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Comparison Theorem for Conjugate Points
of a Fourth-order Linear
Differential Equation

Jamel Ben Amara

Abstract. In 1961, J. Barrett showed that if the first conjugate point η1(a) exists for the differential

equation (r(x)y ′′)′′ = p(x)y, where r(x) > 0 and p(x) > 0, then so does the first systems-conjugate

point η̂1(a). The aim of this note is to extend this result to the general equation with middle term

(q(x)y ′)′ without further restriction on q(x), other than continuity.

1 Introduction

This note is concerned with the fourth-order differential equation

(1.1) (r(x)y ′ ′) ′ ′ − (q(x)y ′) ′ = p(x)y,

where r(x) > 0, p(x) ≥ 0, and q(x) are continuous functions on [a,∞), a ≥ 0. In

the case q(x) ≡ 0, Leighton and Nehari [8] introduced the double-zero conjugate

point concept of which the first conjugate point η1(a) of a is defined as the smallest

number b ∈ (a,∞) for which the two point boundary conditions

(1.2) y(a) = y ′(a) = y(b) = y ′(b) = 0

are satisfied by a nontrivial solution of equation (1.1).

Later, Barrett [2] introduced and defined the first systems-conjugate point η̂1(a)

of a as the smallest number b ∈ (a,∞) for which the two point boundary conditions

y(a) = y1(a) = y(b) = y1(b) = 0

(y1(x) = r(x)y ′ ′) are satisfied by a nontrivial solution of equation (1.1) for q(x) ≡ 0.

The notation y1(x) will be used throughout the paper. In [2, Th. 4.1] it is shown that

if η1(a) exists for (1.1) with q(x) ≡ 0, then η̂1(a) exists.

In this paper, these results are extended to equation (1.1) without further restric-

tions on the coefficients r(x), q(x) and p(x). Furthermore, the following relation is

established 0 < η̂1(a) < η1(a). Note that, in view of the extension of Barrett’s the-

orem, all the criteria for the existence of η1(a) (e.g., see [4, 7, 9, 10]) also ensure the

existence of η̂1(a).
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2 Main Results and Preliminaries

The main result of this paper is stated as follows:

Theorem 2.1 If η1(a) exists for (1.1), then so does η̂1(a), and a < η̂1(a) < η1(a).

For the proof of Theorem 2.1, we need some preliminary results. The following

comparison theorem was stated in [3, Theorem 5.1] for q(x) ≤ 0, and later was

extended in [7, Corollary 2.2] to the general case. Here, we propose a simpler proof of

this theorem, which is based on an extension of the Leighton–Nehary transformation

[8, Theorem 12.1].

Lemma 2.2 Let p0(x) > 0 be a continuous function on [a,∞) such that, in compari-

son with the coefficient p(x) > 0 in (1.1), p0 ≤ p. If the first conjugate point exists, say

η0
1(a), for the equation

(2.1) (r(x)y ′ ′) ′ ′ − (q(x)y ′) ′ = p0(x)y,

then η1(a) exists for the original equation (1.1) and a < η1(a) ≤ η0
1(a), with equality

holding if and only if p0 ≡ p

Proof According to [8, Theorem 12.1], if the following initial value problem

(ry ′) ′ − q(x)y = 0, a ≤ x ≤ b,(2.2)

y ′(a) = 0, y(a) = 1(2.3)

has a positive solution h(x) on the interval [a, b], then the change of variables t(x) :=∫ x

a
h(s)ds transforms [a, b] into the t-interval [0, b̃] (where b̃ =

∫ b

a
h(s)ds) and equa-

tion (1.1) into

(2.4)
(

r̃(t)h̃3(t) ÿ
) ..

= h̃−1 p̃(t)y.

Here, p̃(t) = p(x(t)), h̃(t) = h(x(t)), and · is d
dt

. If y is a nontrivial solution of (1.1),

then ỹ(t) ≡ y(x(t)) is a nontrivial solution of (2.4) and ˙̃y = y ′h−1. Assume now

that problem (2.2)–(2.3) has a solution h(x) that changes sign in (a, b). In this case,

it is easily seen that the first eigenvalue µ1 of the boundary problem

−(ry ′) ′ + q(x)y = λy, a ≤ x ≤ b, y ′(a) = y ′(b) = 0

is negative. Let h(x) := y(x, µ1) be the corresponding eigenfunction. It is known

from the Sturm oscillation theory that it has constant sign on [a, b]. Without loss

of generality, we suppose that h(x) > 0. By the use of the same change of variables

t(x) :=
∫ x

a
h(s)ds, equations (1.1) and (2.1) are rewritten in the forms

(
r̃(t)h̃3(t) ÿ

) ..
− µ1

(
h̃(t) ẏ

) .
= h̃−1 p̃(t)y(2.5)

and

(r̃(t)h̃3(t) ÿ)
..
− µ1

(
h̃(t) ẏ

) .
= h̃−1 p̃0(t)y,(2.6)
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respectively. Obviously, if p0(x) ≤ p(x) on [a, b] then h̃−1 p̃0(t) ≤ h̃−1 p̃(t) on [0, b̃].

If we put b = η0
1(a), then η̃0

1(a) exists for (2.6) and b̃ = η̃0
1(a). Consequently, since

the coefficient in the middle term of (2.6) is negative, in view of [3, Theorem 5.1],

there follows the existence of η̃1(a) for (2.5), and η̃1(a) ≤ η̃0
1(a). Therefore, η1(a)

exists for (1.1), and η1(a) ≤ η0
1(a). The lemma is proved.

For convenience, we introduce the following equation similar to (1.1), but de-

pending on a parameter λ ∈ R:

(2.7) (r(x)y ′ ′) ′ ′ − (q(x)y ′) ′ = λp(x)y.

The following lemma is similar to that of Greenberg [6] stated for the first eigen-

value of problem (1.1)–(1.2).

Lemma 2.3 Let λ1(b) denote the first eigenvalue of the eigenvalue problem determined

by equation (2.7) and the boundary conditions

(2.8) y(a) = y1(a) = y(b) = y ′(b) = 0.

If b → a, then λ1(b) → +∞.

Proof It is well known (see for example [1]) that the spectrum of problem (2.7)–

(2.8) is discrete; it consists of a sequence of real eigenvalues tending to +∞. Let

b0 > a; then from the minimax principle, we have, for every b ∈ (a, b0]:

λ1(b) = min
y∈H

I(y)
∫ b

a
p(y)2dx

,

where I(y) =

∫ b

a
r(y ′ ′)2 + q(y ′)2dx and H is a set of nontrivial admissible function

y (i.e., y(x) ∈ C1[a, b], y ′ is absolutely continuous and y ′ ′ ∈ L2[a, b]) for which

y(a) = y(b) = y ′(b) = 0. The following expressions follows from the Cauchy–

Schwarz inequality:

∫ b

a

(y)2dx ≤ (b − a)

∫ b

a

(y ′)2dx,

∫ b

a

(y ′)2dx ≤ (b − a)

∫ b

a

(y ′ ′)2dx.

Therefore,

I(y) ≥
p∗

∫ b

a
(y)2dx

(b − a)2
+

q∗
∫ b

a
(y)2dx

(b − a)
,

where f ∗ = minx∈[a,b0] f (x), so that

I(y)
∫ b

a
p(y)2dx

≥
1

r∗

( p∗

(b − a)2
+

q∗

(b − a)

)
,

where r∗ = maxx∈[a,b0] r(x). Thus,

λ1(b) ≥
1

r∗

( p∗

(b − a)2
+

q∗

(b − a)

)
,

and, hence limb→a λ1(b) = +∞.
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Lemma 2.4 Assume that η1(a) exists for equation (1.1). Then λ = 1 is the first

eigenvalue of problem (2.7)–(1.2) for b = η1(a).

Proof Obviously if η1(a) exists, then λ = 1 is an eigenvalue of problem (2.7)–(1.2)

for b = η1(a). Thus the lowest eigenvalue λ1 of this problem will satisfy λ1 ≤ 1. Let

η1(a, λ) denote the fist conjugate point related to equation (2.7). If λ1 < 1, then in

view of Lemma 2.2, we have η1(a, 1) < η1(a, λ1) = η1(a). Therefore, η1(a, 1) is the

first conjugate point of (1.1) which is less than η1(a), a contradiction.

Lemma 2.5 Assume that η1(a) exists for equation (1.1), and λ1(b) is the first eigen-

value of problem (2.7)–(2.8). If λ1(b) < 1 for b ≤ η1(a), then λ1(b) is a simple

eigenvalue.

Proof Suppose that there exists b0 ∈ (a, η1(a)] such that λ1(b0) < 1, and it is an

eigenvalue of multiplicity 2. Let y1 and y2 be the corresponding eigenfunctions. It is

known that any solution y of equation (2.7) (for λ = λ1(b0)) that satisfies the initial

conditions

(2.9) y(b0) = y ′(b0) = 0,

can be expressed as a linear combination of y1 and y2. Let y be a nontrivial solution

of problem (2.7)–(2.9). Then y(x) = αy1(x) + βy2(x), where (α, β) ∈ R
2. Since

y1(a) = y2(a) = 0, y(a) = 0 and

det

(
y1(a) y2(a)

y ′
1(a) y ′

2(a)

)
= 0.

Therefore, for some α, β we have y ′(a) = 0, and this implies that λ1(b0) is also an

eigenvalue of the problem determined by equation (2.7) and the boundary conditions

y(a) = y ′(a) = y(b0) = y ′(b0) = 0.

This means that the first conjugate point η1(a, λ1(b0)) exists for equation (2.7) (for

λ = λ1(b0)) and satisfies η1(a, λ1(b0)) ≤ η1(a). This yields a contradiction in view

of Lemma 2.2.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 As noted above, any solution of equation (2.7) that satisfies

the initial conditions y(a) = y1(a) = 0 may be written as a linear combination of

u(x) and v(x), which are the fundamental solutions of equation (2.7), whose initial

conditions are

u(a) = u1(a) = Tu(a) = 0, u ′(a) = 1,

v(a) = v ′(a) = v1(a) = 0, Tv(a) = 1,

where, Ty(x) = (r(x)y ′ ′) ′ − q(x)y ′. We introduce the following subwronskians:

σ̂(x) := σ̂(λ, x) = uv ′(x) − vu ′(x),

rσ̂ ′(x) := rσ̂ ′(λ, x) = uv1(x) − vu1(x),
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which satisfy the initial conditions

(2.10) σ̂(a) = σ̂ ′(a) = 0.

It is easy to see that η̂1(a) is the first zero on (a,∞) of σ̂ ′. It is well known (e.g., see

[5]) that the spectra of problems (2.7)–(1.2) and (2.7)–(2.8) consist of a sequence

of real eigenvalues tending to +∞. Let λ ′
1(b) and λ1(b) be the first eigenvalues of

Problems (2.7)-(1.2) and (2.7)-(2.8), respectively. In view of Lemma 2.4, if η1(a)

exists for (1.1), then λ ′
1(η1(a)) = 1. From the minimax principle (e.g., see [11]),

we have λ1(η1(a)) ≤ 1. If λ1(η1(a)) = 1, then σ̂(η1(a)) = 0, and hence, from the

initial conditions (2.10) and Rolle’s theorem, there exists a first systems-conjugate

point η̂1(a) ∈ (a, η1(a)). Suppose now λ1(η1(a)) < 1. According to Lemma 2.5, if

λ1(b) < 1 for b ∈ (a, η1(a)], then it is simple, and hence

σ̂(λ1(b), b) = 0,
∂σ̂

∂λ
(λ, b)|λ=λ1(b) 6= 0.

Thus, by the implicit function theorem, if λ1(b) < 1, then it is a continuous function

of b ∈ (a, η1(a)). From this and Lemma 2.3, it follows that, as b varies from η1(a)

to a, λ1(b) → +∞, and for some b∗ ∈ (a, η1(a)) we have λ1(b∗) = 1. Therefore,

σ̂(1, b∗) = 0, and again by the initial conditions (2.10) and Rolle’s theorem, there

exists the first systems-conjugate point η̂1(a) ∈ (a, η1(a)) for (1.1). The proof of the

theorem is complete.
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