribution
of X1 satisfies the conditions of Theorem 3.6. Then

P{τx > t} ∼ V (x)
1

m(α)
e−γ tG(tδ) as t → ∞

and

P{νx > n} ∼ Vrw(x)
1

m(α)
e−γ nG(nδ) as n → ∞.

Proof. Theorem 3.6 implies that

P{Xn ≥ 0} ∼ 1

m(α)
e−γ nnG(nδ) and P{Xn ≥ y} ∼ 1

m(α)
e−γ nnG(nδ + y)e−yα

as n → ∞. The conditions of Theorem 2.2 can now be checked straightforwardly.

Remark 3.8. To the best of our knowledge, the only result on large deviations of sums of
random variables belonging to the intermediate case is contained in [5]. The result presented
in this paper concerns distributions F such that the function eαxF (x) is regularly varying with
parameter −β, 2 < β < ∞. The analogue of Theorem 3.7 for such distributions may be
obtained using Lemma 3 from [5] instead of our Theorem 3.6.

Appendix A. Proofs of Theorems 2.1 and 2.2

Proof of Result 2.1. We first prove that E{eαX1} ≤ e−γ . Fix an arbitrary C > 0. Then

eαy ≤ (1 + ε)
P{Xt > −y)}

P{Xt > 0}
for large enough t , uniformly in y ∈ (−C, C). Consider, for large enough t ,∫ C

−C

eαy
P{X1 ∈ dy} ≤ (1 + ε)

∫ C

−C
P{Xt > −y}P{X1 ∈ dy}

P{Xt > 0}

= (1 + ε)

∫ C

−C
P{Xt > −y}P{Xt+1 − Xt ∈ dy}

P{Xt > 0}
= (1 + ε)

P{Xt+1 − Xt ∈ (−C, C), Xt+1 > 0}
P{Xt > 0}

≤ P{Xt+1 > 0}
P{Xt > 0}

≤ (1 + ε)2e−γ .
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Since ε is an arbitrary positive number, we have
∫ C

−C
eαy

P{X1 ∈ dy} ≤ e−γ and, hence,
E{eαX1} ≤ e−γ .

The inequality E{eαX1} ≥ e−γ can be proved in a similar way. Take an arbitrary C > 0
again and consider∫ C

−C

P{Xt > −y}P{Xt+1 − Xt ∈ dy}
P{Xt > 0} ≤ (1 + ε)

∫ C

−C

eαy
P{X1 ∈ dy} ≤ (1 + ε)E{eαX1}

for sufficiently large t . Since C is arbitrary, we have

P{Xt+1 > 0}
P{Xt > 0} =

∫ ∞

−∞
P{Xt > −y}P{Xt+1 − Xt ∈ dy}

P{Xt > 0} ≤ (1 + ε)E{eαX1}.

We also have

e−γ ≤ (1 + ε)
P{Xt+1 > 0}
P{Xt > 0} ≤ (1 + ε)2

E{eαX1}
for sufficiently large t , which concludes the proof since the left-hand side does not depend on ε.

A.1. Proof of Theorem 2.1

Recall that Nt = infs≤t Xs . It is clear that P{τx > t} = P{|Nt | ≤ x}. Our starting
point is the formula that follows from the Wiener–Hopf identity for Lévy processes; see [29,
Equation (47.9)] (with obvious changes: we should substitute the infimum process instead of
the supremum process). Thus, for q > 0 and u ≥ 0,

q

∫ ∞

0
e−qt

E{euNt } dt = exp

{∫ ∞

0
t−1e−qt dt

∫
(−∞,0)

(euy − 1)P{Xt ∈ dy}
}
. (A.1)

For q > 0, use the Frullani integral,

− ln q =
∫ ∞

0

e−qt − e−t

t
dt,

and rewrite (A.1) in the form∫ ∞

0
e−qt

E{euNt } dt = exp

{∫ ∞

0

e−qt − e−t

t
dt

+
∫ ∞

0
t−1e−qt dt

∫
(−∞,0)

(euy − 1)P{Xt ∈ dy}
}
. (A.2)

First we want to show that the right-hand side of (A.2) converges as q → 0. To this end, let us
represent the exponent on the right-hand side of (A.2) as∫ 1

0

e−qt − 1

t
dt +

∫ 1

0

1 − e−t

t
dt −

∫ ∞

1

e−t

t
dt

+
∫ ∞

1
t−1e−qt

{
1 +

∫
(−∞,0)

(euy − 1)P{Xt ∈ dy}
}

dt

+
∫ 1

0
t−1e−qt dt

∫
(−∞,0)

(euy − 1)P(Xt ∈ dy). (A.3)
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It is clear that the first integral converges to 0 as q → 0. The second and third integrals are
well defined and constant. The fourth and fifth integrals are monotone in q, and, therefore, it
is sufficient to prove that they are finite for q = 0 and then to apply the monotone convergence
theorem. For q = 0, the fourth integral is equal to∫ ∞

1
t−1

{
1 +

∫
(−∞,0)

(euy − 1)P{Xt ∈ dy}
}

dt

=
∫ ∞

1
t−1

{
P{Xt ≥ 0} +

∫
(−∞,0)

euy
P{Xt ∈ dy}

}
dt. (A.4)

To deal with the second term in (A.4), we need the following result.

Lemma A.1. Let the function P{Xt ≥ 0}/t be such that condition (2.1) holds. Assume also
that condition (2.4) of Theorem 2.1 holds. Then there exists u0 such that∫

(−∞,0)

euy
P{Xt ∈ dy} ∼ α

u − α
P{Xt ≥ 0}

for any u > u0.

Remark. We use the convention that a(x) ∼ 0 · b(x) means that a(x) = o(b(x)).

Proof of Lemma A.1. Using integration by parts, we obtain∫
(−∞,0)

euy
P{Xt ∈ dy} = u

∫ ∞

0
(P{Xt ≥ −y} − P{Xt ≥ 0})e−uy dy.

We can a choose a function h(t) ↑ ∞ such that (2.4) holds uniformly in y ∈ [−h(t), 0]. Then

u

∫ h(t)

0
(P{Xt ≥ −y} − P{Xt ≥ 0})e−uy dy

= (1 + o(1))P{Xt ≥ 0}u
∫ h(t)

0
(eαy − 1)e−uy dy

= α + o(1)

u − α
P{Xt ≥ 0}

for u > α. Furthermore, since P{Xt ≥ 0}/t satisfies condition (2.1),

P{Xt+n ≥ 0} ≤ en
P{Xt ≥ 0}, n ≥ 1, (A.5)

for all n ≥ 1 and sufficiently large t . Since P{X1 > 0} > 0, then P{X1 ≥ δ} > 0, where
δ = 1/l > 0 with a positive integer l. Then

P{Xln ≥ n} ≥ P{X1 ≥ δ, X2 − X1 ≥ δ, . . . , Xln − Xln−1 ≥ δ} = P{X1 ≥ δ}ln.

Let u0 be such that e−u0 = e−2l
P{X1 ≥ δ}l . Then, for all u > u0,

e−un ≤ e−u0n = e−2ln
P{X1 ≥ δ}ln ≤ e−2ln

P{Xln ≥ n}.
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Therefore, for u > u0,∫ −h(t)

−∞
(P{Xt ≥ −y} − P{Xt ≥ 0})e−uy dy ≤

∞∑
n=[h(t)]

e−un
P{Xt ≥ −n}

≤
∞∑

n=[h(t)]
e−2ln

P{Xln ≥ n}P{Xt ≥ −n}

=
∞∑

n=[h(t)]
e−2ln

P{Xt+ln − Xt ≥ n, Xt ≥ −n}

≤
∞∑

n=[h(t)]
e−2ln

P{Xt+ln ≥ 0}.

It follows from (A.5) that

∞∑
n=[h(t)]

e−2ln
P{Xt+ln ≥ 0} ≤ P{Xt ≥ 0}

∞∑
n=[h(t)]

e−ln = o(P{Xt ≥ 0})

as t → ∞. This completes the proof of Lemma A.1.

We may now continue to analyse (A.4). It follows from Lemma A.1 that∫ ∞

1
t−1

{
P{Xt ≥ 0} +

∫
(−∞,0)

euy
P{Xt ∈ dy}

}
dt ≤ C

∫ ∞

1
t−1

P{Xt ≥ 0} dt < ∞

for some constant C > 0. The finiteness of the latter integral follows from (1.1). We now
proceed to the last term in (A.3). Making use of the inequality 1 − e−x ≤ x for all x ≥ 0, we
obtain ∫ 1

0
t−1 dt

∫
(−∞,0)

(1 − euy)P{Xt ∈ dy}

≤
∫ 1

0
t−1 dt

(∫
(−1,0)

(−uy)P{Xt ∈ dy} + P{Xt < −1}
)

=
∫ 1

0
E{uXt 1(Xt ∈ [−1, 0])}t−1 dt +

∫ 1

0
t−1 dtP{Xt < −1}

< ∞.

The finiteness of the latter integral follows from the estimates in Lemma B.1 (see Appendix B).
Therefore, the last term in (A.3) converges by the monotone convergence theorem.

Now, letting q → 0 in (A.2), we have∫ ∞

0
E{euNt } dt < ∞.

For a fixed u, let

fu(t) = E{euNt }∫ ∞
0 E{euNt } dt

be the density of a random variable Z. Then, using representations (A.3) and (A.4), we may
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rewrite (A.2) as

E{e−qZ} = exp

{∫ 1

0

e−qt − 1

t
dt +

∫ ∞

1

e−qt − 1

t

(
P{Xt ≥ 0} +

∫
(−∞,0)

euy
P{Xt ∈ dy}

)
dt

+
∫ 1

0

e−qt − 1

t
dt

∫
(−∞,0)

(euy − 1)P{Xt ∈ dy}
}

≡ exp

{∫ 1

0
(e−qt − 1)ν1(dt) +

∫ ∞

1
(e−qt − 1)ν2(dt) +

∫ 1

0
(e−qt − 1)ν3(dt)

}
.

It follows that Z is an infinitely divisible variable on [0, ∞) with the Lévy measure ν(dt) =
ν1(dt) + ν2(dt) + ν3(dt). Indeed,

∫ 1
0 tν1(dt) < ∞. Furthermore, as we have already shown,

ν3(0, 1) < ∞. Finally, as follows from Lemma A.1,

f2(t) ≡ dν2

dt
= P{Xt ≥ 0}

t
+ 1

t

∫
(−∞,0)

euy
P{Xt ∈ dy} ∼ u

u − α

P{Xt ≥ 0}
t

as t → ∞.

Therefore, by condition (1.1), ν2(1, ∞) < ∞. Now we are in the position to apply Theorem B.3
in Appendix B. Since the density of the Lévy measure f (t) ∼ P{Xt ≥ 0}/t belongs to the
class Sd(γ ), by Theorem B.3 we have

fu(t) ∼
(∫ ∞

0
eγyfu(y) dy

)
u

u − α

P{Xt ≥ 0}
t

for any fixed u. Equivalently,

E{euNt }
P{Xt ≥ 0}/t

→ u

u − α

∫ ∞

0
eγ t

E{euNt } dt (A.6)

for all u. Then, changing the order of integration, we obtain∫ ∞

0
eγ t

E{euNt } dt =
∫ ∞

0
eγ t

(∫ ∞

0
e−ux

P{|Nt | ∈ dx}
)

dt =
∫ ∞

0
e−ux dxC(x),

where C(x) = ∫ ∞
0 eγ t

P{|Nt | ≤ x} dt . Therefore, (A.6) is equivalent to

E{euNt }
P{Xt ≥ 0}/t

→ u

u − α

∫ ∞

0
e−ux dxC(x)

as t → ∞. Now note that u/(u−α) is the Laplace–Stieltjes transform of the measure D which
has unit mass at 0 and density αeαy on the positive half-line. Therefore, for all x,

P{|Nt | ≤ x}
P{Xt ≥ 0}/t

→ D ∗ C(x)

= V (x)

= C(x) + αeαx

∫ x

0
e−αyC(y) dy

= eαx

∫ ∞

0
eγ t

E{eαNt ; |Nt | ≤ x} dt, (A.7)
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where the function V (x) is continuous. This is equivalent to

P{τx > t}
P{Xt ≥ 0}/t

→ V (x)

as t → ∞. Finally, it is clear that if α = γ = 0 then

V (x) =
∫ ∞

0
P{|Nt | ≤ x} dt =

∫ ∞

0
P{τx > t} dt = E{τx}.

This completes the proof of Theorem 2.1.
Now we will show that for Theorem 2.1 to hold it is sufficient that its conditions hold for

positive integers t . This will allow us to reduce the problem of verifying properties of Xt, t ∈ R,
to verifying the corresponding properties of the random walk Xn, n ∈ N.

Lemma A.2. Assume that the sequence P{Xn ≥ 0}/n, n ∈ N, belongs to the class Ss(γ ),

P(Xn ≥ 0) ∼ eαy
P(Xn ≥ y) as n → ∞, (A.8)

for any fixed y, and e−γ = E{eαX1}. Then the function P{Xt ≥ 0}/t, t ∈ R, belongs to the
class Sd(γ ) and

P(Xt ≥ 0) ∼ eαy
P(Xt ≥ y) (A.9)

as t → ∞ for any fixed y.

Proof. First, we prove that

P{Xn+ε ≥ 0} ∼ e−γ ε
P{Xn ≥ 0} (A.10)

as n → ∞ for any 0 < ε < 1. It is not difficult to prove that there exists a function h(n) ↑ ∞
such that condition (A.8) holds uniformly in |z| ≤ h(n). We start with the total probability
formula

P{Xn+ε ≥ 0} ≡ P1 + P2 + P3

= P{Xn+ε ≥ 0, |Xn+ε − Xn| ≤ h(n)} + P{Xn+ε ≥ 0, Xn+ε − Xn > h(n)}
+ P{Xn+ε ≥ 0, Xn+ε − Xn < −h(n)}. (A.11)

Then, since E{eαX1} = e−γ ,

P1 =
∫ h(n)

−h(n)

P{Xε ∈ dy}P{Xn ≥ −y}

∼ P{Xn ≥ 0}
∫ ∞

−∞
eαy

P{Xε ∈ dy}
= e−γ ε

P{Xn ≥ 0}.
Before proceeding further, note that if we take ε = 1 then it follows from (2.3), (A.11), and the
latter equivalence that

P{Xn+1 ≥ 0, Xn+1 − Xn > h(n)} = o(P{Xn ≥ 0}). (A.12)

Furthermore,

P2 = P{Xn ≥ −h(n)}P{Xn+ε − Xn > h(n)} +
∫ −h(n)

−∞
P{Xn ∈ dy}P{Xn+ε − Xn ≥ −y}.
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Now note that

P{X1 ≥ y} ≥ P{Xε ≥ y, X1 − Xε ≥ 0} = P{Xε ≥ y}P{X1−ε ≥ 0},
which implies that

P2 ≤ 1

P{X1−ε ≥ 0} (P{Xn ≥ −h(n)}P{Xn+1 − Xn > h(n)}

+
∫ −h(n)

−∞
P{Xn ∈ dy}P{Xn+1 − Xn ≥ −y})

= P{Xn+1 ≥ 0, Xn+1 − Xn ≥ h(n)}
P{X1−ε ≥ 0} .

After applying (A.12), it is clear that P2 = o(P{Xn > 0}). Finally,

P3 ≤ P{Xn ≥ h(n), Xn+ε − Xn < −h(n)}
≤ P{Xn ≥ 0}P{Xε < −h(n)}
= o(P{Xn ≥ 0}).

Now we should make use of the fact that if (A.10) holds for any fixed ε ∈ (0, 1) then it
holds uniformly in ε ∈ (0, 1). Consequently, (2.1) holds for a(t) = P{Xt ≥ 0}/t . The proof
of (A.9) is similar. Finally, condition (2.2) for the function a(t) follows from the dominated
convergence theorem and the fact that

∫ y−1

1

a(y − t)a(t)

a(t)
dt ≤ C

[y−1]∑
k=1

a(k)a([y − 1] − k)

a[y − 1] < ∞

for some constant C. This completes the proof of Lemma A.2.

A.2. Proof of Theorem 2.2

For Lévy processes, the result follows directly from Theorem 2.1 and Lemma A.2. For
random walks, it can be proved along the lines of [13]. The only difference is that we should
apply our Lemma A.1 instead of Lemma 4 of [13].

Appendix B. Lévy processes

In this section we collect some facts from the theory of Lévy processes that we use in this
paper.

The following lemma and its proof may be found in [29, Lemma 30.3].

Lemma B.1. Let Xt be a Lévy process on R
d . For any ε > 0, there exists C = C(ε) such that,

for any t ,
P{|Xt | > ε} ≤ Ct.

There exist C1, C2, and C3 such that

E{|Xt |2; |Xt | ≤ 1} ≤ C1t, |E{Xt ; |Xt | ≤ 1}| ≤ C2t, E{|Xt |; |Xt | ≤ 1} ≤ C3t
1/2,

for any t .
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The next theorem is a version of [29, Theorem 25.3] adapted to our needs.

Theorem B.1. Let Xt be a Lévy process on R
d with the Lévy measure ν. Then Xt has a finite

exponential moment if and only if [ν]|x|>1 has a finite exponential moment.

Let F be an infinitely divisible law on [0, +∞). Its Laplace law can be expressed as (see
[29, Theorem 30.1])∫ ∞

0
e−λxF (dx) = exp

{
−γ λ −

∫ ∞

0
(1 − e−λx)ν(dx))

}
,

where γ ≥ 0 is a constant and ν is a Borel measure on (0, ∞) for which µ ≡ ν(1, ∞) < ∞
and

∫ 1
0 xν(dx) < ∞.

Theorem B.2. ([16, Theorem 1].) For F infinitely divisible on [0, +∞), the following
assertions are equivalent:

(i) F ∈ S;

(ii) µ−1ν(1, x] ∈ S;

(iii) F(x) ∼ ν(x).

We also need a density version of this theorem.

Theorem B.3. Let the infinitely divisible law F have a density f . Assume that there exists x0
such that ν has a density g(x) for x > x0. If g(x) belongs to the class Sd(γ ) then

lim
x→∞

f (x)

g(x)
=

∫ ∞

0
eγ xf (x) dx.

We can prove this theorem exactly as [23, Theorem 3.1] for a distribution function from S(γ ).
Corresponding properties of the class Sd(γ ) may be found in [20, Section 3].
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