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Abstract

Background. Posttraumatic stress symptoms (PTSS) are common following traumatic stress
exposure (TSE). Identification of individuals with PTSS risk in the early aftermath of TSE
is important to enable targeted administration of preventive interventions. In this study, we
used baseline survey data from two prospective cohort studies to identify the most influential
predictors of substantial PTSS.
Methods. Self-identifying black and white American women and men (n = 1546) presenting
to one of 16 emergency departments (EDs) within 24 h of motor vehicle collision (MVC) TSE
were enrolled. Individuals with substantial PTSS (⩾33, Impact of Events Scale – Revised)
6 months after MVC were identified via follow-up questionnaire. Sociodemographic, pain,
general health, event, and psychological/cognitive characteristics were collected in
the ED and used in prediction modeling. Ensemble learning methods and Monte Carlo
cross-validation were used for feature selection and to determine prediction accuracy.
External validation was performed on a hold-out sample (30% of total sample).
Results. Twenty-five percent (n = 394) of individuals reported PTSS 6 months following
MVC. Regularized linear regression was the top performing learning method. The top
30 factors together showed good reliability in predicting PTSS in the external sample (Area
under the curve = 0.79 ± 0.002). Top predictors included acute pain severity, recovery expecta-
tions, socioeconomic status, self-reported race, and psychological symptoms.
Conclusions. These analyses add to a growing literature indicating that influential predictors
of PTSS can be identified and risk for future PTSS estimated from characteristics easily
available/assessable at the time of ED presentation following TSE.

Introduction

Exposure to traumatic events is common in life (Eastel et al., 2019; Kilpatrick et al., 2013).
While most individuals recover following trauma exposure, a substantial subset develops
adverse posttraumatic neuropsychiatric sequelae such as posttraumatic stress symptoms
(PTSS). PTSS can cause tremendous suffering, functional impairment, disability, and high
health care costs (Bleich & Solomon, 2004; Dobie et al., 2004; Gaskin & Richard, 2012;
Haskell et al., 2010; Kessler, 2000; Lew et al., 2009; McNally & Frueh, 2013; Outcalt et al.,
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2015; Stewart, Ricci, Chee, Hahn, & Morganstein, 2003; Surís &
Lind, 2008). Even though individuals who develop PTSS often
present for emergency care or other health care in the immedi-
ate/early aftermath of an inciting event, no risk prediction tools
are in regular use and the development of such tools is still at
an early stage. Continued development of such tools is valuable
because preventive interventions delivered in the early aftermath
of trauma might be the most efficacious (Fritz et al., 2015;
Kearns, Ressler, Zatzick, & Rothbaum, 2012; Litz, Gray,
Bryant, & Adler, 2002; Shalev et al., 2016).

A number of high-quality studies have successfully identified
survey or biological characteristics that predict PTSS, either as indi-
vidual predictors or sets of items identified via ensemble machine
learning-based methodologies (Freedman, Brandes, Peri, & Shalev,
1999; Galatzer-Levy, Karstoft, Statnikov, & Shalev, 2014; Karstoft,
Statnikov, Andersen, Madsen, & Galatzer-Levy, 2015b; Kessler
et al., 2014; Kleim, Ehlers, & Glucksman, 2007; Linnstaedt et al.,
2019a; Linnstaedt, Zannas, McLean, Koenen, & Ressler, 2019b;
Powers et al., 2014; Rosellini, Dussaillant, Zubizarreta, Kessler, &
Rose, 2018; Schultebraucks et al., 2020; Shalev et al., 2019;
Symes, Maddoux, McFarlane, & Pennings, 2016; Ziobrowski
et al., 2021). Identified characteristics have generally come from
sociodemographic (Galatzer-Levy et al., 2014; Karstoft,
Galatzer-Levy, Statnikov, Li, & Shalev, 2015a; Kessler et al., 2014;
Powers et al., 2014), prior trauma (Karstoft et al., 2015b; Kessler
et al., 2014; Symes et al., 2016), blood biomarker (Linnstaedt
et al., 2019a, 2019b; Schultebraucks et al., 2020), and psychological
or cognitive domains (Freedman et al., 1999; Galatzer-Levy et al.,
2014; Karstoft et al., 2015a, 2015b; Kleim et al., 2007; Powers
et al., 2014; Symes et al., 2016). Specifically, examples of previously
identified predictors of PTSS include feelings of worthlessness,
peritraumatic stress, nightmares, worrying, racing heart, blood
cell counts, gender, and preexisting depression (Galatzer-Levy
et al., 2014; Karstoft et al., 2015b; Kessler et al., 2014; Powers
et al., 2014; Schultebraucks et al., 2020; Ziobrowski et al., 2021).
The continued development and exposition of predictive factors
and tools is important for several reasons. First, an array of tools
is needed because the optimal tool may vary greatly depending
on the timing related to trauma, trauma type, patient population,
type of intervention (e.g. affecting optimal sensitivity/specificity
trade-off), time/resources available to administer the tool, and
types of screening questions that can be asked (e.g. even if highly
predictive within a tool, childhood trauma history might be a viable
assessment in a therapist’s office but not an emergency or primary
care waiting room). In addition, different datasets invariably
contain information regarding different types of patient
characteristics, and therefore the evaluation of the most influential
predictors using a variety of large, high-quality datasets allows the
continued surfacing of promising predictors and tools.

In the current study, we sought to contribute the continued
development and exposition of predictive factors and tools for
PTSS by identifying the optimal set of survey items that, at the
time of emergency department (ED) evaluation after motor
vehicle collision (MVC) trauma, predict substantial PTSS at 6
months. We utilized data from two longitudinal studies of
MVC survivors [n = 776 Black Americans (Linnstaedt et al.,
2016) and n = 770 White Americans (Platts-Mills et al., 2011)]
that were performed by a common research team, with nearly
identical methods and high follow-up rates (Linnstaedt et al.,
2016; Platts-Mills et al., 2011). Available candidate predictors
assessed in the ED included sociodemographic, trauma, reported
pre-MVC health status, and peritraumatic pain and psychological

symptom domains. The optimal set of predictors was derived
using ensemble learning methods and validation was performed
using data from a hold-out subsample of ED sites.

Methods

Cohorts

Data used in the current study were collected as part of two lon-
gitudinal cohort studies of MVC trauma survivors. These two
studies enrolled individuals at one of 16 ED sites in the immediate
aftermath of MVC and followed study participants over the
course of 1 year. MVC trauma is one of the most common civilian
traumatic stress exposures in industrialized nations, and similar to
other forms of trauma, adverse posttraumatic neuropsychiatric
sequelae are common (McLean et al., 2019). The first of the
two studies enrolled only self-reporting White American indivi-
duals (June 2011 and June 2014) and the second study enrolled
only self-reporting Black American individuals (between July
2012 and July 2015). These two racial groups were enrolled sep-
arately to avoid population stratification effects in each individual
cohort. Both sister studies shared the common goal of under-
standing recovery v. development of adverse posttraumatic neuro-
psychiatric sequelae following trauma exposure. They have been
described thoroughly previously (Linnstaedt et al., 2016;
Platts-Mills et al., 2011) and details are provided below. The stud-
ies were approved by Institutional Review Boards (IRBs) at all col-
laborating institutions and all participants provided written
informed consent after receiving a complete description of the
study. Trained research assistants at each ED site used web-based
screeners and questionnaires to determine eligibility and perform
assessments (described below).

Study design and population

Study design
We adopted a study design that leveraged the multiple study sites
enrolling participants in the two studies. This study design is illu-
strated in Fig. 1 and is described in the ‘Site split study design’ sec-
tion. In brief, enrollment sites were grouped into three geographic
regions in each cohort [cohort 1: n = 361, 361, and 54, for geo-
graphic regions 1 (Michigan study sites), 2 (Northeastern US
study sites), and 3 (Southeastern US study sites), respectively;
cohort 2: n = 304, 152, and 314 for geographic regions 1, 2, and
3]. Participant data were then partitioned into training (70% of
the data) and test sets (30% of data, data from different study
sites than training data). The training dataset had equal numbers
of participants from each cohort and equal representation from
each geographical region while, to increase rigor, the test dataset
included participant data that were shuffled randomly (i.e. poten-
tial non-equal race, sex, age, etc., representation). Two hundred
permutations of these training and test sets were used to deter-
mine external validation metrics. Within the training set, feature
selection was performed using 100 rounds of Monte Carlo cross-
validation that identified the top 30 variables based on average
rankings across internal validation metrics. The selection of 30
variables was determined via the one standard error rule (Chan,
Pristach, Welte, & Russell, 1993). This rule indicated that the
most parsimonious subset of variables with the least error (up
to one standard error) is 30 variables (online Supplementary
Fig. S2; mean error and standard error for 30 variables: 0.17 ±
0.003). These 30 variables were then used to assess AUC,
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accuracy, sensitivity, specificity, negative predictive values
(NPVs), and positive predictive values (PPVs) in the hold out
test dataset.

Motor vehicle collision study, cohort 1
The details of the first of our two MVC studies have been reported
previously (Platts-Mills et al., 2011). In brief, individuals ⩾18 and
⩽65 years of age presenting to one of eight EDs in four no-fault
insurance states (i.e. states that restrict ones right to seek compen-
sation for pain or suffering that is associated with MVC:
Michigan, Massachusetts, New York, and Florida) within 24 h
of MVC and who did not have fracture other than finger or
toe, other injury requiring hospital admission, were enrolled
between June 2011 and June 2014. Additionally, to be enrolled,
patients had to provide a telephone number for follow-up contact.
Patients who were not alert and oriented per the treating clinician
were excluded, as were pregnant patients, prisoners, patients
unable to read and understand English, substantial soft tissue
injury, passengers on a bus, or patients taking opioids above a
total daily dose of 30 mg of oral morphine or equivalent. In add-
ition, enrollment was limited to self-identifying non-Hispanic
White Americans. Informed consent was obtained from all parti-
cipants and IRB approval was obtained at all study sites.

Motor vehicle collision study, cohort 2
The details of the second of our two MVC studies have also been
reported previously (Linnstaedt et al., 2016). This prospective
longitudinal study enrolled self-identifying Black American
individuals ⩾18 and ⩽65 years of age who presented within
24 h of MVC to one of 11 EDs in six states/districts (Michigan,
Pennsylvania, Florida, Alabama, Massachusetts, and
Washington DC) between July 2012 and July 2015. In brief,
individuals who did not have a fracture or other injury requiring
hospital admission were screened for eligibility. Patients who were
not alert and oriented were excluded, as were patients who did not
self-identify as Black American, were pregnant, prisoners, unable

to read and understand English, or taking opioids above a total
daily dose of 30 mg of oral morphine or equivalent.
Furthermore, only non-Hispanic Black Americans were enrolled
in the study. The study was approved by the IRB of all participat-
ing hospitals. Each participant provided written informed consent
before enrollment.

Assessments collected at the time of trauma exposure (i.e.
potential predictors)

All variables included as potential predictors are presented in
online Supplementary Table S1. Descriptions of these assessments
are provided in online Supplementary Methods.

Data cleaning, imputation, and variable reduction

The two MVC cohort datasets were cleaned and imputed separ-
ately and then merged into a final dataset. Cleaning, variable
reduction, and imputation steps were adapted from previously
published protocols (Kuhn & Johnson, 2013; Stekhoven &
Bühlmann, 2012) and are summarized in online Supplementary
Fig. S1. Briefly, we first removed variables with >10% missingness,
and participants with >50% missing data. This resulted in a total
of 966 variables in cohort 1 and 958 variables in cohort 2 (of these
variables, >97% of them contained less than 5% missing data). We
then used missForest, a random forest-based non-parametric
method, to impute variables with missing values. Compared to
other methods like MICE that individually fit data types,
missForest can leverage all available data during imputation.
Without imputation, many variables would be removed, thus
harming data quality (e.g. there could be potential overconfidence
in results and induced bias). Using these complete data, we then
scaled continuous covariates [(0,1) range], removed variables with
zero or low variance (i.e. those variables in which the fraction of
unique values over the sample size was 10% and the ratio of the
frequency of the most prevalent value to the frequency of the

Fig. 1. Schematic of the study design employed in the
current study to achieve rigorous training and test sets
for machine learning algorithms. Participant data were
derived from two longitudinal studies of motor vehicle
collision trauma survivors. Enrollment occurred across
16 emergency department (ED) sites in the Eastern
United States (gray dots top panel). Geographic loca-
tions of these ED enrollment sites were grouped into
three broad areas as defined by blue numbers for
cohort 1, the White America cohort (Platts-Mills
et al., 2011) and orange numbers for cohort 2, the
Black American cohort (Linnstaedt et al., 2016).
Participant data from each of these three geographic
locations were then used to generate ‘site splits’ for
training datasets (70% of the combined Black and
White cohorts) and test datasets (30% of the combined
cohort). As shown in the middle panel, training data-
sets were balanced across races and geographic loca-
tions. Within each training data site split, 100 rounds
of Monte Carlo cross-validation were performed (repre-
sented by gray and green bars, bottom panel) to esti-
mate variable selection probabilities and conduct
feature selection. Using this methodology, average
variable rankings were calculated, and the top vari-
ables were used for external validation within test
datasets that were not constrained for race, sex, or
geographic locations.
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second most prevalent value was 19), and removed one of any pair
of variables in high correlation with each other (i.e. |r| > 0.75) (e.g.
number of alcoholic drinks consumed per week was correlated
with alcohol consumed per day, therefore one of these variables
was removed). Finally, variables not present in both cohorts (i.e.
because a questionnaire was used in one cohort but not the
other) were removed. A total of 160 variables remained and are
provided in online Supplementary Table S1. All cleaning steps
were performed using RStudio (version 4.0.0).

Site split study design

Instead of using our two datasets as separate discovery and valid-
ation datasets and given the nearly identical study design of the
two studies and that they were comprised of self-identifying
Blacks and Whites, respectively, we opted to combine them into
one large final dataset and then hold out a subset of study sites
as external validation sites (test data), with the rest of the sites
used as our training data. This enabled us to include self-
identified race as a candidate predictor, increasing generalizability
of the study. Further, we opted to not evaluate using only one
train-test (or hold out) split, but instead evaluate test performance
over several train-test splits. In this way, we can better assess the
generalizability of the models rather than rely on a single, poten-
tially sensitive estimate.

To generate our train-test splits, we generated all possible com-
binations of study site splits that could fulfill a 70:30 split between
internal training and external test data. Within the training data,
we constrained the possible combinations of study sites by three
metrics: ratio of self-identifying Black Americans to self-
identifying White Americans was between 0.45 and 0.55, the
ratio of women to men was between 0.45 and 0.55 and every
training set had to have at least one study site from each major
geographical location (defined as Michigan area, Northern east
coast, and Southern east coast). These constraints resulted in
605 different combinations of possible training sets. Due to com-
putational costs of running our machine learning pipelines on all
605 combinations, we randomly selected 200 of these splits on
which to evaluate performance.

Machine learning methods

K-nearest neighbors
K-nearest neighbors is a non-parametric supervised learning
method for classification. Given a new input to classify, it looks
for the majority class among the k-nearest data points in the
training set, and chooses that majority class as the output
(Kramer, 2013). It has been applied extensively in medical
research (Ali, Neagu, & Trundle, 2019; Gallego, Pertusa, &
Calvo-Zaragoza, 2018; Li et al., 2012; Shouman, Turner,
& Stocker, 2012; Xing & Bei, 2020; Zhuang, Cai, Wang, Zhang,
& Zheng, 2020).

Regularized regression
Regularized regression is least squares regression with either an L1
penalty (lasso regression), L2 penalty (ridge regression), or a com-
bination of both (Elastic Net). Using regression allows for inter-
pretable models, making it popular in the biomedical
community, while still allowing for robust performance via regu-
larization (Austin, Pan, & Shen, 2013; de Vlaming & Groenen,
2015; Kessler et al., 2017; Lund et al., 2019; Marafino,
Boscardin, & Dudley, 2015; Odgers, Tellis, Hall, & Dumontier,

2016; Parker et al., 2009; Pavlou, Ambler, Seaman, De Iorio, &
Omar, 2016; Privé, Aschard, & Blum, 2019).

Random forest
Random forest is an ensemble non-parametric method that aggre-
gates over several decision trees to make predictions. Random for-
ests are popular for its ability to model complex and non-linear
interactions of effects. Random forests have also proven successful
in the biomedical community (Antoniadi, Galvin, Heverin,
Hardiman, & Mooney, 2021; Bayramli et al., 2021; Chen &
Ishwaran, 2012; Hu & Steingrimsson, 2018; Kim, Yoo, Oh, &
Kim, 2013; Wongvibulsin, Wu, & Zeger, 2019).

Support vector machines
Support vector machine (SVM) for classification works by finding
the optimal ‘separating hyperplane’ among the classes. Radial ker-
nels were explored for our prediction task, but linear SVMs were
the most performant. SVMs have also shown success in biomed-
ical classification (Byun & Lee, 2002; Georgoulas, Stylios, &
Groumpos, 2006; Kim et al., 2013; Mittag et al., 2012; Yokota,
Endo, & Ohe, 2017).

Neural networks
Neural networks are mathematical models inspired by the brain.
Information is transmitted across the network by taking a linear
combination of inputs (with weights, as in regression analysis)
and applying non-linear functions. This design allows for power-
ful approximations (Bishop, 1995; Cybenko, 1989). Here, we used
a simplified version of published methods, i.e. a single-layer
neural network within an ensemble, to guard against overfitting.

SuperLearner
SuperLearner is an ensemble method that finds the optimal
weighting among methods of interest; the authors showed that
asymptotically, it is as optimal as the best possible prediction algo-
rithm tested (Gruber et al., 2020; Petersen et al., 2015; Polley &
Van Der Laan, 2010; Torquati et al., 2022; Wyss et al., 2018).
SuperLearner has been employed in a variety of biomedical
applications.

Feature selection and assessment of model performance

For a given study site split (which specifies a train and test data-
set), we built machine learning models to perform binary classifi-
cation of PTSS. We compared the performance of regularized
logistic regression (Brennstuhl, Tarquinio, & Montel, 2015;
Maddoux, McFarlane, Symes, Fredland, & Feder, 2018), random
forests (Nash, Ponto, Townsend, Nelson, & Bretz, 2013), linear
SVM (Defrin et al., 2008), and SuperLearner (Creamer, Bell, &
Failla, 2003) [where an ensemble of these methods, with k-nearest
neighbors (Johansen, Wahl, Eilertsen, & Weisaeth, 2007) and
single-layer neural network (Zlomuzica, Preusser, Schneider, &
Margraf, 2015), was used]. In our pipeline, we considered the
number of top covariates to use in the model, k, as a hyperpara-
meter to cross-validate on with model-specific hyperparameters,
α. These parameters are selected in a nested CV-like approach
using the training data. For a fixed k, α is selected by evaluating
several αi (from a grid), using Monte Carlo cross-validation.
Then, the final (k, α) hyperparameter is selected using the
one-standard error rule. To determine the top k covariates, we
implemented stability selection from Shah and Samsworth
(Kind & Buckingham, 2018), which utilizes several rounds of
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Monte Carlo cross-validation in order to robustly estimate the
probability of variable selection. In our procedure, if the support
of covariate i was non-zero according to Lasso, then i was consid-
ered a signal variable. Once the relevant model hyperparameters
were chosen from the training set, we trained the model then cal-
culated the mean and standard error for a variety of performance
metrics on the test set. The pipeline was repeated for each
machine learning method considered.

Results

Participants

Participants included in the current study were only those parti-
cipants who completed 6-month follow-up questionnaires asses-
sing PTSS outcomes (i.e. n = 1546). These individuals comprise
>85% of enrolled individuals (88% of enrolled individuals in
cohort 1 and 83% of enrolled individuals in cohort 2). Baseline
characteristics of participants are shown in Table 1, and a com-
parison of individuals included in the current study analyses v.
those individuals who were lost to follow-up is shown in online
Supplementary Table S2. In both cohort 1 and cohort 2, most
individuals were female and in their mid-30s. Education levels
were higher in cohort 1, with 39% (n = 303/776) having received
college or post-college education. This contrasts with cohort 2,
where only 18% (n = 140/770) had college or post-college educa-
tion. Collision characteristics were similar between the two
groups. BMI was slightly higher in cohort 2. Twenty-five percent
(n = 394/1547) of all participants reported PTSS 6 months follow-
ing MVC (15% of White Americans and 36% of Black
Americans).

Feature selection and internal validation

Variable importance, determined by calculating mean variable
selection probability from 200 randomly selected internal site
splits, was used to rank the top 30 predictors of substantial
PTSS 6 months after MVC (Fig. 2). The most influential predic-
tors of substantial PTSS included acute pain, psychological, and
somatic symptoms, self-reported race, and cognitions and expec-
tations regarding symptoms/recovery. As shown in Table 2, aver-
age AUCs for internal validation ranged from 0.83 ± 0.003
(random forest, SVM, SuperLearner) to 0.85 ± 0.002 (regularized
regression). Additionally, the top 30 variables were included in
a linear regression model to determine the direction of effect of
each predictor. Regression coefficients from these linear regres-
sion models are presented in online Supplementary Table S3.

External validation and model performance

Following selection of the top 30 variables, we then used our hold
out sample (30% of the full dataset) to assess performance via
external validation procedures. We found that regularized regres-
sion methods showed the strongest performance, with an average
AUC of 0.79 ± 0.002 (Table 2 and Fig. 3).

Discussion

Findings from this study add to a growing body of literature
(Freedman et al., 1999; Galatzer-Levy et al., 2014; Karstoft et al.,
2015a, 2015b; Kessler et al., 2014; Kleim et al., 2007; Linnstaedt
et al., 2019a, 2019b; Powers et al., 2014; Rosellini et al., 2018;

Schultebraucks et al., 2020; Shalev et al., 2019; Symes et al.,
2016; Ziobrowski et al., 2021) indicating that characteristics
obtainable in the early aftermath of trauma exposure identify vul-
nerability to substantial persistent PTSS. The 30 characteristics
identified in these datasets together showed good internal
(AUC = 0.85 ± 0.002) and external validated prediction accuracy
(AUC = 0.79 ± 0.002) for substantial PTSS at 6-month follow-up.
Influential predictive domains in these datasets included peritrau-
matic pain and psychological symptoms, expectations of recovery
and cognitions about pain, self-identified race, neighborhood
socioeconomic status (Area Deprivation Index), and other socio-
demographic characteristics.

The individual predictive characteristics identified in this study
provide new insights for potential highly influential predictive fac-
tors for the development of substantial chronic PTSS. First, it
remains poorly appreciated that peritraumatic pain and somatic
symptoms are highly predictive for PTSS. The fact that few studies
have evaluated such factors for inclusion in predictive tools for
PTSS is consistent with the traditionally siloed approach to the
study of adverse posttraumatic neuropsychiatric sequelae such
as PTSS, pain, somatic symptoms, and depression, despite the
fact that these outcomes are highly co-morbid and that vulner-
ability to these disorders is shared (Feinberg et al., 2017;
McLean, Clauw, Abelson, & Liberzon, 2005; McLean et al.,
2019; Short et al., 2022). This literature, and our study findings,
supports the inclusion of peritraumatic pain and somatic symp-
toms in future studies interested in identifying/validating charac-
teristics that individually or collectively best predict substantial

Table 1. Baseline characteristics of study participants from two longitudinal
studies of motor vehicle collision trauma survivors (n = 1546)

Cohort 1:
self-identifying White
American individuals

Cohort 2:
self-identifying Black
American individuals

n or
mean

% or
S.D.

n or
mean

% or
S.D.

Participants, n 776 – 770 –

Females, n and % 485 62.50% 495 64.29%

Age, years, mean,
and S.D.

36.30 13.48 35.53 12.70

Education, n and %

HS or less 169 21.78% 305 39.87%

Some college 304 39.18% 325 42.20%

College 199 25.64% 110 14.29%

Post-college 104 13.80% 30 3.90%

Collision characteristics, n and %

Driver 673 86.73% 542 70.39%

Airbag
deployed

216 27.84% 228 29.61%

Front end 355 45.75% 339 44.03%

Severe vehicle
damage

405 52.19% 412 53.51%

BMI, mean, and
S.D.

27.76 6.37 30.03 7.59

S.D., standard deviation; HS, high school; BMI, body mass index.
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chronic PTSS. In addition, this finding suggests the potential
value of acute pain treatment to reduce the development of sub-
stantial PTSS, which has been identified in several studies
(Holbrook, Galarneau, Dye, Quinn, & Dougherty, 2010; Saxe
et al., 2001).

Interestingly, an individual’s expectations of recovery –
expected time to recover fully, and to recovery physically – were
also among the most powerful predictive factors. This finding
has several implications. First, expectations of recovery are simple
to assess and should be considered when trying to develop

Fig. 2. The top 30 characteristics that predict 6-month posttraumatic stress symptom (PTSS) outcomes following motor vehicle collision (MVC) trauma exposure.
These data were collected via patient self-report in the early peritraumatic period during emergency department (ED) assessment and enrollment into the two
current longitudinal studies. Variables are listed in order of the most predictive (top, predictive probability = 0.78) to the least predictive (bottom, predictive prob-
ability = 0.34). For ease of interpretation, predictor characteristics were grouped into the broad category of pain (red), psychological symptoms (blue), sociodemo-
graphic characteristics (gray), details about the MVC event (black), and general health of the participant (white).

Table 2. Prediction of 6-month posttraumatic stress symptoms (PTSS) using demographic and questionnaire data collected in the emergency department following
motor vehicle collision trauma (n = 1546)

AUC Accuracy PPV NPV Sensitivity (true Pos) Specificity (true Neg)

Regularized regression

Training 0.86 ± 0.001 0.78 ± 0.001 0.79 ± 0.003 0.78 ± 0.003 0.78 ± 0.003 0.78 ± 0.003

Internal 0.85 ± 0.002 0.76 ± 0.003 0.77 ± 0.004 0.76 ± 0.004 0.75 ± 0.006 0.77 ± 0.006

External 0.79 ± 0.002 0.70 ± 0.003 0.44 ± 0.004 0.88 ± 0.001 0.72 ± 0.006 0.69 ± 0.005

Random forest

Training 0.99 ± 0.001 0.97 ± 0.002 0.98 ± 0.002 0.96 ± 0.003 0.97 ± 0.002 0.97 ± 0.002

Internal 0.83 ± 0.003 0.75 ± 0.003 0.74 ± 0.003 0.77 ± 0.004 0.70 ± 0.006 0.80 ± 0.005

External 0.78 ± 0.002 0.68 ± 0.003 0.42 ± 0.003 0.89 ± 0.001 0.75 ± 0.005 0.65 ± 0.004

SVMa

Training 0.86 ± 0.002 0.78 ± 0.002 0.79 ± 0.003 0.77 ± 0.003 0.78 ± 0.003 0.78 ± 0.003

Internal 0.83 ± 0.003 0.75 ± 0.003 0.77 ± 0.004 0.74 ± 0.004 0.75 ± 0.006 0.75 ± 0.006

External 0.77 ± 0.002 0.69 ± 0.003 0.43 ± 0.004 0.87 ± 0.002 0.69 ± 0.006 0.68 ± 0.005

SuperLearner

Training 0.95 ± 0.003 0.89 ± 0.005 0.90 ± 0.005 0.88 ± 0.005 0.89 ± 0.004 0.89 ± 0.004

Internal 0.83 ± 0.003 0.75 ± 0.003 0.76 ± 0.004 0.74 ± 0.004 0.75 ± 0.005 0.75 ± 0.005

External 0.77 ± 0.002 0.69 ± 0.003 0.44 ± 0.004 0.87 ± 0.001 0.70 ± 0.005 0.69 ± 0.004

Results presented are the average metrics calculated based on 200 stratified splits of the two cohorts into discovery and validation subsets (70% training and 30% test) based on enrollment
study site (mean ± S.E.) as diagrammed in Fig. 1.
aLinear support vector machines.
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predictive tools for use in acute post-traumatic settings. Second,
while expectations of time to physical recovery are no doubt influ-
enced by individual circumstance (e.g. age 80 v. 18), self-efficacy
(i.e. belief in one’s capacity to implement behaviors necessary to
attain an outcome) is an important driver of recovery expectations
and is associated with more rapid fear extinction (Zlomuzica
et al., 2015). Secondary preventive cognitive-behavioral interven-
tions targeting self-efficacy (Nash et al., 2013) could improve out-
comes for at-risk individuals.

To our knowledge, this study is the first to identify neighbor-
hood socioeconomic status (SES) as a leading peritraumatic pre-
dictor of substantial PTSS symptoms. These findings are
consistent with increasing appreciation that neighborhood SES
has wide-ranging effects on health [e.g. via influences on stress
system function (Do et al., 2011; Karb, Elliott, Dowd, &
Morenoff, 2012), diet (Shahar, Shai, Vardi, Shahar, & Fraser,
2005), and educational and employment opportunities (Saifi &
Mehmood, 2011; Vergunst et al., 2019)]. Because of its protean
influences on health status and barriers to health improvement,
neighborhood SES has been proposed as valuable to include in
the medical record (Adler & Stead, 2015). Such inclusion would
facilitate the examination of neighborhood SES as a predictor of
adverse health outcomes and as a potential use in bedside clinical
decision tools.

In contrast to neighborhood SES, Black v. White self-identified
race has been identified as an important peritraumatic predictor
of substantial PTSS in previous studies (Alegría et al., 2013).
That this construct is a top predictor of PTSS underscores the
need to include diverse racial and ethnic groups in future longitu-
dinal studies assessing predictors of PTSS. It also highlights the
need to identify racial/ethnic specific predictors [e.g. those related
to discrimination (Brooks Holliday et al., 2020) and identity with
one’s race (Khaylis, Waelde, & Bruce, 2007)], as they might con-
tribute substantial predictive power for identifying adverse out-
comes of trauma in specific racial groups.

Strengths of this study include the inclusion of self-identified
Black and White women and men, focus on a single

homogeneous type of trauma exposure, identical study design
between the two studies from which participant data were derived,
high follow-up rates, and a diverse set of variables included as
potential predictors in our models. Several limitations should
also be noted when interpreting study results. First, self-
identifying racial groups besides self-identifying Black and
White Americans were not included. Therefore, the generalizabil-
ity of our findings to other self-identifying racial groups is cur-
rently unknown. Second, despite the inclusion of a diverse set
of predictors into the pool of candidate predictors, certain charac-
teristics that have been shown to predict PTSS previously, such as
previous trauma exposure (Adams et al., 2014; Ehring, Razik, &
Emmelkamp, 2011; Karstoft et al., 2015b; Kessler et al., 2014),
were not included. This is because these data were not collected
from self-identifying White participants (those individuals in
cohort 1). Third, despite high follow-up rates in both studies
(though lower in the Black American cohort), bias could have
been introduced via statistically significant differences in sex,
age, and education of those who followed up v. those who were
lost to follow-up. Fourth, while NPVs were high in all learning
methods assessed, PPVs were low. This discrepancy could be
due to the low prevalence (25%) of PTSS in this cohort, as low
outcome prevalence often favors NPV (Steinberg, Fine, &
Chappell, 2009). While low PPVs are not ideal, in the case of pre-
dicting PTSS, one could argue that testing positive while truly
negative is less detrimental to treatment decisions than testing
negative when truly positive.

Future studies should continue to refine optimal, parsimoni-
ous sets of PTSS predictors, leveraging data from studies per-
formed to date. Optimal sets of PTSS predictors will very likely
differ based on trauma type, assessment timing in relation to
trauma exposure, setting, and/or patient population, and may
include biological characteristics and/or utilizing tiering/targeting
methods (e.g. utilize additional information only in individuals
who cannot be risk stratified using a briefer set of predictors).
Ultimately, the goal of this prediction work is to identify individ-
ual and collective predictors of PTSS and other adverse post-
traumatic neuropsychiatric sequelae, both to gain understanding
of potential risk factors and to aide in the development of deci-
sion support tools. Such tools will differ according to the factors
influencing optimal predictors (e.g. trauma type, time from
trauma, setting), and the optimal cut-off for such tools will also
differ depending on the risks/benefits of the specific clinical deci-
sion the tool is intended to aide (e.g. risks/benefits of a specific
secondary preventive intervention).

In conclusion, we identified promising individual predictors
and a set of characteristics that effectively stratify individuals for
risk of substantial PTSS 6 months following MVC. If further vali-
dated, these predictors could improve clinical efforts to identify
vulnerable individuals at the time of ED presentation for second-
ary preventative interventions.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S003329172200191X

Acknowledgements. We would like to thank the study participants for tak-
ing part in these studies.

Financial support. Research reported in this publication was supported by the
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
of the National Institutes of Health (NIH) under Award Number R01AR060852
(McLean), R01AR056328 (McLean), K01AR071504 (Linnstaedt), by the Rita
Allen Foundation (Linnstaedt), and by the National Institute of Neurological

Fig. 3. ROC curves showing the mean (blue line) and standard error (gray lines) asso-
ciated with 200 iterations of external validation in the current study. These data
represent the most performative methodology, i.e. regularized regression, and indi-
cates an AUC of 0.79 ± 0.002 for top variables predicting 6-month posttraumatic stress
symptoms following motor vehicle collision trauma.

4958 Raphael Kim et al.

https://doi.org/10.1017/S003329172200191X Published online by Cambridge University Press

https://doi.org/10.1017/S003329172200191X
https://doi.org/10.1017/S003329172200191X
https://doi.org/10.1017/S003329172200191X


Disorders and Stroke (NINDS) of the NIH under Award Number R01NS118563
(Linnstaedt and McLean). The content is solely the responsibility of the authors
and does not necessarily represent the views of these funding agencies.

Conflict of interest. None.

References

Adams, Z. W., Sumner, J. A., Danielson, C. K., McCauley, J. L., Resnick, H. S.,
Grös, K., … Ruggiero, K. J. (2014). Prevalence and predictors of PTSD and
depression among adolescent victims of the Spring 2011 tornado outbreak.
Journal of Child Psychology and Psychiatry, 55(9), 1047–1055. doi: 10.1111/
jcpp.12220

Adler, N. E., & Stead, W. W. (2015). Patients in context – EHR capture of
social and behavioral determinants of health. The New England Journal of
Medicine, 372(8), 698–701. doi: 10.1056/NEJMp1413945

Alegría, M., Fortuna, L. R., Lin, J. Y., Norris, F. H., Gao, S., Takeuchi, D. T., …
Valentine, A. (2013). Prevalence, risk, and correlates of posttraumatic stress
disorder across ethnic and racial minority groups in the United States.
Medical Care, 51(12), 1114–1123. doi: 10.1097/mlr.0000000000000007

Ali, N., Neagu, D., & Trundle, P. (2019). Evaluation of k-nearest neighbour
classifier performance for heterogeneous data sets. Springer Nature
Applied Sciences, 1(12), 1559. doi: 10.1007/s42452-019-1356-9

Antoniadi, A. M., Galvin, M., Heverin, M., Hardiman, O., & Mooney, C.
(2021). Prediction of caregiver quality of life in amyotrophic lateral sclerosis
using explainable machine learning. Scientific Reports, 11(1), 12237. doi:
10.1038/s41598-021-91632-2

Austin, E., Pan, W., & Shen, X. (2013). Penalized regression and risk prediction
in genome-wide association studies. Statistical Analysis and Data Mining,
6(4), 315–328. doi: 10.1002/sam.11183

Bayramli, I., Castro, V., Barak-Corren, Y., Madsen, E. M., Nock, M. K.,
Smoller, J. W., & Reis, B. Y. (2021). Temporally informed random forests
for suicide risk prediction. Journal of the American Medical Informatics
Association, 29(1), 62–71. doi: 10.1093/jamia/ocab225

Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY:
Oxford University Press, Inc.

Bleich, A., & Solomon, Z. (2004). Evaluation of psychiatric disability in PTSD
of military origin. The Israel Journal of Psychiatry and Related Sciences,
41(4), 268–276.

Brennstuhl, M. J., Tarquinio, C., & Montel, S. (2015). Chronic pain and PTSD:
Evolving views on their comorbidity. Perspectives in Psychiatric Care, 51(4),
295–304. doi: 10.1111/ppc.12093

Brooks Holliday, S., Dubowitz, T., Haas, A., Ghosh-Dastidar, B., DeSantis, A.,
& Troxel, W. M. (2020). The association between discrimination and PTSD
in African Americans: Exploring the role of gender. Ethnicity & Health,
25(5), 717–731. doi: 10.1080/13557858.2018.1444150

Byun, H., & Lee, S.-W. (2002). Applications of support vector machines for
pattern recognition: a survey. Paper presented at the Pattern Recognition
with Support Vector Machines, Berlin, Heidelberg.

Chan, A. W., Pristach, E. A., Welte, J. W., & Russell, M. (1993). Use of the
TWEAK test in screening for alcoholism/heavy drinking in three popula-
tions. Alcoholism, Clinical and Experimental Research, 17(6), 1188–1192.
doi: 10.1111/j.1530-0277.1993.tb05226.x

Chen, X., & Ishwaran, H. (2012). Random forests for genomic data analysis.
Genomics, 99(6), 323–329. doi: 10.1016/j.ygeno.2012.04.003

Creamer, M., Bell, R., & Failla, S. (2003). Psychometric properties of the
impact of event scale – revised. Behaviour Research and Therapy, 41(12),
1489–1496. doi: 10.1016/j.brat.2003.07.010

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4), 303–314. doi: 10.1007/
BF02551274

Defrin, R., Ginzburg, K., Solomon, Z., Polad, E., Bloch, M., Govezensky, M., &
Schreiber, S. (2008). Quantitative testing of pain perception in subjects with
PTSD – implications for the mechanism of the coexistence between PTSD
and chronic pain. Pain, 138(2), 450–459. doi: 10.1016/j.pain.2008.05.006

de Vlaming, R., & Groenen, P. J. (2015). The current and future use of ridge
regression for prediction in quantitative genetics. BioMed Research
International, 2015, 143712. doi: 10.1155/2015/143712

Do, D. P., Diez Roux, A. V., Hajat, A., Auchincloss, A. H., Merkin, S. S., Ranjit, N.,
… Seeman, T. (2011). Circadian rhythm of cortisol and neighborhood charac-
teristics in a population-based sample: The multi-ethnic study of atheroscler-
osis. Health & Place, 17(2), 625–632. doi: 10.1016/j.healthplace.2010.12.019

Dobie, D. J., Kivlahan, D. R., Maynard, C., Bush, K. R., Davis, T. M., & Bradley,
K. A. (2004). Posttraumatic stress disorder in female veterans: Association
with self-reported health problems and functional impairment. Archives
of Internal Medicine, 164(4), 394–400. doi: 10.1001/archinte.164.4.394

Eastel, J. M., Lam, K. W., Lee, N. L., Lok, W. Y., Tsang, A. H. F., Pei, X. M., …
Wong, S. C. C. (2019). Application of NanoString technologies in compan-
ion diagnostic development. Expert Review of Molecular Diagnostics, 19(7),
591–598. doi: 10.1080/14737159.2019.1623672

Ehring, T., Razik, S., & Emmelkamp, P. M. (2011). Prevalence and predictors
of posttraumatic stress disorder, anxiety, depression, and burnout in
Pakistani earthquake recovery workers. Psychiatry Research, 185(1–2),
161–166. doi: 10.1016/j.psychres.2009.10.018

Feinberg, R. K., Hu, J., Weaver, M. A., Fillingim, R. B., Swor, R. A., Peak, D. A.,
… McLean, S. A. (2017). Stress-related psychological symptoms contribute
to axial pain persistence after motor vehicle collision: Path analysis results
from a prospective longitudinal study. Pain, 158(4), 682–690. doi:
10.1097/j.pain.0000000000000818

Freedman, S. A., Brandes, D., Peri, T., & Shalev, A. Y. (1999). Predictors of
chronic post-traumatic stress disorder. A prospective study. The British
Journal of Psychiatry, 174(4), 353–359. doi: 10.1192/bjp.174.4.353

Fritz, J. M., Magel, J. S., McFadden, M., Asche, C., Thackeray, A., Meier, W., &
Brennan, G. (2015). Early physical therapy vs usual care in patients with
recent-onset low back pain: A randomized clinical trial. JAMA, 314(14),
1459–1467. doi: 10.1001/jama.2015.11648

Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A. Y. (2014).
Quantitative forecasting of PTSD from early trauma responses: A machine
learning application. Journal of Psychiatric Research, 59, 68–76. doi:
10.1016/j.jpsychires.2014.08.017

Gallego, A.-J., Pertusa, A., & Calvo-Zaragoza, J. (2018). Improving convolu-
tional neural networks’ accuracy in noisy environments using k-nearest
neighbors. Applied Sciences, 8(11), 2086. Retrieved from https://www.
mdpi.com/2076-3417/8/11/2086.

Gaskin, D. J., & Richard, P. (2012). The economic costs of pain in the
United States. The Journal of Pain, 13(8), 715–724. doi: 10.1016/
j.jpain.2012.03.009

Georgoulas, G., Stylios, C. D., & Groumpos, P. P. (2006). Predicting the risk of
metabolic acidosis for newborns based on fetal heart rate signal classifica-
tion using support vector machines. IEEE Transactions on Biomedical
Engineering, 53(5), 875–884. doi: 10.1109/TBME.2006.872814

Gruber, S., Krakower, D., Menchaca, J. T., Hsu, K., Hawrusik, R., Maro, J. C.,
… Klompas, M. (2020). Using electronic health records to identify candi-
dates for human immunodeficiency virus pre-exposure prophylaxis: An
application of super learning to risk prediction when the outcome is rare.
Statistics in Medicine, 39(23), 3059–3073. doi: 10.1002/sim.8591

Haskell, S. G., Gordon, K. S., Mattocks, K., Duggal, M., Erdos, J., Justice, A., &
Brandt, C. A. (2010). Gender differences in rates of depression, PTSD, pain,
obesity, and military sexual trauma among Connecticut War Veterans of
Iraq and Afghanistan. Journal of Women’s Health, 19(2), 267–271. doi:
10.1089/jwh.2008.1262

Holbrook, T. L., Galarneau, M. R., Dye, J. L., Quinn, K., & Dougherty, A. L.
(2010). Morphine use after combat injury in Iraq and post-traumatic stress
disorder. The New England Journal of Medicine, 362(2), 110–117. doi:
10.1056/NEJMoa0903326

Hu, C., & Steingrimsson, J. A. (2018). Personalized risk prediction in clinical
oncology research: Applications and practical issues using survival trees and
random forests. Journal of Biopharmaceutical Statistics, 28(2), 333–349. doi:
10.1080/10543406.2017.1377730

Johansen, V. A., Wahl, A. K., Eilertsen, D. E., & Weisaeth, L. (2007).
Prevalence and predictors of post-traumatic stress disorder (PTSD) in phys-
ically injured victims of non-domestic violence. A longitudinal study. Social
Psychiatry and Psychiatric Epidemiology, 42(7), 583–593. doi: 10.1007/
s00127-007-0205-0

Karb, R. A., Elliott, M. R., Dowd, J. B., & Morenoff, J. D. (2012).
Neighborhood-level stressors, social support, and diurnal patterns of

Psychological Medicine 4959

https://doi.org/10.1017/S003329172200191X Published online by Cambridge University Press

https://www.mdpi.com/2076-3417/8/11/2086
https://www.mdpi.com/2076-3417/8/11/2086
https://www.mdpi.com/2076-3417/8/11/2086
https://doi.org/10.1017/S003329172200191X


cortisol: The Chicago Community Adult Health Study. Social Science &
Medicine, 75(6), 1038–1047. doi: 10.1016/j.socscimed.2012.03.031

Karstoft, K.-I., Galatzer-Levy, I. R., Statnikov, A., Li, Z., Shalev, A. Y., & For
Members of the Jerusalem Trauma Outreach and Prevention Study. (2015a).
Bridging a translational gap: Using machine learning to improve the prediction
of PTSD. BMC Psychiatry, 15(1), 30. doi: 10.1186/s12888-015-0399-8

Karstoft, K.-I., Statnikov, A., Andersen, S. B., Madsen, T., & Galatzer-Levy, I.
R. (2015b). Early identification of posttraumatic stress following military
deployment: Application of machine learning methods to a prospective
study of Danish soldiers. Journal of Affective Disorders, 184, 170–175. doi:
10.1016/j.jad.2015.05.057

Kearns, M. C., Ressler, K. J., Zatzick, D., & Rothbaum, B. O. (2012). Early
interventions for PTSD: A review. Depression and Anxiety, 29(10), 833–
842. doi: 10.1002/da.21997

Kessler, R. C. (2000). Posttraumatic stress disorder: The burden to the individ-
ual and to society. The Journal of Clinical Psychiatry, 61 (Suppl 5), 4–12;
discussion 13–14.

Kessler, R. C., Hwang, I., Hoffmire, C. A., McCarthy, J. F., Petukhova, M. V.,
Rosellini, A. J.,… Bossarte, R. M. (2017). Developing a practical suicide risk
prediction model for targeting high-risk patients in the Veterans health
Administration. International Journal of Methods in Psychiatric Research,
26(3). doi: 10.1002/mpr.1575

Kessler, R. C., Rose, S., Koenen, K. C., Karam, E. G., Stang, P. E., Stein, D. J.,…
McLaughlin, K. A. (2014). How well can post-traumatic stress disorder be
predicted from pre-trauma risk factors? An exploratory study in the
WHO World Mental Health Surveys. World Psychiatry, 13(3), 265–274.
doi: 10.1002/wps.20150

Khaylis, A., Waelde, L., & Bruce, E. (2007). The role of ethnic identity in the
relationship of race-related stress to PTSD symptoms among young adults.
Journal of Trauma & Dissociation, 8(4), 91–105. doi: 10.1300/
J229v08n04_06

Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M., &
Friedman, M. J. (2013). National estimates of exposure to traumatic events
and PTSD prevalence using DSM-IV and DSM-5 criteria. Journal of
Traumatic Stress, 26(5), 537–547. doi: 10.1002/jts.21848

Kim, S. K., Yoo, T. K., Oh, E., & Kim, D. W. (2013). Osteoporosis risk predic-
tion using machine learning and conventional methods. Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, 2013, 188–191. doi: 10.1109/EMBC.2013.6609469

Kind, A. J., & Buckingham, W. R. (2018). Making neighborhood-disadvantage
metrics accessible – The neighborhood atlas. The New England Journal of
Medicine, 378(26), 2456–2458. doi: 10.1056/NEJMp1802313

Kleim, B., Ehlers, A., & Glucksman, E. (2007). Early predictors of chronic post-
traumatic stress disorder in assault survivors. Psychological Medicine,
37(10), 1457–1467. doi: 10.1017/S0033291707001006

Kramer, O. (2013). K-nearest neighbors. In O. Kramer (Ed.), Dimensionality
reduction with unsupervised nearest neighbors (pp. 13–23). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Kuhn, M., & Johnson, K. (2013). Data pre-processing. In Applied predictive
modeling (pp. 27–59). New York, NY: Springer.

Lew, H. L., Otis, J. D., Tun, C., Kerns, R. D., Clark, M. E., & Cifu, D. X. (2009).
Prevalence of chronic pain, posttraumatic stress disorder, and persistent
postconcussive symptoms in OIF/OEF veterans: Polytrauma clinical triad.
Journal of Rehabilitation Research & Development, 46(6), 697–702. doi:
10.1682/jrrd.2009.01.0006

Li, C., Zhang, S., Zhang, H., Pang, L., Lam, K., Hui, C., & Zhang, S. (2012).
Using the K-nearest neighbor algorithm for the classification of lymph
node metastasis in gastric cancer. Computational and Mathematical
Methods in Medicine, 2012, 876545. doi: 10.1155/2012/876545

Linnstaedt, S. D., Hu, J., Liu, A. Y., Soward, A. C., Bollen, K. A., Wang, H. E.,
… Velilla, M.-A. (2016). Methodology of AA CRASH: A prospective obser-
vational study evaluating the incidence and pathogenesis of adverse post-
traumatic sequelae in African-Americans experiencing motor vehicle colli-
sion. BMJ Open, 6(9), e012222. doi: 10.1136/bmjopen-2016-012222

Linnstaedt, S. D., Rueckeis, C. A., Riker, K. D., Pan, Y., Wu, A., Yu, S., …
McLean, S. A. (2019a). microRNA-19b predicts widespread pain and post-
traumatic stress symptom risk in a sex-dependent manner following trauma
exposure. Pain, 161(1), 47–60. doi: 10.1097/j.pain.0000000000001709

Linnstaedt, S. D., Zannas, A. S., McLean, S. A., Koenen, K. C., & Ressler, K. J.
(2019b). Literature review and methodological considerations for under-
standing circulating risk biomarkers following trauma exposure.
Molecular Psychiatry, 25(9), 1986–1999. doi: 10.1038/s41380-019-0636-5

Litz, B. T., Gray, M. J., Bryant, R. A., & Adler, A. B. (2002). Early intervention
for trauma: Current status and future directions. Clinical Psychology: Science
and Practice, 9(2), 112–134. doi: 10.1093/clipsy.9.2.112

Lund, J. L., Kuo, T. M., Brookhart, M. A., Meyer, A. M., Dalton, A. F., Kistler, C. E.,
… Lewis, C. L. (2019). Development and validation of a 5-year mortality predic-
tion model using regularized regression and Medicare data.
Pharmacoepidemiology and Drug Safety, 28(5), 584–592. doi: 10.1002/pds.4769

Maddoux, J., McFarlane, J., Symes, L., Fredland, N., & Feder, G. (2018). Using
baseline data to predict chronic PTSD 48-months after mothers report
intimate partner violence: Outcomes for mothers and the intergenerational
impact on child behavioral functioning. Archives of Psychiatric Nursing,
32(3), 475–482. doi: 10.1016/j.apnu.2018.02.001

Marafino, B. J., Boscardin, W. J., & Dudley, R. A. (2015). Efficient and sparse
feature selection for biomedical text classification via the elastic net:
Application to ICU risk stratification from nursing notes. Journal of
Biomedical Informatics, 54, 114–120. doi: 10.1016/j.jbi.2015.02.003

McLean, S. A., Clauw, D. J., Abelson, J. L., & Liberzon, I. (2005). The develop-
ment of persistent pain and psychological morbidity after motor vehicle col-
lision: Integrating the potential role of stress response systems into a
biopsychosocial model. Psychosomatic Medicine, 67(5), 783–790. doi:
10.1097/01.psy.0000181276.49204.bb

McLean, S. A., Ressler, K., Koenen, K. C., Neylan, T., Germine, L., Jovanovic,
T., … Kessler, R. (2019). The AURORA study: A longitudinal, multimodal
library of brain biology and function after traumatic stress exposure.
Molecular Psychiatry, 25(2), 283–296. doi: 10.1038/s41380-019-0581-3

McNally, R. J., & Frueh, B. C. (2013). Why are Iraq and Afghanistan War vet-
erans seeking PTSD disability compensation at unprecedented rates? Journal
of Anxiety Disorders, 27(5), 520–526. doi: 10.1016/j.janxdis.2013.07.002

Mittag, F., Büchel, F., Saad, M., Jahn, A., Schulte, C., Bochdanovits, Z., …
Sharma, M. (2012). Use of support vector machines for disease risk predic-
tion in genome-wide association studies: Concerns and opportunities.
Human Mutation, 33(12), 1708–1718. doi: 10.1002/humu.22161

Nash, V. R., Ponto, J., Townsend, C., Nelson, P., & Bretz, M. N. (2013).
Cognitive behavioral therapy, self-efficacy, and depression in persons with
chronic pain. Pain Management Nursing, 14(4), e236–e243. doi: 10.1016/
j.pmn.2012.02.006

Odgers, D. J., Tellis, N., Hall, H., & Dumontier, M. (2016). Using LASSO
Regression to predict rheumatoid arthritis treatment efficacy. AMIA Joint
Summits on Translational Science Proceedings, 2016, 176–183. Retrieved
from https://www.ncbi.nlm.nih.gov/pubmed/27570666

Outcalt, S. D., Kroenke, K., Krebs, E. E., Chumbler, N. R., Wu, J., Yu, Z., &
Bair, M. J. (2015). Chronic pain and comorbid mental health conditions:
Independent associations of posttraumatic stress disorder and depression
with pain, disability, and quality of life. Journal of Behavioral Medicine,
38(3), 535–543. doi: 10.1007/s10865-015-9628-3

Parker, J. S., Mullins, M., Cheang, M. C., Leung, S., Voduc, D., Vickery, T., …
Hu, Z. (2009). Supervised risk predictor of breast cancer based on intrinsic
subtypes. Journal of Clinical Oncology, 27(8), 1160–1167. doi: 10.1200/
JCO.2008.18.1370

Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., & Omar, R. Z. (2016).
Review and evaluation of penalised regression methods for risk prediction
in low-dimensional data with few events. Statistics in Medicine, 35(7),
1159–1177. doi: 10.1002/sim.6782

Petersen, M. L., LeDell, E., Schwab, J., Sarovar, V., Gross, R., Reynolds, N., …
Bangsberg, D. R. (2015). Super learner analysis of electronic adherence data
improves viral prediction and may provide strategies for selective HIV RNA
monitoring. Journal of Acquired Immune Deficiency Syndrome, 69(1), 109–
118. doi: 10.1097/QAI.0000000000000548

Platts-Mills, T. F., Ballina, L., Bortsov, A. V., Soward, A., Swor, R. A., Jones, J.
S., … Rathlev, N. K. (2011). Using emergency department-based inception
cohorts to determine genetic characteristics associated with long term
patient outcomes after motor vehicle collision: Methodology of the
CRASH study. BMC Emergency Medicine, 11(1), 14. doi: 10.1186/
1471-227X-11-14

4960 Raphael Kim et al.

https://doi.org/10.1017/S003329172200191X Published online by Cambridge University Press

https://www.ncbi.nlm.nih.gov/pubmed/27570666
https://www.ncbi.nlm.nih.gov/pubmed/27570666
https://doi.org/10.1017/S003329172200191X


Polley, E. C., & Van Der Laan, M. J. (2010). Super Learner in prediction. U.C.
Berkeley Division of Biostatistics Working Paper Series, Working Paper 266.
Retrieved from https://biostats.bepress.com/ucbbiostat/paper266.

Powers, M. B., Warren, A. M., Rosenfield, D., Roden-Foreman, K., Bennett, M.,
Reynolds, M. C., … Smits, J. A. (2014). Predictors of PTSD symptoms in
adults admitted to a Level I trauma center: A prospective analysis.
Journal of Anxiety Disorders, 28(3), 301–309. doi: 10.1016/
j.janxdis.2014.01.003

Privé, F., Aschard, H., & Blum, M. G. B. (2019). Efficient implementation of
penalized regression for genetic risk prediction. Genetics, 212(1), 65–74.
doi: 10.1534/genetics.119.302019

Rosellini, A. J., Dussaillant, F., Zubizarreta, J. R., Kessler, R. C., & Rose, S.
(2018). Predicting posttraumatic stress disorder following a natural disaster.
Journal of Psychiatric Research, 96, 15–22. doi: 10.1016/j.jpsychires.
2017.09.010

Saifi, S., & Mehmood, T. (2011). Effects of socioeconomic status on student’s
achievement. International Journal of Social Sciences and Education, 1(2),
119–128.

Saxe, G., Stoddard, F., Courtney, D., Cunningham, K., Chawla, N., Sheridan, R.,
… King, L. (2001). Relationship between acute morphine and the course of
PTSD in children with burns. Journal of the American Academy of Child &
Adolescent Psychiatry, 40(8), 915–921. doi: 10.1097/00004583-200108000-
00013

Schultebraucks, K., Shalev, A. Y., Michopoulos, V., Grudzen, C. R., Shin, S.-M.,
Stevens, J. S.,… Galatzer-Levy, I. R. (2020). A validated predictive algorithm
of post-traumatic stress course following emergency department admission
after a traumatic stressor. Nature Medicine, 26(7), 1084–1088. doi: 10.1038/
s41591-020-0951-z

Shahar, D., Shai, I., Vardi, H., Shahar, A., & Fraser, D. (2005). Diet and eating
habits in high and low socioeconomic groups. Nutrition, 21(5), 559–566.
doi: 10.1016/j.nut.2004.09.018

Shalev, A. Y., Ankri, Y., Gilad, M., Israeli-Shalev, Y., Adessky, R., Qian, M., &
Freedman, S. (2016). Long-term outcome of early interventions to prevent
posttraumatic stress disorder. The Journal of Clinical Psychiatry, 77(5),
e580–e587. doi: 10.4088/JCP.15m09932

Shalev, A. Y., Gevonden, M., Ratanatharathorn, A., Laska, E., van der Mei, W.
F., Qi, W., … International Consortium to Predict PTSD (2019). Estimating
the risk of PTSD in recent trauma survivors: Results of the International
Consortium to Predict PTSD (ICPP). World Psychiatry, 18(1), 77–87. doi:
10.1002/wps.20608

Short, N. A., Tungate, A. S., Bollen, K. A., Sullivan, J., D’Anza, T., Lechner, M.,
… McLean, S. A. (2022). Pain is common after sexual assault and post-
traumatic arousal/reactivity symptoms mediate the development of new
or worsening persistent pain. Pain, 163(1), e121–e128. doi: 10.1097/
j.pain.0000000000002329

Shouman, M., Turner, T., & Stocker, R. (2012). Applying k-nearest neighbour
in diagnosing heart disease patients. International Journal of Information
and Education Technology, 2(3), 220–223. doi: 10.7763/IJIET.2012.V2.114

Steinberg, D. M., Fine, J., & Chappell, R. (2009). Sample size for positive and
negative predictive value in diagnostic research using case-control designs.
Biostatistics, 10(1), 94–105. doi: 10.1093/biostatistics/kxn018

Stekhoven, D. J., & Bühlmann, P. (2012). MissForest – non-parametric missing
value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. doi:
10.1093/bioinformatics/btr597

Stewart, W. F., Ricci, J. A., Chee, E., Hahn, S. R., & Morganstein, D. (2003).
Cost of lost productive work time among US workers with depression.
JAMA, 289(23), 3135–3144. doi: 10.1001/jama.289.23.3135

Surís, A., & Lind, L. (2008). Military sexual trauma: A review of prevalence and
associated health consequences in veterans. Trauma, Violence, & Abuse,
9(4), 250–269. doi: 10.1177/1524838008324419

Symes, L., Maddoux, J., McFarlane, J., & Pennings, J. (2016). A risk assessment
tool to predict sustained PTSD symptoms among women reporting abuse.
Journal of Women’s Health, 25(4), 340–347. doi: 10.1089/jwh.2015.5287

Torquati, M., Mendis, M., Xu, H., Myneni, A. A., Noyes, K., Hoffman, A. B.,
… Becerra, A. Z. (2022). Using the Super Learner algorithm to predict risk
of 30-day readmission after bariatric surgery in the United States. Surgery,
171(3), 621–627. doi: 10.1016/j.surg.2021.06.019

Vergunst, F., Tremblay, R. E., Nagin, D., Algan, Y., Beasley, E., Park, J.,… Côté,
S. M. (2019). Association of behavior in boys from low socioeconomic
neighborhoods with employment earnings in adulthood. JAMA
Pediatrics, 173(4), 334–341. doi: 10.1001/jamapediatrics.2018.5375

Wongvibulsin, S., Wu, K. C., & Zeger, S. L. (2019). Clinical risk prediction
with random forests for survival, longitudinal, and multivariate
(RF-SLAM) data analysis. BMC Medical Research Methodology, 20(1), 1.
doi: 10.1186/s12874-019-0863-0

Wyss, R., Schneeweiss, S., van der Laan, M., Lendle, S. D., Ju, C., & Franklin, J.
M. (2018). Using super learner prediction modeling to improve high-
dimensional propensity score estimation. Epidemiology, 29(1), 96–106.
doi: 10.1097/ede.0000000000000762

Xing, W., & Bei, Y. (2020). Medical health big data classification based on
KNN classification algorithm. IEEE Access, 8, 28808–28819. doi: 10.1109/
ACCESS.2019.2955754

Yokota, S., Endo, M., & Ohe, K. (2017). Establishing a classification system for
high fall-risk among inpatients using support vector machines. Computers
Informatics Nursing, 35(8), 408–416. doi: 10.1097/CIN.0000000000000332

Zhuang, J., Cai, J., Wang, R., Zhang, J., & Zheng, W.-S. (2020). Deep kNN for
medical image classification. Paper presented at the Medical Image
Computing and Computer Assisted Intervention – MICCAI 2020, Cham.

Ziobrowski, H. N., Kennedy, C. J., Ustun, B., House, S. L., Beaudoin, F. L., An,
X., … van Rooij, S. J. H. (2021). Development and validation of a model to
predict posttraumatic stress disorder and major depression after a motor
vehicle collision. JAMA Psychiatry, 78(11), 1228–1237. doi: 10.1001/
jamapsychiatry.2021.2427

Zlomuzica, A., Preusser, F., Schneider, S., & Margraf, J. (2015). Increased per-
ceived self-efficacy facilitates the extinction of fear in healthy participants.
Frontiers in Behavioral Neuroscience, 9, 270. doi: 10.3389/fnbeh.2015.00270

Psychological Medicine 4961

https://doi.org/10.1017/S003329172200191X Published online by Cambridge University Press

https://biostats.bepress.com/ucbbiostat/paper266
https://biostats.bepress.com/ucbbiostat/paper266
https://doi.org/10.1017/S003329172200191X

	Derivation and validation of risk prediction for posttraumatic stress symptoms following trauma exposure
	Introduction
	Methods
	Cohorts
	Study design and population
	Study design
	Motor vehicle collision study, cohort 1
	Motor vehicle collision study, cohort 2

	Assessments collected at the time of trauma exposure (i.e. potential predictors)
	Data cleaning, imputation, and variable reduction
	Site split study design
	Machine learning methods
	K-nearest neighbors
	Regularized regression
	Random forest
	Support vector machines
	Neural networks
	SuperLearner

	Feature selection and assessment of model performance

	Results
	Participants
	Feature selection and internal validation
	External validation and model performance

	Discussion
	Acknowledgements
	References


