
Psychological Medicine

cambridge.org/psm

Original Article

*Du Lei and Kun Qin contributed equally to
this study.

Cite this article: Lei D et al (2023). Brain
morphometric features predict medication
response in youth with bipolar disorder: a
prospective randomized clinical trial.
Psychological Medicine 53, 4083–4093. https://
doi.org/10.1017/S0033291722000757

Received: 14 September 2021
Revised: 17 January 2022
Accepted: 27 February 2022
First published online: 8 April 2022

Key words:
Deep learning; bipolar disorder; MRI; cortical
thickness; treatment; Young Mania Rating
Scale

Author for correspondence:
Du Lei,
E-mail: alien18@163.com

© The Author(s), 2022. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution
and reproduction, provided the original article
is properly cited.

Brain morphometric features predict
medication response in youth with bipolar
disorder: a prospective randomized clinical trial

Du Lei1,* , Kun Qin1,2,*, Wenbin Li1,2, Walter H. L. Pinaya3, Maxwell J. Tallman1,

L. Rodrigo Patino1, Jeffrey R. Strawn1, David Fleck1, Christina C. Klein1, Su Lui2,

Qiyong Gong2, Caleb M. Adler1, Andrea Mechelli4, John A. Sweeney1,2

and Melissa P. DelBello1

1Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati
45219, OH, USA; 2Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan
University, Chengdu 610041, PR China; 3Department of Biomedical Engineering, School of Biomedical Engineering
& Imaging Sciences, King’s College London, Westminster Bridge Road, London, UK and 4Department of Psychosis
Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, London, UK

Abstract

Background. Identification of treatment-specific predictors of drug therapies for bipolar
disorder (BD) is important because only about half of individuals respond to any specific
medication. However, medication response in pediatric BD is variable and not well predicted
by clinical characteristics.
Methods. A total of 121 youth with early course BD (acute manic/mixed episode) were
prospectively recruited and randomized to 6 weeks of double-blind treatment with quetiapine
(n = 71) or lithium (n = 50). Participants completed structural magnetic resonance imaging
(MRI) at baseline before treatment and 1 week after treatment initiation, and brain morpho-
metric features were extracted for each individual based on MRI scans. Positive antimanic
treatment response at week 6 was defined as an over 50% reduction of Young Mania
Rating Scale scores from baseline. Two-stage deep learning prediction model was established
to distinguish responders and non-responders based on different feature sets.
Results. Pre-treatment morphometry and morphometric changes occurring during the first
week can both independently predict treatment outcome of quetiapine and lithium with
balanced accuracy over 75% (all p < 0.05). Combining brain morphometry at baseline and
week 1 allows prediction with the highest balanced accuracy (quetiapine: 83.2% and lithium:
83.5%). Predictions in the quetiapine and lithium group were found to be driven by different
morphometric patterns.
Conclusions. These findings demonstrate that pre-treatment morphometric measures and
acute brain morphometric changes can serve as medication response predictors in pediatric
BD. Brain morphometric features may provide promising biomarkers for developing
biologically-informed treatment outcome prediction and patient stratification tools for BD
treatment development.

Introduction

Bipolar disorder (BD) frequently emerges during adolescence (Lewinsohn, Klein, & Seeley,
2000; Lewinsohn, Seeley, Buckley, & Klein, 2002; Perlis et al., 2004). Identification of
treatment-specific predictors of drug therapies is important because only about half of indivi-
duals with BD respond to any specific medication (Hirschfeld et al., 2004; Keck et al., 2003;
Keck, Welge, Strakowski, Arnold, & McElroy, 2000). Reliable predictive models could guide
personalized therapeutics and implementation of supplemental drug and psychotherapeutic
interventions to decrease the high levels of morbidity and mortality associated with the
disorder.

Interest in identifying neuroimaging biomarkers of treatment outcome in BD has received
increased attention over the past two decades (Ketter & Wang, 2002; Lim et al., 2013). For
example, Passarotti, Sweeney, and Pavuluri (2011) used task-based functional magnetic reson-
ance imaging (MRI) to predict the clinical effects of antipsychotic treatment in pediatric BD.
Moore et al. (2009) found total brain gray matter volume was increased in treatment-
responsive adults with BD after 4 weeks of lithium treatment. Fleck et al. (2017) used magnetic
resonance spectroscopy to predict medication response in patients with BD, and Zhang et al.
(2018) showed that pre-treatment cortical thickness measures predicted response to an anti-
psychotic drug in youth with BD. Among these measures, brain morphometric measures
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have been most widely used to predict and track the effects of
drug therapies for psychiatric disorders (Hazlett et al., 2017;
Vieira et al., 2020).

Quetiapine and lithium are effective and widely used treat-
ments for BD. Different neuroprotection effects between quetia-
pine and lithium have been reported in previous studies.
Specifically, lithium was found to be more effective than quetia-
pine in slowing the progression of white matter abnormalities
(Berk et al., 2017). Dandash et al. found that lithium exhibited
higher efficiency in reversing the hyperconnectivity of striatal
areas than quetiapine (Dandash et al., 2018). For brain gray mat-
ter morphometry, our previous work suggested that discrete pat-
terns of baseline cortical thickness in temporal and parietal
regions differentially predicted treatment response of quetiapine
but not lithium (Zhang et al., 2018). Given the different neural
pathways impacted by quetiapine and lithium, comparing the dis-
criminative regions in these two predictive models may provide
insights into the neuropharmacological mechanisms of clinical
efficacy of the two drugs. While there has been a study using clin-
ical features as predictors to build prediction models for these two
drugs separately (Kim et al., 2019), models based on MRI features
have not yet been established.

Most studies of neuroimaging predictors of treatment outcome
have examined individuals with long-term BD who had received
extensive treatment in the past. Therefore, some findings in prior
work may have been impacted by the effects of chronicity and
previous or current medications. Studying recent onset cases
with limited treatment history may better illuminate medication
effects on illness processes and predictive brain features, as well
as provide more clinically useful information. Further, studying
early course individuals with BD may provide more clinically use-
ful information because an extensive clinical history is not avail-
able to guide treatment decisions (Brooks & Vizueta, 2014).
Third, focusing on patients experiencing an acute mixed/manic
episode can facilitate assessment of MRI features in relation to
treatment outcome. Fourth, preclinical studies have revealed
changes in brain systems induced by short-term administration
of lithium and quetiapine. For example, 7 days of lithium therapy
resulted in changes in forebrain membrane properties in a rat
model of mania (Vošahlíková, Roubalová, Brejchová, Alda, &
Svoboda, 2021), and 1-week treatment of quetiapine was found
to enhance the level of hippocampal neurogenesis (Luo, Xu, &
Li, 2005). In addition, evidence from clinical trials based on
neuroimaging techniques also support brain changes following
short-term quetiapine or lithium therapy. Brain D2 dopamine
receptor occupancy can be observed following acute quetiapine
treatment (Nord et al., 2011), and significant decreases in myoino-
sitol levels were identified in the right frontal cortex after 5–7 days of
lithium administration (Moore et al., 1999).Moreover, our previous
study using brain structural MRI found youth with BD exhibited
changes in brain structural network following 1-week quetiapine
or lithium treatment (Lei et al., 2021). Although these findings sug-
gest that brain changes can occur after acute drug treatment, few
studies investigated whether such acute brain changes can serve as
predictors of treatment outcome.

Previous studies have suggested that deep learning, a type of
machine learning capable of capturing high orders of complexity
and abstraction (Kim, Calhoun, Shim, & Lee, 2016; LeCun,
Bengio, & Hinton, 2015; Lei et al., 2020), may yield higher classi-
fier accuracy than the current widely adopted traditional machine
learning models (Pinaya et al., 2016; Vieira, Pinaya, & Mechelli,
2017). It has been reported that brain structure is undergoing

non-linear trajectory of brain structural maturational changes in
typically developing youth (Giedd et al., 1999; Tamnes et al.,
2017). Previous studies have also found non-linear characteristics
in brain alterations associated with BD and increased brain com-
plexity in mania (Bahrami, Seyedsadjadi, Babadi, & Noroozian,
2005; Fernández, Al-Timemy, Ferre, Rubio, & Escudero, 2018).
Considering additional complicated neuroprogression and medi-
cation effects, non-linear models may be better positioned to
address the brain complexity involved in a randomized clinical
trial of pediatric BD compared with linear methods (e.g. principal
component analysis, sparse learning) (Hazlett et al., 2017). Deep
neural network can precisely recognize the most differentiable
features related to medication response from the complex longitu-
dinal structural patterns in a non-linear way, and facilitate the
extraction of optimal low-dimensional representations for clini-
cians unequipped with expert feature engineering knowledge.
We therefore utilized a two-stage prediction pipeline that includes
a deep neural network component for non-linear dimensionality
followed by an additional support vector machine (SVM) classi-
fier (Hazlett et al., 2017).

With these considerations in mind, we recruited a cohort of
young participants with BD who were early in their illness course
and randomized to receive quetiapine or lithium trial. Our aims
were to determine the utility of pre-treatment morphometric
data and change in brain structure after 1 week of treatment for
the prediction of treatment response at the end of the 6 weeks
trial. We hypothesized that (i) baseline image data could signifi-
cantly predict medication response in bipolar youth at the individ-
ual level; and (ii) change in morphometric features from baseline to
1 week after treatment initiation would predict treatment response,
and the longitudinal joint model combining baseline data and week
1 structural changes data would predict medication response with
highest accuracy. Finally, considering that the drug mechanisms
of lithium and quetiapine are different (Ketter, Miller, Dell’Osso,
& Wang, 2016), we hypothesized that (iii) pre-treatment morpho-
metric features and their change may be differentially related to out-
come prediction in the two treatment groups.

Methods

Participants

This study was approved by the University of Cincinnati and the
Cincinnati Children’s Hospital Medical Center Institutional
Review Boards. Youth with bipolar I disorder were recruited
from the Cincinnati Children’s Hospital Medical Center, the
University of Cincinnati, and the local community. Diagnosis of
bipolar I disorder was confirmed using the Washington
University in St. Louis Kiddie Schedule of Affective Disorders
and Schizophrenia administered by raters with demonstrated
inter-rater reliability (κ > 0.9) (Geller et al., 2001). Young Mania
Rating Scale (YMRS) was used to assess mania symptoms
(Young, Biggs, Ziegler, & Meyer, 1978). Written informed assent
and consent about the study procedures and purpose were pro-
vided by all participants and their legal guardians (registered in
https://clinicaltrials.gov/; registration number: NCT00893581).

To be included, participants were required to be: (1) within the
age range of 10–18 years old; (2) experiencing a manic or mixed
episode; (3) having a baseline YMRS score ⩾20; (4) within 2 years
from onset of BD; (5) having no prior psychiatric hospitalizations
for mania; (6) having no treatment history with therapeutic doses
of antipsychotics or mood stabilizers for over 3 months, and no
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psychotropic medication during the week prior to baseline scans.
Participants were excluded if they had (1) a contraindication to
MRI scanning; (2) an IQ <70; (3) a positive pregnancy test; (4)
a history of a major systemic or neurological illness, or an episode
of loss of consciousness >10 min; (5) any lifetime DSM-IV-TR
substance use disorder (nicotine dependence was permitted); or
(6) a lifetime DSM-IV-TR diagnosis of a pervasive developmental
disorder or post-traumatic stress disorder.

Treatment procedures

Following initial clinical evaluation and MRI scanning, participants
were randomized by an investigational pharmacist (C.C.K.) to double-
blind treatment with lithium or quetiapine and evaluated clinically
weekly for 6weeks. The randomization schedulewas stratified by pres-
ence/absence of attention deficit and hyperactivity disorder, presence/
absence of psychosis, and the mood state (mixed v. manic episode).
Quetiapine was initiated at 100mg qhs and lithium carbonate was
initiated at 30mg/kg (maximum starting dose of 600mg twice
daily). Patients were also given placebo capsules for the medication
to which they were not assigned. Quetiapine was titrated to a target
dose of 400–600mg/day based on tolerability and response. Lithium
wastitrated to a serum level of 1.0–1.2mEq/L.Treatmentwas adminis-
tered in a double-dummy, double-blind manner, with an unblinded
study psychiatrist monitoring trough lithium levels and making dose
adjustments independent from treating psychiatrist and clinical raters.
Blinded clinical tolerability dose adjustment recommendations took
precedent over un-blinded double dummy dose adjustment recom-
mendations. Therewere no significant changes of the treatmentmeth-
ods or outcomes after trial commencement. We used the YMRS
changes to assess antimanic treatment response at week 6, and treat-
ment responder was defined as exhibiting ⩾50% reduction in YMRS
scores from baseline (Patino et al., 2021; Wegbreit et al., 2011).

MRI acquisition

MRI scanning was performed on a 4-T Varian Unity INOVA
scanner using a 12-channel head coil at baseline. All participants
were instructed to be scanned at baseline prior to treatment and 1
week after treatment initiation. Earplugs and headphones were
provided to reduce background noise, and foam padding around
the head minimized head motion. Following a three-plane gradient
echo scan for alignment and localization, a shim procedurewas per-
formed to generate a homogeneousmagnetic field. High-resolution
T1-weighted three-dimensional images were acquired with a
Modified Driven Equilibrium Fourier Transform (MDEFT) proto-
col, optimized for the 4TVarian scanner [Tau (magnetization prep-
aration time) = 1.1 s, TR = 13 ms, TE = 5.3 ms, field of view = 192 ×
256 × 256 mm, matrix = 192 × 256 × 256, flip angle = 20 degrees,
slice thickness = 1 mm]. Acquired T1-weighted images were
inspected by two experienced neuroradiologists who made deci-
sions about excessivemotion artifact for scan exclusion. No observ-
able scanning artifacts or gross brain abnormalities were identified
in any participant included in the following analyses.

Image processing and brain morphometric feature sets

All structural MRI scans were processed on the same workstation
using the FreeSurfer image analysis suite v6.0.0 (http://surfer.nmr.
mgh.harvard.edu/) to obtain unbiased estimates of morphometric
measures, including surface area, cortical thickness, and subcor-
tical volumes (for detailed calculation and extraction of these

morphometric measures, see online Supplementary Materials).
Each participant was thus represented by a 150-dimensional fea-
ture vector consisting of morphometric features across the whole
brain. Specifically, we included the surface area and cortical thick-
ness of 68 cortical regions labeled in the Desikan/Killiany Atlas
(Desikan et al., 2006), as well as the volume of bilateral hippocam-
pus and 12 subcortical regions (i.e. bilateral thalamus, amygdala,
caudate, putamen, pallidum, and accumbens). To compare the
prediction value of baseline brain structure and acute structural
alterations induced by medication, the model performance was
investigated for baseline morphometric measures and morpho-
metric changes from baseline to week 1 independently. To thor-
oughly take advantage of longitudinal brain morphometry
related to antimanic treatment for better model performance,
we further combined baseline and week 1 morphometric features
into a concatenated 300-dimensional vector as our longitudinally
joint model. Therefore, under the unified prediction framework,
there are finally three classification models based on different fea-
ture sets (i.e. baseline model, 1-week change model, and longitu-
dinally joint model) to be tested in two medication groups.

Two-stage prediction model based on structural MRI

We implemented a two-stage prediction pipeline to differentiate
medication responders from non-responders as described in pre-
vious prospective studies (Hazlett et al., 2017; Zhu et al., 2021;
Yang et al., 2021). A feedforward multi-layer neural network
was adopted as the initial stage for dimensionality reduction
(Hinton & Salakhutdinov, 2006), and SVM was included as the
second stage to individually discriminate responders from non-
responders (Cortes & Vapnik, 1995). The training procedures of
neural network for dimensionality reduction mainly contain bin-
ary processing of raw features, unsupervised pre-training of
stacked autoencoders, and supervised training of fine-tuned
neural network. Once the training was finished, the representa-
tions stored in the layer before output layer were extracted as
the optimal features fed into SVM. Detailed information about
the rationale, architecture, and training process of the two-stage
prediction model is shown in online Supplementary Materials.

The whole two-stage prediction pipeline was trained and eval-
uated using 10-fold stratified cross-validation. For each iteration
of the cross-validation, we used one part of the dataset to evaluate
our model (i.e. testing set) and the remaining nine parts for train-
ing (i.e. training set). To avoid information leakage, we performed
the non-linear dimensionality reduction (i.e. training of neural
network) only based on the training set, and the testing set was
only used to evaluate performance and never used for tuning or
training our models. The model performance was determined
by the balanced accuracy, sensitivity, specificity, and area under
receiver operating characteristic curve (AUC). We independently
reported the model performance in quetiapine and lithium medi-
cation group. All the machine learning analyses were programmed
using Python language, where the neural network was imple-
mented in the Pytorch library (Paszke et al., 2019), and the
SVM was implemented in the Scikit-Learn library (Pedregosa
et al., 2011). All the codes are available at https://github.com/
QKmeans0902/Two_stage_prediction_pipeline.

Model transferability between different medication groups

In this analysis, we examined the model transferability between
two medication groups. Specifically, we used dataset from one
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whole treatment group (quetiapine or lithium) for drug-specific
model training and optimization, and the other group to evaluate
the predictive utility of the model for treatment outcome to the
other drug therapy. To maintain consistency with preceding ana-
lyses, model transferability test was also implemented in the iden-
tical two-stage prediction pipeline.

Features with greatest contributions to predicting medication
outcomes

Given morphometric features with the highest predictive power
may differ in different medication groups which can provide use-
ful neurobiological implications, we sought to identify these
potentially discriminating patterns. Detailed calculation of feature
contribution is presented in online Supplementary Materials. Top
10 features with greatest contributions are reported for different
models and medication groups.

Statistical analysis

Group comparisons of demographic and clinical characteristics
were performed using SPSS software [version 23 (IBM SPSS
Statistics)]. The significance level of prediction model was evalu-
ated using permutation test (Golland & Fischl, 2003). Specifically,
we randomly permuted the labels of training set prior to training.
The model training and evaluation under cross-validation were
then performed to get the estimated accuracy based on the per-
muted dummy training set. The permutation was repeated 1000
times, and a distribution of the accuracy for randomly permuted
data was obtained. The significance level was thus defined as the
probability of observing an accuracy from the distribution based
on permuted data no less than the real accuracy. Differences in
age and IQ were assessed by two-sample t test, while differences
in sex and number of responders were assessed using χ2 test.
The p value of differences in parental socioeconomic status was
calculated by Mann–Whitney U test given the non-normality,
and the statistical test for differences in longitudinal clinical
scale scores was two-way repeated measures ANOVA.

Results

Demographic and clinical characteristics

This prospective randomized clinical trial recruited 149 youth
with BD. Data from nine participants were excluded due to failure
to finish baseline structural MRI scan or excessive head motion.
Eleven participants in the lithium treatment group (n = 61) and
eight participants in the quetiapine treatment group (n = 79)
were lost to follow-up. Ultimately, 71 participants treated with
quetiapine and 50 participants treated with lithium who had com-
pleted all follow-up structural MRI examinations and clinical
assessments were finally included in the analysis.

The demographic and clinical characteristics are listed in
Table 1 and online Supplementary Table S1. No evidence of sig-
nificant differences in age, sex, IQ, parental socioeconomic status,
or number of responders was found between the quetiapine and
lithium groups (all p > 0.05). No significant time × treatment
group interaction effects in YMRS scores were observed. For the
group effect, we found no significant between-group differences
in YMRS scores at any follow-up timepoint (p > 0.05). For the
time effect, the YMRS scores were significantly decreased from base-
line to week 6 in both quetiapine and lithium groups (p < 0.001).

Prediction performance of medication response

The prediction pipeline in the current study was shown in Fig. 1.
Baseline structural MRI predicted treatment response at week 6
with balanced accuracy of 79.6% (AUC: 0.89, p < 0.001) for the
quetiapine treatment group. For the lithium treatment group,
baseline morphometric measures achieved balanced accuracy
of 75.8% (AUC: 0.85, p = 0.003). When using 1-week brain mor-
phometric changes as predictors, balanced accuracies in the
quetiapine and lithium treatment group were 76.5% (AUC:
0.81, p < 0.001) and 78.9% (AUC: 0.85, p < 0.001), respectively.
Combining brain morphometric features at baseline and week 1
allowed for the highest prediction performance. For the quetia-
pine treatment group, the balanced accuracy was 83.2% (AUC:
0.93, p < 0.001). For the lithium treatment group, the balanced
accuracy was 83.5% (AUC: 0.89, p < 0.001). All the evaluation
metrics for model performance were listed in Table 2.

Model transferability analyses between drug treatments

All models failed to reach comparable performance in the trans-
ferability test when prediction models developed for one drug
were applied to the other drug treated group (all p > 0.05;
Table 2). Baseline morphometric measures showed slightly
above chance level performance (i.e. 50%) using the quetiapine
model to predict lithium treatment outcome (balanced accuracy,
54.4%) and vice versa (balanced accuracy, 55.7%). Using week 1
structural change data, both models showed poor transferability
below chance level (balanced accuracy of 43.8% for quetiapine
model predicting lithium outcome and balanced accuracy of
47.7% for lithium predicting quetiapine outcome). When consid-
ering both baseline and week 1 morphometric data together, both
models transferred around chance level (quetiapine model pre-
dicting lithium outcome: balanced accuracy, 51.5%; lithium
model predicting quetiapine outcome: balanced accuracy, 48.9%).

Features with greatest contributions to treatment response
prediction

Within the models considering the predictive utility of pre-
treatment morphometric features, top predictive features in the
lithium group mostly included cortical thickness measures,
while in the quetiapine group, cortical thickness, cortical surface
area, and subcortical volume measures were leading predictors.
When using acute structural changes from baseline to week 1
for prediction, top features in the lithium group included cortical
surface area and hippocampal volume, while in the quetiapine
group, the leading predictors were cortical thickness measures
(Table 3 and Fig. 2).

Discussion

In the present study, we tested the ability of brain morphometric
features to predict medication treatment response in youth with
BD. We know of only two previous studies that applied pre-
treatment MRI data to predict treatment outcome in BD: Wade
et al. (2016) trained an SVM with subcortical volume and cortical
thickness features to predict response to electroconvulsive therapy
in depressed adults, eight of whom had BD. They reported an
accuracy of 89%. Fleck et al. (2017) trained a machine learning
model with pre-treatment fMRI and magnetic resonance spec-
troscopy data to predict response to lithium at week 8 in 20 adults
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with BD, classifying responders v. non-responders with 80%
accuracy. Our study is considerably larger, which focused on
youth with limited clinical and treatment history and considered
acute neuroanatomic changes after 1 week of treatment as well as
baseline predictors.

Consistent with our first hypothesis, we found that baseline
morphometric measures predicted medication response at the
individual level with significant accuracy, 79.6% for the quetiapine
group and 75.8% for the lithium group. Our findings indicate that
pre-treatment morphometric features may provide predictors of
treatment response approaching the level needed for clinical
application, consistent with findings of the two prior smaller stud-
ies (Fleck et al., 2017; Wade et al., 2016). We also assessed the
ability of acute changes in morphometric features one week fol-
lowing treatment initiation to predict clinical outcome at week
6. The rationale for this aspect of our design is that early
drug-induced changes in brain might provide an indication of
clinically-relevant effects of drugs before clinical changes

themselves can predict outcome of a drug trial. Changes in mor-
phometric features from baseline achieved comparable prediction
accuracy for the two study drugs (76.5% for quetiapine group and
78.9% for lithium group), though models were different for the
two drugs. Previous studies using somewhat longer re-test periods
(2–4 weeks) after drug treatment initiation have shown neuroana-
tomic changes with short-term acute treatment with lithium
(Anand et al., 2020) and antipsychotic drugs (Keshavan et al.,
1994). Our findings suggest that relevant changes can be detected
even earlier after treatment initiation. A study of lithium treat-
ment in BD reported effects in the hippocampus/amygdala com-
plex after several years, regions known to be important in emotion
processing (Germana et al., 2010). Our study extends these earlier
findings by showing that effects occurring as early as one week
can predict later treatment response. Thus, the monitoring of
early drug effects on brain structuremay provide awayof predicting
treatment response weeks before treatment outcome can be deter-
mined clinically, potentially providing important information to

Table 1. Demographic and clinical characteristics of youth with bipolar disorder

Characteristic Quetiapine (n = 71) Lithium (n = 50) p value

Age (years)1 14.84 ± 1.62 (10.2–17.7) 15.44 ± 1.72 (10.5–17.8) 0.053

Sex (female/male) 46/25 (65.0%/35.0%) 35/25 (70.0%/30.0%) 0.548

IQ 102.57 ± 12.14 103.97 ± 11.37 0.599

PSES 2.98 ± 1.11 2.97 ± 1.00 0.9692

BMI 23.85 ± 5.53 25.42 ± 7.19 0.198

Duration of current episode (weeks)3 19.39 ± 27.95 15.49 ± 23.56 0.430

No. of lifetime episodes2 1.31 ± 1.90 0.74 ± 1.03 0.066

Treatment response, N (%) 0.531

Responder 52 (73.2%) 34 (68.0%)

Non-responder 19 (26.8%) 16 (32.0%)

Mood state, N (%) 0.660

Mania 44 (62.0%) 29 (58.0%)

Mixed 27 (38.0%) 21 (42.0%)

YMRS 0.5804

Baseline 26.42 ± 5.06 26.34 ± 5.13

Week 1 15.44 ± 6.36 16.56 ± 8.18

Week 6 9.64 ± 6.84 10.83 ± 6.86

CDRS-R 0.9814

Baseline 37.73 ± 9.05 38.50 ± 8.98

Week 1 31.33 ± 6.97 31.79 ± 9.19

Week 6 27.06 ± 8.33 27.88 ± 6.95

CGI-S 0.9834

Baseline 4.84 ± 0.59 4.94 ± 0.55

Week 1 3.82 ± 0.75 3.94 ± 0.92

Week 6 2.86 ± 1.26 3.00 ± 1.23

IQ, intelligence quotient; PSES, parental socioeconomic status; BMI, body mass index; YMRS, Young Mania Rating Scale; CDRS-R, Children’s Depression Rating Scale - Revised; CGI-S, Clinical
Global Impressions-Severity.
Note: Data are presented as mean ± standard unless otherwise indicated. The p values were calculated by two-sample t test or χ2 test unless otherwise indicated.
1Age are presented as mean ± standard with age range in parenthesis.
2Data were available in 111 of 121 participants.
3Data were available in 116 of 121 participants.
4The p values refer to significance level of time × treatment group interaction effects using two-way repeated measures ANOVA.
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clinicians considering adjustments to treatment plans in individuals
who are not early treatment responders.

Combining baseline brain features and acute treatment-
induced effects (1-week) in models predicting 6-week treatment
response modestly improved the accuracy (83.2% for the quetia-
pine group and 83.5% for the lithium group). Therefore, combin-
ing baseline and follow-up data within a single model may
provide a promising direction for maximizing early prediction
of treatment outcome in individuals with BD. While these find-
ings require replication in an independent sample to confirm pre-
dictive utility of the models developed, they offer a promising
preliminary step toward the development of clinically useful
MRI-based biomarkers for guiding optimal and flexible treatment
planning for individuals in the early course of BD.

Given these differences in prediction performance, we sought
to identify which morphometric features provide the greatest con-
tribution to treatment outcome. At baseline, cortical thickness
features were better predictors of lithium response, while cortical
surface area and subcortical volumes were more prominent as
features predicting response to quetiapine. In contrast, when

considering morphometric changes at week 1, the opposite pat-
tern was observed with changes in cortical surface area and sub-
cortical volume measures being more prominent in lithium
response prediction, and changes in cortical thickness measures
being more predictive of quetiapine response. According to the
radial unit hypothesis and the supra-granular layer expansion
hypothesis, cortical thickness is determined by the number and
size of cells within a cortical column and surrounding neuropil,
while surface area is less dynamic being primarily driven by
the number of cortical columns established during brain
maturation (Rakic, 2009). This suggests that dynamic illness-
related pathophysiological changes may be more related to
lithium outcomes, while relatively enduring features of brain
development at the baseline may be better predictors of quetia-
pine response and dynamic changes in cells and neuropil at one
week may be more related to quetiapine treatment. Changes in
surface area at one week following lithium treatment are less read-
ily interpretable, but may indicate a more global shift in the neo-
cortical mantle following administration of lithium salts (Hozer
et al., 2020).

Fig. 1. The pipeline of treatment response prediction. A total of 121 youth with BD were included and randomly assigned to quetiapine and lithium treatment
group. Structural MRI examination was performed prior to and at week 1 of the treatment. Clinical assessments were implemented at baseline, week 1, and
week 6, respectively. To develop a medication response prediction model using structural MRI data, we extracted the morphometric measures including cortical
thickness, surface area, and subcortical volume. Responders were determined as a reduction of YMRS scores >50% at week 6. Baseline, change during the first week
(baseline – week 1), and longitudinally combined morphometric features (baseline + week 1) were separately investigated for both medication groups. The two-
stage prediction model including non-linear dimensionality reduction and support vector machine classifier was applied consistently. SVM, support vector
machine; YMRS, Young Manic Rating Scale.
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Table 2. Model classification and transferability performance between quetiapine and lithium treatment groups

Model performance BAC, % SEN, % SPE, % AUC

Baseline model

Quetiapine 79.6 75.0 84.2 0.89

Lithium 75.8 76.5 75.0 0.85

Quetiapine model predicts lithium outcome 54.4 58.8 50.0 0.51

Lithium model predicts quetiapine outcome 55.7 69.2 42.1 0.49

One-week change model

Quetiapine 76.5 63.5 89.5 0.81

Lithium 78.9 73.5 81.3 0.85

Quetiapine model predicts lithium outcome 43.8 50.0 37.5 0.47

Lithium model predicts quetiapine outcome 47.7 48.1 47.4 0.50

Longitudinally joint model

Quetiapine 83.2 76.9 89.5 0.93

Lithium 83.5 79.4 87.5 0.89

Quetiapine model predicts lithium outcome 51.5 52.9 50.0 0.58

Lithium model predicts quetiapine outcome 48.9 55.8 42.1 0.53

BAC, balanced accuracy; SEN, sensitivity; SPE, specificity; AUC, area under receiver operating characteristic curve.

Table 3. Top 10 morphometric features showing greatest contribution to baseline and 1-week change model

Rank

Quetiapine Lithium

Measure Region Measure Region

Baseline model

1 CT Cuneus L CT Inferior temporal L

2 Vol Accumbens L CT Paracentral R

3 SA Entorhinal L CT Isthmus L

4 SA Temporal pole L CT Frontal pole L

5 Vol Hippocampus L CT Inferior parietal R

6 CT Parahippocampal L CT Postcentral L

7 SA Inferior temporal L SA Pericalcarine R

8 CT Cuneus R CT Posterior cingulate L

9 SA Rostral anterior cingulate L CT Pars triangularis L

10 SA Rostral middle frontal L CT Banks of superior temporal sulcus R

One-week change model

1 CT Cuneus L SA Precentral R

2 CT Transverse temporal L CT Temporal pole L

3 SA Pars opercularis L CT Superior frontal L

4 CT Rostral middle frontal L CT Superior parietal L

5 SA Postcentral L SA Precentral L

6 SA Rostral middle frontal L Vol Hippocampus L

7 CT Fusiform R SA Lateral orbitofrontal R

8 SA Entorhinal R SA Superior temporal L

9 SA Caudal anterior cingulate L CT Middle temporal L

10 CT Superior parietal L CT Transverse temporal R

L, left; R, right; CT, cortical thickness; SA, surface area; Vol, volume.
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For the regionality of the most discriminative brain morpho-
metric patterns, at baseline, the most discriminative regions for
quetiapine were mainly located in temporal and subcortical
regions, while frontal and parietal regions predicted treatment
outcome better in lithium group. When considering morphomet-
ric changes at week 1, the regions contributing most to prediction
mainly comprised frontal and temporal regions for both quetia-
pine and lithium. Previous research had reported disruption in
fronto-temporal neural circuitry in remitted patients with BD
(Robinson et al., 2009). Our finding may indicate that the acute
morphometric changes in fronto-temporal neural circuitry may
in part underlie therapeutic treatment effects for both quetiapine
and lithium. Nevertheless, we should note the difference in sam-
ple size of these two medication groups which may impact preci-
sion in the estimation of contribution weight of features.
Although our study is designed as a randomized clinical trial to
reduce group differences as much as possible, and no significant
confounds (i.e. age, sex, IQ, illness duration, YMRS, CDRS-R,
etc.) were identified in our analyses, some other potential differ-
ences in patient samples to a degree can exist despite randomiza-
tion. Replication is still needed to determine the extent that
differences in patient samples impacted the current findings.

In addition to these general findings, our transferability test for
the two treatments was also informative. The results showed that
all models failed to reach comparable performance in the transfer-
ability test, indicating that the contributing features of the predict-
ive models differed between treatment groups, both for baseline
data and for treatment-related change at week 1. While predictive
models for the two treatments had similar success, the quite lim-
ited transferability of drug-specific models suggests modest level
of shared predictors, so that drug class-specific predictive models
appear to be needed for treatment outcome prediction. Different
changes in morphometric features at week 1 are perhaps not sur-
prising given the markedly different pharmacology of the two
study drugs, though the nature of the differences offers insight
into regional differences in early drug impact on brain that are
relevant to their therapeutic efficacy.

Following recent recommendations on overcoming methodo-
logical issues that can lead to inflated results (Arbabshirani,
Plis, Sui, & Calhoun, 2017; Wolfers, Buitelaar, Beckmann,
Franke, & Marquand, 2015; Woo, Chang, Lindquist, & Wager,
2017), we adopted two methodological precautions. First, to
reduce the risk of overfitting and overly optimistic utility predic-
tion estimates (Arbabshirani et al., 2017; Wolfers et al., 2015; Woo

Fig. 2. Cortical regions of surface area and cortical thickness measures among top 10 morphometric features contributing to the non-linear dimensionality reduc-
tion. For each model, results were independently showed in both quetiapine and lithium group. Surface area measures are shown in red, and cortical thickness
measures are shown in blue. If both cortical thickness and surface area of a single region exhibit top 10 contribution, this region will be shown in a hybrid purple
color combining blue and red.
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et al., 2017) for the high-dimensional neuroimaging data, we first
applied DL technology to identify compact hierarchical features
and achieve dimension reduction. Second, we examined region-
level features with less noise and lower risk of overfitting than
voxel-level data (Vieira et al., 2017). Other approaches for dimen-
sion reduction and development of classification algorithms may
confirm and potentially refine models developed in the current
study (Claude, Houenou, Duchesnay, & Favre, 2020; Collins &
Moons, 2019).

Of note, there are several limitations in our current study. First,
the models described in this paper will require replication in an
independent dataset before any application in clinical decision
making. Second, each patient in our study received either quetia-
pine or lithium monotherapy. Thus, our study can only predict
response of each drug and identify predictors of response in
two independent treatment groups. Information about prediction
of individual-level preferential response to quetiapine or lithium
cannot be provided, which should be interpreted with caution.
Third, our study was not powered to examine the relationship
between MRI features and outcome separately in different age
groups. Fourth, the utility of predictive models is generalizable
within drug class and remains to be evaluated. Fifth, additional
outstanding questions include the ability of other imaging modal-
ities, such as DTI and resting-state fMRI, to inform and supple-
ment prediction models. In addition, it would be helpful to
further evaluate the utility of our models for predicting treatment
outcomes in adults and in individuals with a long history of ill-
ness and drug therapy.

In conclusion, the present study demonstrates that brain mor-
phometric features may predict treatment response for two widely
used medications for the treatment of youth with BD. Brain mor-
phometric features provided similar overall prediction perform-
ance for both lithium and quetiapine therapies, though the
features used to achieve that prediction varied between the two
medications. In addition, our findings indicate that brain mor-
phometric changes occurring after a single week of medication
exposure are predictive of treatment outcome. These findings pro-
vide insight into brain morphometric features associated with the
treatment outcome prediction in bipolar youth treated with que-
tiapine and lithium, and support the potential use of neuroana-
tomical scans as biomarkers for the optimization of treatment
or personalized medication approach which offers potential for
reducing the risk of a failed medication trial detectable only fol-
lowing a full course of treatment.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722000757.
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