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Abstract

We classify fibrations of abstract 3-regular GKM graphs over 2-regular ones, and show
that all fibrations satisfying the known necessary conditions for realizability are, in
fact, realized as the projectivization of equivariant complex rank-2 vector bundles over
quasitoric 4-manifolds or S4. We investigate the existence of invariant (stable) almost
complex, symplectic, and Kähler structures on the total space. In this way, we obtain
infinitely many Kähler manifolds with Hamiltonian non-Kähler actions in dimension 6
with prescribed one-skeleton, in particular with a prescribed number of isolated fixed
points.
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1. Introduction

While, as shown by Karshon [Kar99], any effective Hamiltonian circle action on a compact
symplectic 4-manifold with finite fixed point set extends to a toric action, an analogous statement
in higher dimensions is no longer true. In fact, Tolman [Tol98] gave the first example of a
Hamiltonian T 2-action on a compact 6-dimensional symplectic manifold with finite fixed point
set that does not admit an invariant Kähler structure. Her proof relied solely on the shape of
the image of the moment map, or rather the x-ray which also contains the subpolytopes given
by the images of the lower-dimensional orbit type strata. In the toric setting, the moment image
contains the entire information of the x-ray and by Delzant’s theorem [Del88] there is a one-
to-one correspondence between Delzant polytopes and toric manifolds. If one had variants of
this correspondence outside of the toric case, this would in theory enable the construction of
Hamiltonian non-Kähler actions just by drawing specific x-rays. This is the core idea of the
present article.

Our language of choice is not the x-ray but the GKM graph [GKM98] which encodes the
one-skeleton of the space in a labelled graph. In our setting, which is T 2-actions in dimension
6 with finite fixed point set (in particular, these are actions of complexity one [KT03] which
are not tall), this contains, up to lengths of edges, the same information as the x-ray. GKM
graphs have the advantage of not being bound to Hamiltonian actions but rather being able to
model arbitrary GKM actions while further geometric structures (almost complex, symplectic, or
Kähler) are reflected in properties of the graph (see § 2). Regarding beginnings of a Delzant-type
correspondence, we proved in [GKZ19] that in dimension 6, for GKM actions with connected
stabilizers on simply connected manifolds (these conditions are automatic in the toric setting),
the GKM graph does encode the non-equivariant diffeomorphism type. From this we deduced that
Tolman’s original example is diffeomorphic to Eschenburg’s twisted flag manifold SU(3)//T 2 (see
[Esc84, Esc92]), which is the projectivization of a complex T 2-equivariant rank-2 vector bundle
over CP

2. This implied, in particular, that Tolman’s example is Kähler, although of course not
in an equivariant fashion.

From the point of view of GKM theory, the fact that Tolman’s example is a projectivized
equivariant bundle is reflected in the fact that its GKM graph fibers over the GKM graph of CP

2,
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see also Example 4.8. Formally, we make use of the notion of a fibration of abstract GKM graphs,
introduced by Guillemin, Sabatini, and Zara [GSZ12], which we review in § 3.

In this paper, we extend this viewpoint on Tolman’s example to the more general setting of
6-dimensional GKM T 2-manifolds with an arbitrary (finite) number of fixed points. As stated
initially, the purpose here is twofold: on the one hand we contribute to the realization problem
of abstract GKM graphs by showing that many GKM fibrations in dimension 6 are, in fact,
realizable. On the other hand, we closely investigate how Tolman’s original example embeds in
this context which uncovers a rich variety of new examples of Hamiltonian non-Kähler actions
for any possible number of fixed points. In a little more detail, our results can be summarized
as follows.

Realization. We prove that every fiberwise signed GKM fibration with values in Z
2 (see

Definition 3.4) of a 3-regular abstract GKM graph over an effective 2-regular abstract GKM
graph can be realized geometrically by a fibration of GKM T 2-manifolds (see Theorem 5.1). The
realization is given as the (6-dimensional) projectivization of a rank-2 complex T 2-vector bundle
over a 4-dimensional T 2-manifold. The first step to construct the bundle is to do so separately
over each invariant two-sphere in the base such that its projectivization is a specific Hirzebruch
surface. We proceed to glue those to obtain a bundle over the entire one-skeleton and finally
extend the bundle to the whole base with the use of equivariant obstruction theory. Conversely,
we argue in Proposition 3.8 that the aforementioned conditions on the abstract graph fibrations
are, in fact, also necessary in order to be realized by an equivariant fiber bundle of effective GKM
T 2-manifolds in these dimensions.

Geometric structures. We go on to show that certain properties of the graphs lead to corre-
sponding geometric structures on the realizations: a signed GKM structure on the base graph
lets us choose almost complex realizations and if, furthermore, the base graph is the boundary
of a Delzant polytope, then our realizations are Hamiltonian actions. In the latter case, the
T 2-invariant symplectic form on the total space also admits a compatible complex structure
(in fact, the manifold is even projective). However, the complex structure is not necessarily
T 2-invariant.

(Non-)Existence of invariant Kähler structures. Regarding the T 2-invariance of the complex
structures which are present in the Hamiltonian case, we prove the following: if the GKM
fibration is graph theoretically a Möbius band and n− 1 of the 2n fixed points (n �= 4) map
to the interior of the moment image, then there cannot exist a T 2-invariant Kähler structure
(Theorem 7.1). This is done by classifying all possible signed GKM structures that a T 2-invariant
almost complex structure could induce on the underlying GKM graph and proving individually
that they do not come from a Kähler action. In combination with the previous results this yields
that every fibration of abstract GKM graphs of the above type gives rise to a T 2-action in the
spirit of Tolman’s original example, i.e. a Hamiltonian action with isolated fixed points on a
simply connected compact 6-dimensional manifold such that no T 2-invariant Kähler structure
exists, while the symplectic form itself is non-equivariantly Kähler. Whether the stabilizers of
the realizations are connected, as they are in Tolman’s example, depends on the respective GKM
graph (see Theorem 5.1). In contrast to the Tolman-type scenario, in case the GKM fibration is
graph theoretically of product type there always exists a T 2-invariant complex structure (§ 6.3).

Classification of GKM fibrations. Finally, we quantify the new examples by classifying fiberwise
signed GKM fibrations over a fixed base graph. Up to isomorphism they correspond bijectively
to ((Z− 0)n/±)× {0, 1} (Proposition 4.5). In case B is the boundary of a Delzant polytope
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the Hamiltonian non-Kähler actions described above correspond to the elements of the form
([k1, . . . , kn], 1) such that ki and ki−1 have the same sign for all but one i ∈ {1, . . . , n}, where
we set k0 = −kn (Proposition 4.10). In particular, every such tuple in combination with a 2-
dimensional Delzant polytope gives rise to an exotic Hamiltonian action in the previous sense.
We prove that different tuples (up to signs and permutation) produce examples of different
equivariant homotopy type (Corollary 8.3). In addition, we compute the (non-equivariant) coho-
mology rings as well as the Chern classes and verify that even in the case of manifolds with 6
fixed points, which fiber over CP

2, our method produces infinitely many pairwise not homotopy
equivalent examples of manifolds carrying such an exotic Hamiltonian action (§ 9).

2. GKM theory and geometric structures

The purpose of this section is to review the basics of GKM theory and see how different geometric
structures on manifolds leave their mark on the GKM graph.

2.1 GKM manifolds
For an action of a compact torus T on a connected, compact manifold M , we consider its
fixed point set MT = {p ∈M | T · p = {p}} as well as its one-skeleton M1 = {p ∈M | dimT ·
p ≤ 1}. In GKM theory, named after Goresky, Kottwitz, and MacPherson [GKM98], one puts
certain assumptions on the action that allow us to encode the structure of the one-skeleton in
a labelled graph. More precisely, we say that the action satisfies the GKM conditions, or that
it is a GKM action, if M is orientable, MT is a finite set of points, and M1 a finite union of
T -invariant 2-spheres. A manifold together with a GKM (T -)action will also be referred to as
a GKM (T -)manifold. Note that a finite non-empty fixed point set forces the manifold to be
even-dimensional.

In this setting, the orbit space of the one-skeleton M1/T has the structure of a graph Γ, with
one vertex for each fixed point, and one edge for each invariant 2-sphere. The vertex set of a
graph Γ will be denoted by V (Γ), and the set of edges by E(Γ). Formally, we include each edge
twice, once for each orientation, in the edge set E(Γ). For an oriented edge e ∈ E(Γ) we denote
its initial vertex by i(e) and its terminal vertex by t(e); the edge e with the opposite orientation
will be denoted ē. We write E(Γ)v for the set of edges e ∈ E(Γ) emanating from v. At each fixed
point p of the action the isotropy representation decomposes into n two-dimensional summands,
where 2n is the dimension of M . The n weights of these irreducible submodules are elements
of Z

∗
t/± 1, where Z

∗
t ⊂ t∗ is the weight lattice of T . Any such weight corresponds uniquely to

an invariant 2-sphere containing p, and we put it as a label of the corresponding edge of Γ. In
total, we obtain a map α : E(Γ)→ Z

∗
t/± 1 which we call an axial function, following [GZ99].

The graph Γ, together with the axial function α, will be called the GKM graph of the T -action.

Remark 2.1. Often, one includes the vanishing of the odd-dimensional cohomology groups of M
as part of the GKM conditions, in order to make the connection between the GKM graph and
(equivariant) cohomology. The focus of this paper is the realization of certain GKM graphs and
their geometrical properties. All our examples will automatically satisfy this condition.

Independent of this geometric setting, one can define abstract GKM graphs [GZ01]. The
graphs one considers have finite vertex and edge sets; we allow multiple edges between vertices,
but no loops, i.e. edges that connect a vertex to itself.
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Definition 2.2. A connection on a graph Γ consists of a bijective map ∇e : E(Γ)i(e) → E(Γ)t(e)

for each e ∈ E(Γ), such that:

(1) ∇ee = ē; and
(2) (∇e)−1 = ∇ē for all e ∈ E(Γ).

Definition 2.3. An (abstract) GKM graph (Γ, α) consists of an n-valent connected graph Γ
and a map α : E(Γ)→ Z

m/± 1, called an axial function, such that there exists a connection ∇
on Γ for which the following hold.

(1) For every v ∈ V (Γ) and distinct edges e, f ∈ E(Γ)v we have that α(e) and α(f) are linearly
independent.

(2) The connection ∇ is compatible with α, i.e. for every v ∈ V (Γ) and edges e, f ∈ E(Γ)v and
any sign choices for the elements in Z

m/± we have

α(∇ef) = εα(f) + cα(e)

for some ε ∈ {±1} and c ∈ Z.
(3) For every e ∈ E(Γ) we have α(ē) = α(e).

Note that the linear independence of α(e) and α(f) in the first condition, which is defined
via preimages under Z

m → Z
m/± 1, is well defined.

Remark 2.4. In the definition of an abstract GKM graph, no acting torus is fixed. Whenever a
GKM graph is associated to an action of a torus Tm or realization of abstract GKM graphs is
considered in the context of a fixed torus, we identify its Lie algebra t with R

m in such a way
that Z

∗
t corresponds to Z

m ⊂ R
m ∼= (Rm)∗. In analogy with the geometric situation we also refer

to the values of the axial function as weights or labels of edges.

Remark 2.5. Given an action of a torus T on a connected, compact manifold M satisfying the
GKM conditions, the GKM graph of the action admits a compatible connection, see [GW22,
Proposition 2.3] or [GZ01]. Note that there exist different conventions in the literature of whether
the connection is part of the structure of an abstract GKM graph or not. In general, the connec-
tion is not unique and there is no canonical choice, which is why we chose to not fix a connection
for the abstract object in order to keep the passage from geometry to graphs canonical. In
addition, an equivariant diffeomorphism induces a map on the graph level (see the notion of
isomorphism below) which is not necessarily compatible with specific choices of connections.
This is why it is not handy to have connections as part of the abstract data in particular for
classification purposes.

Definition 2.6. Let (Γ, α) be a GKM graph and Γ′ a connected regular subgraph of Γ. If
(Γ′, α|E(Γ′)) is a GKM graph (i.e. it admits a compatible connection), then we call it a GKM
subgraph of (Γ, α).

Following [FY19] we make the following definition.

Definition 2.7. An isomorphism (Γ, α)→ (Γ′, α′) between GKM graphs consists of bijections
f and g between the vertex and edge sets and an automorphism ϕ of Z

m such that for any
e ∈ E(Γ) we have:

(1) f(i(e)) = i(g(e));
(2) f(t(e)) = t(g(e));
(3) ϕ(α(e)) = α′(g(e)).

We remark that any equivariant homeomorphism between two GKM manifolds induces such
an isomorphism of GKM graphs, with the automorphism ϕ equal to the identity.
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Definition 2.8. We call a GKM graph with labels in Z
m effective if at one (and, hence, every)

vertex, the labels of the outgoing edges lift to a generating set of Z
m.

The terminology is justified by the fact that a GKM Tm-action on a manifold is effective if
and only if the corresponding GKM graph is effective: for any vertex v of the GKM graph, the
kernel of the action is given as the intersection of the kernels of the α(e), where e varies over all
edges emanating from v. Here, we interpret the α(e) as homomorphisms Tm → S1.

2.2 Almost complex structures
Recall that an almost complex structure on a smooth manifold M is a smooth endomorphism
J of TM satisfying J2 = −Id. If such an endomorphism is present on the bundle TM ⊕ R

k for
some k, then we speak of a stable almost complex structure. If an almost complex structure is
integrable, then we refer to it as a complex structure.

Given a T -invariant almost complex structure on M , the weights of the isotropy represen-
tation have a well-defined sign, i.e. are elements of Z

∗
t . We will speak of the signed GKM graph

of the action when we consider the graph Γ with these weights as labels. Formally, the axial
function becomes a map α : E(Γ)→ Z

∗
t , by associating to e the weight of the corresponding

summand of the isotropy representation at i(e). Abstractly, we make the following definition.

Definition 2.9. An abstract signed GKM graph (Γ, α) consists of an n-valent connected graph
Γ and a map α : E(Γ)→ Z

m, called axial function, such that there exists a compatible connection
∇ on Γ for which the following hold.

(1) For every v ∈ V (Γ) and distinct edges e, f ∈ E(Γ)v we have that α(e) and α(f) are linearly
independent.

(2) The connection ∇ is compatible with α, i.e. for every v ∈ V (Γ) and edges e, f ∈ E(Γ)v we
have

α(∇ef) = α(f) + cα(e)

for some c ∈ Z.
(3) For every e ∈ E(Γ) we have α(ē) = −α(e).

Remark 2.10. By composing the axial function of a signed GKM graph with the projection
Z

m → Z
m/± one obtains an (unsigned) GKM graph. Note that a connection which is compatible

with the signed GKM graph is, in particular, compatible with the (unsigned) GKM graph. We
also call the signed graph a compatible signed structure of the underlying GKM graph. There
might be different signed structures compatible with a single GKM graph. If these were induced
by an almost complex GKM action as explained previously, then different signed structures would
correspond to different homotopy classes of compatible almost complex structures. The existence
of a compatible signed structure is clearly an obstruction to the existence of an invariant almost
complex structure. For example, it is easy to check that the GKM graph

(1, 0)

(0, 1)

of the standard T 2-action on S4 ⊂ C
2 ⊕ R does not carry a compatible signed structure.

The definitions of GKM subgraphs and isomorphisms of GKM graphs carry over to the
signed setting in an obvious fashion. Moreover, any equivariant diffeomorphism between two
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GKM manifolds that respects T -invariant almost complex structures induces an isomorphism of
the corresponding signed GKM graphs.

2.3 Symplectic structures
Just as the existence of invariant almost complex structures impacts the GKM graph of a GKM
manifold, the existence of a compatible symplectic structure forces certain properties onto the
GKM graph. Recall that an almost complex structure J is called compatible with a symplectic
form ω if the two-form v ⊗ w �→ ω(v, Jw) defines a Riemannian metric. For any T -invariant sym-
plectic form there exists a T -invariant compatible almost complex structure, hence combinatorial
consequences of symplectic structures contain those from the almost complex case.

More precisely, we consider for a Hamiltonian GKM action of a torus T on a symplectic
manifold M a moment map μ : M → t∗ into the dual of the Lie algebra of T . An invariant two
sphere S2 ⊂M gets mapped under μ to an affine linear interval in t∗ whose boundary points
are the images of the fixed points. By piecing those together we obtain a linear realization of
the underlying graph of the GKM graph, i.e. an edge-wise affine linear map from the topological
realization of Γ to t∗ (not an embedding), whose image is μ(M1). If (Γ, α) is the signed GKM
graph associated to an almost complex structure which is compatible with the symplectic form,
then the labels are encoded in the linear realization as follows: if e is an oriented edge, then the
slope of the corresponding affine linear segment in t∗ is given by α(e) ∈ Z

∗
t ⊂ t∗. Thus, the linear

realization determines (Γ, α) up to multiples of the weights. The labels are uniquely determined
if we add the assumption that they are primitive.

Remark 2.11. Having such a linear realization is a non-trivial obstruction for a signed GKM
graph to come from a Hamiltonian action. For example, the signed structures of type III in
Theorem 7.1 do not since the cone spanned by the weights of the outgoing edges at every point
is all of t∗.

The convexity theorem, which implies that the image μ(M) of the moment map is the convex
hull of μ(M1), gives additional obstructions. The preimage of an outer edge of the resulting
polytope is contained in M1. Thus, every outer edge of the convex hull μ(M) must be an edge
in μ(M1). As a counterexample, the linear realization

does not have this property (the grid represents the standard basis of Z
2) and it follows from

the results in § 7.3 that, more generally, the signed GKM graph which is uniquely defined by
having this realization and primitive weights does not admit any linear realization with the above
convexity property. Hence, it cannot come from a Hamiltonian action.
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Note that the convexity obstruction from the above remark does not concern the inner
edges of the linear realization. However, in order for a GKM graph to come from a Hamiltonian
T -action additional obstructions for inner edges do exist: for any subtorus T ′ ⊂ T , the action of
T on the submanifold MT ′

is again Hamiltonian, so certain subgraphs of the original GKM graph
do again satisfy the convexity criterion explained in Remark 2.11. These subtleties will not play
a role in our low-dimensional considerations, so we refrain from introducing a precise definition
outside of the case below. Note that GKM graphs of 4-dimensional Hamiltonian manifolds do
indeed satisfy the following.

Definition 2.12. We say that a signed 2-regular GKM graph with labels in Z
m is of polytope

type if, graph theoretically, it is given by the edges of a simple convex 2-polytope in R
m and the

labels of the oriented edges are given by integral representatives of the slopes of the edges.

2.4 Kähler structures
As a last step in the hierarchy we state a certain property of signed GKM graphs coming from
invariant Kähler structures which goes beyond the previous obstructions for Hamiltonian actions.
Recall that a symplectic form is called Kähler if it admits a compatible complex structure. Note
that unlike for T -invariant symplectic forms and T -invariant almost complex structures, the
T -invariance of a Kähler form does not immediately imply the existence of a compatible
T -invariant complex structure. In fact this is false in general as follows from the result of Tolman
[Tol98] mentioned in the introduction as well as from the main results of this article.

In [Tol98, Lemma 3.5] the following is shown. Consider a Hamiltonian T -action on (M,ω)
with ω a Kähler form admitting a T -invariant compatible complex structure. We also refer to
this as a T -invariant Kähler structure. Let V ⊂ TpM be a sum of irreducible summands of the
isotropy representation at a fixed point p such that the weights of those summands form a
minimal generating set of a convex cone in t∗. Then there is a Hamiltonian submanifold of M
containing p whose tangent space at p is V . As a special case, this implies the following.

Corollary 2.13. For any pair of adjacent edges in the signed GKM graph associated to an
action of GKM type with an invariant Kähler structure, there is a 2-regular GKM subgraph of
polytope type containing those edges.

An example where this fails while the obstructions for general Hamiltonian actions hold is
given by the GKM graph with primitive labels and the linear realization
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since the only signed GKM subgraph containing the edges between the three inner vertices is
the graph from Remark 2.11. See also § 7.2 where we will consider this obstruction to the Kähler
property for a large class of graphs.

3. GKM fibrations

Let us review the definition of a GKM fibration, introduced by Guillemin, Sabatini, and Zara in
[GSZ12].

A morphism of graphs π : Γ→ B consists of a map sending vertices of Γ to vertices of
B, as well as a map, also denoted by π, sending an edge between vertices p, q ∈ V (Γ) with
π(p) �= π(q) to an edge between π(p) and π(q). On oriented edges we require that i(π(e)) =
π(i(e)). Edges in Γ between p, q ∈ V (Γ) with π(p) = π(q) are called vertical ; the other edges
are called horizontal. For p ∈ V (Γ) the set of horizontal edges emanating from p is denoted
by Hp.

Remark 3.1. In [GSZ12] morphisms of graphs are defined only on vertices, not on edges.
As we allow multiple edges between vertices, we need to specify images of edges as
well.

The morphism π is a graph fibration if for all p ∈ V (Γ) the map π : Hp −→ E(B)π(p) is a
bijection. In other words, graph fibrations have a unique path-lifting property: given a vertex
p ∈ Γ and an edge e ∈ E(B) with i(e) = π(p), there exists a unique horizontal edge which lies
over e and starts at p.

Of course a fibration of GKM graphs should be compatible with the additional structure.
There are analogous versions of this notion for the signed and the unsigned case.

Definition 3.2. Let (Γ, α) and (B,αB) be (signed) GKM graphs. A graph fibration π : Γ→ B
is a (signed) GKM fibration if there exist connections ∇ and ∇B which are compatible with the
(signed) GKM structures on Γ and B such that additionally the following hold.

(1) For any edge e of B and any lift ẽ of e we have αB(e) = α(ẽ).
(2) For every edge e of Γ, the connection ∇e sends vertical edges to vertical edges (and thus

horizontal edges to horizontal edges).
(3) For two edges e, e′ of B with i(e) = i(e′) and lifts ẽ, ẽ′ of e and e′ with i(ẽ) = i(ẽ′), the edge
∇ẽẽ

′ is the lift of (∇B)ee
′ at t(ẽ).

Remark 3.3. Note that our definition deviates from that in [GSZ12] in that we do not fix connec-
tions as part of the data of GKM fibrations. For the sake of completeness, we also note that there
is the stronger notion of a GKM fiber bundle, which was introduced in [GSZ12] in the signed
case. However, our main interest in this article lies in dimension 6 and the GKM fibrations we
consider will automatically fulfil the stronger requirements of GKM fiber bundles. Thus, there
is no need for us to introduce this more restrictive notion.

The GKM fibrations we can realize geometrically through our main result will have almost
complex fibers. However the base will not need to have an almost complex structure. The natural
setting for this is given by the following definition which is an intermediate notion between
unsigned and signed GKM fibrations.

Definition 3.4. Let π : (Γ, α)→ (B,αB) be a GKM fibration (of unsigned graphs). Let F ⊂
E(Γ) be the set of vertical edges and α̃ : F → Z

m a lift of α : E(Γ)→ Z
m/± satisfying α̃(e) =

−α̃(e). Then we call π together with α̃ a fiberwise signed fibration if the connections ∇ and ∇B
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as in Definition 3.2 can be chosen in a way such that α̃(∇ee
′) ≡ α̃(e′) mod α(e) for any e′ ∈ F

and e ∈ E(Γ).

Lemma 3.5. Every signed fibration of signed GKM graphs gives rise to a fiberwise signed
fibration of the underlying GKM graphs. Conversely, if (π, α̃) is a fiberwise signed fibra-
tion as above, then any signed structure (B, α̃B) compatible with the base graph gives
rise to a unique signed structure on Γ which extends α̃ such that π becomes a signed
fibration.

Proof. The first statement is clear. For the second statement, note that an extension of α̃ to
E(Γ) such that π : (Γ, α̃)→ (B, α̃B) is a signed fibration is unique: on every horizontal edge
e ∈ E(Γ) we need to define α̃(e) = α̃B(π(e)). So it remains to check the existence of a com-
patible connection. Let ∇ be a connection on Γ as in Definition 3.4 and ∇B be a connection
compatible with the signed graph (B, α̃B). We define a new connection ∇′ as follows: for any
edge e ∈ E(Γ) we define ∇′

e as ∇′
e(e

′) = ∇e(e′) if e′ is vertical. On horizontal edges, we define
∇′

e as

Hi(e)
π−→ E(B)i(π(e))

∇B
π(e)−−−→ E(B)t(π(e))

π−1−−→ Ht(e)

if e is horizontal and as

Hi(e)
π−→ E(B)π(i(e)) = E(B)π(t(e))

π−1−−→ Ht(e)

if e is vertical. Then ∇′ and ∇B satisfy the requirements for connections compatible with signed
fibrations. �

Definition 3.6. We call two (signed) GKM fibrations π : (Γ, α)→ (B,αB) and π′ : (Γ′, α′)→
(B,αB) equivalent if there is an isomorphism (f, g, ϕ) : (Γ, α)→ (Γ′, α′) of (signed) GKM graphs
as in Definition 2.7 with ϕ = idZm , which respects the decomposition into vertical and hori-
zontal edges and commutes with the fibrations on vertices and horizontal edges. Two fiberwise
signed fibrations (π, α̃) and (π′, α̃′) are called equivalent if there is an equivalence (f, g, idm

Z
) of

the underlying GKM fibrations such that additionally α̃′(g(e)) = α̃(e) for every vertical edge
e ∈ E(Γ).

We conclude this section with the observation that equivariant fiber bundles of GKM mani-
folds indeed give rise to the combinatoric structure of GKM fibrations. This has been observed in
the case of flag manifolds in [GSZ12]. However, we are not aware of a general account of this fact,
hence we want to give it here. Furthermore, we take this opportunity to geometrically interpret
the newly introduced notion of a fiberwise signed fibration.

Let f : M → N be a T -equivariant map of GKM T -manifolds. Then, in particular, it restricts
to a map M1 → N1 between one-skeleta. This maps fixed points to fixed points. Furthermore, if
S is an invariant 2-sphere in M1 containing the fixed points p, q ∈ ST , then either f(p) = f(q)
or f(S) intersects a two-sphere S′ ⊂ N1 outside of a fixed point. In this case the kernel of the
action on S has to be contained in the kernel of the action on S′. This implies that the weight
associated to S′ in Z

∗
t/± 1 is a multiple of the weight of S. As by assumption the weights of

adjacent 2-spheres are linearly independent, there is exactly one 2-sphere S′ with this property.
Hence, on the level of GKM graphs (ΓM , αM ) and (ΓN , αN ) of M and N we obtain a map
π : V (ΓM )→ V (ΓN ) as well as for any e ∈ E(ΓM ) with π(i(e)) �= π(t(e)) a unique corresponding
edge π(e) ∈ E(ΓN ), where we map oriented edges to oriented edges in a way compatible with
the map on vertices.
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Proposition 3.7. Let F →M
f−→ N be a smooth fiber bundle in which M , N , and all fibers

are GKM T -manifolds and f is T -equivariant.

(i) Then the induced map π on the GKM graphs defined above is a GKM fibration.
(ii) If M and N carry T -invariant almost complex structures commuting with df : TM → TN ,

then π is a signed GKM fibration with respect to the induced signed structures.
(iii) If ker df →M admits the structure of a T -invariant complex vector bundle, then π admits

the structure of a fiberwise signed fibration.

Proof. If q ∈ N , then we denote the fiber over q with Fq, and similarly if p ∈M , we denote by
Fp the fiber containing p. Let p ∈MT , then Fp is preserved by T and the tangent representation
splits as TpM = TpFp ⊕Hp. All 2-spheres corresponding to the irreducible summands in TpFp

belong to vertical edges. We want to argue that all irreducible summands in Hp do indeed
correspond to horizontal edges, i.e. we need π(i(e)) �= π(t(e)) for those edges. Let U ⊂ T be the
codimension 1 subgroup given by the kernel of an irreducible subrepresentation of Hp. The map
df induces a T -equivariant isomorphism Hp

∼= Tf(p)N hence we find a corresponding summand
in Tf(p)N and a corresponding 2-sphere S ⊂ N connecting f(p) to another fixed point q ∈ NT .
Now let η : I → S be an embedded path from f(p) to q. Note that giving I the trivial U -action
makes η U -equivariant. Hence, restricting the F -bundle M → N to η we obtain a U -equivariant
subbundle. The U -equivariant isomorphism class of the resulting bundle F → E → I depends
only on the equivariant homotopy class of the map η, see [Las82, Corollary 2.11]. This is trivial
and, hence, E ∼= Fp × I is equivariantly a product. Hence, EU = FU

p × I and it follows that
every T -fixed point in Fp lies in a common connected component of MU with some point in
the fiber Fq. We claim that every such component of MU does, in fact, contain a point in
F T

q . Indeed, by assumption, Fq is again GKM as a T -manifold and, hence, every component
of FU

q contains a T -fixed point. Hence, we have shown that the 2-sphere leaving our initially
chosen fixed point p and belonging to a subrepresentation of Hp, does indeed contain a fixed
point in another fiber Fq. In particular, the corresponding edge is horizontal. Since Hp

∼= Tf(p)N
the horizontal edges correspond bijectively to the edges in the base graph such that labels are
preserved.

To finish the proof it remains to show that appropriate connections can be chosen. Using
that compatible connections exist on the total space and the base, statements (i) and (ii) could
be deduced by repeating the argument from Lemma 3.5. However, we recall the general geo-
metric argument for the existence of connections (cf. [GW22, Proposition 2.3] or [GZ01]) as we
need to apply it to the fiberwise signed case. Consider a real or complex T -equivariant vector
bundle V → S2, where T acts on S2 via a weight α ∈ Z

∗
t . Let U ⊂ T denote the kernel of the

action on S2, let p, q ∈ S2 be the two fixed points and consider the T -representations Vp and
Vq over the fixed points. Then Vp

∼= Vq as U -representations. One way to see this is to connect
p and q by a path η : I → S2, which we consider as a U -equivariant map and note that it is
U -equivariantly homotopic to the constant map at p. Hence, from [Las82, Corollary 2.11] it fol-
lows that the pullback of V to I along η is isomorphic (as a real or complex U -vector bundle)
to the product Vp × I and, in particular, Vp

∼= Vq as U -representations. In that case, the irre-
ducible T -representations of Vp can be associated bijectively to those at Vq with the property
that they become isomorphic after restricting to U . For the weights β, γ of two such irreducible
representations the last condition is equivalent to β ≡ γ mod α in the case of complex vector
bundles or to β ≡ ±γ mod α in the case of real bundles (after choosing a sign for the weights).
Applying this to the case of TM concludes the classical proof of existence of a connection by
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taking any bijection with the above property (not canonical) of the irreducible tangent represen-
tations at adjacent fixed points and using it to define a bijection of the corresponding edges. In
case TM has a T -invariant almost complex structure, this will produce a connection for the signed
graph.

Returning to the case of fibrations, let p, q ∈MT be two fixed points connected by an invari-
ant 2-sphere Se corresponding to a horizontal edge e. In order to define transport along e
suppose a connection ∇N has been fixed for N . We have a decomposition TpM ∼= TpFp ⊕Hp and
Hp
∼= Tf(p)N as T -representations. Then the bijection of irreducible subrepresentations of Tf(p)N

and Tf(q)N provided by ∇N lifts to a map between subrepresentations of Hp and Hq. This tells us
how to define the transport ∇M

e of horizontal edges along horizontal edges. In case (ii) we choose
∇N to be compatible with the signed structure. Then since Hp

∼= Tf(p)N is by assumption an iso-
morphism of complex representations it follows that ∇M will also be compatible with the signed
structure on the horizontal edges. When transporting vertical edges along any horizontal or verti-
cal edge, we just apply the previously described general procedure of defining a connection to the
subbundle ker df →M . Recall that in cases (ii) and (iii) the almost complex structure on ker df
defines unique signs for the vertical weights by associating to an oriented edge the weight of the
corresponding irreducible complex subrepresentation at its starting point. By the definition of the
connection, it respects these signs. Finally, when transporting a horizontal edge along a vertical
edge e from p to q, we just use the isomorphismHp

∼= Tf(p)N ∼= Hq provided by df . In case (ii) this
is, in fact, an isomorphism of complex representations, hence the connection respects the signed
structures. �

In view of the requirements for our main realization result we observe that the fiber-
wise signed condition is indeed necessary when realizing GKM fibrations with 2-dimensional
fibers.

Corollary 3.8. Let F →M
f−→ N be as above and assume that F is of dimension 2. Then the

associated GKM fibration admits a fiberwise signed structure.

Proof. By assumption, M and N are orientable. This implies that ker df is an orientable
T -equivariant real rank-2 vector bundle. We choose a T -invariant metric on ker df .
Identifying the fibers with C via a positively oriented orthonormal frame induces an almost
complex structure on ker df . By T -invariance of the metric, this structure is T -invariant as well.
Now apply part (iii) of Proposition 3.7. �

4. GKM fibrations in dimension 6

In this section we consider GKM fibrations Γ→ B where Γ is 3-regular, B is 2-regular, and
weights in Z

2/± 1 (on the geometric side this would, in the case of realizability, correspond
to an equivariant fibration of a 6-dimensional T 2-manifold over a 4-dimensional T 2-manifold).
All fibrations will be assumed to be of this form even if not explicitly stated. Note that graph
theoretically there is not much variety to what can happen: B is necessarily an n-gon (since it
is 2-regular and connected).

Definition 4.1. If the lifts of a path around the n-gon B are closed in Γ, then we say Γ is of
product type. If not, then we say Γ is of twisted type.
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Example 4.2. The following are examples of linear realizations of total spaces of GKM fibrations
of twisted type over a 5- respectively 6-gon.

It is not hard to see that the underlying graph of Γ is determined up to isomorphism by
whether it is of product or of twisted type: it either looks like a Möbius band or the product of
a circle with an interval. However, if we add the additional structure of the labels to the picture,
the situation becomes more interesting.

Lemma 4.3. If π : (Γ, α)→ (B,αB) admits a compatible structure of a fiberwise signed fibration,
then there are precisely two possible choices for the lift α̃ : F → Z

2 of α on vertical edges. Both
choices are equivalent as fiberwise signed fibrations.

Proof. Suppose we have two lifts α̃, α̃′ : F → Z
2 of α where F ⊂ E(Γ) are the vertical edges. Let

e ∈ E(Γ) be a horizontal edge. If e′ and e′′ are the unique vertical edges emanating from i(e)
and t(e), then a compatible connection ∇ necessarily satisfies ∇e(e′) = e′′. Thus, α̃(e′) ≡ α̃(e′′)
mod α(e) and α̃′(e′) ≡ α̃′(e′′) mod α(e). It follows that α̃ and α̃′ either agree or disagree on
both, e′ and e′′. Inductively, this extends to all vertical edges. Conversely if α̃ defines a fiberwise
signed structure, then −α̃ clearly does as well. An equivalence of (π, α̃) and (π,−α̃) is given by
the isomorphism that interchanges the vertices of each vertical edge. �

It follows from the lemma above that two fiberwise signed fibrations are equivalent as such if
and only if they are equivalent as unsigned GKM fibrations. Thus, equivalence classes of fiberwise
signed fibrations naturally form a subset of equivalence classes of (unsigned) GKM fibrations.

Remark 4.4. There is an involution on the set of equivalence classes of GKM fibrations: given
Γ→ B, choose two horizontal edges covering the same edge in the base graph. In one of the fibers
we detach the edges from their vertices and reglue them but with the fiber vertices interchanged.
The labels of the edges stay the same. This construction is, of course, self-inverse. It maps GKM
fibrations which admit the structure of a fiberwise signed fibration to GKM fibrations which do
not carry such a structure and vice versa. A classification of fiberwise signed fibrations extends
to a classification of all GKM fibrations.

Proposition 4.5. Let B be an effective 2-valent GKM graph with n vertices. Then there is a
bijective correspondence

fiberwise signed 3-valent GKM fibrations over B/ ∼ ←→ ((Z− 0)n/±)× {0, 1},

2161

https://doi.org/10.1112/S0010437X2300742X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2300742X


O. Goertsches, P. Konstantis and L. Zoller

where ∼ denotes equivalence of fibrations. For a fixed signed structure on B this induces a
bijection

signed 3-valent GKM fibrations over B/ ∼ ←→ ((Z− 0)n/±)× {0, 1}.
Remark 4.6. The above correspondence is not canonical and depends on a fixed choice of data
in the GKM graph B which we state here separately for later reference. Let v1, . . . , vn be the
vertices of B and e1, . . . , en its edges, where ei goes from vi to vi+1. We extend the notation for
all i ∈ Z by setting vi+n := vi and ei+n := ei.

If B comes with a signed structure, then we have unique signs for the weights γi associated
to the ei and we use these to define the correspondence. Without the signed structure there are
choices to make: let γ1, γ2 ∈ Z

2 be the weights associated to e1 and e2 in B, where we choose the
signs arbitrarily. Now we choose representatives for the weights γi ∈ Z

2 of all ei with the unique
sign such that

γi ≡ −γi+2 mod γi+1.

This is possible thanks to the existence of a compatible connection. Again, it turns out handy
to extend the notation for all i ∈ Z such that γi and γi+n correspond to the same edge and thus
agree up to sign. These will occasionally play a role and will be denoted through the equation
γi = (−1)εiγi+n. Note that the value of εi only depends on whether i is even or odd. The εi
vanish if and only if the γi come from a signed compatible structure.

We will define the correspondence explicitly in the course of the proof; briefly, we map

(π : Γ→ B) �−→ ([k1, . . . , kn], η),

where η ∈ {0, 1} describes if π is of product or of twisted type, and the numbers ki are determined
by the equation

αi = kiγi−1 − ki−1γi

(see (1)), where the αi are the weights in the fiber over vi chosen with consistent orientations.

Proof of Proposition 4.5. Note first that the statement on signed fibrations follows directly from
the statement on fiberwise signed fibrations with the help of Lemma 3.5.

We begin by associating an element on the right-hand side to a fiberwise signed GKM
fibration Γ→ B. The {0, 1} component is determined by the graph structure of Γ: we set it to
be 0 if Γ is of product type and 1 if it is of twisted type. In order to define the (Z− 0)n/±
component we associate weights γi with fixed signs to the edges of B as described in Remark 4.6
and consider the induced assignment of the γi to the horizontal edges of Γ. Now choose an
orientation of the edge in the fiber over v1 and let α1 ∈ Z

2 be the associated weight (with unique
sign). A compatible connection allows us to inductively choose orientations for the vertical edges
over vi in a compatible way such that the associated weights satisfy

αi ≡ αi+1 mod γi,

for i ∈ Z. Note, however, that if Γ is of twisted type, then transporting a vertical edge around
Γ once reverses its orientation and thus the orientation used for the definition of αi might differ
from that of αi+n. We have αi = (−1)ηαi+n.

By assumption, the weights of two adjacent edges in B form a basis of Z
2. Thus, for i ∈ Z,

there are unique integers ki, li such that αi = kiγi−1 + liγi. We claim that ki = −li+1. Trans-
porting the vertical edges along the horizontal ones we find integers di, d

′
i, i = 1, . . . , n, such

that αi+1 = αi + diγi and γi+1 = −γi−1 + d′iγi. We obtain αi = (ki+1 − di + li+1d
′
i)γi − li+1γi−1.
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Uniqueness of the ki and li yields the claim. In particular, we have

αi = kiγi−1 − ki−1γi, (1)

for i ∈ Z. The (Z− 0)n/± component on the right-hand side of the correspondence is now defined
by the equivalence class of (k1, . . . , kn). Recall that in the construction of the ki we made a choice
for the orientation of the edge over v1 giving rise to α1. A different choice would lead to a global
sign change for the ki so we obtain a well-defined element of (Z− 0)n/±. This association is
easily seen to be invariant under equivalences of GKM fibrations.

Conversely, we check that the construction can be reversed. Given an element on the right-
hand side of the correspondence, choose a representative (k1, . . . , kn, η) ∈ (Z− 0)n × {0, 1}. If
η = 1 let Γ be the unique 3-regular abstract graph of twisted type that fibers over B. Otherwise,
let Γ be the unique such graph of product type. We need to construct labels for the edges of Γ
that turn the graph fibration π : Γ→ B into a GKM fibration. To do this set k0 = (−1)ε1+ηkn,
where ε1 is defined as in Remark 4.6. Then we assign labels to Γ as follows: the horizontal edges
over ei are labelled by γi. For the vertical edges, consider a lift of a path that goes around the
n-gon B once and let pi be the vertex in that path which lies over vi. To the directed vertical
edge emanating from pi we associate the weight

αi = kiγi−1 − ki−1γi,

for i = 1, . . . , n. Let ∇B be the unique connection on B and define a compatible connection ∇
on Γ as follows: if e ∈ E(Γ) is vertical, then ∇e is defined as

Hi(e)
π−→ E(B)π(i(e)) = E(B)π(t(e))

π−1−−→ Ht(e).

Transport along horizontal edges is uniquely defined by the condition that it respects vertical and
horizontal edges. The connections ∇ and ∇B are easily seen to be compatible with the labels,
the most interesting step being to verify that for a lift ẽn of en the connection ∇ẽn satisfies
the congruence relations for the labels. To do this recall that the orientation of an edge, when
transported along the lift of a path around B, gets reversed if and only if Γ is of twisted type.
Thus, we need to have αn ≡ (−1)ηα1 mod γn. The left-hand side, however, is given by

αn = knγn−1 − kn−1γn ≡ −knγn+1 ≡ (−1)η+1k0γ1 ≡ (−1)ηα1 mod γn.

The connections are also clearly compatible with the fibration.
The equivalence class does not depend on the chosen lift of the path around B as the other

lift will result in the same labels but with a global sign change for the αi. By Lemma 4.3, these
two fibrations are equivalent. The same is accomplished by a global sign change of the ki so the
construction factors through ((Z− 0)n/±)× {0, 1}. �

Example 4.7. Consider the T 2-equivariant CP
1-fibration SU(3)/T 2 → SU(3)/S(U(2)×U(1)) =

CP
2. Its GKM fibration is as follows, see [GSZ12, § 2.1]:
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α1
α2

α3

γ1

γ2
γ3

With the indicated fiber orientation, we have α1 = γ3 + γ1, α2 = −γ1 − γ2, and α3 = γ2 + γ3.
Thus, this fibration corresponds to ([k1, k2, k3], η) = ([1,−1, 1], 1).

Example 4.8. Tolman’s example [Tol98], Woodward’s variant [Woo98], and Eschenburg’s twisted
flag manifold SU(3)//T 2 (see [Esc84, Esc92, GKZ20]), which are (non-equivariantly) diffeo-
morphic by [GKZ19], fiber equivariantly over CP

2. Their associated GKM fibrations are as
follows.

α1
α2

α3

γ1

γ2
γ3

Here we have α1 = γ3 − γ1, α2 = −γ1 − γ2, and α3 = −γ2 + γ3. Thus, this fibration corresponds
to ([k1, k2, k3], η) = ([1,−1,−1], 1).

Definition 4.9. We call a vertex of a 3-valent signed GKM graph an interior vertex if the cone
spanned by the labels of the three edges emanating from it is equal to R

2, otherwise it is an
exterior vertex.

This notation is motivated by the fact that if we are given a Hamiltonian T 2-action with this
GKM graph, the momentum image of a fixed point is in the interior of the momentum image if
and only if the corresponding vertex of the GKM graph is interior.

Proposition 4.10. Let B be a signed 2-valent GKM graph and Γ→ B the signed GKM
fibration associated to ([k1, . . . , kn], η) ∈ ((Z− 0)n/±)× {0, 1} as in Proposition 4.5. Then for
i = 2, . . . , n the fiber over vi contains exactly one interior vertex of Γ if and only if ki−1 and ki

have the same sign. Otherwise, both vertices in the fiber are exterior. The fiber over v1 contains
exactly one interior vertex if and only if kn and (−1)ηk1 have the same sign. Otherwise, both
vertices are exterior.

Proof. Let pi and qi be the vertices in the fiber over vi for i ∈ {1, . . . , n}. Assume that γi has
been chosen as the weight of the directed edge from vi to vi+1. Then without loss of generality
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the set of weights of the edges emanating from pi and qi are

{−γi−1, γi, kiγi−1 − ki−1γi} and {−γi−1, γi, −kiγi−1 + ki−1γi}.
In general, if e1, e2 ∈ Z

2 is a basis, then the cone spanned by e1, e2, and ae1 + be2 is R
2 if and

only if a, b < 0. Thus, if ki−1 and ki have the same sign, then exactly one of the set of weights
of pi and qi has this property. For the statement on v1 recall that in the construction of the
fibration we had k0 = (−1)η+ε1kn. Since B is signed, it follows that ε1 = 0, hence k0 and k1 have
the same sign if and only if kn and (−1)ηk1 do. �
Corollary 4.11. Let Γ→ B be a fibration of signed GKM graphs of twisted type as above,
where the 2-valent GKM graph B is effective and has n vertices. If n is odd, then the number
of interior vertices of Γ is an even number between 0 and n− 1. If n is even, then it is an odd
number between 1 and n− 1.

5. Realization of GKM fibrations

The following is the main theorem of this paper. In what follows, T = T 2 is a 2-dimensional
compact torus with Lie algebra t. Prior results on abstract GKM graphs are translated to graphs
with labels in Z

∗
t as explained in Remark 2.4. In the following theorem, a fiber bundle of almost

complex manifolds f : (M,JM )→ (N, JN ) is a fiber bundle such that df : TM → TN commutes
with the almost complex structures. We say a fiber bundle f : (M,ωM )→ (N,ωN ) is compatible
with symplectic structures if ωM restricts to a symplectic form on every fiber and furthermore
the restriction of ωM to the fiberwise symplectic complement C is homotopic to f∗ωN |C through
symplectic (i.e. non-degenerate) forms on C.

Theorem 5.1.

(i) Let π : Γ→ B be a fiberwise signed GKM fibration, where Γ is a 3-valent abstract GKM
graph and B an effective 2-valent abstract GKM graph with n vertices (both with respect to
Z
∗
t ). Then π is geometrically realized as the projectivization P(E) of a T -equivariant complex

vector bundle E → X over a 4-dimensional T -manifold X which can be taken to be S4 if
n = 2 and quasitoric if n ≥ 3. Furthermore, P(E) and X have T -invariant stable almost
complex structures compatible with the fibration. The realization P(E) has the property
that all its isotropy groups are connected if and only if, in the notation of Proposition 4.5
and Remark 4.6, the fiberwise signed GKM fibration π corresponds to ([k1, . . . , kn], η), with
all ki = ±1.

(ii) If π : Γ→ B is a fibration of signed GKM graphs, then its geometrical realization as in part
(i) can be chosen to be a fiber bundle of almost complex manifolds such that the induced
fibration of signed GKM graphs is precisely π.

(iii) If, in addition, B is the boundary of a two-dimensional Delzant polytope (i.e. X can be
chosen as a 4-dimensional toric manifold), then any realization P(E) as in part (i) admits
a T -invariant symplectic structure such that the action is Hamiltonian and P(E)→ X is
compatible with the symplectic structure on P(E) and a T -invariant Kähler structure on
X. Moreover the symplectic form on P(E) is symplectomorphic to a Kähler form with a
compatible complex structure for which P(E)→ X is holomorphic.

Remark 5.2. In part (iii) of the above theorem note that the T -invariant symplectic form on
P(E) does admit a compatible complex structure since it is symplectomorphic to a Kähler form.
However, this complex structure will not necessarily be compatible with the T -action since the
Kähler form and the symplectomorphism are not. In fact, we will show in § 7 that in the case
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of a twisted-type fibration with the maximal number of interior fixed points, the compatible
complex structure can never be T -invariant. In contrast, we will show in § 6.3 that for product-
type fibrations we always obtain a T -invariant Kähler structure on P(E). The example of the
standard flag manifold U(3)/T 3 shows that such structures can also exist in the twisted type
case. However, it is not clear whether they always exist outside of the case with maximal number
of interior fixed points.

We will prove the theorem in this section and the following. In § 5 we construct the vector
bundle E, see Theorem 5.7. The statements on the geometric structures on P(E) are proved
in § 6.

5.1 Realization in dimension 4
As a starting point, we need to geometrically realize the base graph of the fibration which
corresponds to a 2-dimensional torus action on a 4-manifold. Actions of tori of dimension half
the dimension of the manifold are quite well studied so we can draw on the existing theory
of quasitoric manifolds. Recall that a quasitoric manifold is a smooth compact 2n-dimensional
manifold X with a locally standard smooth action of the n-dimensional torus Tn which is such
that its orbit space X/Tn is homeomorphic, as a manifold with corners, to a simple convex
polytope P . Via the homeomorphism X/Tn ∼= P , the facets of P correspond to the so-called
characteristic submanifolds of X which are the preimages of the facets under the projection.
The characteristic function of a quasitoric manifold X is the assignment sending a facet of
P ∼= X/Tn to the isotropy circle of the corresponding characteristic submanifold.

Let us describe the inverse construction to this [DJ91], see also [BP15, § 7.3]: we start with
a characteristic pair (P, λ) consisting of a simple convex polytope P with facets F1, . . . , Fm,
together with a map λ sending a facet Fj to a subcircle λ(Fj) ⊂ Tn, with the property
that the multiplication map λ(Fj1)× · · · × λ(Fjk

)→ Tn is injective whenever the intersection
Fj1 ∩ · · · ∩ Fjk

is non-empty. We extend λ to all faces of P , i.e. we denote by λ(F ) the subtorus
of Tn generated by all λ(Fi), where Fi is a facet containing F . Moreover, we denote by F (x), for
x ∈ P , the smallest face of P containing x. In this situation, we define X := P × Tn/ ∼, where
the equivalence relation ∼ is generated by (x, s) ∼ (x, t)⇔ s−1t ∈ λ(F (x)). Then X, equipped
with the Tn-action defined as the multiplication on the second factor of P × Tn, is a qua-
sitoric manifold with orbit space P and characteristic function λ; it is called the canonical model
of (P, λ).

Furthermore, we recall that an omniorientation of a quasitoric manifold is an orientation of
X and a choice of orientations of its characteristic submanifolds. Note that given an orientation
of X, an orientation of a characteristic submanifold is equivalent to an orientation of the normal
bundle. For a fixed point p ∈ XT n

we have a decomposition TpX = V1 ⊕ · · · ⊕ Vn where the Vi are
the irreducible 2-dimensional subrepresentations and, in fact, normal spaces to the characteristic
submanifolds containing p. An omniorientation thus induces an orientation on all the Vi and,
hence, on TpX. The sign of the fixed point is said to be 1 if this orientation agrees with that
coming from the orientation on X and −1 if it does not. A positive omniorientation is an
omniorientation such that the signs of all fixed points are positive. Now any omniorientation
induces a complex structure on the tangent spaces of the fixed points as explained below and
Kustarev proved in [Kus09] that this extends to a Tn-invariant almost complex structure on X
if and only if the omniorientation is positive (see also [BP15, Theorem 7.3.24]).

To define the complex structure on TpX = V1 ⊕ · · · ⊕ Vn induced by an omniorientation recall
that Vi is normal to a unique characteristic submanifold containing p which corresponds to some
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facet Fi. Let λ(Fi) ⊂ Tn denote the kernel of the action on the characteristic submanifold belong-
ing to Fi. Then λ(Fi) acts effectively on Vi. There is now a unique way to identify λ(Fi) ∼= S1

such that there is an orientation-preserving S1-equivariant isomorphism Vi
∼= C to the standard

S1-representation on C with the orientation given by the standard complex structure. This com-
plex structure on C then induces a Tn-invariant complex structure on all the Vi and, hence,
on TpX.

Proposition 5.3. Let B be an effective 2-regular GKM graph with n vertices. Then B is the
GKM graph of a T -GKM action on a 4-dimensional manifold X.

(i) If n = 2, then X can be taken to be S4. For n ≥ 3, we can choose X as a quasitoric manifold.
(ii) If B has a compatible structure of a signed GKM graph, then X as in part (i) can be

chosen such that it carries a T -invariant almost complex structure which induces this signed
structure.

(iii) If B is of polytope type, then X can be chosen to be a toric manifold.

Proof. Part (iii) is Delzant’s theorem. In part (i), the statement holds for n = 2 since any such
graph can be realized by a T -action on S4 ⊂ C

2 ⊕ R which acts on the C
2 factor as a pullback of

the standard representation along some automorphism of T ; for n ≥ 3, we translate the canonical
model of 4-dimensional quasitoric manifolds, which we recalled above in arbitrary dimension, to
GKM graphs. As B is an n-gon with n ≥ 3, the underlying graph is realized as the boundary of
a convex polytope P ⊂ R

2. For an edge e of P we set λ(e) := kerα ⊂ T , where α is the weight
(up to sign) associated to e in B, interpreted as a homomorphism T → S1. Then (P, λ) is a
characteristic pair, and we consider the corresponding canonical model, which is a 4-dimensional
quasitoric manifold X. By construction, the GKM graph of X is B.

Regarding part (ii), the existence of invariant almost complex structures on quasitoric mani-
folds is already well understood, as explained above the statement of the proposition, and it only
remains to draw the connection to the signed GKM graph. Assume B admits a signed structure.
Then necessarily n ≥ 3, and by part (i) we may choose X as a quasitoric 4-manifold. In view of
the discussion above, it suffices to find a positive omniorientation of X such that the induced
complex structures on the tangent spaces of all fixed points yield the weights prescribed by the
signed structure.

As a first step we show that the signed structure gives rise to canonical parametrizations
of the isotropy circles of all characteristic submanifolds. Consider p ∈ XT , let e, e′ be the edges
emanating from p, and let α(e), α(e′) ∈ Z

∗
t be the corresponding weights. Let α(e)∗, α(e′)∗ ∈ Zt be

the associated dual basis. Note that a facet of P is just an edge and these correspond to the edges
of the GKM graph. Let Se denote the two-sphere corresponding to e, i.e. Se is the characteristic
submanifold belonging to e. Now the kernel Te ⊂ T of the action on Se is a circle and its Lie
algebra is generated by α(e′)∗. The element α(e′)∗, hence, fixes an identification Te

∼= S1. We
claim that this is well defined for the characteristic submanifold Se and does not depend on the
initial choice of fixed point p in the characteristic submanifold. Indeed, let q be the terminal
vertex of e and let e, e′′ be the emanating edges at q. As before, we have weights α(e), α(e′′) ∈ Z

∗
t

and a dual basis α(e)∗, α(e′′)∗ ∈ Zt. The compatible connection implies α(e′′) ≡ α(e′) mod α(e)
and, thus, α(e) = −α(e) implies α(e′)∗ = α(e′′)∗. Hence, the latter is indeed a canonical generator
of the Lie algebra of Te arising from the signed structure and it will be denoted by λ(e) ∈ Zt.

We now fix an orientation of the polytope P . Together with this orientation the datum of
the λ(e) for all characteristic submanifolds e is called a combinatorial quasitoric pair in [BP15].
It carries the information of the characteristic pair as well as orientations for the polytope and
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all isotropy circles. It is shown in [BP15, Proposition 7.3.11] that there is an associated omniori-
entation on the canonical model for which, by [BP15, Proposition 7.3.18], the weights at a fixed
point p, with signs given by the complex structure on TpM associated to the omniorientation,
is precisely the dual basis of λ(e), λ(e′) where e, e′ are the edges adjacent to p. By construction,
this dual basis is precisely the weights α(e), α(e′) provided by the signed structure. Hence, there
is an omniorientation inducing the weights prescribed by the signed graph.

It remains to show that the omniorientation is positive. Let p, q, e, e′, e′′ be as above. By
[BP15, Lemma 7.3.21] as well as the subsequent remark, we may compute the sign at the fixed
point p as follows: let e, e′ be the order of the edges coming out of p such that the orientation
provided by vectors along e, e′ agrees with the fixed orientation of P . Then the sign at p is
det(α(e), α(e′)) where the determinant is understood via the identification Z

∗
t
∼= Z

2 using the
dual of the standard basis. If the signs of all fixed points are negative, then by reversing all
orientations in the omniorientation, we obtain a positive omniorientation which produces the
same complex structure in the tangent spaces of the fixed points. Hence, it suffices to show that
the above determinants agree for all fixed points. The orientation on P provided by e, e′ agrees
with that of e′′, e. We compute

det(α(e′′), α(e)) = −det(α(e′′), α(e)) = det(α(e), α(e′′)) = det(α(e), α(e′)),

where the last equation is again due to the congruence α(e′′) ≡ α(e′) mod α(e) provided by the
compatible connection. �

5.2 A vector bundle over the one-skeleton
Having realized the 2-regular graph B by a 4-dimensional manifold X, it is now our intermediate
goal to construct an equivariant complex vector bundle over X1 such that the set of 0- and
1-dimensional orbits in its projectivization is precisely the T 2-space encoded in the graph Γ. In
this section, we will use the theory of cohomogeneity one actions [Mos57, AA93], see also [GZ18],
i.e. actions of compact Lie groups on closed manifolds whose principal orbits have codimension
one. Let us briefly recall the relevant ingredients from this theory. A group diagram is a quadruple
(G,K+,K−, H) of compact Lie groups H ⊂ K± ⊂ G such that K+/H and K−/H are spheres.
Given a cohomogeneity one G-action on M with orbit space homeomorphic to the closed interval
[0, 1], we can (non-canonically) associate a group diagram to it in the following way: we choose
an auxiliary G-invariant Riemannian metric, as well as a geodesic γ : [0, 1]→M orthogonal to
the G-orbits, which meets every G-orbit exactly once. Then G · γ(0) and G · γ(1) are the unique
non-regular orbits of the action, and their stabilizers K+ = Gγ(1) and K− = Gγ(0), together with
the pointwise stabilizer H of the geodesic γ yields the group diagram (G,K+,K−, H).

Conversely, a group diagram (G,K+,K−, H) yields a cohomogeneity one action, as we now
explain. By [Bre72, Theorem 10.1, Chapter II], any transitive Lie group action on a sphere is
linear; in particular, this is the case for theK+- andK−-actions onK+/H andK−/H. Hence, we
find orthogonal K±-representations on Euclidean vector spaces V ± with principal isotropy group
H. Denoting the unit disks in V ± by D±, we obtain a cohomogeneity one manifold by gluing
the disk bundles G×K± D± along their boundaries G×K+ K+/H = G/H = G×K− K−/H. As
emphasized above, the group diagram associated to a cohomogeneity one manifold is not unique,
as it depends on a certain choice. However, two cohomogeneity one manifolds with the same
group diagram are equivariantly diffeomorphic.

We make use of the notation from Remark 4.6. We also return to the notation from the
proof of Proposition 4.5 which we shall recall here: choose an orientation for the edge in the
fiber over v1 with associated weight α1. Using a compatible connection, this inductively defines
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orientations on the edges in the fibers over all the vi such that αi ≡ αi+1 mod γi. We extend this
notation with this property to all i ∈ Z. Transporting an edge around a lift of the path which
goes around the base graph once reverses its orientation if Γ is of twisted type and preserves
the orientation if it is of product type. Hence, we have αi = (−1)ηαi+n, where η = 1 if Γ is of
twisted type and η = 0 if it is of product type. Furthermore, let ki ∈ Z be as in Remark 4.6, i.e.
the numbers uniquely determined by the equation

αi = kiγi−1 − ki−1γi.

We now come to the construction of the vector bundle: for each invariant 2-sphere in X cor-
responding to some edge ei (i = 1, . . . , n) we want to construct a T -equivariant U(2)-principal
bundle Pi → S2 such that the projectivization of the associated C

2-bundle Pi ×U(2) C
2 → S2

with respect to the standard representation of U(2) on C
2 has as GKM graph exactly π−1(ei),

as depicted in Lemma 5.4 below. We will construct Pi as a (T ×U(2))-cohomogeneity one man-
ifold such that the U(2)-subaction is free. In this situation, we can divide out the U(2)-action
and obtain a smooth manifold, to which the T -subaction on Pi descends. This quotient action
will again be of cohomogeneity one. Using the observation recalled above that a group diagram
of a cohomogeneity one action determines it up to equivariant diffeomorphism, this will allow
us to identify the quotient as S2 with the correct action. In this way, Pi will be seen to be a
T -equivariant U(2)-principal bundle. For some arbitrary integers ai, bi, ci (which we will specify
below), define the homomorphisms

A+
i : T → U(2), t �→

(
aiγi−1(t)− biγi(t)

(ai − ki)γi−1(t) + (ki−1 − bi)γi(t)

)

and

A−
i : T → U(2), t �→

(
ciγi(t)− aiγi+1(t)

(ci − ki+1)γi(t) + (ki − ai)γi+1(t)

)
,

where the entries of the matrices are to be interpreted as the homomorphisms T → S1

corresponding to the respective elements of Z
∗
t .

Let Pi be the cohomogeneity one manifold defined by the group diagram (G,K+
i ,K

−
i , Hi);

here,

G = T ×U(2)

K+
i = {(t, A+

i (t)) | t ∈ T},
K−

i = {(t, A−
i (t)) | t ∈ T},

Hi = {(t, A+
i (t)) | t ∈ ker γi} = {(t, A−

i (t)) | t ∈ ker γi}.
The last equation holds since, by definition, γi−1 = −γi+1 mod γi. Consequently Hi is contained
both in K+

i and in K−
i . Furthermore, K±

i /Hi
∼= S1, so that this really defines a valid group

diagram. We fix identifications of the outer (non-principal) orbits with G/K+
i and G/K−

i .
We observe that U(2) ∼= {e} ×U(2) intersects K±

i and all its G-conjugates trivially, so that
the U(2)-subaction on Pi is free; dividing out this subaction we obtain a T -manifold of cohomo-
geneity one. Let us identify the group diagram of this action. To this end, we choose a G-invariant
Riemannian metric on Pi as well as a geodesic perpendicular to the orbits, which induce the above
group diagram. We introduce on the quotient the Riemannian metric turning the projection map
into a Riemannian submersion. Then the geodesic projects onto a geodesic perpendicular to the
orbits. The corresponding group diagram is given by the projection of the respective subgroups
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to the T -factor, i.e. (T, T, T, ker γi). Thus, the quotient manifold is U -equivariantly diffeomorphic
to the S2 ⊂ X corresponding to the edge ei.

Associated to Pi → S2, we obtain an associated T -equivariant C
2-bundle

Ei := Pi ×U(2) C
2 −→ S2,

where U(2) acts on C
2 by the standard representation. Let us compute the T 2-representation on

the fibers over the fixed points in S2 through the identifications

C
2 ∼= ((T ×U(2))/K±

i )×U(2) C
2, v �→ [(e, I2)K±

i , v].

It is given by pulling back the standard U(2)-representation along A±
i since

t · [(e, I2)K±
i , v] = [(t, I2)K±

i , v] = [(e, (A±
i (t))−1)K±

i , v] = [(e, I2)K±
i , A

±
i (t)v].

Next we pass to the projectivized bundle P(Ei)→ S2, which is a T -equivariant CP
1-bundle

over S2.

Lemma 5.4. The projectivization P(Ei)→ S2 is a fibration of GKM manifolds. On (unsigned)
GKM graphs it is given by

γi

γi

αi αi+1

qi

pi pi+1

qi+1

γivi vi+1

where (with respect to the identifications above) pi and pi+1 correspond to [1 : 0] while qi and
qi+1 correspond to [0 : 1].

Proof. We have a fibration

CP
1 → P(Ei)→ S2

with structure group in U(2). Thus, fixing the standard complex structure on CP
1 and some

T 2-invariant complex structure on S2, we obtain an almost complex structure on P(Ei) such
that P(Ei)→ S2 respects almost complex structures. We argue via the corresponding signed
GKM graph.

The identifications and orientations are such that the weights at qi are given by ±γi (the
sign depending on the chosen almost complex structure on S2) and the upper left entry of A+

i

minus the lower right entry of A+
i (coming from the fiber over vi). By the definition of A+

i , the
latter difference is precisely kiγi−1 − ki−1γi = αi. Similarly, one computes the weights at qi+1 to
be ±γi and αi+1. As αi = αi+1 mod γi, the existence of a connection that is compatible with the
signed structure implies that qi and qi+1 are adjacent. Thus, in particular, the unsigned GKM
graph has the form as claimed in the lemma. �

Having constructed the squares in Γ over every single edge ei it remains to glue the Ei in
an appropriate and T -equivariant manner. We start by gluing Ei to Ei+1 for i = 1, . . . , n− 1, by
identifying the fibers over vi+1. From the side of Ei this is the representation of C

2 defined by
the homomorphism A−

i , while from the side of Ei+1 it is defined by A+
i+1. Recall that there are

unspecified parameters ai, bi, ci ∈ Z in the construction. If we choose them such that ai+1 = ci
and bi+1 = ai, then A−

i = A+
i+1 and we glue the two fibers in the canonical way.
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At this point the one-skeleton of the action on the projectivization is a ladder formed by
gluing the individual squares from the lemma above in the obvious way:

γ1

γ1

γ2

γ2

γn−1

γn−1

γn

γn

α1 α2 α3 αn−1 αn αn+1

q1

p1 p2

q2

p3

q3

pn−1

qn−1

pn

qn

pn+1

qn+1

In order to obtain the graph Γ it remains to glue En+1 to E1. This needs to be done with respect
to the graph theoretical structure of Γ. If Γ is of product type, we obtain Γ from the ladder by
identifying pn+1 = p1 as well as qn+1 = q1. In the twisted case we need to identify pn+1 = q1 and
qn+1 = p1.

p1 = pn+1

p2

p3

pn−1

pn

q1 = qn+1

q2

q3

qn−1

qn

α1 = αn+1

α2

α3

αn−1

αn

v1 = vn+1

v2

v3

vn−1

vn

p1 = qn+1

p2

p3

pn−1

pn

q1 = pn+1

q2

q3

qn−1

qn

α1 =
−αn+1

α2

α3

αn−1

αn

v1 = vn+1

v2

v3

vn−1

vn

In any case we wish to identify the representations defined by A−
n+1 and A+

1 . Recall that
γ0 = (−1)ε0γn, γ1 = (−1)ε1γn+1, and α1 = (−1)ηαn+1 for εi, η ∈ {0, 1}. We have

k1γ0 − k0γ1 = (−1)η(kn+1γn − knγn+1) = (−1)η+ε0kn+1γ0 − (−1)η+ε1knγ1

2171

https://doi.org/10.1112/S0010437X2300742X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2300742X


O. Goertsches, P. Konstantis and L. Zoller

which implies k0 = (−1)η+ε1kn and k1 = (−1)η+ε0kn+1. Consequently the matrices defining A−
n+1

and A+
1 can be written as
(

(−1)ε0cnγ0 − (−1)ε1anγ1

((−1)ε0cn − (−1)ηk1)γ0 + ((−1)ηk0 − (−1)ε1an)γ1

)
,

and (
a1γ0 − b1γ1

(a1 − k1)γ0 + (k0 − b1)γ1

)
.

Thus, in the product case, if we have a1 = (−1)ε0cn and b1 = (−1)ε1an, then A−
n+1 = A+

1 and
the two naturally glue, finishing the construction. Observe that an arbitrary choice of either the
ai, the bi, or the ci for i = 1, . . . , n uniquely defines the respective other coefficients.

In the twisted case we set cn = (−1)ε0(a1 − k1) and an = (−1)ε1(b1 − k0). Again, an arbi-
trary choice of the ai, the bi, or the ci defines the other coefficients uniquely such that this
and the previous gluing conditions hold. Now A−

n+1 and A+
1 do not agree but arise from one

another by swapping the diagonal entries. It follows that the automorphism of C
2 which swaps

both factors is equivariant with respect to the actions defined by A−
n+1 and A+

1 . We use this
automorphism to glue En to E1 along the fiber over v1. Since the induced automorphism of CP

1

swaps the fixed points [0 : 1] and [1 : 0] it follows that in the graph encoding the one-skeleton of
the projectivization, pn+1 gets glued to q1 and qn+1 gets glued to p1 and is, thus, precisely Γ.

5.3 Obstruction theory for quasitoric manifolds
Let X be a quasitoric manifold of dimension 4k. Denote by π : X → P the projection to the
associated simple 2k-polytope P . The preimage under π of the interior of P is diffeomorphic
to T 2k × D̊2k where D̊2k denotes the interior of the unit closed ball in R

2k. Furthermore, this
space can be regarded as the interior of the equivariant free top cell of X: recall from the
canonical model of a quasitoric manifold (see the beginning of § 5.1) that X is equivariantly
homeomorphic to a quotient T 2k × P/ ∼. Identifying P with D2k, the natural projection T 2k ×
D2k → T 2k × P/ ∼ becomes a characteristic map for a relative CW structure on (X,A), where
A is the preimage of the boundary of P under π.

Note that, although it is not quasitoric, we have the same kind of cellular structure for
the T 2-action on X = S4 ⊂ C

2 ⊕ R which acts in standard fashion on the C
2 factor. The space

X arises from A = X1 = {(v, w, z) ∈ S4 | v = 0 or w = 0} by attaching a single free cell. To see
this consider the space D = {(x, y, z) ∈ S2 |x, y ≥ 0}, which is a 2-disk. The map D × T 2 → S4,
defined as the equivariant extension of the map D × {e} ∼= D → S4 induced by the inclusion
R→ C on the first two components, is a characteristic map for the relative CW structure. Of
course, this CW decomposition induces an analogous decomposition for any pullback of the above
action along a group automorphism.

Lemma 5.5. Suppose (X,A) is the equivariant relative T 2k-CW complex defined above and
E → A is an equivariant complex vector bundle of rank r with r > k − 1. Then E can be extended
to an equivariant vector bundle over X.

Proof. We will use equivariant obstruction theory to prove this lemma, cf. [tDi87, Chapter 2, § 3].
Since E → A is a T 2k-equivariant complex vector bundle, we have a map ε : A→ B(T 2k, U(r)),
where B(T 2k, U(r)) is the classifying space of T 2k-equivariant U(r)-principal bundles, see [tDi69,
§ 3.1]. We would like to extend ε over the top cell eT

2k

2k of X.
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Now ε has an equivariant extension to X = A ∪ϕ e
T
2k if the composition of maps

S2k−1 −→ T 2k × S2k−1 ϕ−→ A
ε−→ B(T 2k, U(r))

is nullhomotopic, see [tDi87, p. 115]. The composition gives an element of π2k−1(B(T 2k, U(r))),
but the classifying space B(T 2k, U(r)) is homotopy equivalent to BU(r) (see [tDi69, p. 142]) and
since r > k − 1 we have by Bott periodicity π2k−1(B(T 2k, U(r))) = 0. This implies that ε can be
extended equivariantly to a map ε : X → B(T 2k, U(r)). �
Remark 5.6. As X is smooth, the complex bundle E → X in the previous lemma can be con-
structed in a smooth fashion as well. To see this, note that E admits an equivariant, fiberwise
injective and linear map f : E →W to some finite-dimensional complex T 2k-representation (as
in the proof of [tDi87, Chapter I, Proposition 9.7]). Denote by Gr(W ) the Grassmannian of
complex r-planes (where r is the rank of E) and by Er → Gr(W ) the tautological bundle. The
action on W extends to an action on Gr(W ) and Er, making the latter an equivariant vector
bundle. The map f induces a bundle map g : E → Er which maps each fiber Ex isomorphically
to the fiber over f(Ex) ∈ Gr(W ) via f . Thus, the underlying equivariant map ḡ : X → Gr(W )
has the property that ḡ∗(Er) ∼= E. By [Was69, Corollary 1.12] we may equivariantly homotope
ḡ to a smooth map. The pullback along the latter is naturally smooth and still equivariantly
equivalent to E (see [tDi87, Theorem 8.15]).

Applying Lemma 5.5 and Remark 5.6 to the vector bundle constructed in § 5.2 we arrive at
the following theorem, which is an intermediate step in the proof of Theorem 5.1.

Theorem 5.7. Let Γ→ B be a GKM fibration as in Theorem 5.1 and X be the realization
of B from Proposition 5.3. We fix the notation from Remark 4.6. For any (a1, . . . , an) ∈ Z

n

there exists a smooth T 2-equivariant complex vector bundle E → X of rank 2 with the following
properties.

(i) The isotropy representation of E over vi, i = 1, . . . , n, is isomorphic to the pullback of the
standard action on C

2 along the homomorphism T → U(2),

t �→
(
aiγi−1(t)− ai−1γi(t)

(ai − ki)γi−1(t) + (−ai−1 + ki−1)γi(t)

)
,

where ([k1, . . . , kn], η) is defined by the fibration in the sense of correspondence 4.5 and we
set a0 = (−1)ε1an + ηk0 and k0 = (−1)ε1+ηkn.

(ii) The fibration P(E)→ X is one of GKM manifolds and realizes the GKM fibration Γ→ B.

We conclude this section with the proof of the statement on the isotropy groups of the
T -action on P(E) in part (i) of Theorem 5.1. Recall first that the weights of the isotropy rep-
resentation at any of the two fixed points over a vertex vi of B are (up to sign) γi−1, γi, and
αi = kiγi−1 − ki−1γi. If any kj �= ±1, we can therefore find a fixed point in P(E) such that two of
the adjacent weights, considered as characters T → S1, have a non-trivial common kernel, which
then occurs as an isotropy group near the fixed point. Conversely, we assume that all ki = ±1. As
P(E) fibers equivariantly over the T -manifold X, and in X non-trivial stabilizers occur only in
the one-skeleton X1, any non-trivial stabilizer in P(E) necessarily occurs in π−1(X1). However,
this space is, in the notation of § 5.2, the union of 4-dimensional T 2-manifolds P(Ei) that fiber
over S2. By assumption on the ki the T -action on P(Ei) is effective. Hence, the P(Ei) are torus
manifolds with vanishing odd-degree cohomology, which by [MP06, Theorem 4.1] have only con-
nected isotropy groups. See Remark 9.6 for an example of a linear realization of a total space of
a GKM fibration where not all ki = ±1.
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6. Geometric structures on the realization

6.1 (Stable) almost complex structures
The realization

CP
1 −→ P(E) −→ X

constructed in the previous sections is a fibration with structure group U(2). Let VF ⊂ TP(E) be
the subbundle consisting of the tangent spaces of all the fibers. Since each fiber can be identified
with CP

1 uniquely up to elements from U(2), we see that a U(2)-invariant almost complex
structure on CP

1 induces on VF the structure of a complex T -vector bundle. A complement
of VF in P(E) with respect to a T -invariant metric can be identified with the pullback VX

of the tangent bundle of X along the projection P(E)→ X. As X is quasitoric or S4, it has
a T -invariant stable almost complex structure (see [BP15, Corollary 7.3.15]). It follows that
TP(E) = VF ⊕ VX carries a T -invariant stable almost complex structure. This finishes the proof
of part (i) of Theorem 5.1.

In case the graph fibration is one of the signed graphs,X carries a T -invariant almost complex
structure by Proposition 5.3. As above, it follows that P(E) carries an invariant almost complex
structure compatible with the map to X. For the proof of part (ii) of Theorem 5.1, it remains to
check that the signed GKM graphs of P(E)→ X with respect to the almost complex structures
agree with the given fibration of signed graphs Γ→ B. The construction of X and its almost
complex structure (see Proposition 5.3) can be carried out such that its signed GKM graph
is precisely B. Since P(E)→ X is compatible with the complex structures, it follows that the
given labelling function on oriented edges of Γ agrees with that induced by the almost complex
structure on P(E) when applied to oriented horizontal edges. On (oriented) vertical edges they a
priori only agree up to sign. However, we observe that, since both labelling functions on oriented
edges admit a compatible connection, the signs in the vertical edges either agree everywhere or
nowhere. In the first case, we are done. In the second case, we may apply the automorphism of
Γ that interchanges the vertices in each fiber. This transforms one labelling function into the
other so the proof of part (ii) is complete.

6.2 Symplectic and Kähler structures
Suppose E → X is a complex vector bundle of rank 2 and X a toric 4-manifold. First note that
X is a smooth projective variety [BP15, Proposition 5.2.2] and, thus, X admits in particular a
Kähler structure. We denote by ωX the corresponding Kähler form. Since X is projective we
deduce from [Sch61, Theorem 9] that E is algebraic if the determinant bundle detE is algebraic.
However, since X is toric, H2(X) = H1,1(X), so that detE has a holomorphic structure by
the Lefschetz theorem on (1, 1)-classes, cf. [Lef50]. With the GAGA principle [Ser55] we infer
that detE is algebraic, hence E. Since E is algebraic, the manifold P(E) is a smooth projective
variety.

From the discussion above we obtain the following result.

Proposition 6.1. For every rank-2 complex vector bundle E → X the projectivization P(E) is
a smooth projective variety such that π : P(E)→ X is a holomorphic map.

In the remaining part of this section we will construct the symplectic and Kähler structure
from Theorem 5.1.

Now let E → X be a complex, equivariant T -bundle. Furthermore let h be a T -invariant
Hermitian metric on E and let ωX be the T invariant Kähler form on X. Let L→ P(E) be the
tautological bundle (i.e. L restricted to each fiber of P(E) is the tautological bundle of CP

1).
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Since, by construction, L is a subbundle of π∗(E), the metric h can be restricted to L and it
also induces a metric h∗ on the dual bundle L. The Chern form ωV of the Hermitian line bundle
(L, h∗) has the property that it restricts to the Fubini–Study form (associated to the metric h)
on every fiber of P(E)→ X and that, furthermore,

ωK := ωV + C · π∗(ωX)

is a Kähler form on P(E) for sufficiently large C (see [Voi07, § 3.3.2]).
The pullback π∗(ωX) is T -invariant but ωV and, hence, also ωK in general are not. However,

since T is compact, we can average ωV over T , obtaining another form ωF which is T -invariant.
As h is T -invariant, the T action preserves the Fubini–Study form on the fibers, so for any fiber
of P(E)→ X and t ∈ T we have i∗(t∗ωV ) = i∗ωV , where i is the fiber inclusion. This implies
that also the averaged form ωF restricts to the Fubini–Study form on every fiber. The latter is,
in particular, symplectic, thus after possibly enlarging the constant C, the form

ωS := ωF + C · π∗(ωX)

is a T -invariant symplectic form on P(E). Having chosen a fixed sufficiently large C, we note
that by the same reasoning tωF + C · π∗(ωX) is symplectic for t ∈ (0, 1]. On the symplectic
complement V of a fiber, this defines a homotopy between ωS |V and π∗(ωX)|V through non-
degenerate 2-forms on V . Hence, the symplectic structures (P(E), ωS) and (X,ωX) are compatible
with the fiber bundle in the sense of the definition above Theorem 5.1. Since H1(P(E)) = 0 we
infer from [GS84, Addendum to Theorem 28.1] that the action is, in fact, Hamiltonian.

Proposition 6.2. The Kähler form ωK and the invariant symplectic form ωS are
symplectormorphic.

Proof. Since averaging a closed form over a compact group does not change its de Rham class
there is a 1-form η such that ωF = ωV + dη. Because ωV and ωF agree on the fibers of P(E)→ X
it follows that dη restricts to 0. In particular, for any t ∈ R the forms ωV + tdη all restrict to
symplectic forms on the fibers. Therefore, the forms ωt := ωV + t dη + C · π∗(ωX) are symplectic
for t ∈ [0, 1] with an eventually bigger constant C. Thus, ωK and ωS are joined by a path of
symplectic forms in the same de Rham class and by Moser’s trick they are symplectomorphic. �

This completes the proof of Theorem 5.1. In the next section, we will show that GKM
fibrations of product type always admits a toric symplectic realization, as announced in
Remark 5.2.

6.3 Fibrations of product type: the toric case
In this section we consider a signed GKM fibration π : Γ→ B of product type, where B is the
boundary of a 2-dimensional Delzant polytope P ⊂ t∗. Let X be the 4-dimensional toric manifold
with Delzant polytope P .

In this setting, we can refine the construction in § 5.2. The T -equivariant complex rank-2
vector bundle E → X1 over the one-skeleton of X constructed there is, because the graph Γ is of
product type, the Whitney sum of two T -equivariant complex line bundles Li → X1, i = 1, 2. By
Lemma 5.5 we can extend not only the bundle E equivariantly to all of X, but also the bundles
Li. In this way, we obtain an extension E → X which is globally the sum of two equivariant line
bundles.

Now, any complex line bundle admits a canonical circle action, so that E admits a canonical
auxiliary action of a 2-dimensional torus, which commutes with the T -action. Note that the
diagonal action becomes trivial after passing to the projectivization P(E), but the fiberwise
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circle action given in homogeneous coordinates by t · [z : w] = [tz : w] defines an effective circle
action on P(E) commuting with the T -action. In total, we obtain a T 3-action on P(E).

As explained in § 6.2, the projectivization P(E) admits a T -invariant symplectic structure. We
can modify this construction to make the symplectic form invariant also under the T 3-action.
We, thus, see that P(E) admits the structure of a toric symplectic manifold. Note that toric
structures on projectivizations of sums of circle bundles have been considered before; see, e.g.,
[CP16].

Remark 6.3. One can construct a 6-dimensional toric manifold such that the restriction of the
action to a 2-dimensional subtorus has the prescribed GKM graph Γ via Delzant’s theorem as
follows.

Let T 3 = T 2 × S1, with Lie algebra t3 = t⊕ R with integral lattice Z
2 × Z, and dual (t3)∗ ∼=

t∗ ⊕ R ∼= R
3. We construct a Delzant polytope Q ⊂ (t3)∗ as follows: in the hyperplane z = 0 it

contains the polytope P ⊂ t∗ ∼= t∗ ⊕ {0} ⊂ (t3)∗. As in § 5.2, we let v1, . . . , vn be the vertices of
P , and γi the label of the edge ei from vi to vi+1. The only other vertices of Q are the elements
wi := vi + (αi, 1), all contained in the hyperplane z = 1.

Then Q is a Delzant polytope: the slopes of the edges emerging from the vertex vi are
−γi−1, γi, and (αi, 1). These three vectors form a basis of Z

3 because the γi−1 and γi form
a basis of Z

2. The edge from wi to wi+1 points in direction vi+1 − vi + αi+1 − αi, which is a
multiple of γi; this shows that the Delzant condition is also satisfied at the vertices wi.

By construction, the 6-dimensional toric symplectic manifold with Delzant polytope Q
satisfies that the restriction of the T 3-action to T 2 ∼= T 2 × {1} is GKM, with (signed) GKM
graph Γ.

7. Non-Kähler GKM graphs

The goal of this section is to show that certain GKM actions do not admit compatible Kähler
structures. The necessary criteria to show that signed GKM structures can not come from such
an action were already described in § 2. However, in order to show the non-existence of such
structures for a given action, there is more work to do. The results of this section are collected
in the following.

Theorem 7.1. Let Γ→ B be a signed fibration of GKM graphs of twisted type such that Γ is
3-valent and B is the boundary of a 2-dimensional Delzant polytope with n vertices (labels of
the edges are with respect to a rank-2 lattice Z

∗
t ). We assume that Γ has n− 1 interior vertices

(cf. Definition 4.9 and Corollary 4.11). Then, up to isomorphism, there are up to three structures
of signed GKM graphs which are compatible with the underlying unsigned GKM graph of Γ.
They have the following properties.

(I) The signed graph Γ itself. This signed structure cannot be realized by a complex structure
compatible with an invariant Kähler form.

(II) The signed structure which arises from Γ by changing the sign of the weights of every
second pair of horizontal edges. It exists only if n is even. If, furthermore, n �= 4, then this
signed structure is not realized by a Hamiltonian action.

(III) A unique signed structure where no two horizontal edges over the same edge have the
same weights. It exists only if ki = ±1 for i = 1, . . . , n (as in § 4) and is not realized by a
Hamiltonian action.

Corollary 7.2. A GKM action whose unsigned GKM graph is that of Γ as above with n �= 4
does not admit an invariant Kähler structure.
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Remark 7.3. We have seen that case (I) is always realized as a Hamiltonian action. For even
n, case (II) is realizable as an equivariant fibration of almost complex manifolds since it is a
signed fibration over the signed base graph which arises from B by changing the sign of every
second edge. Note that by the discussion in § 6 we may use the same underlying T 2-manifold
for both cases and only need to vary the almost complex structures. We do not know about the
realizability of case (III).

7.1 The winding number
In order to argue that certain GKM graphs do not come from invariant Kähler actions, we need
to argue that certain subgraphs are not of polytope type. We will make use of the following
concept.

Definition 7.4. Let (w1, . . . , wn) be a sequence of non-zero vectors in R
2 and let ε = ±1. The

winding number of the sequence with respect to the orientation ε is given by

σ(w1, . . . , wn, ε) =
1
2π

n∑
i=1

|ηi|,

where ηi is the angle between wi and wi+1 with representative chosen in [0, 2π) if ε = 1 and in
(−2π, 0] if ε = −1 (where we set wn+1 = w1).

Lemma 7.5.

(i) If γi ∈ Z
∗
t
∼= Z

2 are the weights along a path around a 2-valent signed GKM graph, then
the angle between γi and γi+1 is, for all i, either always represented in (0, π) or always
represented in (−π, 0) (we speak of a locally convex sequence). Choosing ε such that the
angles get measured in the respective interval minimizes the winding number. We call this
the preferred orientation for (γ1, . . . , γn).

(ii) If (γ1, . . . , γn) is a locally convex sequence with preferred orientation ε and n is even, then

σ(γ1, γ3, . . . , γn−1, ε) = σ(γ1, γ2, . . . , γn, ε).

(iii) Let γ1, . . . , γn be the vectors along the boundary of a convex polytope in R
2 with n vertices.

We have σ(γ1, . . . , γn, ε) = 1 with respect to the preferred orientation ε. If n is even, then
the sequence (γ1,−γ2, . . . , γn−1,−γn) is locally convex with preferred orientation −ε and

σ(γ1,−γ2, . . . , γn−1,−γn,−ε) =
n− 2

2
.

Proof. For the proof of part (i) we observe that the connection of the signed graph has to
transport ei onto ei+2 along ei+1 so

γi ≡ −γi+2 mod γi+1.

We conclude that γi and γi+2 lie on opposite sides of the ray defined by γi+1 as they cannot
lie on the ray due to the condition of adjacent weights being linearly independent. Thus, if the
angle between γi and γi+1 is represented in (0, π) (respectively, in (−π, 0)), then the same holds
for the angle between γi+1 and γi+2.

Assertion (ii) follows from the fact that two consecutive angles never add up to a full rotation
and so nothing is lost by skipping every second vector.

For the proof of part (iii) we assume for simplicity that the preferred orientation is ε = 1, i.e.
ηi ∈ (0, π) for i = 1 . . . , n, where ηi denotes the angle between γi and γi+1 (and ηn is the angle
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between γn and γ1). The remaining case is proved analogously. We have
n∑

i=1

ηi = 2π.

Now note that the angle between γi and −γi+1 as well as from −γi to γi+1 is represented
in (−π, 0). It follows that (γ1,−γ2, . . . , γn−1,−γn) is indeed locally convex with the opposite
preferred orientation. Now by part (ii) we have

σ(γ1,−γ2, . . . , γn−1,−γn,−1) = σ(γ1, γ3, . . . , γn−1,−1).

The angle between γi and γi+2 with respect to this orientation is exactly ηi + ηi+1 − 2π so we
obtain

σ(γ1, γ3, . . . , γn−1,−1) =
1
2π

n/2∑
i=1

2π − η2i − η2i+1 =
n− 2

2

as claimed. �

7.2 Case (I)
We show that the signed structure Γ is indeed not realized by an invariant Kähler form.

Lemma 7.6. If two fibers in Γ are connected by a horizontal edge and both contain an interior
vertex, then the interior vertices are connected by a horizontal edge.

Proof. Let p be an interior vertex of Γ. Let e be a horizontal edge emanating from p with
endpoint q and weight γ. In addition, let γ′ and γ′′ be the weights of the other horizontal edges
emanating from p and q and let α, α′ be the weights of the vertical edges emanating from p and q.
Through the connection we obtain α = kγ + lγ′ and α′ = lγ′′ +mγ for some k, l,m ∈ Z. As p is
an interior vertex we have k, l < 0. This implies that the second vertex q′ in the fiber containing
q has emanating weights γ′′, −γ, and −lγ′′ −mγ. Since −l > 0 we deduce that q′ is an exterior
vertex. We conclude that if the fiber contains an interior vertex, then q is interior. �
Lemma 7.7. Let p be an interior vertex of Γ. Further let e, e′ be the oriented horizontal edges
emanating from p, let q be the endpoint of e′ and eF be the vertical edge emanating from q.
Then there is no 2-valent GKM subgraph of Γ that contains e, e′, and eF .

Proof. We assume the existence of a compatible connection on such a subgraph which implies
that the weights γ, γ′, and α of e, e′, and eF satisfy γ ≡ α mod γ′. Let β be the weight of the
vertical edge emanating from p and observe that

β ≡ α ≡ γ mod γ′.

Since the weights of the edges emanating from p are γ, γ′, and β, this implies that p is not an
interior vertex. �
Proposition 7.8. The signed graph Γ does not satisfy the criterion from Corollary 2.13. In
particular, it is not realized by a Hamiltonian action on a Kähler manifold.

Proof. Let p be an interior fixed point and consider the two horizontal edges emanating from p.
Suppose that we find a polytope-type 2-valent GKM subgraph of Γ (i.e. a closed convex loop)
containing those horizontal edges. Moving along such a path, starting with a horizontal edge at p,
there are two possible choices for continuing the path: the horizontal edge and the vertical edge.
However, by Lemma 7.7 the choice has to be the horizontal edge. Consequently, in both directions
we need to move along horizontal edges until we reach exterior vertices. By Lemma 7.6, moving
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from an interior vertex into a fiber containing an interior vertex will end in the interior vertex.
By the assumption that Γ has n− 1 interior vertices there is only one fiber F ⊂ Γ which does
not contain an interior fixed point, it follows that the desired 2-valent polytope-type subgraph
would need to contain a lift of the closed path running around B once, which starts and ends
in the fiber F . Since Γ is of twisted type this path is not closed. Again by Lemma 7.7 it follows
that the subgraph does not contain the vertical edge in F so the only way to close the loop is
to continue with the other lift of the loop around B until we reach the starting point. Thus,
the only possible choice of 2-valent subgraph is Γ with all the vertical edges removed. This is
indeed a signed GKM subgraph but globally it is not a polytope-type graph. This follows from
Lemma 7.5 as the winding number of the subgraph in question is 2. �

7.3 Case (II)
Assume now that we have another signed GKM structure Γ′ on the underlying graph of Γ such
that the induced unsigned GKM graph agrees with that of Γ. Let ei denote the oriented edges
of B as in § 4 and let fi, hi be the edges in Γ over ei such that fi and fi+1 are adjacent for
i = 1, . . . , n− 1, and the same holds for fn and h1. We also denote by gi the directed edge in the
fiber over vi whose starting point is the same as that of fi. Occasionally we extend this notation
mod n such that, e.g., fn+1 = h1 and f0 = hn.

In case (II), we furthermore make the assumption that in the signed structure of Γ′ the labels
of fi and hi agree (where in full generality they might differ by a sign). We do not assume that
Γ′ admits a signed fibration over B, but as the underlying graphs are unchanged we may still
speak about horizontal and vertical edges in Γ′.

Lemma 7.9. The weights of the vertical edges of Γ′ agree with those of Γ up to a global sign.

Proof. Let α′
i be the weight associated to gi in Γ′ and let αi be the weight associated to gi in

Γ. Let ∇′ denote a compatible connection of Γ′. For i = 1, . . . n− 1, we claim that ∇′
fi
gi = gi+1

or ∇′
hi
gi = gi+1. If this were false, then we would have ∇′

fi
gi = fi+1 and ∇′

hi
gi = hi+1. However,

by assumption, fi+1 and hi+1 have the same weight ±γi+1 so

α′
i ≡ ±γi+1 ≡ −α′

i mod γi

which is a contradiction. Thus, the claim holds, which implies that if αi = α′
i, then also αi+1 =

α′
i+1 because

α′
i+1 ≡ α′

i ≡ αi ≡ αi+1 mod γi.

Analogously αi = −α′
i implies αi+1 = −α′

i+1. Thus, the signs of the αi and α′
i either globally

agree or globally disagree. �
Lemma 7.10. If n is odd, then Γ ∼= Γ′. If n is even, then either Γ ∼= Γ′ or Γ′ is isomorphic to
the signed structure that arises from Γ by changing the signs of the labels of f2i and h2i for
i = 1, . . . , n/2 where a compatible connection can be chosen identical to that of Γ.

Proof. Let γ′i be the weight of fi and hi in Γ′. Assume that for some i = 1, . . . , n− 2 we have
γi = γ′i but γi+2 = −γ′i+2. Since γi ≡ −γi+2 mod γi+1 it follows that γ′i �≡ −γ′i+2 mod γi+1. As a
consequence, we must have ∇′

fi+1
fi = gi+2 and ∇′

hi+1
hi = gi+2 which results in the contradiction

α′
i+2 ≡ γ′i ≡ −α′

i+2 mod γ′i+1.

If we assume that γi = −γ′i but γi+2 = γ′i+2, then we arrive at the same contradiction. We have
proved that γi and γi+2 must either both agree or both disagree with their counterparts γ′i and
γ′i+2. The same holds for the pairs γn, γ2, and γ′n, γ′2. Thus, if n is odd, the γ′i globally agree or
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disagree with the γi. In each case we have Γ ∼= Γ′ due to the previous lemma. If n is even, then
the sign of the odd or the even edges may be switched independently of the other. Still, globally
changing the signs of all the γ′i or all α′

i yields isomorphic graphs so the lemma follows. �

Proposition 7.11. If n �= 4 is even, then the alternative signed structure Γ′ as in Lemma 7.10
cannot be realized as the GKM graph of a symplectic action.

For the proof we will make use of the following concept.

Proof of Proposition 7.11. Let B′ be the signed GKM structure on the underlying graph of B
where e2i+1 has the weight γ2i+1 and e2i has the weight −γ2i. Note that the connection of
B also is a compatible connection on B′ and that Γ′ → B′ is a signed GKM fibration. Let
(k1, . . . , kn) ∈ Z

n be the vector (unique up to sign) corresponding to the fibration Γ→ B in the
sense of § 4. Then Γ′ → B′ corresponds to (−k1, k2, . . . ,−kn−1, kn). As Γ was assumed to have
the maximal number of interior fixed points, it follows from Proposition 4.10 that Γ′ has the
minimal number of interior fixed points, i.e. exactly one.

Now assume that Γ′ is realized by a Hamiltonian action. The moment image is a convex
polytope in t∗, which we identify with R

2, spanned by the images of the exterior fixed points.
Note that, as part of the convexity theorem for Hamiltonian actions, the preimage of the vertices
of the moment image is connected and contains only fixed points. Thus, the vertices of the
polytope correspond bijectively to exterior vertices in the GKM graph Γ′. A path around the
boundary of this polytope corresponds to a closed path in Γ′ that runs through every exterior
vertex without going through a vertex twice or going through an interior vertex. Since the
sequence of weights along this path correspond exactly to the slopes of the boundary edges of
the polytope, we deduce that it has winding number equal to 1 with respect to its preferred
orientation.

Now assume without loss of generality that the unique interior fixed point of Γ′ is the end
point of gi and that we have a path as above starting with the edge fi. Since the path must not
go through the interior fixed point the only possibility is the path

fi, gi+1, hi+1, gi+2, . . . , hi−2, gi−1, fi−1,

which alternates between horizontal and vertical edges (excluding the fiber which contains the
interior vertex). If i is odd, then the associated sequence of weights is

(γi, αi,−γi+1,−αi+1, . . . , γi−2,−αi−1,−γi−1),

and then, by Lemma 7.5, its winding number with respect to the preferred orientation ε satisfies

σ(γi, αi,−γi+1,−αi+1, . . . ,−αi−1,−γi−1, ε) = σ(γi,−γi+1, . . . , γi−2,−γi−1, ε) ≥ n− 2
2

,

with equality on the right if ε is the preferred orientation for the central expression. If
n > 4, then this is in any case not equal to 1 which is a contradiction. If i is even, then
in the weight sequences the signs of all γk are reversed, whence we arrive at the same
contradiction. �

7.4 Case (III)
Let fi, hi, and gi denote the horizontal and vertical edges of the underlying graph of Γ as in
the previous section. It remains to treat the case where the weights of fi and hi do not agree
for some i. Let Γ′ be a signed GKM structure on the unsigned GKM graph of Γ satisfying the
above property.
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Lemma 7.12.

(i) The weights of fi and hi do not agree for any i = 1, . . . , n.
(ii) The vector (k1, . . . , kn) corresponding to the original signed fibration Γ→ B in the sense of

§ 4 satisfies ki = ±1 for i = 1, . . . , n.
(iii) If ki and ki+1 have the same sign, then the weights of fi and fi+1 in the signed structure

Γ′ both agree or both disagree with the weights in Γ.

Proof. Let ∇′ be a connection that is compatible with the signed structure Γ′ and let γ′i, δ
′
i = ±γi

be the weights of fi and hi. If γ′i = −δ′i, then necessarily ∇′
gi+1

fi = hi+1 and ∇′
gi+1

hi = fi+1. This
implies

γ′i+1 ≡ −δ′i ≡ γ′i ≡ −δ′i+1 mod αi+1 (2)

and assertion (i) follows.
For the original signed structure Γ, the equation γ′i ≡ −δ′i+1 mod αi+1 in (2) translates to

γi = ±γi+1 mod αi+1. This congruence in the lattice Z
∗
t can only be solved if up to sign we have

αi+1 = γi ± γi+1 because γi and γi+1 form a basis of Z
∗
t . In particular ki, ki+1 = ±1 is necessary

which proves part (ii).
More specifically, if ki and ki+1 have the same sign then ±αi+1 = γi − γi+1 and the only

solvable congruence of the above form is γi = γi+1 mod αi+1. Thus, if γ′i = γi then γ′i ≡ γ′i+1

mod αi+1 (see (2)) implies γ′i+1 = γi+1. Analogously γ′i = −γi implies γ′i+1 = −γi+1. �
By assumption, Γ has the maximal number of interior fixed points in the sense of § 4 and,

thus, there is only one spot j ∈ {1, . . . , n} for which kj �= kj−1 (setting k0 = −kn). Fixing this j,
Lemma 7.12 implies that regarding horizontal edges Γ′ has the form

−γj−2

γj−2

−γj−1

γj−1

γj

−γj

γj+1

−γj+1

γj+2

−γj+2

where the horizontal edges are oriented from left to right and the ends (the not depicted positions
1 and n+ 1) of the ladder are glued in a twisted fashion. Note that interchanging the top
and bottom row while applying multiplication with −1 in Z

∗
t defines an automorphism of Γ′.

Consequently, we can assume that the fi are the horizontal edges in the upper row, the hi are the
horizontal edges in the lower row, and the gi are the vertical edges emanating from the starting
point of fi.

Proposition 7.13. In the graph above there is a unique way to define the signs of the weights
of the gi such that there exists a compatible connection. Consequently, the signed GKM structure
Γ′ is unique up to isomorphism. Furthermore, Γ′ has only interior fixed points and is not realized
by a Hamiltonian action.

Proof. Let α′
i denote the weight of gi in Γ′. By the choice of j we have ±α′

j = γj−1 + γj and ±α′
i =

γi−1 − γi for the remaining values i �= j. Observe that since γj−2 ≡ −γj mod γj−1 we cannot
have ∇′

fj−1
fj−2 = fj due to the change of sign in Γ′. As a consequence, we have ∇′

fj−1
fj−2 = gj

which implies α′
j ≡ γj−2 ≡ −γj mod γj−1 and forces α′

j = −γj−1 − γj . Analogously, one has
∇′

fj
fj−1 = gj+1 and it follows that α′

j+1 ≡ γj−1 ≡ −γj+1 mod γj forcing α′
j+1 = γj − γj+1.
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We prove inductively that α′
i = γi−1 − γi for i = j + 1, . . . , n and α′

i = −γi−1 + γi for i =
1, . . . , j − 1. We showed this already for j + 1 and we assume it holds for some i ∈ {j +
1, . . . , n− 1}. Through the congruence α′

i ≡ γi−1 ≡ −γi+1 �≡ γi+1 mod γi we see that ∇′
fi
gi �=

fi+1. Consequently, ∇figi = gi+1 which implies α′
i+1 ≡ γi−1 − γi ≡ −γi+1 mod γi and, thus,

α′
i+1 = γi − γi+1. The rest of the argument is carried out analogously where one first shows

that ∇′
fn
gn = g1 and, thus, α′

1 ≡ −γn−1 + γn ≡ γ1 mod γn due to the twist in our nota-
tion. It follows that α′

1 = −γn + γ1 and from there on the induction can be continued up
to j − 1.

We have proved that Γ′ is unique up to isomorphism. One easily checks that a compatible
connection ∇′ is indeed given as follows: ∇′

fi
and ∇′

hi
send horizontal to horizontal edges except

for i = j − 1, j where horizontal and vertical edges are interchanged. Along the gi, the horizontal
edges fi and fi+1 get transported to hi+1 and hi. Clearly, all vertices in Γ′ are interior. In
particular, it does not have a linear realization in the sense of § 2.3 and cannot, thus, come from
a Hamiltonian action. �

8. Distinguishing the equivariant homotopy type

The goal of this section is to show that the equivariant homotopy type of the previous con-
structions in general depends on the input data. In particular, it will follow that the previously
developed methods produce infinite families of pairwise not equivariantly homotopy equivalent
examples.

Proposition 8.1. Let Γ→ B and Γ′ → B′ be two fiberwise signed GKM fibrations as in § 4
such that the base graphs have at least 5 vertices. Then the GKM graphs Γ and Γ′ are isomorphic
if and only if the following hold.

• There is a GKM isomorphism ϕ : B → B′.
• If we fix the data forB as in Remark 4.6 needed to define the correspondence in Proposition 4.5

and use ϕ to fix the corresponding choices for B′, then the elements in ((Z− 0)n/±)× {0, 1}
associated to the fibrations coincide.

Remark 8.2. Given Γ→ B as above then, as stated before, the map in Proposition 4.5 depends
on a fixed enumeration of the vertex set of B and on choices of signs for the first two edges. If
we change this data by choosing a different sign for the first or second weight, then the fibration
associated to ([k1, . . . , kn], η) will now correspond to ([−k1, k2, . . . , (−1)nkn], η). Changing the
enumeration of the underlying n-gon, the ki get permuted by the corresponding permutation
of the dihedral group. Note however that on top of the permutation some additional signs will
appear. We leave the details of the exact signs to the interested reader and settle for the slightly
suboptimal corollary below.

Corollary 8.3. Let Γ→ B and Γ′ → B be GKM fibrations associated to ([k1, . . . , kn], η) and
([k′1, . . . , k′n], η′). If n ≥ 5, then in order for geometric realizations of Γ and Γ′ to be equivariantly
homotopy equivalent, it is necessary that η = η′ and [k1, . . . , kn] = [k′1, . . . , k′n] up to signs and
permutations from the dihedral group.

Proof. It follows from Proposition 8.1 as well as the subsequent remark that the conditions
in the corollary are necessary in order for Γ and Γ′ to be isomorphic. It is shown in [FY19]
that realizations of non-isomorphic graphs have non-isomorphic equivariant cohomology algebras
which implies the claim. �
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Proof of Proposition 8.1. If Γ and Γ′ are isomorphic, then in particular they have the same
number of vertices. Thus, the underlying graphs of B and B′ are both n-gons for some n ≥ 5.
We argue that an isomorphism ϕ̃ : Γ ∼= Γ′ has to respect the decomposition into horizontal and
vertical edges of the respective fibrations. To see this note that a horizontal edge e has the
following property: there is another edge e′ (namely the other horizontal edge over the same
edge in the base) such that after removing e and e′ the shortest path between i(e) and t(e) has
length at least n− 1 ≥ 4. On the other hand, any vertical edge e has the property that, after
removing e and any other edge e′, the shortest path between i(e) and t(e) has length 3. Both
properties are respected by graph isomorphisms so ϕ indeed respects the decomposition of fiber
and horizontal edges.

It follows that the lift of a path around the n-gon B gets mapped by ϕ̃ to the lift of a
path around the n-gon B′. Thus, in particular, Γ and Γ′ must either be both of twisted type
or of product type so η = η′. Since this is true for both possible lifts and their images under ϕ̃
are connected through vertical edges it follows that ϕ̃ respects pairs of horizontal edges. This
implies that lifting an edge from B to Γ, mapping it to Γ′ and pushing it down to B′ induces
a well-defined graph isomorphism ϕ : B → B′. Since ϕ̃ is a GKM isomorphism there is some
automorphism ψ of Z

∗
t such that for any edge e in Γ we have ψ(α(e)) = α′(ϕ̃(e)), where α and

α′ denote the axial functions of Γ and Γ′. It follows that if ẽ is an edge in Γ over some edge
e ∈ E(B), then

ψ(αB(e)) = ψ(α(ẽ)) = α′(ϕ̃(ẽ)) = αB′(ϕ(e)).

Thus, ϕ is a GKM isomorphism.
We enumerate the vertices and edges of B and choose weights γi as in Remark 4.6. We give

B′ the enumeration induced by ϕ and choose signs of γ′i such that ψ(γi) = γ′i. If the orientations
of the vertical edges are chosen compatibly with ϕ̃ then the corresponding weights αi and α′

i and
the resulting integers ki and k′i as in Proposition 4.5 satisfy

k′iγ
′
i−1 − k′i−1γ

′
i = α′

i = ψ(αi) = kiψ(γi−1)− ki−1ψ(γi).

Thus, ki = k′i which proves one direction of the proposition. Conversely one easily checks that
given ϕ : B → B′ satisfying the conditions of the proposition, any graph isomorphism ϕ̃ : Γ→ Γ′

covering ϕ is a GKM isomorphism. �

9. Cohomology and characteristic classes

This section is devoted to computing the cohomology ring as well as the Chern classes of the
realizations of the GKM fibrations. All cohomology rings in this section are with respect to
integer coefficients.

First we remind the reader how the Chern classes of the total space of a projectivized bundle
are computed in terms of the Chern classes of the bundle and the base. Note that usually this
is done in case the bundle E → X is a holomorphic vector bundle over some complex manifold
X. However, the same computations work in case of a 4-dimensional quasitoric base manifold
or S4.

Assume that X is a 4-dimensional stable almost complex manifold and E → X a complex
vector bundle of rank 2, and denote by π : P(E)→ X the canonical projection. The vertical
distribution V ⊂ TP(E) is a complex vector bundle (cf. § 6.1), thus P(E) has a stable almost
complex structure induced by the decomposition TP(E) = V ⊕ π∗(TX). Let L→ P(E) be the
relative tautological bundle, i.e. it restricts to every CP

1-fiber of π : P(E)→ X to the tautological
bundle over this fiber. From [BT82, p. 270 (20.7)] we have that the cohomology ring H∗(P(E))
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is the quotient ring of the polynomial ring H∗(X)[x] by the ideal I generated by

x2 + c1(E)x+ c2(E)

where x := c1(L) ∈ H∗(P(E)) and L denotes the dual bundle of L. We obtain the following.

Proposition 9.1. The Chern classes of the stable almost complex structure of P(E) in the ring
H∗(X)[x]/I are given by

c1(P(E)) = c1(X) + c1(E) + 2x

and

c2(P(E)) = c2(X) + c1(E)c1(X) + 2c1(X)x.

Clearly c3(P(E)) is determined by the Euler characteristic of P(E) which is equal to twice the
Euler characteristic of X.

Proof. The relative Euler sequence [Huy05, Remark 2.4.5] also holds in this setting, i.e. we have
a short exact sequence of complex vector bundles

0 −→ C −→ π∗(E)⊗ L −→ V −→ 0,

where C is the trivial vector bundle. Let c denote the total Chern class, then c(P(E)) =
π∗(c(X))c(V ) in H∗(P(E)). From the relative Euler sequence we infer c(V ) = c(π∗(E)⊗ L) and
using the splitting principle we obtain for the tensor product

c1(π∗(E)⊗ L) = π∗(c1(E)) + 2c1(L),

as well as

c2(π∗(E)⊗ L) = π∗(c2(E)) + π∗(c1(E))c1(L) + c1(L)2.

Identifying now H∗(P(E)) with H∗(X)[x]/I we compute

c1(P(E)) = c1(X) + c1(E) + 2x

and

c2(P(E)) = c1(E)c1(X) + 2c1(X)x+ c2(E) + c1(E)x+ x2 + c2(X)

= c1(E)c1(X) + 2c1(X)x+ c2(X),

where we used that c2(E) + c1(E)x+ x2 is zero in H∗(X)[x]/I. �

We suppose X is a quasitoric manifold of dimension 4 or S4 and T the 2-torus acting on X.
We use the notation from Remark 4.6 for the GKM graph of X. We denote by δi the element of⊕n

i=1H
∗(BT ) = H∗

T (XT ) which is zero, except at vi, where it is equal to 1 ∈ H∗(BT ). We extend
the notation to δi+n = δi. From [MP06, Theorem 7.7] we infer that the equivariant cohomology
of H∗

T (X) ⊂ H∗
T (XT ) is generated by

βi := −γi−1δi + γi+1δi+1

for i = 1, . . . , n (the βi are, in the language of [MP06, § 6.2], the Thom classes of the 2-dimensional
submanifolds corresponding to the edges in the GKM graph of X).

Lemma 9.2. Let E → X be a T -equivariant complex vector bundle of rank 2 satisfying con-
dition (i) of Theorem 5.7 (for some (a1, . . . , an), (k1, . . . , kn) ∈ Z

n, η ∈ {0, 1}) and denote by
cTi (E) ∈ H∗

T (X) the integral ith equivariant Chern class of E → X. The image of cT1 (E) under
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the inclusion map H∗
T (X)→ H∗

T (XT ) is given by

n∑
i=1

(ki − 2ai)βi

and that of cT2 (E) by

n∑
i=1

(2aiai−1 − ai−1ki − aiki−1)βi−1βi +
n∑

i=1

(a2
i − aiki)β2

i ,

where we set a0 = (−1)ε1an + ηk0, k0 = (−1)ε1+ηkn, and β0 = (−1)ε1βn.

Proof. The image of the total Chern class cT (E) in H∗
T (XT ) is given by (see [GKZ19,

Proposition 5.3])
n∑

i=1

(1 + αi1)(1 + αi2)δi,

where αij are the weights of the T -representation on the fiber over the fixed point vi. By
abuse of notation, we write also cT (E) ∈ H∗

T (XT ) for the image of cT (E) under the inclusion
homomorphism. By assumption, the weights αij over vi are given by

αi1 = aiγi−1 − ai−1γi, and αi2 = (ai − ki)γi−1 + (−ai−1 + ki−1)γi

and, therefore,

cT1 (E) =
n∑

i=1

((2ai − ki)γi−1 + (−2ai−1 + ki−1)γi)δi.

Using that k0 = (−1)η+ε1kn (cf. § 5.2) we compute

cT1 (E) = (2a1 − k1)γ0δ1 + (−2((−1)ε1an + ηk0) + k0)γ1δ1

+
n∑

i=2

((2ai − ki)γi−1 + (ki−1 − 2ai−1)γi)δi

= (2a1 − k1)γ0δ1 − (2an − (2η + (−1)η)kn)γn+1δn+1

+
n∑

i=2

((2ai − ki)γi−1 + (ki−1 − 2ai−1)γi)δi

= (2a1 − k1)γ0δ1 − (2an − kn)γn+1δn+1 + (2an − kn)γn−1δn

− (2a1 − k1)γ2δ2 −
n−1∑
i=2

(2ai − ki)βi

=
n∑

i=1

(ki − 2ai)βi.

The second Chern class is given by

cT2 (E) =
n∑

i=1

(aiγi−1 − ai−1γi)((ai − ki)γi−1 + (−ai−1 + ki−1)γi)δi

=
n∑

i=1

((a2
i − aiki)γ2

i−1 + (−2aiai−1 + ai−1ki + aiki−1)γi−1γi + (a2
i−1 − ai−1ki−1)γ2

i )δi.
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Let us examine the middle term first. We have
n∑

i=1

(−2aiai−1 + ai−1ki + aiki−1)γi−1γiδi =
n∑

i=1

(2aiai−1 − ai−1ki − aiki−1)βi−1βi,

where β0 := −γ−1δn + γ1δ1 = −(−1)ε1γn−1δn + (−1)ε1γn+1δn = (−1)ε1βn. The remaining terms
can be rearranged as follows:

n∑
i=1

((a2
i − aiki)γ2

i−1 + (a2
i−1 − ai−1ki−1)γ2

i )δi

=
n∑

i=1

(a2
i − aiki)γ2

i−1δi +
n−1∑
i=1

(a2
i − aiki)γ2

i+1δi+1 + (a2
0 − a0k0)γ2

1δ1

=
n−1∑
i=1

(a2
i − aiki)β2

i + (a2
n − ankn)γ2

n−1δn + (a2
0 − a0k0)γ2

1δ1

=
n∑

i=1

(a2
i − aiki)β2

i ,

where in the last equality we used that a2
0 − a0k0 = a2

n + (−1)ε1ank0(2η − 1) = a2
n − ankn. �

The cohomology H∗(X) is isomorphic to H∗
T (X)/

(
H>0(BT ) ·H∗

T (X)
)
, see the proof of

[MP06, Lemma 2.1]. We denote by βi the elements in H∗(X) which are the images of βi under
the projection map H∗

T (X)→ H∗(X). Thus, the elements βi generate H∗(X).
When it comes to computing the cohomology of the projectivization of the vector bundles

from Theorem 5.7 we note that the result does not depend on a = (a1, . . . , an): the cohomology
is completely determined by the GKM graph, on which a has no effect. Thus, we may set a = 0
(note that then a0 = ηk0) and apply Lemma 9.2 to obtain the following.

Corollary 9.3. Let E → X be a T -equivariant complex vector bundle of rank 2 as in
Theorem 5.7. Then we have

H∗(P(E)) = H∗(X)[x]/〈x2 +
( n∑

i=1

kiβi

)
x+ ηknk1β1βn〉.

The above description of H∗(P(E)) combines the combinatorial computation of the Chern
classes with a topological result which exposes H∗(P(E)) as a free H∗(X)-module in the sense
of the Leray–Hirsch theorem together with additional multiplicative relations describing also the
algebra structure. We note that a purely graph theoretic version of the Leray–Hirsch theorem has
been obtained in [GZ01, Theorem 3.5]. It could be used instead to enable similar computations.

Any T -invariant (stable) almost complex structure on X induces such a structure on P(E),
so that the decomposition TP(E) = V ⊕ π∗(TX) is a decomposition of stable almost complex
vector bundles, cf. Theorem 5.1 and § 6.1. Recall that at least a stable almost complex structure
always exists in case X is quasitoric or S4. We wish to compute the Chern classes of the resulting
structure on P(E) using Proposition 9.1. Therefore, we first have to determine the Chern classes
of X, which we will conduct using equivariant cohomology. For simplicity, we will restrict to the
case of an almost complex structure on X and the choice of the γi will be assumed to be that of
the resulting signed GKM structure. In this case, the equivariant Chern class of X is given by

cT (X) =
n∑

i=1

(1− γi−1)(1 + γi)δi.
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An easy computation shows that

cT1 (X) =
n∑

i=1

βi

and

cT2 (X) =
∑
i<j

βiβj .

When it comes to the vector bundles from Theorem 5.7, note that we may again assume a = 0
for the computation since the Chern classes depend only on the GKM graph. In total, we obtain
the following result.

Proposition 9.4. If X is almost complex and E → X is as in Theorem 5.7, then the Chern
classes of P(E) expressed in the Chow ring are given by

c1(P(E)) =
n∑

i=1

(ki + 1)βi + 2x

and

c2(P(E)) =
∑
i<j

βiβj +
∑
i,j

kiβiβj + 2
n∑

i=1

βix.

Finally, we would like to show in a special case, that the homotopy type of P(E) depends
on k. We will consider the discriminant of the symmetric trilinear form given by the triple cup
product on integer cohomology in dimension 2, cf. [OV95, §§ 3.1 and 5.2]: let N be a simply
connected, closed, and orientable 6-manifold such that its second Betti number is equal to 2.
Choose a basis (e1, e2) of H2(N) and an orientation homology class [N ] ∈ H6(N). Consider the
following integers using the cup product of H∗(N)

n0 := 〈e31, [N ]〉, n1 := 〈e1e22, [N ]〉, n2 := 〈e21e2, [N ]〉, n3 := 〈e32, [N ]〉.
The number

ΔN := (n0n3 − n1n2)2 − 4(n0n2 − n2
1)(n1n3 − n2

2)

is invariant under the action of GL(2,Z) on H2(N) and does not depend on the chosen
orientation. Thus, it represents an invariant of the homotopy type of N .

Let us now assume X = CP
2 with the standard action of T 2 and denote by B the GKM

graph of X. Consider a signed GKM fibration Γ→ B corresponding to (k1, k2, k3, η) in the sense
of 4.5 (with respect to some choice of data in B as in Remark 4.6). We assume that the fibration
is of twisted type i.e. η = 1. Let Ek be a T 2-equivariant complex vector bundle as in Theorem 5.7
with (a1, . . . , an) = 0 such that P(E)→ X realizes Γ→ B and denote by Pk the projectivization
of Ek. Note that in H∗(CP

2) we have β1 = β2 = β3 and β1β2 = β2β3 = β1β3. From [OV95,
Proposition 17] it follows that

ΔPk
= c1(Ek)2 − 4c2(Ek)

when interpreting the Chern classes in H∗(CP
2) as integers. Thus, using Lemma 9.2 we obtain

ΔPk
= (k1 + k2 + k3)2 − 4η · k1k3,

which proves that one obtains infinitely many different homotopy types, when varying k. Note
that the discussion on the non-Kählerness of the action in § 7 only cared about the signs of the
ki. Thus, we have the following.
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Proposition 9.5. There are infinitely many homotopy types among compact simply-connected
6-dimensional manifolds which carry a Hamiltonian GKM T 2-action with 6 fixed points but do
not admit an invariant Kähler structure.

Remark 9.6. Note that the stabilizers of the produced examples are connected if and only if
all the ki are ±1. One can show that for any GKM fibration Γ→ B of twisted type over the
GKM graph B of CP

2 with ki = ±1 the GKM graph Γ is isomorphic to that of SU(3)/T 2 or
of Eschenburg’s twisted flag manifold SU(3)//T 2, cf. Examples 4.7 and 4.8. Thus, among the
infinitely many examples of Hamiltonian T 2-actions we constructed for Proposition 9.5, the only
one with connected stabilizers and without invariant compatible Kähler structure is the original
Hamiltonian non-Kähler example due to Tolman. An example in which not all ki are ±1 is given
as follows:
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