

Comparison Theorem for Conjugate Points of a Fourth-order Linear Differential Equation

Jamel Ben Amara

Abstract. In 1961, J. Barrett showed that if the first conjugate point $\eta_1(a)$ exists for the differential equation (r(x)y'')'' = p(x)y, where r(x) > 0 and p(x) > 0, then so does the first systems-conjugate point $\widehat{\eta}_1(a)$. The aim of this note is to extend this result to the general equation with middle term (q(x)y')' without further restriction on q(x), other than continuity.

1 Introduction

This note is concerned with the fourth-order differential equation

$$(1.1) (r(x)y'')'' - (q(x)y')' = p(x)y,$$

where r(x) > 0, $p(x) \ge 0$, and q(x) are continuous functions on $[a, \infty)$, $a \ge 0$. In the case $q(x) \equiv 0$, Leighton and Nehari [8] introduced the double-zero conjugate point concept of which the first conjugate point $\eta_1(a)$ of a is defined as the smallest number $b \in (a, \infty)$ for which the two point boundary conditions

$$(1.2) y(a) = y'(a) = y(b) = y'(b) = 0$$

are satisfied by a nontrivial solution of equation (1.1).

Later, Barrett [2] introduced and defined the first systems-conjugate point $\widehat{\eta}_1(a)$ of a as the smallest number $b \in (a, \infty)$ for which the two point boundary conditions

$$y(a) = y_1(a) = y(b) = y_1(b) = 0$$

 $(y_1(x) = r(x)y'')$ are satisfied by a nontrivial solution of equation (1.1) for $q(x) \equiv 0$. The notation $y_1(x)$ will be used throughout the paper. In [2, Th. 4.1] it is shown that if $\eta_1(a)$ exists for (1.1) with $q(x) \equiv 0$, then $\widehat{\eta}_1(a)$ exists.

In this paper, these results are extended to equation (1.1) without further restrictions on the coefficients r(x), q(x) and p(x). Furthermore, the following relation is established $0 < \widehat{\eta}_1(a) < \eta_1(a)$. Note that, in view of the extension of Barrett's theorem, all the criteria for the existence of $\eta_1(a)$ (e.g., see [4, 7, 9, 10]) also ensure the existence of $\widehat{\eta}_1(a)$.

Received by the editors May 24, 2010; revised January 26, 2011.

Published electronically September 19, 2011.

AMS subject classification: 47E05, 34B05, 34C10.

Keywords: fourth-order linear differential equation, conjugate points, system-conjugate points, sub-wronskians.

40 J. Ben Amara

2 Main Results and Preliminaries

The main result of this paper is stated as follows:

Theorem 2.1 If $\eta_1(a)$ exists for (1.1), then so does $\widehat{\eta}_1(a)$, and $a < \widehat{\eta}_1(a) < \eta_1(a)$.

For the proof of Theorem 2.1, we need some preliminary results. The following comparison theorem was stated in [3, Theorem 5.1] for $q(x) \le 0$, and later was extended in [7, Corollary 2.2] to the general case. Here, we propose a simpler proof of this theorem, which is based on an extension of the Leighton–Nehary transformation [8, Theorem 12.1].

Lemma 2.2 Let $p_0(x) > 0$ be a continuous function on $[a, \infty)$ such that, in comparison with the coefficient p(x) > 0 in (1.1), $p_0 \le p$. If the first conjugate point exists, say $\eta_1^0(a)$, for the equation

$$(2.1) (r(x)y'')'' - (q(x)y')' = p_0(x)y,$$

then $\eta_1(a)$ exists for the original equation (1.1) and $a < \eta_1(a) \le \eta_1^0(a)$, with equality holding if and only if $p_0 \equiv p$

Proof According to [8, Theorem 12.1], if the following initial value problem

$$(2.2) (ry')' - q(x)y = 0, a \le x \le b,$$

(2.3)
$$y'(a) = 0, \quad y(a) = 1$$

has a positive solution h(x) on the interval [a, b], then the change of variables $t(x) := \int_a^x h(s)ds$ transforms [a, b] into the t-interval $[0, \widetilde{b}]$ (where $\widetilde{b} = \int_a^b h(s)ds$) and equation (1.1) into

(2.4)
$$\left(\widetilde{r}(t)\widetilde{h}^{3}(t)\widetilde{y}\right)^{..} = \widetilde{h}^{-1}\widetilde{p}(t)y.$$

Here, $\widetilde{p}(t) = p(x(t))$, $\widetilde{h}(t) = h(x(t))$, and is $\frac{d}{dt}$. If y is a nontrivial solution of (1.1), then $\widetilde{y}(t) \equiv y(x(t))$ is a nontrivial solution of (2.4) and $\widetilde{y} = y'h^{-1}$. Assume now that problem (2.2)–(2.3) has a solution h(x) that changes sign in (a, b). In this case, it is easily seen that the first eigenvalue μ_1 of the boundary problem

$$-(ry')' + q(x)y = \lambda y$$
, $a < x < b$, $y'(a) = y'(b) = 0$

is negative. Let $h(x) := y(x, \mu_1)$ be the corresponding eigenfunction. It is known from the Sturm oscillation theory that it has constant sign on [a, b]. Without loss of generality, we suppose that h(x) > 0. By the use of the same change of variables $t(x) := \int_a^x h(s)ds$, equations (1.1) and (2.1) are rewritten in the forms

(2.5)
$$(\widetilde{r}(t)\widetilde{h}^{3}(t)\widetilde{y})^{\cdot \cdot} - \mu_{1}(\widetilde{h}(t)\widetilde{y})^{\cdot} = \widetilde{h}^{-1}\widetilde{p}(t)y$$

and

(2.6)
$$(\widetilde{r}(t)\widetilde{h}^3(t)\ddot{y})^{\cdot \cdot} - \mu_1(\widetilde{h}(t)\dot{y})^{\cdot \cdot} = \widetilde{h}^{-1}\widetilde{p_0}(t)y,$$

respectively. Obviously, if $p_0(x) \leq p(x)$ on [a,b] then $\widetilde{h}^{-1}\widetilde{p_0}(t) \leq \widetilde{h}^{-1}\widetilde{p}(t)$ on $[0,\widetilde{b}]$. If we put $b=\eta_1^0(a)$, then $\widetilde{\eta}_1^0(a)$ exists for (2.6) and $\widetilde{b}=\widetilde{\eta}_1^0(a)$. Consequently, since the coefficient in the middle term of (2.6) is negative, in view of [3, Theorem 5.1], there follows the existence of $\widetilde{\eta}_1(a)$ for (2.5), and $\widetilde{\eta}_1(a) \leq \widetilde{\eta}_1^0(a)$. Therefore, $\eta_1(a)$ exists for (1.1), and $\eta_1(a) \leq \eta_1^0(a)$. The lemma is proved.

For convenience, we introduce the following equation similar to (1.1), but depending on a parameter $\lambda \in \mathbf{R}$:

$$(2.7) (r(x)y'')'' - (q(x)y')' = \lambda p(x)y.$$

The following lemma is similar to that of Greenberg [6] stated for the first eigenvalue of problem (1.1)–(1.2).

Lemma 2.3 Let $\lambda_1(b)$ denote the first eigenvalue of the eigenvalue problem determined by equation (2.7) and the boundary conditions

(2.8)
$$y(a) = y_1(a) = y(b) = y'(b) = 0.$$

If $b \to a$, then $\lambda_1(b) \to +\infty$.

Proof It is well known (see for example [1]) that the spectrum of problem (2.7)–(2.8) is discrete; it consists of a sequence of real eigenvalues tending to $+\infty$. Let $b_0 > a$; then from the minimax principle, we have, for every $b \in (a, b_0]$:

$$\lambda_1(b) = \min_{y \in \mathcal{H}} \frac{I(y)}{\int_a^b p(y)^2 dx},$$

where $I(y) = \int_a^b r(y'')^2 + q(y')^2 dx$ and H is a set of nontrivial admissible function y (*i.e.*, $y(x) \in C^1[a,b]$, y' is absolutely continuous and $y'' \in L_2[a,b]$) for which y(a) = y(b) = y'(b) = 0. The following expressions follows from the Cauchy-Schwarz inequality:

$$\int_{a}^{b} (y)^{2} dx \le (b-a) \int_{a}^{b} (y')^{2} dx, \quad \int_{a}^{b} (y')^{2} dx \le (b-a) \int_{a}^{b} (y'')^{2} dx.$$

Therefore,

$$I(y) \ge \frac{p^* \int_a^b (y)^2 dx}{(b-a)^2} + \frac{q^* \int_a^b (y)^2 dx}{(b-a)},$$

where $f^* = \min_{x \in [a,b_0]} f(x)$, so that

$$\frac{I(y)}{\int_{a}^{b} p(y)^{2} dx} \ge \frac{1}{r_{*}} \left(\frac{p^{*}}{(b-a)^{2}} + \frac{q^{*}}{(b-a)} \right),$$

where $r_* = \max_{x \in [a,b_0]} r(x)$. Thus,

$$\lambda_1(b) \ge \frac{1}{r_*} \left(\frac{p^*}{(b-a)^2} + \frac{q^*}{(b-a)} \right),$$

and, hence $\lim_{b\to a} \lambda_1(b) = +\infty$.

42 J. Ben Amara

Lemma 2.4 Assume that $\eta_1(a)$ exists for equation (1.1). Then $\lambda = 1$ is the first eigenvalue of problem (2.7)–(1.2) for $b = \eta_1(a)$.

Proof Obviously if $\eta_1(a)$ exists, then $\lambda=1$ is an eigenvalue of problem (2.7)–(1.2) for $b=\eta_1(a)$. Thus the lowest eigenvalue λ_1 of this problem will satisfy $\lambda_1\leq 1$. Let $\eta_1(a,\lambda)$ denote the fist conjugate point related to equation (2.7). If $\lambda_1<1$, then in view of Lemma 2.2, we have $\eta_1(a,1)<\eta_1(a,\lambda_1)=\eta_1(a)$. Therefore, $\eta_1(a,1)$ is the first conjugate point of (1.1) which is less than $\eta_1(a)$, a contradiction.

Lemma 2.5 Assume that $\eta_1(a)$ exists for equation (1.1), and $\lambda_1(b)$ is the first eigenvalue of problem (2.7)–(2.8). If $\lambda_1(b) < 1$ for $b \leq \eta_1(a)$, then $\lambda_1(b)$ is a simple eigenvalue.

Proof Suppose that there exists $b_0 \in (a, \eta_1(a)]$ such that $\lambda_1(b_0) < 1$, and it is an eigenvalue of multiplicity 2. Let y_1 and y_2 be the corresponding eigenfunctions. It is known that any solution y of equation (2.7) (for $\lambda = \lambda_1(b_0)$) that satisfies the initial conditions

$$(2.9) y(b_0) = y'(b_0) = 0,$$

can be expressed as a linear combination of y_1 and y_2 . Let y be a nontrivial solution of problem (2.7)–(2.9). Then $y(x) = \alpha y_1(x) + \beta y_2(x)$, where $(\alpha, \beta) \in \mathbf{R}^2$. Since $y_1(a) = y_2(a) = 0$, y(a) = 0 and

$$\det\begin{pmatrix} y_1(a) & y_2(a) \\ y'_1(a) & y'_2(a) \end{pmatrix} = 0.$$

Therefore, for some α , β we have y'(a) = 0, and this implies that $\lambda_1(b_0)$ is also an eigenvalue of the problem determined by equation (2.7) and the boundary conditions

$$v(a) = v'(a) = v(b_0) = v'(b_0) = 0.$$

This means that the first conjugate point $\eta_1(a, \lambda_1(b_0))$ exists for equation (2.7) (for $\lambda = \lambda_1(b_0)$) and satisfies $\eta_1(a, \lambda_1(b_0)) \leq \eta_1(a)$. This yields a contradiction in view of Lemma 2.2.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 As noted above, any solution of equation (2.7) that satisfies the initial conditions $y(a) = y_1(a) = 0$ may be written as a linear combination of u(x) and v(x), which are the fundamental solutions of equation (2.7), whose initial conditions are

$$u(a) = u_1(a) = Tu(a) = 0, \ u'(a) = 1,$$

$$v(a) = v'(a) = v_1(a) = 0, Tv(a) = 1,$$

where, Ty(x) = (r(x)y'')' - q(x)y'. We introduce the following subwronskians:

$$\widehat{\sigma}(x) := \widehat{\sigma}(\lambda, x) = uv'(x) - vu'(x),$$

$$r\widehat{\sigma}'(x) := r\widehat{\sigma}'(\lambda, x) = uv_1(x) - vu_1(x),$$

which satisfy the initial conditions

$$\widehat{\sigma}(a) = \widehat{\sigma}'(a) = 0.$$

It is easy to see that $\widehat{\eta}_1(a)$ is the first zero on (a,∞) of $\widehat{\sigma}'$. It is well known (e.g., see [5]) that the spectra of problems (2.7)–(1.2) and (2.7)–(2.8) consist of a sequence of real eigenvalues tending to $+\infty$. Let $\lambda_1'(b)$ and $\lambda_1(b)$ be the first eigenvalues of Problems (2.7)-(1.2) and (2.7)-(2.8), respectively. In view of Lemma 2.4, if $\eta_1(a)$ exists for (1.1), then $\lambda_1'(\eta_1(a)) = 1$. From the minimax principle (e.g., see [11]), we have $\lambda_1(\eta_1(a)) \leq 1$. If $\lambda_1(\eta_1(a)) = 1$, then $\widehat{\sigma}(\eta_1(a)) = 0$, and hence, from the initial conditions (2.10) and Rolle's theorem, there exists a first systems-conjugate point $\widehat{\eta}_1(a) \in (a, \eta_1(a))$. Suppose now $\lambda_1(\eta_1(a)) < 1$. According to Lemma 2.5, if $\lambda_1(b) < 1$ for $b \in (a, \eta_1(a)]$, then it is simple, and hence

$$\widehat{\sigma}(\lambda_1(b),b)=0,\quad rac{\partial \widehat{\sigma}}{\partial \lambda}(\lambda,b)_{|\lambda=\lambda_1(b)}
eq 0.$$

Thus, by the implicit function theorem, if $\lambda_1(b) < 1$, then it is a continuous function of $b \in (a, \eta_1(a))$. From this and Lemma 2.3, it follows that, as b varies from $\eta_1(a)$ to a, $\lambda_1(b) \to +\infty$, and for some $b^* \in (a, \eta_1(a))$ we have $\lambda_1(b^*) = 1$. Therefore, $\widehat{\sigma}(1, b^*) = 0$, and again by the initial conditions (2.10) and Rolle's theorem, there exists the first systems-conjugate point $\widehat{\eta}_1(a) \in (a, \eta_1(a))$ for (1.1). The proof of the theorem is complete.

References

- D. O. Banks and G. J. Kurowski, A Prüfer transformation for the equation of a vibrating beam subject to axial forces. J. Differential Equations 24(1977), no. 1, 57–74. http://dx.doi.org/10.1016/0022-0396(77)90170-X
- J. H. Barrett, Systems-disconjugacy of a fourth-order differential equations. Proc. Amer. Math. Soc. 12(1961), 205–213.
- [3] _____, Fourth order boundary value problems and comparison theorems. Canad. J. Math. 13(1961), 625–638. http://dx.doi.org/10.4153/CJM-1961-051-x
- [4] J. Ben Amara, Oscillation criteria for fourth-order linear differential equations with middle term. Math. Nachr., to appear.
- [5] R. Courant and D. Hilbert, Equations of mathematical physics. Vol. I. Interscience Publishers, New York, 1953
- [6] L. Greenberg, An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues. SIAM J. Math. Anal. 22(1991), no. 4, 1021–1042. http://dx.doi.org/10.1137/0522067
- [7] D. B. Hinton, Clamped end boundary conditions for fourth-order selfadjoint differential equations. Duke Math. J. 34(1967), 131–138. http://dx.doi.org/10.1215/S0012-7094-67-03415-1
- [8] W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of fourth order. Trans. Amer. Math. Soc. 98(1958), 325–377. http://dx.doi.org/10.1090/S0002-9947-1958-0102639-X
- R. T. Lewis, The oscillation of fourth order linear differential equations. Canad. J. Math. 27(1975), 138–145. http://dx.doi.org/10.4153/CJM-1975-017-4
- [10] E. Müller-Pfeiffer, Oscillation criteria for selfadjoint fourth order differential equations. J. Differential Equations 46(1982), no. 2, 194–215. http://dx.doi.org/10.1016/0022-0396(82)90115-2
- [11] H. F. Weinberger, *Variational methods for eigenvalue approximation*. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, 15, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974.

Faculté des Sciences de Bizerte, Tunisia e-mail: jamel.benamara@fsb.rnu.tn