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Abstract

The width of a Lagrangian is the largest capacity of a ball that can be symplectically
embedded into the ambient manifold such that the ball intersects the Lagrangian exactly
along the real part of the ball. Due to Dimitroglou Rizell, finite width is an obstruction
to a Lagrangian admitting an exact Lagrangian cap in the sense of Eliashberg–Murphy.
In this paper we introduce a new method for bounding the width of a Lagrangian Q by
considering the Lagrangian Floer cohomology of an auxiliary Lagrangian L with respect
to a Hamiltonian whose chords correspond to geodesic paths in Q. This is formalized as
a wrapped version of the Floer–Hofer–Wysocki capacity and we establish an associated
energy–capacity inequality with the help of a closed–open map. For any orientable
Lagrangian Q admitting a metric of non-positive sectional curvature in a Liouville
manifold, we show the width of Q is bounded above by four times its displacement
energy.

1. Introduction

1.1 The width of a Lagrangian
Given Qn ⊂ (M2n, ω) a closed Lagrangian submanifold in a symplectic manifold we will consider
the following relative symplectic embedding problem first considered by Barraud and Cornea
[BC06, BC07]. For B2n

R = {z ∈ Cn : π|z|2 6 R} the ball of capacity R in the standard
(Cn, ω0 = dx ∧ dy), define a symplectic embedding ι : (B2n

R , ω0) → (M2n, ω) to be relative
to Q if

ι−1(Q) = B2n
R ∩ Rn

and define the width of the Lagrangian Q to be

w(Q;M) := sup{R : B2n
R embeds symplectically in (M,ω) relative to Q}.

Recall that a compact subset X ⊂ (M,ω) of a symplectic manifold is displaceable if there is a
compactly supported Hamiltonian diffeomorphism ϕ ∈ Hamc(M,ω) such that ϕ(X) ∩ X = ∅.
The displacement energy e(X;M) is the least Hofer energy needed to displace X, the precise
definition appears in § 1.2.2.

Previous methods for bounding Lagrangian widths, which we review in § 1.1.4, assumed Q
was monotone and used Lagrangian Floer cohomology HF ∗(Q) to prove Q was uniruled by
holomorphic disks [Alb05, BC09, Cha12b]. In the non-monotone case, more refined methods
have been suggested by Cornea and Lalonde [CL05, CL06] and Fukaya [Fuk06], although the
analytic foundations of each approach remain to be completed.
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1.1.1 An overview of our method. The focus of this paper will be the introduction of a new
technique for bounding the width of a LagrangianQ. In contrast to previous work we will not need
to assume Q is monotone and we will not use the sophisticated machinery behind other suggested
approaches. The main idea will be to consider Lagrangian Floer cohomology HF ∗(L;HQ),
generated by Hamiltonian chords for an auxiliary exact Lagrangian L ⊂ (M,dθ) in a Liouville
manifold, where the Hamiltonian HQ induces geodesic flow in a Weinstein neighborhood of Q.
With this set-up we are able to use Lagrangian Floer theory in its simplest form, the case of an
exact Lagrangian, and the Hamiltonian HQ takes the role of Q. At a functional level we have
replaced CF ∗(L,Q), with all of the potential complications inherent in Lagrangian Floer theory
in the general case, with the well-behaved object HF ∗(L;HQ).

Given a relatively embedded ball B2n
R for Q, we will pick an auxiliary exact Lagrangian L that

agrees with the imaginary axis in the ball and can be displaced from Q by a Hamiltonian isotopy.
By construction the center of the ball q0 ∈ Q∩L is a generator in the chain complex CF ∗(L;HQ)
and the fact L can be displaced from Q leads to the existence of a differential connecting a chord
x and the constant chord q0. In favorable cases, in particular if x does not represent a geodesic
loop based at q0, from such differentials we are able to extract a holomorphic curve in B2n

R whose
energy gives bounds on the size of the ball.

The procedure of looking for chain level information in CF ∗(L;H), where H is adapted to a
compact subset X ⊂M is formalized as a wrapped version cFHW

L (X) of the Floer–Hofer–Wysocki
capacity. Via a closed–open map between Hamiltonian and Lagrangian Floer cohomology, we
relate the wrapped version to the standard Floer–Hofer–Wysocki capacity. This leads to the
energy–capacity inequality, which bounds cFHW

L (X) by the displacement energy e(X;M). Going
back to the special case of CF ∗(L;HQ), the capacity cFHW

L (Q) gives bounds on the energy of the
holomorphic curve we construct, and hence by the energy–capacity inequality we have a bound
on the size of the ball in terms of the displacement energy e(Q;M).

1.1.2 Bounds on Lagrangian widths. With our method we get the following bound on the
width of a displaceable Lagrangian Q ⊂ (M,ω) in terms of the displacement energy e(Q;M).

Theorem 1.1. If (M,ω) is a Liouville manifold and Q ⊂M is a closed oriented Lagrangian that
is displaceable, then

w(Q;M) 6 4 e(Q;M) (1.1)

provided that Q admits a Riemannian metric with non-positive sectional curvature.

Since (Cn, ω0) is a Liouville manifold, see § 2.1.1 for the definition, and any compact set
in Cn is displaceable, by Theorem 1.1 the width of any closed oriented Lagrangian in Cn is
finite if it admits a metric of non-positive curvature. The most basic examples are Lagrangian
tori and in C2 these are the only orientable Lagrangians. Recall by the Gromov–Lees theorem
[Gro71, Lee76, ALP94] that S1×Ln−1 can be embedded as a Lagrangian in Cn whenever TL⊗C
is trivial. Therefore other examples are given by any Lagrangian of the form Q = S1 × L where
L is a closed orientable manifold admitting a metric of non-positive curvature with dimension
at most three. Unfortunately we know of no example where the inequality (1.1) is sharp.

In the context of the overview given above, the non-positive curvature assumption in
Theorem 1.1 gives restrictions on the type of chords that can be connected to the center of
the ball via a differential and serves to ensure we can extract a non-trivial holomorphic curve in
the ball. It is likely this assumption can be weakened to the existence of a metric on Q such that

mΩ(q) 6= 1− µQ(v) (1.2)
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for all based geodesic loops q : [0, 1] → Q and maps v ∈ π2(M,Q). Here mΩ(q) is the Morse
index of the geodesic and µQ(v) is the Maslov index. It is only the proof of Lemma 4.7 that kept
us from using this weaker assumption.

Note that the assumption (1.2) is weaker than g having non-positive section curvature, since
µQ ∈ 2Z whenever Q is orientable and non-positive curvature implies mΩ ≡ 0. With more work
it is conceivable that this new assumption (1.2) could be weakened further by requiring v to be a
holomorphic disk such that v(∂D) is homotopic in Q to q. This will require controlling the limits
of differentials connecting a constant chord q0 ∈ Q ∩ L to a chord representing a geodesic loop
based q0.

1.1.3 Finite width as an obstruction to flexibility. A closed Lagrangian Q ⊂ (M,dθ) is said
to admit an exact Lagrangian cap if there is a Liouville subdomain (W,dθ|W ) ⊂ (M,dθ) such
that Q\ intW is a non-empty exact Lagrangian and θ|Q\ intW admits a primitive vanishing on
its boundary Q ∩ ∂W . In [DR13] Dimitroglou Rizell made the following fantastic observation.

Theorem 1.2 [DR13]. If a closed Lagrangian Q ⊂ (M,dθ) admits an exact Lagrangian cap,
then Q ⊂M has infinite width.

For the case of M = Cn and W = B2n such Lagrangians were built by Ekholm et al. [EEMS13]
when n > 3. The construction of these Lagrangians used Murphy’s [Mur12] h-principle for loose
Legendrians and its extension to an h-principle for exact Lagrangian caps in (Cn\B2n, ∂B2n) by
Eliashberg and Murphy [EM13].

Let us point out that the known examples of oriented Lagrangians in Cn with infinite width
seem to fit with our method’s potential extension to the requirement in (1.2). For example,
[EEMS13] built Lagrangian S1 × S2k ⊂ C2k+1 that admit an exact Lagrangian cap and have
a holomorphic disk with Maslov index 2 − 2k. Condition (1.2) fails for these Lagrangians since
they must have a based geodesic with Morse index 2k − 1.

Since finite width is an obstruction to admitting an exact Lagrangian cap, we have the
following corollary of Theorem 1.1

Corollary 1.3. A closed orientable displaceable Lagrangian Q ⊂ (M,dθ) does not admit an
exact Lagrangian cap if the manifold Q admits a metric with non-positive sectional curvature.

In [Cha12a, Theorem 1.7], Chantraine gave an example of a Lagrangian torus T ⊂ C2

such that T\ intB4
R is never an exact Lagrangian cap, although this terminology was not used.

Corollary 1.3 shows that this is a much more general phenomenon.

1.1.4 Previous width bounds via uniruling by J-holomorphic curves. Given an almost
complex structure J on (M,ω) a J-holomorphic curve is a smooth function u : (S, j) → (M,J)
from a Riemann surface S to M that satisfies the Cauchy–Riemann equation du ◦ j = J ◦ du.
Building on Gromov’s [Gro85] proof of absolute packing obstructions, so far all non-trivial upper
bounds for the width of a Lagrangian have gone through uniruling results for the Lagrangian by
holomorphic curves via the following lemma.

Lemma 1.4. Let Q ⊂ (M,ω) be a closed Lagrangian. Suppose there is a constant A > 0 so
that for all points q ∈ Q and compatible almost complex structures J on (M,ω), there is a
non-constant J-holomorphic curve u : (Σ, ∂Σ) → (M,Q) with q ∈ u(∂Σ) and

∫
Σ u
∗ω 6 A. Then

w(Q;M) 6 2A.

The proof, see for instance [BC07, Corollary 3.10], goes by taking a symplectic embedding
ι : B2n

R → (M,ω) relative to Q and picking q = ι(0) and a compatible almost complex structure so
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that ι∗J = J0 is the standard complex structure on Cn. After applying Schwarz reflection across
Rn to the part of the J-holomorphic curve u that is in the ball B2n

R , the standard monotonicity
estimate gives R 6 2

∫
Σ u
∗ω and hence w(Q;M) 6 2A.

To date the main approaches to proving such uniruling results have involved using a flavor
of Lagrangian Floer cohomology for Q and hence work best when Q is monotone, i.e. symplectic
area ω : π2(M,Q) → R and the Maslov index µQ : π2(M,Q) → Z are proportional ω = λµQ for
some λ > 0. When Q is displaceable, then using HF ∗(Q) = 0 and action considerations one gets
uniruling results for Q with disks of area at most e(Q;M). Hence, for displaceable monotone
Lagrangians one has

w(Q;M) 6 2 e(Q;M). (1.3)

This is the route taken by Albers [Alb05] and Biran and Cornea [BC09], see also [Dam12, EK11].
In [Cha12b, Cha14] Charette proved a stronger form of uniruling in the monotone case, which
was conjectured by Barraud and Cornea [BC06, Conjecture 3.15]. When Q is non-displaceable
Biran–Cornea [BC09] used the ring structure of HF ∗(Q) to detect uniruling for holomorphic
disks of a given Maslov index, which due to monotonicity give area bounds.

1.2 The Floer–Hofer–Wysocki capacity and its relative version
In [FHW94] Floer et al. introduced a capacity for open subsets of Cn using a symplectic homology
[FH94] construction. For sample applications see [FHW94, CFHW96, Her00, Her04, Dra08, Iri12].
In this paper we will utilize a modified version of the Floer–Hofer–Wysocki capacity and we will
introduce the analogous Lagrangian version, which is defined via a wrapped Floer cohomology
construction [AboS10]. These capacities are related via a closed–open map between Hamiltonian
Floer cohomology and Lagrangian Floer cohomology and have energy–capacity inequalities,
which are established in Theorem 1.5.

1.2.1 The definitions of the capacities. Here we will give a brief descriptions of the Floer–
Hofer–Wysocki capacities, see §§ 2.1 and 5.1 for a more thorough description as well as our Floer
theory conventions.

Given a Liouville manifold (M2n, dθ) and a compact subset X ⊂ M , consider the set of
Hamiltonians

HX = {H ∈ C∞(S1 ×M) : H|S1×X < 0 and supp(dH) is compact}.

Using filtered Hamiltonian Floer cohomology, for a > 0 one sets

HF ∗(X, a) := lim−→
H∈HX

HF ∗(−a,0](H)

where the direct limit is given by monotone continuation maps HF ∗(−a,0](H0) → HF ∗(−a,0](H1)

that exist whenever H0 6 H1. The Floer–Hofer–Wysocki capacity of X is

cFHW(X) = inf{a > 0 : iaX(1M ) = 0}

where iaX : H∗(M) → HF ∗(X, a) is a natural map described in § 5.1. If iaX(1M ) is never zero,

then cFHW(X) := +∞.
Suppose one has an exact Lagrangian L ⊂ M , then one can repeat the construction of the

Floer–Hofer–Wysocki capacity in the filtered Lagrangian Floer cohomology setting. In particular,
for a > 0 one sets

HF ∗(L;X, a) := lim−→
H∈HX

HF ∗(−a,0](L;H)
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and defines the Lagrangian Floer–Hofer–Wysocki capacity (relative to L) of X as

cFHW
L (X) = inf{a > 0 : iaL;X(1L) = 0}

where iaL;X : H∗(L) → HF ∗(L;X, a) is a natural map described in § 2.2.

1.2.2 The comparison and energy–capacity inequalities. Recall that the displacement energy
e(X;M) of a closed set X ⊂ (M,ω) is

e(X;M) = inf{‖H‖ : H ∈ C∞c (S1 ×M) and ϕ1
H(X) ∩X = ∅} (1.4)

where ‖H‖ = maxt∈S1(maxM Ht − minM Ht) and ϕ1
H ∈ Hamc(M,ω) is the time-one map

generated by the time-dependent Hamiltonian vector field XHt given by

−dHt = ω(XHt , ·) where Ht(m) = H(t,m) for t ∈ S1 = R/Z.

See [Pol01, Lemma 5.1.C] for the proof that this definition of displacement energy is equivalent
to the one using Hofer’s metric [Hof90]. The relative displacement energy eL(X;M) is

eL(X;M) := inf{‖H‖L : H ∈ C∞c (S1 ×M) and ϕ1
H(L) ∩X = ∅} (1.5)

where ‖H‖L = maxt∈S1(maxLHt −minLHt).
The Floer–Hofer–Wysocki capacities have the following inequalities, which we prove in § 5.

See Definition 2.1 for the definition of an admissible Lagrangian.

Theorem 1.5. Let X ⊂M be a compact set and L ⊂M be an admissible Lagrangian.

(i) The Hamiltonian capacity bounds the Lagrangian capacity: cFHW
L (X) 6 cFHW(X).

(ii) Energy–capacity inequalities: cFHW
L (X) 6 eL(X;M) and cFHW(X) 6 e(X;M).

The proof of part (i) is an immediate consequence of the existence of a closed–open map

CO : HF ∗(X, a) → HF ∗(L;X, a)

that is compatible with the maps iaX and iaL;X . The proof of part (ii) is based on an observation
by Ginzburg from [Gin10] and the now standard argument relating action and displacement
energy.

While we do not use the relative Lagrangian energy–capacity inequality cFHW
L (X) 6

eL(X;M) in this paper, Humilière et al. [HLS13] have recently used such an inequality to
prove C0-rigidity for coisotropic submanifolds. They use a version of the Hofer–Zehnder capacity
developed by Lisi and Rieser [LR13].

To prove Theorem 1.1 we will only use the following immediate corollary of Theorem 1.5.

Corollary 1.6. If X ⊂M is compact and L ⊂M is an admissible Lagrangian, then

cFHW
L (X) 6 e(X;M).

It would be interesting to see a direct proof of Corollary 1.6 that does not go through the
Hamiltonian Floer–Hofer–Wysocki capacity cFHW.

1.3 An overview of the proof of the main result
Since the proof of Theorem 1.1 comprises the bulk of the paper, we will now give an in-depth
overview of how we set up the argument and use Corollary 1.6 to extract the needed holomorphic
curve used to establish the bound in Theorem 1.1.
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1.3.1 An auxiliary Lagrangian and the Hamiltonian HQ. Let us fix a symplectic embedding

relative to the Lagrangian Q

ι : B2n
R → (M2n, dθ)

and in Lemma 3.1 we will introduce an auxiliary Lagrangian L ⊂ (M,dθ) such that:

(i) L is exact, diffeomorphic to Rn, is properly embedded in M , and displaceable from Q;

(ii) in a small Weinstein neighborhood N of Q the Lagrangian L is modeled on cotangent fibers

T ∗qQ for the points q ∈ Q ∩ L;

(iii) L intersects the ball only along the imaginary axis, i.e. ι−1(L) = iRn ∩ B2n
R .

We will study the Lagrangian Floer–Hofer–Wysocki capacity cFHW
L (Q) using the following

class of functions in HQ. Given a metric g on Q we will take Hamiltonians HQ : M → R in HQ
such that dHQ is supported in a small Weinstein neighborhood N of Q and

HQ(q, p) = fHQ(|p|g)

in cotangent bundle T ∗Q coordinates (q, p) in N . See Figure 2 and § 3.1.1 for a precise description

of the Hamiltonians we use. For our choice of HQ and L the non-constant Hamiltonian chords

of L correspond to geodesic paths in Q starting and ending at points in Q ∩ L.

Remark 1.7. As the proof of Lemma 3.1 will show, a Lagrangian L with properties (i) and (ii)

can be built if (M,ω) is the completion of a compact symplectic manifold with a contact-type

convex boundary. For property (iii) we use the global Liouville flow on (M,dθ) and this is the

main point in the paper where we use the global Liouville structure in an essential way.

1.3.2 Using the energy–capacity inequality. Recall the Lagrangian Floer–Hofer–Wysocki

capacity cFHW
L (Q) is defined using Lagrangian Floer cohomologyHF ∗(L;HQ), which is generated

on the chain level by Hamiltonian chords

x : [0, 1] → M with ẋ(t) = XHQ(x(t)) and x(0), x(1) ∈ L.

Now by Corollary 1.6 we have

cFHW
L (Q) 6 e(Q;M)

and we have set up the Lagrangian capacity so that this implies the following: there is a

Hamiltonian chord x for HQ corresponding to a geodesic in Q and a solution to the Floer

equation 
u = u(s, t) : R× [0, 1] → M,

∂su+ J(u)(∂tu−XHQ(u)) = 0,

u(R× {0, 1}) ⊂ L,
(1.6)

with bounded energy

E(u) :=

∫
‖∂su‖2J ds dt 6 e(Q;M)

so that u(−∞, t) = q0 and u(+∞, t) = x(t). Here q0 = ι(0) ∈ Q ∩ L, the center of the ball, is a

constant chord since dHQ = 0 on Q.
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Q

L

q0 q1

x

u

Figure 1. The image of a differential u : R × [0, 1] → M from (1.6) with boundary on L
connecting the chord x to the constant chord q0. Here the chord x represents a geodesic path in
Q from q0 to q1. The differential u is J-holomorphic away from Q.

1.3.3 Building a holomorphic curve from a limit of Floer differentials. In § 3.2 we use such
solutions (1.6) to the Floer equation, which are depicted in Figure 1, to prove Theorem 1.1 in
the following way. Since the Hamiltonian vector field vanishes XHQ = 0 outside of the Weinstein
neighborhood N , it follows the part of the solution u from (1.6) that maps to M\N

w = u|u−1(M\N ) : S → M\N (1.7)

is J-holomorphic with boundary on L and ∂N . By shrinking the fiber diameter of the Weinstein
neighborhood N to zero and taking a limit, via Fish’s [Fis11] compactness result we are able
to extract a J-holomorphic map w∞ : S → M with boundary on L and Q and with energy
E(w∞) 6 e(Q;M).

Since we removed the part of the Floer solution in the Weinstein neighborhood, which
contains the center of the ball q0, a priori we cannot ensure that the image of w∞ enters the ball.
However, if the chord x does not correspond to a geodesic loop in Q based at q0, then due to
the boundary conditions in (1.6) for topological reasons the holomorphic curve w in (1.7) must
still have part of its boundary on L pass through the ball near q0. By taking the almost complex
structure to be standard J = ι∗J0 in the image of the ball and using Schwarz reflection across Rn
and iRn as needed we can extract from w∞ a non-constant holomorphic curve v : S → (B2n

R , J0)
passing through 0 with energy E(v) 6 4 e(Q;M). It then follows from the monotonicity estimate
that R 6 4 e(Q;M) and hence Theorem 1.1 is proved.

1.3.4 Ruling out chords that represent based geodesic loops. It remains to prove Theorem 3.6,
which asserts we can assume the chord x does not correspond to a geodesic starting and ending
at the same point q, and this proof is carried out in § 4. A key element of this proof is that
the Liouville class θ|Q gives an additional filtration on the chain complex CF ∗(−∞,0](L;HQ)

and detects when differentials leave the Weinstein neighborhood N , which is established in § 4.1.
Then in § 4.2 we use the Liouville filtration to obtain a bound on a quantity we call the cotangent
bundle action AT

∗Q
HQ,L

(x) of the chord x.

As we spell out in § 3.1.1, besides constant chords, there are chords where f ′′HQ > 0, called

near chords, and chords where f ′′HQ < 0, called far chords. If Q has a metric of non-positive

curvature, in § 4.3 we use the Liouville filtration and the cotangent bundle action bound to show
that we can assume x is a near chord. Finally we prove an index relation Proposition 4.9 in § 4.4,
which implies that if x is a near chord, then it does not correspond to a geodesic starting and
ending at the same point in Q.
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1.4 Further discussion
1.4.1 Studying Q via the Hamiltonian HQ. The idea of proving things about a Lagrangian Q

using a Hamiltonian HQ that induces geodesic flow in a Weinstein neighborhood of Q goes back
to at least Viterbo’s [Vit90a, Vit90b] proof of Maslov class rigidity for Lagrangian tori in Cn. It
was also in [Vit90a] that the relationship between the Conley–Zehnder index of a Hamiltonian
orbit, the Morse index of the underlying geodesic, and the Maslov index was established, and
Proposition 4.9 represents the analogous relation for Hamiltonian chords. Kerman and Şirikçi
[Ker09, KŞ10] later developed methods for proving such Maslov class rigidity results using a
‘pinned’ action selector in Hamiltonian Floer theory for this type of Hamiltonian and this
approach is summarized nicely in [Gin11, § 3.2]. The Floer–Hofer–Wysocki capacities can be
seen as the capacities associated to such ‘pinned’ action selectors.

The limiting argument we use to extract a holomorphic curve from a sequence of Floer
differentials for CF ∗(L;HQ) was inspired by the analogous argument in the Hamiltonian
Floer context, which appeared in Viterbo and Hermann’s papers [Vit99, Her00, Her04]. By
considering CF ∗(HQ) where dHQ is supported in N and shrinking N to Q, from differentials
they extract a holomorphic curve with boundary on the Lagrangian Q. However, it is not clear
in this setting how to ensure the differentials pass through B2n

R \N , which is needed to be able
to conclude the resulting holomorphic curve passes through the ball. We overcome this issue
by using Lagrangian Floer cohomology for the auxiliary Lagrangian L, since we can force our
differentials to pass through B2n

R \N in a topologically non-trivial way and hence survive the
limiting process.

1.4.2 Replacing the Lagrangian Q by the Hamiltonian HQ. As remarked at the beginning
of the paper, one way of thinking about our method is that CF ∗(L;HQ) is used as a proxy for
the Lagrangian Floer complex CF ∗(L,Q) where HQ replaces the Lagrangian Q. As illustrated
in Figure 1, given Lagrangians Q,L ⊂ (M,ω) in a symplectic manifold and distinct points
q0, q1 ∈ Q ∩ L, there is a strong similarity between holomorphic strips defining the differential
for CF ∗(L,Q) 

v = v(s, t) : R× [0, 1] → M,

∂sv + J(u)∂tv = 0,

v(R× 0) ⊂ L and v(R× 1) ⊂ Q,
v(−∞, t) = q0 and v(+∞, t) = q1,

(1.8)

and solutions to the Floer equation defining the differential for CF ∗(L;HQ)
u = u(s, t) : R× [0, 1] → M,

∂su+ J(u)(∂tu−XHQ(u)) = 0,

u(R× {0, 1}) ⊂ L,
u(−∞, t) = q0 and u(+∞, t) = x(t),

(1.9)

where the chord x represents a geodesic path in Q from q0 to q1. In particular, the correspondence
between CF ∗(L;HQ) and CF ∗(L,ϕHQ(L)) should let one construct solutions to (1.8) by taking
limits of solutions to (1.9).

It was suggested by Biran that it would be nice to turn this similarity into a precise
relationship between the chain complexes CF ∗(L,Q) and CF ∗(L;HQ). For certain applications,
in situations where L is monotone and Q is not, such a relationship could let one use Lagrangian
Floer theory in the monotone setting HF ∗(L;HQ) to stand in for the perhaps undefined
HF ∗(L,Q).
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1.4.3 Using HF ∗(L;HQ) as a deformation of wrapped Floer cohomology. In this paper we
take a very hands-on approach to working with HF ∗(L;HQ). However, let us step back for a
moment to give a different conceptual way of thinking about our argument and its relation to
other work.

From [Vit99, SW06, AS06b, AS10, Abo12] we know symplectic cohomology and wrapped
Floer cohomology recover the Morse homology of the free and based loop spaces (over Z/2)

SH∗(T ∗Q) ∼= H−∗(ΛQ) and HW ∗(T ∗qQ) ∼= H−∗(ΩqQ).

Moreover, given exact Lagrangians Q,L ⊂ (M,dθ) intersecting transversely Q ∩ L = {qi}ki=0

where Q is closed and L is open, properly embedded, and θ|L = 0, then there are Viterbo
restriction maps [Vit99, AboS10]

SH∗(M) → SH∗(T ∗Q) and HW ∗(L;M) → HW ∗
(⋃

i

T ∗qiQ

)
.

Note that at the chain level CW ∗(
⋃
i T
∗
qiQ) is generated by geodesic paths in Q with endpoints

in Q ∩ L including the constant geodesics qi ∈ Q ∩ L.
When Q is not exact there are not such restriction maps (as written), since for example there

cannot be a ring map from SH∗(Cn) = 0 to SH∗(T ∗Q) 6= 0. Going through the construction
of the Viterbo restriction map one sees that it is necessary to deform SH∗(T ∗Q) to account for
differentials that leave a Weinstein neighborhood of Q ⊂M and connect orbits for a Hamiltonian
of the form HQ. The story is similar in our case, where we locate and use differentials in
CF ∗(L;HQ), as in Figure 1, that do not arise in CW ∗(

⋃
i T
∗
qiQ).

Building on Fukaya’s [Fuk06] wonderful idea of linking the compactified moduli space of
holomorphic disks on Q with the string topology operations on ΛQ, Cieliebak and Latschev
[CL09] have a program to bring such ideas into symplectic field theory. In particular, they have
ongoing work to build a twisted version of Viterbo’s map SH∗(M) → SH∗tw(T ∗Q) in terms of a
Maurer–Cartan element of SH∗(T ∗Q) when Q is not exact. As this paper shows, the deformation
in wrapped Floer cohomology also has applications and it would be interesting to determine its
underlying algebraic nature.

1.4.4 Other ball packing questions. The width of a Lagrangian is the relative version of
the Gromov width [Gro85] and more generally represents a relative version of the symplectic
packing problem, which in its prototypical form is the study of obstructions, beyond volume, to
symplectic embeddings [Tra95, Bir99, Sch05a, MS12, HK14, Hut10, BH11]. Via the symplectic
blow-up, the symplectic packing problem is connected with algebraic geometry as established
by work of McDuff and Polterovich [MP94] and Biran [Bir01]. This connection was extended to
relative packings by Rieser [Rie10]. Let us also mention that obstructions to symplectic packings
arise in work of Fefferman and Phong [FP82] in connection with the uncertainty principle.

In this paper we solely focus on studying the obstruction to symplectically embedding a single
ball B2n

R into (M,ω) relative to a Lagrangian Q. See [Buh10, Sch05b, Rie10] for constructions of
relative embeddings. One can also study the embeddings of multiple disjoint balls

wk(Q;M) := sup

{
R :

k∐
i=1

B2n
R embeds symplectically in (M,ω) relative to Q

}
and this was undertaken in [BC09, Rie10]. It is conceivable that our method for bounding
w1(Q;M) could be adapted to get bounds for wk(Q;M) by using the triangle product on
CF ∗(L;H) and having the auxiliary Lagrangian L intersect Q at the center of each ball.
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Given two Lagrangians Q and L intersecting transversally, another ball packing problem
considered by Leclereq [Lec08] is symplectic embeddings ι : (B2n

R , ω0) → (M,ω) so that

ι−1(Q) = B2n
R ∩ Rn and ι−1(L) = B2n

R ∩ iRn.

Let w(Q,L;M) be the supremum over R of such symplectic embeddings. Our method of studying
HF ∗(L;HQ) also gives a method of finding bounds for w(Q,L;M).

1.4.5 The size of a Weinstein neighborhood. A fundamental fact about a Lagrangian
Q ⊂ (M,ω) in a symplectic manifold is that it has a Weinstein [Wei71] neighborhood, i.e. a
neighborhood in (M,ω) symplectomorphic to a neighborhood of the zero section in (T ∗Q, dλQ),
where λQ = p dq in local coordinates. Therefore, one can wonder how large of a Weinstein
neighborhood a given Lagrangian admits. See [Eli91, PPS03, Sik89, Sik91, Vit90b, Zeh13] for
work on this and similar questions.

One way to measure the size of a Weinstein neighborhoodN ⊂M of a Lagrangian Q⊂ (M,ω)
is as the width of Q in N . As the following proposition shows, the width of a Lagrangian, which
is a purely symplectic measurement of the Lagrangian in the symplectic manifold, quantifies the
maximal such size of a Weinstein neighborhood.

Proposition 1.8. For a closed Lagrangian Q ⊂ (M,ω) in a symplectic manifold

w(Q;M) = sup
N
w(Q;N )

where N ranges over all Weinstein neighborhoods of Q ⊂ (M,ω).

This notion of the size of a Weinstein neighborhood also leads to a invariant for Riemannian
manifolds in the following way. Given a Riemannian metric g on Q one can define the Barraud–
Cornea size of (Q, g) to be

SBC(Q, g) := w(Q;D∗gQ)

the width of Q in the unit codisk bundle D∗gQ = {v ∈ T ∗Q : |v|g 6 1}. This is a size-invariant
in the sense of Guth [Gut10] and it would be interesting to determine what it says about the
Riemannian manifold (Q, g).

Proof of Proposition 1.8. The inequality w(Q;M) > supN wBC(N ) is by definition. For the
opposite inequality we will show that if ι : B2n

R → (M,ω) is a symplectically embedding relative
to Q, then for all ε > 0 there is a Weinstein neighborhood N containing the image of ι(B2n

R−ε).
The proof is just a refinement of the Moser–Weinstein argument.

Pick a compatible almost complex structure J on (M,ω) so that ι∗J = J0 is the standard
complex structure on the ball, which means the induced metric gJ on M is such that ι∗gJ = g0

is the standard Euclidian metric. Define the map

Ψ : T ∗Q → M by Ψ(v∗q ) = expq(−JqΦq(v
∗
q ))

where expq : TqM → M is the exponential map for gJ and Φq : T ∗qQ → TqQ is the isomorphism
induced by the metric gJ . For any choice of J one has Ψ∗dλQ = ω on vectors TQM and for our
choice of J , in Darboux coordinates on T ∗Q and ι(B2n

R ) induced by ι, one has Ψ(x, y) = (x,−y)
and hence Ψ∗dλQ = ω on ι(B2n

R ).
The homotopy Ψt(v

∗
q ) = Ψ(t v∗q ) constructs a primitive dσ = ω−Ψ∗dλQ with σ defined in an

open neighborhood of Q that contains ι(B2n
R−ε). After restricting the domain to a neighborhood

N0 of the zero section, Moser’s method isotopes Ψ to a symplectic embedding Ψ̃ : N0 → (M,ω)
and since σ vanishes on ι(B2n

R−ε) one can ensure ι(B2n
R−ε) ⊂ Ψ̃(N0). 2
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1.4.6 A remark on notation. In writing this paper it was necessary to use a non-trivial
amount of loaded notation, so for the convenience of the reader at the end of the paper we have
included a short list of notation.

2. The Lagrangian Floer–Hofer–Wysocki capacity

2.1 Lagrangian Floer cohomology
Let us begin by briefly reviewing Lagrangian Floer cohomology [Flo88a, Flo88b, Oh93, Oh95]
for admissible Lagrangians. While these references restrict to compact Lagrangians L, due to
the maximum principle in Lemma 2.3 the results carry over to admissible Lagrangians. While
everything we say in this section is standard, in part we review it in order to establish our
notation and conventions for the convenience of the reader.

2.1.1 Preliminary definitions and Floer data. Recall that a Liouville manifold (M2n, ω) is
an exact symplectic manifold ω = dθ such that the vector field Zθ, determined by ιZθω = θ, has
a complete flow ϕtZθ , and there is a compact codimension-zero submanifold M ⊂ M such that

Zθ is positively transverse to ∂M and

M = M ∪
⋃
t>0

ϕtZθ(∂M).

These conditions imply α := θ|∂M is a contact form on ∂M and there is an identification

M\ intM = [1,∞)× ∂M (2.1)

given by the Liouville flow ϕ
log(r)
Zθ

where for r ∈ [1,∞) one has θ = rα and Zθ = r∂r.

Definition 2.1. We will be using Floer theory with admissible Lagrangians L ⊂ (M,dθ). We
define this to mean L is connected, orientable, and exact, i.e. θ|L = dkL for some smooth kL :
L → R. If L is not a closed manifold, then we will assume that L is open, properly embedded in
M , and supp(kL) ⊂ L ∩M .

Note that if we extend kL to a compactly supported function k : M → R, then θ′ = θ− dk is
still a Liouville 1-form for the same symplectic form. Therefore, for a fixed admissible Lagrangian
L we may assume θ|L = 0 and kL = 0.

Definition 2.2. A compatible almost complex structure J on a Liouville manifold (M,dθ) is
said to have contact type if

θ ◦ J = dr (2.2)

on the cylindrical end (2.1). The set of admissible almost complex structures Jθ(M) are smooth
families of compatible almost complex structures J = {Jt}t∈S1 on (M,dθ) that at infinity are
contact type and time independent.

The contact-type condition implies J-holomorphic curves u : (S, j) → (M,J) have a
maximum principle, even when there are Lagrangian boundary conditions.

Lemma 2.3 [AboS10, Lemma 7.2]. Let (Y 2n−1, ξ) be a closed contact manifold with contact
form α and let L be a properly embedded Lagrangian in (W,dθ) = ([1,∞)× Y, d(rα)) such that
∂L = L∩∂W and θ|L = 0. If J is a compatible almost complex structure on (W,dθ) with contact
type and (S, j) is a compact Riemann surface, then all J-holomorphic curves

u : (S, j) → (W,J)

with u(∂S) ⊂ ∂W ∪ L are constant.
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Proof. It suffices to show that the L2-energy E(u) = 0, where E(u) := 1
2

∫
S ‖du‖

2 for the metric
dθ(·, J ·). Using the fact that u is J-holomorphic and θ|L = 0, we get by Stokes’ theorem,

0 6 E(u) =

∫
S
u∗(dθ) =

∫
∂nS

u∗θ

where ∂nS ⊂ ∂S is the part of the boundary mapped to ∂W . If ζ ∈ T∂nS is positively oriented,
then −jζ points outwards from S and hence it follows that dr(du(−jζ)) 6 0. Since u is
J-holomorphic, i.e. J ◦du = du◦j, and J has contact type (2.2) gives θ(du(ζ)) = dr(du(−jζ)) 6 0
and therefore E(u) 6 0. Therefore, E(u) = 0 and hence u is constant. 2

Definition 2.4. The set of admissible Hamiltonians H ⊂ C∞(S1×M) are those H where there
is a constant MH such that H 6MH , supp(dH) is compact, and H = MH at infinity.

2.1.2 The index and action of Hamiltonian chords. For an admissible Lagrangian L ⊂ M
and an admissible Hamiltonian H, let C∗H(L) denote the Hamiltonian chords for L, i.e. the
smooth paths x : [0, 1] → M where

x(0), x(1) ∈ L and
∂

∂t
x(t) = XHt(x(t)). (2.3)

We will denote by CH(L) ⊂ C∗H(L) the set of contractible chords, i.e. [x] = 0 in π1(M,L). A chord
x ∈ C∗H(L) is non-degenerate if the vector spaces Tx(1)L and dϕ1

HTx(0)L are transverse.
A capping disk v of a chord x ∈ CH(L) is a smooth map

v : D2
→ M such that v(eπit) = x(t) and v(e−πit) ∈ L for t ∈ [0, 1]. (2.4)

In § 4.4.2 we will recall how to associate a Z-valued Maslov index |(x, v)|Mas to a non-degenerate
chord with a capping disk, and this induces a well-defined Z/2-grading for non-degenerate chords
x ∈ CH(L)

|x|Mas := |(x, v)|Mas ∈ Z/2 for any capping disk v.

Finally there is an action functional AH,L : CH(L) → R defined by

AH,L(x) =

∫ 1

0
H(t, x(t)) dt−

∫ 1

0
x∗θ + kL(x(1))− kL(x(0)) (2.5)

where recall it is possible to pick θ such that θ|L = 0 and kL = 0.

Definition 2.5. An admissible Hamiltonian H ∈ H is non-degenerate with respect to L if all
chords x ∈ CH(L) with action AH,L(x) < MH are non-degenerate.

2.1.3 The complex. Let J ∈ Jθ(M) be an admissible almost complex structure and consider
the Floer equation

∂su+ Jt(u)(∂tu−XHt(u)) = 0 (2.6)

for smooth maps u = u(s, t) : R× [0, 1] → M that satisfy the boundary conditions u(R× t) ⊂ L
for t = 0, 1. For a solution to (2.6) define its energy by

E(u) :=

∫
R×[0,1]

‖∂su‖2J ds dt where ‖∂su‖2J = dθ(∂su, Jt(u)∂su). (2.7)

For non-degenerate chords x± ∈ CH(L) let

M(x−, x+;L,H, J) (2.8)
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denote the set of finite energy solutions to the Floer equation (2.6) that have asymptotic
convergence lims→±∞ u(s, ·) = x±(·). Elements of M(x−, x+;L,H, J) can be thought of as
negative gradient flow lines for AH,L and in particular there is the standard a priori energy
bound

0 6 E(u) = AH,L(x−)−AH,L(x+) (2.9)

for u ∈ M(x−, x+;L,H, J). Note that since XHt is compactly supported and J is time
independent and contact type at infinity, the Floer equation (2.6) is the Cauchy–Riemann
equation when u is outside some compact set and therefore by Lemma 2.3 solutions to (2.6)
have a maximum principle.

For fixed admissible L and non-degenerate H, if the linearized operator of (2.6) is surjective
for all u ∈M(x−, x+;L,H, J), then J is called regular for (L,H) and such J are generic in Jθ.
In particular, the moduli spaceM(x−, x+;L,H, J) is a smooth manifold, whose dimension near
a solution u is

dimuM(x−, x+;L,H, J) = |(x−, v)|Mas − |(x+, v#u)|Mas (2.10)

where v is any capping disk of the chord x− and v#u is the induced capping disk for x+. Let
M1(x−, x+;L,H, J) denote the one-dimensional connected components of M(x−, x+;L,H, J).
Translation in the domain gives an R-action to the moduli space M(x−, x+;L,H, J) and hence
M1(x−, x+;L,H, J)/R is a compact zero-dimensional manifold.

For a ∈ R∪{±∞}, let CF ∗a (L;H) be the vector space over Z/2 generated by chords x ∈ CH(L)
with action AH,L(x) > a and define the quotient

CF ∗(a,b](L;H) = CF ∗a (L;H)/CF ∗b (L;H)

where we will refer to (a, b] as the action window. This vector space is Z/2-graded whenever all
chords in the action window are non-degenerate. Standard compactness and gluing results show
that if H is non-degenerate with respect to L and J is regular for (L,H), then for b < MH the
Z/2-linear map

dJ : CF ∗(a,b](L;H) → CF ∗+1
(a,b](L;H) (2.11)

defined by counting isolated positive gradient trajectories

dJx =
∑
y

(#Z2M1(y, x;L,H, J)/R) y

where the sum is over chords y ∈ CH(L) with action in (a, b], makes (CF ∗(a,b](L;H), dJ) a chain
complex. Lagrangian Floer cohomology

HF ∗(a,b](L;H) = H∗(CF ∗(a,b](L;H), dJ)

is defined to be the homology of this chain complex and since it is independent of the regular
J ∈ Jθ we suppress it from the notation.

It follows from (2.9) that the differential d increases the action AH,L. In particular, when
a0 < a1 the inclusion map CF ∗(a1,b]

(L;H) → CF ∗(a0,b]
(L;H) is a map of chain complexes and

induces
HF ∗(a1,b]

(L;H) → HF ∗(a0,b]
(L;H).

When b0 < b1 the quotient map CF ∗(a,b1](L;H) → CF ∗(a,b0](L;H) induces a map

HF ∗(a,b1](L;H) → HF ∗(a,b0](L;H).

These maps are called action window maps.
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2.1.4 Isomorphism with cohomology.

Definition 2.6. Let L be an admissible Lagrangian in (M,dθ) and let f : M → R be an
admissible Hamiltonian that is non-degenerate with respect to L. If the following conditions are
satisfied:

(i) every chord x ∈ Cf (L) is a critical point of f |L;

(ii) the only critical points for {f |L > 0} occur at infinity where f is constant;

(iii) the regular sublevel set {f |L 6 0} is a deformation retract of L;

(iv) f |L is a C2-small Morse function on {f |L 6 0};

then we say f is adapted to L.

It follows from [Flo89b, Theorem 2] that if f : M → R is adapted to L and f > −a, then via
Morse cohomology one has a chain-level isomorphism

H∗Morse(L) ∼= HF ∗(−a,0](L; f) (2.12)

given by mapping critical points x ∈ Crit(f |L) with f |L(x) < 0 to the corresponding constant
chord x ∈ Cf (L). In particular,

1L ∈ H∗(L) corresponds to [
∑k

i=1 xi] ∈ HF ∗(−a,0](L; f) (2.13)

where xi are the critical points of f |L with f |L 6 0 and Morse index zero.

2.1.5 Continuation maps. Let (H−, J−) and (H+, J+) be two regular pairs of admissible
Hamiltonians non-degenerate with respect to L and admissible almost complex structures. For
s ∈ R let s 7→ (Hs, Js) be a path of admissible Hamiltonians and almost complex structures that
is constant at the ends and connects the two original pairs (H±, J±) = (H±∞, J±∞). Consider
solutions to the partial differential equation

∂su+ Jst (u)(∂tu−XHs
t
(u)) = 0,

u : R× [0, 1] → M,

u(R× {0, 1}) ⊂ L,
(2.14)

and for non-degenerate chords x± ∈ CH±(L), let

M(x−, x+;L, {Hs, Js}s) (2.15)

denote the set of finite energy solutions u to (2.14) such that lims→±∞ u(s, ·) = x±(·). When the
path Js is generic, the spaces M(x−, x+;L, {Hs, Js}s) are finite-dimensional manifolds whose
local dimension is given by (2.10).

Let M0(x−, x+;L, {Hs, Js}s) denote the zero-dimensional components and consider

Φ{Hs,Js} : (CF ∗(a,b](L;H+), dJ+) → (CF ∗(a,b](L;H−), dJ−)

which for x+ ∈ CH+(L) with action in the window (a, b] is defined by

Φ{Hs,Js}(x
+) =

∑
x−

#Z2M0(x−, x+;L, {Hs, Js}s)x−
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where the sum is over x− ∈ CH−(L) with action in (a, b]. As with (2.9), for solutions to (2.14)
one has the bound

0 6 E(u) 6 AH−,L(x−)−AH+,L(x+) +

∫
R×[0,1]

(∂sH
s
t )(u(s, t)) ds dt

and, hence, if ∫ +∞

−∞
sup

M×[0,1]
∂sH

s
t ds 6 0 (2.16)

then Φ{Hs,Js} preserves the action filtration, is a chain map, and induces a map

Φ{Hs,Js} : HF ∗(a,b](L;H+) → HF ∗(a,b](L;H−)

called a continuation map.
These maps are particularly nice when H+ 6 H− and the homotopy is monotone ∂sH

s
t 6 0,

in which case we will call Φ{Hs,Js} a monotone continuation map. On homology monotone
continuation maps are independent of the choice of monotone homotopy (Hs, Js) used to define
them, so we will denote them by

ΦH+H− : HF ∗(a,b](L;H+) → HF ∗(a,b](L;H−). (2.17)

They also commute with action window maps, and are natural in the sense that ΦHH = 1 and

ΦH(2)H(3) ◦ ΦH(1)H(2) = ΦH(1)H(3) (2.18)

for admissible Hamiltonians H(1) 6 H(2) 6 H(3).

2.2 The Lagrangian Floer–Hofer–Wysocki capacity
For a compact subset X ⊂M , consider the setHX of admissible Hamiltonians from Definition 2.4
that are negative in a neighborhood of X and are positive at infinity

HX = {H ∈ H : MH > 0 and H|S1×X < 0}. (2.19)

Since (HX ,6) is a directed system, for a > 0 we define

HF ∗(L;X, a) := lim−→
H∈HX

HF ∗(−a,0](L;H) (2.20)

where monotone continuation maps (2.17) are used for the direct limit. If X− ⊂ X+ are compact
subsets, then there is a natural restriction map

HF ∗(L;X+, a) → HF ∗(L;X−, a) (2.21)

since HX+ ⊂ HX− . If a− < a+, then the action window maps induce a map

HF ∗(L;X, a−) → HF ∗(L;X, a+).

For any compact subset X ⊂M there is a natural map

iaL;X : H∗(L) → HF ∗(L;X, a) (2.22)

given by the isomorphism (2.12) and the inclusion of HF ∗(−a,0](L; f) into the direct limit where

f ∈ HX is adapted to L with f > −a.
We now have the following definition where 1L ∈ H0(L) is the fundamental class.
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Definition 2.7. The Lagrangian Floer–Hofer–Wysocki capacity (relative to L) of X is

cFHW
L (X) = inf{a > 0 : iaL;X(1L) = 0} (2.23)

where cFHW
L (X) = +∞ if iaL;X(1L) 6= 0 for all a > 0.

Beyond Corollary 1.6, the other key property of cFHW
L we will use is the following lemma,

which follows directly from the definition of the direct limit.

Lemma 2.8. For any finite a, the capacity cFHW
L (X) 6 a if and only if there is an f ∈ HX

adapted to L and an H ∈ HX so that −a < f 6 H and

1L ∈ ker(ΦfH : HF ∗(−a,0](L; f) → HF ∗(−a,0](L;H))

where 1L ∈ H∗(L) ∼= HF ∗(−a,0](L; f) are identified as in (2.12).

3. Proving Theorem 1.1 with Lagrangian Floer cohomology

For this section let Q ⊂ (M2n, dθ) be a closed orientable displaceable Lagrangian, let g be a

Riemannian metric on Q, and let

ι : B2n
R → (M,dθ) (3.1)

be a symplectic embedding relative to Q. For convenience we will fix a small parametrized

Weinstein neighborhood of Q

Ψ : {(q, p) ∈ T ∗Q : |p|g < c}→ M whose image we will denote N (3.2)

and we will allow ourselves to decrease c when we prove Lemma 3.1 below. We will assume

Ψ(T ∗ι(0)Q) ⊂ ι(iRn), that is Ψ takes the cotangent fiber T ∗ι(0)Q into the image of the imaginary

axis in the ball B2n
R under ι. Under our conventions if λQ = p dq is the canonical 1-form on T ∗Q,

then the Hamiltonian flow for 1
2 |p|

2
g in (T ∗Q, dλQ) is the cogeodesic flow.

3.1 Geodesic paths in Q via an auxiliary Lagrangian L

We will be using Lagrangian Floer cohomology for an auxiliary admissible Lagrangian L of the

following form, whose existence we will establish in § 3.3.

Lemma 3.1. There is an admissible Lagrangian L ⊂ (M,dθ) such that:

(i) L is diffeomorphic to Rn and displaceable from Q;

(ii) L intersects the ball only along the imaginary axis, i.e. ι−1(L) = iRn ∩ B2n
R ;

(iii) L intersects Q along cotangent fibers in the Weinstein neighborhood N of Q

N ∩ L =

k⋃
j=0

Ψ(T ∗qjQ) (3.3)

where Q ∩ L = {q0, q1, . . . , qk} with q0 = ι(0) and k > 1.

From now on we will fix such an auxiliary admissible Lagrangian L ⊂ (M,dθ) diffeomorphic

to Rn, and we will assume both that θ|L = 0 and kL = 0.
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Figure 2. We use Hamiltonians H(q, p) = fH(|p|g) in the Weinstein neighborhood N .

3.1.1 A family of Hamiltonians HQN and their chords. We will now introduce a special family
of Hamiltonians, depicted in Figure 2, specially adapted to the Weinstein neighborhood N .

Definition 3.2. Define HQN ,g ⊂ HQ to be those admissible Hamiltonians H : M → R that are
constant outside of N ⊂ M and inside N have the form H = fH(|p|g) for a smooth function
fH : R → [−εH ,∞) where 0 < εH � 1 and for positive constants iH < ρH 6 c satisfies the
following conditions for r > 0:

(1) f ′H(r) > 0;

(2) fH(0) = −εH , f ′H(0) = 0, and f ′′H(0) > 0;

(3) fH = MH is a positive constant in an open neighborhood of where r > ρH ;

(4) if r 6 iH , then f ′′H(r) > 0, while f ′′H(r) 6 0 for r > iH ;

(5) f ′′H(r) 6= 0 if f ′H(r) 6= 0 and r 6= iH .

If the particular metric is not important to us we will suppress the g and just write HQN .

We will call f ′H(iH) the slope of H and we will assume that this is not equal to the length
of a geodesic path in Q connecting points in Q∩L. Note that there will be degenerate constant
chords on L where H ≡MH , but since their action AH,L = MH is positive they will not appear in

the complex CF ∗(−∞,0](L;H). Henceforth when H ∈ HQN we will only speak of chords x ∈ CL(H)

with action AH,L(x) < MH .

Given H ∈ HQN ,g, its chords x(t) = (q(t), p(t)) = ϕtH(q(0), p(0)) are such that q : [0, 1] → Q
are constant speed geodesics with respect to g, where |q̇|g = f ′H(|p(t)|g), and with endpoints
q(0), q(1) ∈ Q ∩ L. We define the cotangent bundle action of such chords to be

AT
∗Q

H,L (x) =

∫ 1

0
H(x(t)) dt−

∫ 1

0
x∗λQ (3.4)

and for x(t) = (q(t), p(t)) we have the identity

AT
∗Q

H,L (x) = fH(|p|g)− f ′H(|p|g)|p|g. (3.5)

Equation (3.5) tells us that the cotangent bundle action of x can be identified with the y-intercept
of the tangent line to the graph of fH at |p|g. Hence, it is easy to see that one has the bound

AT
∗Q

H,L (x) > BfH := fH(iH)− f ′H(iH)iH (3.6)
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Q

L

q0 q1
xy

Figure 3. A path chord x representing a geodesic from q0 to q1 and a loop chord y representing
a geodesic starting and ending at q0.

for all chords. Furthermore, for a fixed slope λ, and constants MH and ρH , the bound BfH can
be made arbitrarily close to zero by requiring fH to be C0-close to a piecewise linear function
with slope λ near r = 0 and is the constant MH when r > ρH .

Any non-constant geodesic path q : [0, 1] → Q with endpoints in Q∩L, with constant speed
less than the slope of H, and that is zero in π1(M,L), appears exactly twice as a chord: let
λn < λf be the unique positive numbers such that f ′H(λn|q̇|g) = f ′H(λf |q̇|g) = |q̇|g, then for
p0 = g(q̇(0), ·)

xn(t) = ϕtH(q(0), λnp0) and xf (t) = ϕtH(q(0), λfp0)

are both chords for H that represent the geodesic path q. We will call xn the near chord and xf
the far chord.

The complex CF ∗(−∞,0](L;H) is generated by chords of the following type.

(i) Constant chords: the points qi ∈ Q ∩ L, they have |qi|Mas = 0 and AH,L(qi) = −εH .

(ii) Near chords: in the region where f ′′H > 0 and f ′H > 0.

(iii) Far chords: in the region where f ′′H < 0 and f ′H > 0.

We will also introduce the following dichotomy for chords, illustrated in Figure 3.

(iv) Path chords: chords whose corresponding geodesic q is such that q(0) 6= q(1).

(v) Loop chords: chords whose corresponding geodesic q is such that q(0) = q(1).

This dichotomy will play an important role when we try to control the behavior of differentials
in the relatively embedded ball B2n

R .

3.1.2 The Lagrangian capacity cFHW
L (Q) and Hamiltonians in HQN . By shifting H ∈ HQN up

slightly we may always assume that we can find an ε > εH small enough so that the constant
chords qi ∈ Q ∩ L span CF ∗(−ε,0](L;H). For action reasons, this means that each intersection

point qj ∈ CF ∗(−ε,0](L;H) is a cycle and we have the following lemma.

Lemma 3.3. Let f ∈ HQ be a C2-small Hamiltonian adapted to L such that −ε < f 6 H.
For any a > ε, the monotone continuation map ΦfH : H∗(L) → HF ∗(−a,0](L;H) is such that

ΦfH(1L) = [
∑k

j=0 qj ], where we used the identification (2.13).

Proof. By the naturality of monotone continuation maps it suffices to prove this for a particular
f , so pick f to be such that f = H in a neighborhood of the points {q0, . . . , qk} = Q∩L and all
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local minima of f |L have value at least −εH . If one picks a monotone homotopy between f and H

that is constant near the points qj , then on the chain level ΦfH : CF ∗(−a,0](L; f) → CF ∗(−a,0](L;H)

we have ΦfH(qj) = qj since there is only the constant solution for energy and action reasons.

The result now follows from (2.13). 2

With this lemma, the energy–capacity inequality in Corollary 1.6 and Lemma 2.8 gives the

following proposition.

Proposition 3.4. For any finite a > e(Q;M), there is an H ∈ HQN such that for any admissible

regular J ∈ Jθ(M) there is a chord x ∈ CH(L) such that 〈dJx, q0〉 6= 0 in (CF ∗(L;H), dJ) with

action AH,L(x) > −a. In particular, there is a differential

u ∈M(q0, x;L,H, J) for the moduli space in (2.8)

with the energy bound E(u) 6 a. This continues to be true for any H+ ∈ HQN with H+ > H.

Proof. By Corollary 1.6 and Lemma 2.8 there is an H ∈ HQN so that

ΦfH(1L) = 0 ∈ HF 0
(−a,0](L;H).

By Lemma 3.3, this means the cycle
∑k

j=0 qj ∈ CF ∗(−a,0](L;H) is a boundary and, hence, there

is a chord x ∈ CF−1
(−a,0](L;H) with 〈dJx, q0〉 6= 0. 2

Note that Proposition 3.4 remains true if we insist that the almost complex structure J has a

particular form on the ball ι(B2n
R ). This is because no differential is contained entirely in the ball

and, hence, regularity can still be achieved among such almost complex structures. In particular,

we can assume J ∈ Jι(V ), which is defined as follows.

Definition 3.5. For a subset V ⊂ B2n
R define Jι(V ) ⊂ Jθ(M) to be the subset of admissible

almost complex structures J in Definition 2.2 such that J |ι(V ) = ι∗J0 where J0 is the standard

complex structure on Cn and ι is the relative ball embedding (3.1).

Our goal is to use a differential as in Proposition 3.4 to build a certain holomorphic curve

in the relatively embedded ball in order to prove Theorem 1.1. It is at this point where we will

bring in the assumption that Q has a metric with non-positive sectional curvature in order to

prove the following theorem. For this theorem let U be any neighborhood of Rn ∩B2n
R and N be

a displaceable Weinstein neighborhood of Q of the form (3.2) where ι−1(N ) ⊂ U .

Theorem 3.6. Let g be a metric of non-positive curvature on a Lagrangian Q as in Theorem 1.1.

For any finite a > e(Q;M), there is a Hamiltonian H ∈ HQN ,g and a J ∈ Jι(B2n
R \U) such that

there is an element u ∈ M(q0, x;L,H, J) of the moduli space (2.8) with energy E(u) 6 a that

connects q0 = ι(0) to a path chord x ∈ CH(L).

The main content here is that we can use the non-positive curvature assumption to strengthen

the conclusion of Proposition 3.4 so that the given differential involves a path chord x. The fact

that we can take x to be a path chord plays a key role in our proof of Theorem 1.1. We will

prove Theorem 3.6 in § 4.
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q0

L

L

Figure 4. If x(1) /∈ ι(B2n
R+ε), then u(·, 1) : [−∞, b] → L ∩ ι(B2n

R+ε) is a path from q0 to a point

on ι(∂B2n
R+ε) for some b ∈ R.

3.2 Using Floer differentials to prove Theorem 1.1
We will now use Theorem 3.6 to prove Theorem 1.1 as outlined in § 1.3.3. In what follows the
interior of a set Y ⊂ R2n will be denoted Y̊ .

Proof of Theorem 1.1. Without loss of generality we may assume we have a relatively embedded
ball B2n

R+ε for some very small ε > 0 so that the preimage of our Lagrangians under ι are still
linear. Consider the sequence of neighborhoods

Uk =

{
z ∈ B2n

R+ε :
n∑
i=1

|Im(zi)| < 1/k

}
of Rn ∩ B2n

R+ε

and corresponding Weinstein neighborhoods Nk, Hamiltonians Hk, almost complex structures
Jk, path chords xk, and differentials uk given by Theorem 3.6. For any e > e(Q;M), we may
assume E(uk) 6 e for all k.

Observe that if x ∈ CH(L) is a path chord, then {x(0), x(1)} 6⊂ ι(B2n
R+ε) since otherwise for

x(t) = (q(t), p(t)) one has q(0) = q0 = q(1). Therefore, by the boundary conditions on elements
in the moduli space M(q0, xk;L,Hk, Jk) it follows that the image of uk(R × {0, 1}) contains a
path γk in L ∩ ι(B2n

R+ε) from q0 to a point on ι(∂B2n
R+ε), see Figure 4.

From now on we will focus on ι(B2n
R+ε), so by composing with ι−1 we will view uk as a map

to B2n
R+ε and γk as a path in iRn ∩B2n

R+ε from 0 to the boundary. Pick a sequence Vk ⊂ B2n
R+ε\Uk

of compact codimension-zero submanifolds such that

∞⋃
k=1

Vk = B2n
R+ε\Rn and Vk−1 ∩ B̊2n

R+ε ⊂ V̊k.

If we choose Vk so that iRn ∩ ∂B2n
R+ε ⊂ Vk, then for each j, k > 0 by the intermediate value

theorem we have γk ∩ ∂Vj is non-empty. For each j 6 k, pick a point lj,k ∈ γk ∩ ∂Vj with
minimum distance to 0 and we have lj,k → 0 uniformly as j → ∞. Because supp(dHk) ⊂ Nk
and Jk ∈ Jι(B2n

R+ε\Uk) it follows that the part of the differential uk that is in V̊k can be seen as
a proper holomorphic curve

vk = uk|u−1
k (V̊k) : Σvk → (V̊k, J0)

with energy E(vk) 6 e. See Figure 5 for a schematic drawing.
By Lemma 3.7 below, using our holomorphic maps vk we get a proper holomorphic map

v : Σ → (B̊2n
R , J0)

passing through 0 with energy E(v) 6 4e, where Σ is a Riemann surface without boundary.
By the standard monotonicity estimate (e.g. [Sik94, § 4.3]), the holomorphic curve v has energy
at least R 6 E(v) and hence R 6 4e. Since this holds for all e > e(Q;M) and R < w(Q;M),
Theorem 1.1 follows. 2
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(a) (b)

Figure 5. The sets Vk and Uk in B2n
R . (a) The setting of the proof of Theorem 1.1 with the

image of the differential uk and the J0-holomorphic curve vk : Σk → Vk is where uk maps to Vk.
(b) The setting of Lemma 3.7 with the image of the J0-holomorphic curve vk.

Lemma 3.7. Let Vk ⊂ B2n
R be a sequence of compact codimension 0 submanifolds with boundary

with the property that Vk ∩ B̊2n
R ⊂ V̊k+1 and

⋃
k Vk = B2n

R \Rn. Let vk : Σk → (V̊k, J0) be a
sequence of proper holomorphic maps from genus-zero Riemann surfaces with uniform energy
bound E(vk) 6 e. Suppose also that ∂Σk gets mapped to iRn ⊂ B2n

R and that for all j < k there
exists lj,k ∈ image(vk|∂Σk) ∩ ∂Vj with lj,k → 0 uniformly as j → ∞. It then follows there is a

proper holomorphic map v : Σ → (B̊2n
R , J0) with energy E(v) 6 4e passing through 0 where Σ is

a Riemann surface without boundary.

Proof of Lemma 3.7. Let σ : B2n
R → B2n

R be the map sending each complex coordinate x+ iy to
−x+iy. We replace Vk with an appropriate smoothing of Vk∩σ(Vk) and restrict our holomorphic
curves to this smaller manifold so that Vk is invariant under the action of σ. By the Schwarz
reflection principle we can reflect vk along iRn via σ and create a new proper holomorphic map
vk : Σk → V̊k where Σk is an open Riemann surface without boundary and E(vk) 6 2e. We can
assume that the boundaries of Vj are generic enough so that vk is transverse to ∂Vj for j < k
and Σk,j := v−1

k (Vj) is a compact submanifold with boundary for j < k.
Fish’s compactness result [Fis11, Theorem A] tells us that for fixed j there is:

(1) a compact Riemann surface Sj with boundary and a compact nodal Riemann surface S′j
with boundary with a surjective continuous map φj : Sj → S′j ;

(2) smooth embeddings φk,j : Sj → Σk,j such that vk ◦ φk,j(∂Sj) ⊂ Vj\Vj−1;

(3) a J0-holomorphic map uj : S′j → Vj with energy at most 2e where uj(∂S
′
j) ⊂ Vj\Vj−1;

and a subsequence of {vk|Σk,j}k such that

vk ◦ φk,j : Sj → Vj converges C0-uniformly to uj ◦ φj : Sj → Vj .

By a diagonal process of successive subsequences we can ensure that the image of uj is contained
in the image of uj+1, and let A be the union of these images noting that its energy is bounded
by 2e. We also have lj,k converges to some point lj in ∂Vj as k → ∞ and that lj → 0 because
lj,k → 0 uniformly as j → ∞. Hence, the closure of A contains 0 because lj is in the image of
uj . The union of A with its complex conjugate A ∪A is a closed analytic subvariety of complex
dimension 1 in B2n

R \Rn ⊂ Cn which is invariant under complex conjugation. If X is the closure
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of A ∪ A inside B2n
R , then by the main theorem in [Ale71], X is a closed analytic subvariety of

B2n
R . Let v : X̃ → X ⊂ B2n

R be the normalization of X, this is a proper holomorphic map from

a Riemann surface Σ := X̃ with boundary to B2n
R of energy at most 4e passing through 0 such

that v(∂Σ) ⊂ ∂B2n
R . 2

See [GR84, ch. 8] for background on normalization for analytic spaces and [GR84, ch. 6.5]
for the proof that one-dimensional normal complex spaces are Riemann surfaces.

3.3 Building the auxiliary Lagrangian L
We will now present the construction of the auxiliary Lagrangian L from Lemma 3.1. As a first
step we have a local construction of a Lagrangian Rn on the cylindrical end.

Lemma 3.8. If (Y 2n−1, ξ) is a closed contact manifold with contact form α, then there is a
properly embedded Lagrangian L in ([1,∞)× Y, d(rα)) diffeomorphic to Rn with (rα)|L = dhL
for a smooth compactly supported hL : L → R.

Proof. For θ0 = 1
2

∑n
i=1 xi dyi − yi dxi in Cn consider the standard contact structure (S2n−1, ξ0)

with ξ = kerα0 where α0 = θ0|S2n−1 and the exact symplectic embedding

Φ : ((0,∞)× S2n−1, d(rα0)) → (Cn, dθ0) by (r, x) 7→ rx.

By the contact Darboux theorem for a sufficiently small open set U ⊂ Y 2n−1 there is an open
set V ⊂ (S2n−1, ξ0) containing Rn ∩ S2n−1 and a contactomorphism ψ : (V, ξ0) → (U, ξ) such
that ψ∗α = f α0 for some f : V → (0,∞). By shrinking U and V slightly we can assume that
f > mf > 0 where mf is a constant and define the exact symplectic embedding

Ψ : ([mf ,∞)× V, d(rα0)) → ([1,∞)× U, d(rα)) by Ψ(r, x) =

(
r

f(x)
, ψ(x)

)
.

Since V ⊂ S2n−1 contains Rn ∩ S2n−1, we can use a compactly supported Hamiltonian
diffeomorphism in (Cn, dθ0) to move the Lagrangian Rn ⊂ Cn into the image Φ([mh,∞)× V ) ⊂
Cn. The image of this new Lagrangian under Ψ in ([mf ,∞) × V, d(rα0)) is our desired
Lagrangian. 2

We can now prove Lemma 3.1.

Proof of Lemma 3.1. It follows from Lemma 3.8 that any Liouville manifold (M,dθ) contains
an admissible Lagrangian L diffeomorphic to Rn. By an appropriate compactly supported
Hamiltonian diffeomorphism of (M,dθ) we can assume for some ε > 0 that the Lagrangian
L is such that

ι(0) ∈ Q ∩ L with ι−1(L) ∩ B2n
ε = iRn ∩ B2n

ε .

If we modify θ to θ′ by adding a compactly supported exact 1-form so that ι∗θ′ = θ0 in B2n
R , then

the Liouville vector field Xθ′ will have the form Xθ′ = 1
2

∑n
i=1 xi∂xi + yi∂yi in the ball ι(B2n

R ).
Flowing L along Xθ′ gives a new Lagrangian L such that ι−1(L) = iRn ∩ B2n

R . By applying
another compactly supported Hamiltonian symplectomorphism to L we can get a new Lagrangian
L such that ι−1(L) = iRn ∩B2n

R still holds and for some c > 0 sufficiently small in the Weinstein
neighborhood (3.2)

Ψ−1(L) ∩ {|p|g < c} =
k⋃
j=0

T ∗qjQ ∩ {|p|g < c}

where q0 = ι(0) and {q0, . . . , qk} = Q ∩ L.
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To show that Q and L do not only intersect at ι(0), we will show that they intersect an even
number of times. By construction L can be made disjoint from Q by a Hamiltonian isotopy, so
it follows that under the intersection product

∩ : H lf
n (M)⊗Hn(M) → H0(M) that [L] ∩ [Q] = 0.

Here H lf
∗ (M) is locally finite homology (also known as Borel–Moore homology), which is Poincaré

dual to cohomology with compact support. Since [L] ∩ [Q] = 0 it follows that L and Q intersect
an even number of times, since they intersect transversely. 2

4. Existence of a differential from a path chord

In this section we will show how to strengthen Proposition 3.4 to Theorem 3.6. The non-trivial
part here is to prove that the chord x ∈ CF ∗(L;H) given by Proposition 3.4 with 〈dJx, q0〉 6= 0
and AH,L(x) > −a can actually be taken to be a path chord.

This proof has four parts. In § 4.1 we will introduce a filtration on CF ∗(L;H) given by the
Liouville class θ|Q in Q. In § 4.2 we will use this filtration to find an upper bound for the cotangent

bundle action AT
∗Q

H,L (x) from (3.4) for chords satisfying the conclusion of Proposition 3.4. In § 4.3
we will use the assumption that Q has a metric g with non-positive curvature, along with the
bound on the cotangent bundle action and the index relation in Proposition 4.9, to prove x
can be taken to be a near path chord. Finally in § 4.4 we prove the required index relation of
Proposition 4.9. Section 4.3 is the only place in the paper where the assumption that Q admits
a metric with non-positive curvature is used.

4.1 The Liouville filtration
Recall our fixed admissible Lagrangian L from Lemma 3.1 and our Liouville 1-form θ on M2n

such that θ|L = 0.

4.1.1 The Liouville-filtration. For an admissible Hamiltonian H ∈ HQN and a chord x ∈
CH(L) with x(t) = (q(t), p(t)) in coordinates for T ∗Q, denote the integral along the corresponding
geodesic of the (negative of the) Liouville class θ|Q of Q by

ν(x) := −
∫ 1

0
q∗(θ|Q). (4.1)

For our purposes it will be helpful to have the following alternative description of ν. Fix a
neighborhood N (L) of L such that N (L)∩N deformation retracts onto L∩Q and let us denote
NL∪Q = N (L) ∪ N , where N is the Weinstein neighborhood of Q in Lemma 3.1. By shrinking
NL∪Q slightly we may assume it has a smooth boundary.

Lemma 4.1. There is closed 1-form η defined on NL∪Q ⊂ (M,dθ) such that η|L = 0,

ν(x) = −
∫ 1

0
x∗η for chords x ∈ CH(L), (4.2)

and η = θ −Ψ∗λQ in N where Ψ is from (3.2) and λQ is the canonical 1-form.

Proof. We define η := θ−Ψ∗λQ inside N and we need to extend η over N (L). Since L is a union
of cotangent fibers inside N by (3.3) and since θ|L = 0, we have η|L∩N = 0. Since η|N (L)∩N is
a closed 1-form on a disjoint union of contractible domains, it is exact dψ = η for a function
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ψ : N (L) ∩ N → R. We can assume that ψ = 0 on L ∩ N since η|L∩N = 0, so by using bump
functions we can extend ψ to a compactly supported function on N (L) that vanishes on L and
dψ agrees with η on N (L) ∩N . So dψ lets us extend η to NL∪Q as desired.

For paths x : [0, 1] → NL∪Q that start and end on L, the integral
∫ 1

0 x
∗η only depends on the

homology class [x] ∈ H1(NL∪Q, L) since η is closed and η|L = 0. Therefore (4.2) follows since a
chord x ∈ CH(L) is homologous to its projection q to Q and η|Q = θ|Q. 2

The cotangent bundle action AT
∗Q

H,L (x) is equal to
∫ 1

0 H(x(t)) dt−
∫ 1

0 x
∗λQ so by Lemma 4.1

we have the relation
AH,L(x) = AT

∗Q
H,L (x) + ν(x). (4.3)

Consider the following class of admissible almost complex structures J .

Definition 4.2. For a Weinstein neighborhood N of Q and a metric g on Q, let us denote
Jcyl,g(N )⊂ Jθ(M) to be the admissible almost complex structures on (M,dθ) from Definition 2.2
that also satisfy the following additional condition. Near ∂N they are time-independent and
agree with the push-forward of some almost complex structure J on T ∗Q\Q that is contact
type, meaning λQ ◦ J = dr where r : T ∗Q → R is r(q, p) = |p|g.

We will now show for these almost complex structures that ν defines a filtration on the
complex (CF ∗(−∞,0](L;H), dJ) and detects when a differential leaves the Weinstein neighborhood

N of Q. We have chosen the minus sign in the definition of ν so that the differential does not
decrease the ν value just like the action functional AH,L.

Lemma 4.3. For J ∈ Jcyl,g(N ) and a Hamiltonian H ∈ HQN , let u ∈ M(x−, x+;L,H, J)
solve (2.6) where x− and x+ are chords contained in N , then

ν(x−) > ν(x+)

with equality if and only if u is contained in N . Likewise for u ∈ M(x−, x+;L,Hs, Js) for a

homotopy Hs ∈ HQN between H± ∈ HQN and Js ∈ Jcyl,g(N ).

Proof. Since η is closed and η|L = 0, for u ∈M(x−, x+;L,H, J) we have

0 =

∫
u−1(N )

u∗ dη =

∫
x+

η −
∫
x−

η +

∫
u−1(∂N )

u∗η

so it suffices to prove ∫
u−1(∂N )

u∗η 6 0 (4.4)

with equality if and only if u is contained in N . The if direction is immediate since if u is
contained in N , then u−1(∂N ) = ∅.

For the other direction we will argue as in [AboS10, Lemma 7.2]. Suppose u leaves N , so
let S = u−1(M\N ) and write ∂S = ∂lS ∪ ∂nS where u(∂lS) ⊂ L and u(∂nS) ⊂ ∂(M\N ). If ζ
is a vector tangent to ∂nS with a positive orientation, then jζ points inwards in S and hence
dr(du(jζ)) > 0 where r : T ∗Q → R is given by r(q, p) = |p|g.

Since J ∈ Jcyl,g(N ), by definition λQ ◦ J = dr near ∂N , and u|S is J-holomorphic we have

λQ(du(ζ)) = −(λQ ◦ J)(du(jζ)) = −dr(du(jζ)) 6 0

and therefore ∫
∂nS

u∗λQ 6 0.
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Furthermore, since u|S is J-holomorphic, θ|L = 0, and θ = λQ + η in N we get that

0 6 E(u|S) =

∫
S
‖∂su‖2J ds dt =

∫
S
u∗(dθ) =

∫
∂nS

u∗λQ +

∫
∂nS

u∗η 6
∫
∂nS

u∗η. (4.5)

This (4.5) proves (4.4) since the domains of integration have opposite orientations. By (4.5)
equality in (4.4) implies that E(u|S) = 0, i.e. that u|S is constant which is impossible if u
leaves N . 2

4.1.2 The associated graded complex. Let γ be the homotopy type of a path in Q that starts
and ends at qi, qj ∈ Q∩L, where we will also assume γ is non-trivial if qi = qj . For a Hamiltonian

H ∈ HQN , define

CF ∗ν,γ(L;H) = Z/2 〈x ∈ CH(L) : x ⊂ N and [π(x)] = γ〉

to be the Z/2 vector space spanned by chords whose geodesic in Q represents γ where here
π : N → Q is the cotangent projection. Let

Mν
1(y, x;L,H, J) ⊂M1(y, x;L,H, J)

be the Floer trajectories from (2.11) that are contained in the Weinstein neighborhood N and
define dνJ : CF ∗ν,γ(L;H) → CF ∗+1

ν,γ (L;H) by

dνJx =
∑
y

#Z/2(Mν
1(y, x;L,H, J)/R) y.

Since all of the chords generating CF ∗ν,γ(L;H) have the same ν-value, by Lemma 4.3 the standard
gluing and compactness results show that dνJ is a differential if J ∈ Jcyl,g(N ) is regular with
respect to H. We will denote the resulting homology groups by

HF ∗ν,γ(L;H) = H∗(CF ∗ν,γ(L;H), dνJ).

Since we are no longer restricting ourselves to a certain action window, Lemma 4.3 also shows that
continuation maps give isomorphisms HF ∗ν,γ(L;H) ∼= HF ∗ν,γ(L;K) between different H,K ∈ HQN .
In particular, since CF ∗ν,γ(L;K) = 0 when the slope of K is less than the length of any geodesic
in the homotopy class γ, it follows that

HF ∗ν,γ(L;H) = 0 (4.6)

for any H ∈ HQN .

4.2 Bounding the cotangent bundle action
In this subsection we will use the Liouville filtration to prove Proposition 4.5, which gives a
bound on the cotangent bundle action AT

∗Q
H,L (x) from (3.4) in terms of the action AH,L(x) for

chords x ∈ CH(L) connected to q0 by a differential.

4.2.1 Finitely many homology classes. Fix an admissible almost complex structure J ∈
Jθ(M) from Definition 2.2 that is time independent outside of the Weinstein neighborhood
N from Lemma 3.1.

Lemma 4.4. For A > 0, there is an ε0 > 0 sufficiently small so that there are only a finite
number NA,J of homology classes ζ ∈ H1(NL∪Q, L) satisfying the following property: there is a

Hamiltonian H ∈ HQN , a chord x ∈ CH(L), and a J ′ ∈ Jθ satisfying:
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(i) [x] = ζ ∈ H1(NL∪Q, L) and AH,L(x) > −A;

(ii) the moduli space M(q0, x;L,H, J ′) from (2.8) is non-empty;

(iii) J ′ is within ε0 of J in the uniform C∞-metric outside N .

In particular, there is a constant CA,J > 0 such that −ν(x) 6 CA,J for any such chord x.

Proof. Observe that since AH,L(q0) = −εH , the bound on AH,L(x) is equivalent to the uniform
bound E(u) 6 A− εH for u ∈M(q0, x;L,H, J ′) by the a priori energy bound (2.9).

By contradiction assume there is an infinite number of homology classes, then we have a
sequence Hk ∈ HQN and maps uk ∈M(q0, xk;L,Hk, Jk) with energy bounded by E(uk) 6 A such
that the homology classes [xk] ∈ H1(NL∪Q, L) are pairwise distinct and outside of N we have
C∞-convergence Jk → J . We may assume each uk leaves the neighborhood NL∪Q, since if a uk
does not leave the neighborhood, then it gives the relation [xk] = [q0] ∈ H1(NL∪Q, L).

For δ > 0, let Sδk = u−1
k (M\N δ

L∪Q) where N δ
L∪Q are those points in M\N within δ of a

point in NL∪Q in terms of the metric induced by ω and J . By Fish’s compactness result [Fis11,
Theorem A] we know that for any ε > 0 there is a δ ∈ [0, ε) and a subsequence of the curves
uk|Sδk that Gromov converges to a J-holomorphic map

u∞ : Sδ∞ → M\N δ
L∪Q.

It follows from the definition of Gromov convergence that for sufficiently large k in the
subsequence that

[uk(∂S
δ
k)] = [u∞(∂Sδ∞)] ∈ H1(NL∪Q)

and, in particular, the subsequence [uk(∂S
δ
k)] in H1(NL∪Q, L) is eventually constant. However,

since the maps uk|u−1
k (N δL∪Q) show that

[xk] = [uk(∂S
δ
k)] ∈ H1(NL∪Q, L)

this contradicts the fact that the [xk] classes were distinct.
Once there is a bound NA,J on the number of homology classes, the bound on the Liouville

filtration comes for free since ν only depends on the homology class. 2

4.2.2 A bound on the cotangent bundle action. Using the bound on the Liouville filtration
from Lemma 4.4, we will now bound the cotangent bundle action. Recall that ρH from
Definition 3.2 is the radius of support of dH for H ∈ HQN .

Proposition 4.5. For any A > 0 and J ∈ Jθ, there is a constant CNA,J > 0 satisfying the
following property: for any J ′ ∈ Jθ that is C∞-close to J outside of the Weinstein neighborhood
N of Q and any H ∈ HQN , if x ∈ CH(L) is a chord such that −A 6 AH,L(x) andM(q0, x;L,H, J ′)
is non-empty, then

AT
∗Q

H,L (x) 6 ρH C
N
A,J . (4.7)

Remark 4.6. Note that since the bound (4.7) holds for all H ∈ HQN , we can make the right-hand
side of (4.7) arbitrary small by requiring H to be such that 0 < ρH is sufficiently small.

For this proof we will use a conformal symplectomorphism of M supported in a Weinstein
neighborhood N that is given by scaling the cotangent fibers of Q under the identification
N = {(q, p) : |p|g < c} from (3.2). For positive numbers ρ < b < c, let φρ,b : [0, c) → [0, c) be a
diffeomorphism where

φρ,b(r) =
b

ρ
r for r near [0, ρ] and φρ,b(r) = r for r near c.
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This diffeomorphism φ = φρ,b defines a diffeomorphism Φ = Φρ,b of M that is the identity outside

the N and inside N is given by Φ(q, p) = (q, φ(|p|)p) in the cotangent bundle coordinates in T ∗Q.

Consider an admissible Hamiltonian H = fH(|p|) in HQN where ρH 6 ρ. Pushing the

Hamiltonian vector field XH for H forward by Φ results in Φ∗XH = XHΦ
a Hamiltonian vector

field for an admissible Hamiltonian HΦ ∈ HN given by

HΦ(q, p) = fHΦ
(|p|) =

∫ φ−1(|p|)

0
φ′(t)f ′H(t) dt (4.8)

with ρHΦ
< b.

Since the Lagrangian L intersects N along cotangent fibers (3.3) it follows that Φ preserves

L set-wise. One can now check that if x ∈ CH(L) is a chord for H, then its image Φ(x) ∈ CHΦ
(L)

is a chord for HΦ where

ν(x) = ν(Φ(x)) since x and Φ(x) are homologous in H1(NL∪Q, L). (4.9)

It follows from (4.8) that for r near [0, b] we have fHΦ
(r) = (b/ρ)fH((ρ/b)r) and, hence, the

cotangent bundle actions (3.4) of x and Φ(x) are related by

AT
∗Q

HΦ,L
(Φ(x)) =

b

ρ
AT

∗Q
H,L (x). (4.10)

We can now prove Proposition 4.5.

Proof of Proposition 4.5. Consider a diffeomorphism Φ of M associated to a φρH ,b where b < c.

Observe for chords x± ∈ CH(L) that Φ induces a correspondence between elements of the moduli

spaces

M(x−, x+;L,H, J) and M(Φ(x−),Φ(x+);L,HΦ,Φ∗J)

from (2.8). In particular, if x ∈ CH(L) is a chord such that M(q0, x;H,J) is non-empty, then

M(q0,Φ(x);HΦ,Φ∗J) is non-empty and hence by the a priori energy estimate (2.9) we know

that AHΦ,L(Φ(x)) 6 0. Therefore, by the relations (4.3), (4.9), and (4.10) we have that

0 > AHΦ,L(Φ(x)) = AT
∗Q

HΦ,L
(Φ(x)) + ν(Φ(x)) =

b

ρH
AT

∗Q
H,L (x) + ν(x)

so therefore AT
∗Q

H,L (x) 6 −(ρH/b)ν(x) for all b < c and, hence,

AT
∗Q

H,L (x) 6 −ρH
c
ν(x).

Since we know −ν(x) 6 CA,J from Lemma 4.4, we are done with CNA,J = CA,J/c. 2

4.3 Existence of a differential from a near path chord

We will now turn to the proof of Theorem 3.6 and let us remind the reader of the near/far and

path/loop dichotomies for chords from § 3.1.1. We will first need the following lemma, where

g is a metric on Q with nonpositive curvature, N is any Weinstein neighborhood of Q, the

Hamiltonian H ∈ HQN ,g is an admissible Hamiltonian, and J ∈ Jcyl,g(N ) is an admissible almost

complex structure from Definition 4.2.
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Lemma 4.7. If xf ∈ CH(L) is a far chord of H such that 〈dJxf , q0〉 6= 0 in (CF ∗(L;H), dJ), then
there is another chord x′ ∈ CH(L) such that 〈dJx′, q0〉 6= 0 with

AH,L(x′) > AH,L(xn) and ν(x′) > ν(xf ) = ν(xn)

where xn is the corresponding near chord to xf .

Proof. Let γ be the homotopy type of the path in Q that the chord xf represents. Since g is
a metric of non-positive curvature, by the Cartan–Hadamard theorem γ contains exactly one
geodesic [Mil63, Theorem 19.2]. Hence, xf and the corresponding near version xn are the only
chords in the associated graded complex CF ∗ν,γ(L;H) from § 4.1.2. Since AH,L(xn) < AH,L(xf )
it must be the case that dνJxn = xf in order for HF ∗ν,γ(L;H) = 0, which we know by (4.6).

Returning to (CF ∗(L;H), dJ) we have 〈dJxn, xf 〉 6= 0. Since 〈dJxf , q0〉 6= 0, to ensure
(dJ)2xn = 0 there must be another chord x′ 6= xf such that

〈dJxn, x′〉 6= 0 and 〈dJx′, q0〉 6= 0.

That 〈dJxn, x′〉 6= 0 implies AH,L(xn) < AH,L(x′) and ν(xn) 6 ν(x′). In fact, ν(xn) < ν(x′) since
otherwise by Lemma 4.3 the differential connecting them does not leave N and its projection to
Q provides a homotopy between the corresponding geodesics, which would imply x′ = xf by the
non-positive curvature assumption. 2

Proof of Theorem 3.6. Pick ε > 0 small enough so that a − ε > e(Q;M). From Proposition 3.4

we know there is a K ∈ HQN so that for any H > K in HQN and any J ∈ Jθ(M) that there is a

chord x(0) ∈ CH(L) so that 〈dJx(0), q0〉 6= 0 with AH,L(x(0)) > −(a− ε).
Pick a J ∈ Jcyl,g(N )∩Jι(B2n

R ). Using the constant Na,J from Lemma 4.4, let H > K be any
admissible Hamiltonian so that the bound BfH from (3.6) satisfies |BfH | < ε/2Na,J and ρH is
small enough so that the bound in Proposition 4.5 satisfies |ρH CNa,J | < ε/2Na,J .

Suppose that x(0) = x
(0)
f ∈ CH(L) is a far chord, then we have

AH,L(x(0)
n ) = AH,L(x

(0)
f ) +AT

∗Q
H,L (x(0)

n )−AT
∗Q

H,L (x
(0)
f ) > −(a− ε)− ε

Na,J

using the bound from (3.6) on AT
∗Q

H,L (x
(0)
n ) and the bound from Proposition 4.5 on AT

∗Q
H,L (x

(0)
f ).

Lemma 4.7 gives us a new chord x(1) ∈ CH(L) with 〈dJx(1), q0〉 6= 0 such that

AH,L(x(1)) > AH,L(x(0)
n ) > −(a− ε)− ε

Na,J
and ν(x(1)) > ν(x(0)

n ).

If x(1) = x
(1)
f is a far chord, then since AH,L(x

(1)
f ) > −(a− ε) we can repeat this argument to get

a chord x(2) ∈ CH(L) with 〈dJx(2), q0〉 6= 0 such that

AH,L(x(2)) > AH,L(x(1)
n ) > −(a− ε)− 2ε

Na,J
and ν(x(2)) > ν(x(1)

n ) > ν(x(0)
n ).

There are only Na,J possible values for ν on such chords by Lemma 4.4, so this process must
terminate after at most Na,J steps with a near chord xn ∈ CH(L) such that 〈dJxn, q0〉 6= 0 and
with action AH,L(xn) > −a.

Since |q0|Mas = 0 in Z/2, for degree reasons it must be the case that |xn|Mas = 1 in Z/2.
If xn was a near loop chord, then it follows from Corollary 4.10 below that the Morse index of
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the underlying geodesic q in Q satisfies mΩ(q) = 1 in Z/2. When g is a metric of non-positive

curvature, this is impossible since every geodesic q : [0, 1] → Q has Morse index mΩ(q) = 0, see

for instance [Mil63, § 19]. Therefore, xn is a path chord. 2

Remark 4.8. The index argument for ruling out near loop chords does not apply to far loop

chords since for far loop chords (4.12) is shifted by +1 to |(xf , v)|Mas = −mΩ(q)− µQ([v]) + 1.

4.4 The index of a near loop chord

Let g be a metric on a closed oriented manifold Q and on the cotangent bundle T ∗Q let H be a

Hamiltonian of the form

H(q, p) = fH(|p|g) such that f ′H(r) > 0 and f ′′H(r) > 0 when r > 0. (4.11)

The (not necessarily contractible) Hamiltonian chords x = (q, p) ∈ C∗H(T ∗q0Q) on {|p|g = r} are

in one-to-one correspondence with geodesic paths q : [0, 1] → Q starting and ending at q0 with

speed |q̇|g = f ′H(r).

Suppose Qn ⊂ (M2n, ω) is a closed oriented Lagrangian with a Weinstein neighborhood

N ′ ⊂ M symplectomorphic to {|p|g < c′} ⊂ T ∗Q. Let H : M → R be a Hamiltonian of the

form (4.11) in N ′ and let L ⊂ M be a simply connected Lagrangian such that a connected

component of N ′ ∩ L is identified with {(q0, p) : |p|g < c′} ⊂ T ∗q0Q. The main goal of this

subsection is to prove the following proposition.

Proposition 4.9. Let x = (q, p) ∈ CH(L) is a non-degenerate contractible chord contained in

N with q(0) = q(1) = q0. Any capping disk v for x determines an element [v] ∈ π2(M,Q), one

has the relation

|(x, v)|Mas = −mΩ(q)− µQ([v]) (4.12)

and, in particular, |x|Mas = mΩ(q) in Z/2.

Here |(x, v)|Mas is the Maslov index of the chord, mΩ(x) is the Morse index of the underlying

geodesic path in Q, and µQ([v]) is the Maslov index of the element [v] ∈ π2(M,Q). The definitions

of the various indices are recalled below and |x|Mas := |(x, v)|Mas ∈ Z/2 gives the Z/2 grading to

CF ∗(L;HQ). Proposition 4.9 specializes to the following corollary in the setting of § 3.1.1.

Corollary 4.10. For a Hamiltonian H ∈ HQN ,g, if x ∈ CH(L) is a non-degenerate near loop

chord with corresponding geodesic q in (Q, g), then |x|Mas = mΩ(q) in Z/2.

Proof. Recall from § 3.1.1 that all near chords appear in the region of N where H has the

form (4.11), where in particular f ′′H > 0, and hence Proposition 4.9 applies. 2

While Proposition 4.9 is most likely well known to experts, we do not know of a reference so we

will give a proof in § 4.4.4. Before we present the proof though, for clarity and the convenience of

the reader we will briefly establish our conventions for various Maslov indices. As our primitive

notion, for a path Λ : [a, b] → Ln in the Lagrangian Grassmanian for (R2n, dx ∧ dy) and a

fixed Lagrangian V ∈ Ln we will let µMas(Λ;V ) be the Maslov index as defined by Robbin–

Salamon in [RS93, § 2] and we will set V0 = 0 × Rn. The normalization for µMas is set so

µMas({e2πiktV0}t∈[0,1];V0) = 2k for V0 = 0× R in (R2, dx ∧ dy) where k ∈ Z is an integer.
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4.4.1 The Maslov class of a Lagrangian. The Maslov class of a Lagrangian Q ⊂ (M,ω) is a
homomorphism µQ : π2(M,Q) → Z, which for a smooth map u : (D2, ∂D2) → (M,Q) is defined
by

µQ(u) := µMas(Λu;V0).

For q(t) = u(e2πit), the loop Λu : S1
→ Ln is defined by

Λu(t) = Φu(t)−1(T vert
q(t) T

∗Q)

where Φu : S1 × R2n
→ q∗(TT ∗Q) is a symplectic trivialization and T vertT ∗Q ⊂ TT ∗Q is the

vertical tangent bundle. The Maslov class has the property that µQ(u) ∈ 2Z if Q is orientable.

4.4.2 The Maslov index of a contractible chord with a capping disk. For any Lagrangian
submanifold L ⊂ (M2n, ω) and Hamiltonian H : [0, 1]×M → R, let x ∈ CH(L) be a contractible
non-degenerate Hamiltonian chord and let v be a capping disk of x, i.e. (2.4) a smooth map

v : D2
→ M such that v(eπit) = x(t) and v(e−πit) ∈ L for t ∈ [0, 1].

The Maslov index of the pair (x, v) is defined to be

µ(x, v) := µMas(Λ(x,v);V0)

where the path Λ(x,v) : [−1, 1] → Ln is defined by the concatenation

Φ(x,v)(e
iπt)Λ(x,v)(t) = {Tv(eπit)L}t∈[−1,0]#{dϕtH(Tx(0)L)}t∈[0,1] (4.13)

where Φ(x,v) : D2 × R2n
→ v∗TM is a symplectic trivialization with Φ(x,v)(−1)V0 = Tx(1)L. It

follows from the homotopy invariance of the Malsov index that if two capping disks v and v′ of
x are homotopic through capping disks of x, then the indices µ(x, v) = µ(x, v′) are equal.

This is the index used to grade Lagrangian Floer cohomology, more precisely if x is a non-
degenerate contractible chord and v is a capping disk define

|(x, v)|Mas = −µ(x, v) +
n

2
∈ Z. (4.14)

When L is orientable, this induces a Z/2-grading |x|Mas on contractible non-degenerate chords
x ∈ CH(L) by

|x|Mas ≡ |(x, v)|Mas (mod 2) for any capping disk v. (4.15)

The definition of |x| ∈ Z/2 is well-defined since if v1 and v2 are capping disks for the same chord
x, then µ(x, v1)− µ(x, v2) = µL(v1#v̄2) ∈ 2Z where v1#v̄2 ∈ π2(M,L) is the result of gluing v1

and v2 along the chord x.

4.4.3 The Maslov and Morse indices of a chord in a cotangent bundle. Let x = (q, p) ∈
C∗H(T ∗q0Q) be any chord for a Hamiltonian H : [0, 1]×T ∗Q → R on (T ∗Q, dλQ), then the internal
Maslov index of x is defined as

µint(x) := µMas(Λx;V0).

Here Λx : [0, 1] → Ln is the defined by

Λx(t) := Ψx(t)−1(dϕtHT
vert
x(0)T

∗Q)
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where Ψx : [0, 1] × R2n
→ x∗(TT ∗Q) = q∗(TQ ⊕ T ∗Q) is a symplectic trivialization such that

Ψx(t)(V0) = T vert
x(t) T

∗Q = T ∗q(t)Q. Such trivializations always exist and µint(x) is independent of

the choice of Ψx see for instance [AS06b, Lemmas 1.2 and 1.3].
Assume that H : [0, 1]×T ∗Q → R has the form (4.11), then chords x ∈ C∗H(T ∗q0Q) correspond

to geodesic paths, namely critical points of the functional

Eg(q) =

∫ 1

0
|q̇(t)|2g dt

on the space ΩM (q0, q0) of paths in Q with boundary conditions q(0) = q(1) = q0. Associated
to a geodesic path q is its Morse index mΩ(q), which is the number of negative eigenvalues of
the Hessian of Eg at q counted with multiplicity or equivalently the number of conjugate points
along the geodesic q. See [Mil63, Part 3] for details.

For non-degenerate chords in cotangent bundles where H has the form (4.11) Duistermaat
[Dui76], see also [RS95, Proposition 6.38], showed that the Morse index and the internal Maslov
index are related as follows.

Proposition 4.11. If x = (q, p) ∈ C∗H(T ∗q0Q) in (T ∗Q, dθ) is a non-degenerate chord for a
Hamiltonian H with the form (4.11), then

µint(x) = mΩ(q) +
n

2
.

Note that there is a sign discrepancy between [RS95, Proposition 6.38] and Proposition 4.11
since [RS95] use the symplectic form −dλQ = dq ∧ dp on T ∗Q.

4.4.4 Proof of Proposition 4.9. The proof of Proposition 4.9 reduces to proving (4.16) and
this is the direct analogue of an identity for Hamiltonian orbits, which in a special case was
proved by Viterbo [Vit90a, Theorem 3.1] and the general case is in [KŞ10, Proposition 4.3].

In the setting of Proposition 4.9 we have a contractible chord x = (q, p) ∈ CH(L) contained
in N ′ whose corresponding geodesic q represents a based loop at q0. Any capping disk v of x
determines an element [v] ∈ π2(M,Q) because L is simply connected so without loss of generality
we can assume the boundary of v is contained in the Weinstein neighborhood N ′ of Q.

Proof of Proposition 4.9. By (4.14) and Proposition 4.11, it suffices to prove

µ(x, v) = µint(x) + µQ([v]) (4.16)

since then |(x, v)|Mas = −µ(x, v) + n/2 = −µint(x) − µQ([v]) + n/2 = −mΩ(q) − µQ([v]).
Furthermore µQ([v]) ∈ 2Z since Q is orientable, so it follows that |x|Mas = mΩ(q) in Z/2. It
remains to prove (4.16).

The definition of Λ(x,v)(t) in (4.13) tells us that Λ(x,v)(t) is a concatenation of two paths.
By multiplying by Ψx(t)Ψ−1

x (t) we can see that second path of Λ(x,v)(t) is homotopic to the
concatenation

{Φ−1
(x,v)(e

iπt)Ψx(t)Ψ−1
x (0)Tx(0)L}t∈[0,1] # {Φ−1

(x,v)(−1)Ψx(1)Ψ−1
x (t) dϕtH(Tx(0)L)}t∈[0,1]. (4.17)

By naturality of the Maslov index in the sense that µMas(Λ;V0) = µMas(AΛ;AV0) for a symplectic
matrix A ∈ Sp(R2n), for the second path in (4.17) we have

µMas(Φ
−1
(x,v)Ψx(1)Ψ−1

x (t) dϕtH(Tx(0)L);V0) = µMas(Ψ
−1
x (t) dϕtH(Tx(0)L);V0) = µint(x)
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and the concatenation of the first path in Λ(x,v)(t) and the first path in (4.17) gives

µMas({Φ−1
(x,v)(e

iπt)T vert
v(eiπt)T

∗Q}t∈[−1,1];V0) = µQ([v]).

Using the previous Maslov index calculations and the fact that µMas is additive under
concatenation, we have

µ(x, v) = µMas({Φ−1
(x,v)(e

iπt)T vert
v(eiπt)T

∗Q}t∈[−1,1], V0) + µMas(Ψ
−1
x (t) dϕtH(Tx(0)L);V0)

= µQ([v]) + µint(x).

using that µMas is additive under concatenation. 2

4.4.5 Conley–Zehnder index conventions. Since in the next section we will reference the
Conley–Zehnder index, let us take a second to recall the definition. Given a symplectic matrix
A ∈ Sp(2n) for (R2n, ω0 = dx ∧ dy) the graph gr(A) is a Lagrangian subspace in (R2n × R2n,
−ω0 ⊕ ω0). One defines the Conley–Zehnder index of a path A : [a, b] → Sp(2n) of symplectic
matrices to be the Maslov index

µCZ(A) = µMas(gr(A); ∆)

of the path of Lagrangians gr(A) with respect to the diagonal ∆ ⊂ R2n×R2n. These conventions
are such that µCZ({e2πikt}t∈[0,1]) = 2k for k ∈ Z in (R2, dx ∧ dy).

5. The comparison and energy–capacity inequalities

The goal of this section is to prove Theorem 1.5. We will begin with a brief summary of
Hamiltonian Floer cohomology, if only to establish conventions and notation, and then we will
give the definition of the Floer–Hofer–Wysocki capacity.

5.1 The Hamiltonian Floer–Hofer–Wysocki capacity
5.1.1 Hamiltonian Floer cohomology. Hamiltonian Floer cohomology on a Liouville manifold

(M2n, dθ) [Flo89a, FH94, FHS95] is analogous to Lagrangian Floer cohomology in § 2.1 except
now one considers 1-periodic orbits instead of chords.

Given a Hamiltonian H : S1 ×M → R, let

OH =

{
x : S1

→ M

∣∣∣∣ ∂∂tx(t) = XHt(x(t)) and [x] = 1 ∈ π1(M)

}
(5.1)

denote the set of contractible Hamiltonian orbits. An orbit x ∈ OH is non-degenerate if dϕ1
H :

TMx(0) → TMx(0) has no eigenvalue equal to one. A capping disk v of an orbit x ∈ OH is a map

v : D2
→ M such that v(e2πit) = x(t) for t ∈ R/Z (5.2)

with which one can build a symplectic trivialization of x∗TM and turn d(ϕtH)x(0) into a path
of symplectic matrices A(x,v) : [0, 1] → Sp(2n) that starts at 1. One defines the index of a
non-degenerate orbit x with a capping disk v to be

|(x, v)|CZ = n− µCZ(A(x,v)) ∈ Z

where | · |CZ is normalized so that for a C2-small Morse function f with a critical point x and
constant capping disk v we have |(x, v)|CZ = Morsef (x). This induces a well-defined Z/2-grading

|x|CZ := |(x, v)|CZ in Z/2

since |(x, v1)|CZ − |(x, v2)|CZ = −2c1(v1#v2).
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Definition 5.1. An admissible Hamiltonian H ∈ H as in Definition 2.4 is non-degenerate if all
orbits x ∈ OH with action AH(x) < MH are non-degenerate.

Here the action functional AH : OH → R is given by

AH(x) =

∫ 1

0
H(t, x(t)) dt−

∫ 1

0
x∗θ. (5.3)

For non-degenerate orbits x± ∈ OH and admissible almost complex structure J ∈ Jθ(M),
the moduli spaceM(x−, x+;H,J) is the set of finite energy solutions u = u(s, t) : R×S1

→ M

∂su+ Jt(u)(∂tu−XHt(u)) = 0 (5.4)

with asymptotic convergence lims→±∞ u(s, ·) = x±(·). The energy of a solution to (5.4) is

E(u) :=

∫
R×S1

‖∂su‖2J ds dt where ‖∂su‖2J = dθ(∂su, Jt(u)∂su) (5.5)

and there is the standard a priori energy bound

0 6 E(u) = AH(x−)−AH(x+) (5.6)

for u ∈ M(x−, x+;H,J). For non-degenerate H and generic admissible J the moduli space
M(x−, x+;H,J) is a smooth manifold and the dimension near a solution u ∈ M(x−, x+;H,J)
is determined by

dimuM(x−, x+;H,J) = |(x−, v)|CZ − |(x+, v#u)|CZ (5.7)

where v is any capping disk for the orbit x−. We will denote by M1(x−, x+;H,J) the union
of the one-dimensional connected components of M(x−, x+;H,J). Translation in the domain
gives an R-action to the moduli space M(x−, x+;H,J) and M1(x−, x+;H,J)/R is a compact
zero-dimensional manifold.

The vector space over Z/2 generated by orbits x ∈ OH with action in the window (a, b] is
denoted by

CF ∗(a,b](H)

and it is Z/2-graded if all of the orbits are non-degenerate. Analogously to the Lagrangian case
the Z/2-linear map

dJ : CF ∗(a,b](H) → CF ∗+1
(a,b](H) (5.8)

given by counting isolated positive gradient trajectories

dJx =
∑
y

(#Z2M1(y, x;H,J)/R) y

defines a differential, where the sum is over orbits y ∈ OH with action in the window (a, b].
Hamiltonian Floer cohomology

HF ∗(a,b](H) = H∗(CF ∗(a,b](H), dJ)

is the homology of this chain complex.
The continuation maps and action window maps for Hamiltonian Floer cohomology are

analogous to the Lagrangian case. In particular, given non-degenerate Hamiltonians H+ 6 H−

there is a monotone continuation map

ΦH+H− : HF ∗(a,b](H
+) → HF ∗(a,b](H

−) (5.9)

that is independent of the choice of monotone homotopy (Hs, Js) used to define it.
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5.1.2 Hamiltonian Floer–Hofer–Wysocki capacity.

Definition 5.2. Let f : M → R be an admissible Hamiltonian that is non-degenerate with
respect to M . If the following conditions are satisfied:

(i) every orbit x ∈ Of is a critical point of f ;

(ii) the only critical points for {f > 0} occur at infinity where f is constant;

(iii) the regular sublevel set {f 6 0} is a deformation retract of M ;

(iv) f is a C2-small Morse function on {f 6 0};

then we say f is adapted to M .

It follows from [SZ92, Theorem 7.3] that if f : M → R is a Hamiltonian adapted to M and
f > −a, then via Morse cohomology one has a chain-level isomorphism

H∗Morse(M) ∼= HF ∗(−a,0](f) (5.10)

given by mapping critical points x ∈ Crit(f) with f(x) < 0 to the corresponding constant orbit
x ∈ Of .

Just as in the Lagrangian case, for a compact subset X ⊂M and a > 0 we define

HF ∗(X, a) := lim−→
H∈HX

HF ∗(−a,0](H) (5.11)

where monotone continuation maps (5.9) are used for the direct limit over the class of
Hamiltonians HX from (2.19). Similarly there is a natural map

iaX : H∗(M) → HF ∗(X, a) (5.12)

given by the isomorphism (5.10) and the inclusion of HF ∗(−a,0](f) into the direct limit where

f ∈ HX is adapted to M with f > −a.
We now have the following definition where 1M ∈ H0(M) is the fundamental class.

Definition 5.3. The Floer–Hofer–Wysocki capacity of X is

cFHW(X) = inf{a > 0 : iaX(1M ) = 0} (5.13)

where cFHW(X) = +∞ if iaX(1M ) 6= 0 for all a > 0.

Just like for the Lagrangian case we have the following criterion for when cFHW(X) < a,
which follows from the definitions.

Lemma 5.4. For any finite a, the capacity cFHW(X) 6 a if and only if there is an f ∈ HX
adapted to M and an H ∈ HX so that −a < f 6 H and

1M ∈ ker(ΦfH : HF ∗(−a,0](f) → HF ∗(−a,0](H))

where 1M ∈ H∗(M) ∼= HF ∗(−a0,0](f) are identified as in (5.10).

5.2 Proof of Theorem 1.5
We will now present proofs of the various inequalities for the Hamiltonian and Lagrangian
Floer–Hofer–Wysocki capacities given in Theorem 1.5.
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5.2.1 Proving part (i): the comparison inequality via a closed–open map. Theorem 1.5(i)
follows directly from the existence of a closed–open map

CO : HF ∗(X, a) → HF ∗(L;X, a) (5.14)

such that there is a commutative diagram

H∗(M)
i∗ //

iaX
��

H∗(L)

iaL;X

��
HF ∗(X, a)

CO // HF ∗(L;X, a)

(5.15)

where i∗ : H∗(M) → H∗(L) is the standard map on cohomology.

Proof of Theorem 1.5(i). Since i∗(1M ) = 1L, it follows from (5.15) that iaX(1M ) = 0 implies
iaL;X(1L) = 0. By the definitions of the capacities, this proves Theorem 1.5(i). 2

Since closed–open maps have appeared in the literature in [AS06a, AS10, Alb08] and many
times since, we will just briefly recall the construction. For a given Hamiltonian H ∈ HX that is
non-degenerate with respect to M and L, there is a map

CO : HF ∗(−a,0](H) → HF ∗(−a,0](L;H) (5.16)

which is Albers’ map τ in [Alb08, § 5]. If y ∈ OH is an orbit with action in (−a, 0], then on the
chain level (5.16) is defined by

CO(y) =
∑
x

(#Z2MCO0 (x, y;L,H, J))x

where the sum is taken over chords x ∈ CH(L) with action in (−a, 0]. Define the moduli space
MCO0 (x, y;L,H, J) to be the zero-dimensional component of the space of finite energy solutions
to u = u(s, t) : Σ → M 

u(∂Σ) ⊂ L,
∂su+ Jt(u)(∂tu−XHt(u)) = 0,

u(−∞, ·) = x(·), u(+∞, ·) = y(·),
(5.17)

where J = {Jt}t∈S1 ∈ Jθ(M) is an admissible almost complex structure and

Σ = R× [0, 1]/ ∼ where (s, 0) ∼ (s, 1) for s > 0

with boundary ∂Σ = {(s, t) : s 6 0, t = 0, 1}. The energy of a solution to (5.14) is given by

E(u) :=

∫
Σ
‖∂su‖2J ds dt where ‖∂su‖2J = dθ(∂su, Jt(u)∂su) (5.18)

and again we have the a priori energy bound

0 6 E(u) = AH,L(x)−AH(y) (5.19)

which is why the map CO preserves the action filtration.
Standard proofs show that the closed–open map is natural with respect to monotone

continuation maps in Hamiltonian Floer cohomology (5.9) and in Lagrangian Floer cohomology
(2.17), and hence the map in (5.16) induces the map (5.14) on the direct limits. While Albers
works in the case where M is closed and L is monotone, his proof generalizes to this setting since
there are no holomorphic disks on L or holomorphic spheres in M and Lemma 2.3 provides the
needed maximum principle. The commutativity of (5.15) now follows from [Alb08, Theorem 1.5].
Note the formalism in [Alb05, Alb08] was corrected in [Alb10], but these modifications affect
neither our use of the closed–open map nor the commutativity of (5.15).
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Figure 6. The various Hamiltonians involved in the proof of Theorem 1.5(ii). Outside of M the
Hamiltonian f can be taken to be radial f = f(r) on the convex end (2.1) with |f ′(r)| smaller
than the minimal period of a Reeb orbit on ∂M .

5.2.2 Proving part (ii): the energy–capacity inequalities.

Proof of Theorem 1.5(ii): Hamiltonian case. If e0 > e(X;M), then we can pick a Hamiltonian
G with ‖G‖ < e0 such that ϕ1

G displaces X. Without loss of generality we can assume that G is
non-degenerate, G 6 0, and supS1×M |G(t, x)| < e0. Let N be a neighborhood of X so that ϕ1

G

displaces N as well.
For any ε > 0, pick a Hamiltonian H > −ε in HX that is non-degenerate and equal to the

constant MH outside S1 ×N where MH > e0. Pick f ∈ HX to be a Hamiltonian adapted to M
such that −ε < f 6 H and Mf > e0. Our choice of f gives

HF ∗(−ε,0](f) ∼= HF ∗(−ε−e0,0](f − e0) ∼= H∗(M)

via (5.10). Refer to Figure 6 for a schematic graph of these Hamiltonians.
For s ∈ [0, 1] let Ks = (1− s)H + sMH and consider the family of admissible Hamiltonians

(Ks#G)t := Ks
t +Gt ◦ (ϕtKs)−1

where Ks#G generates the Hamiltonian isotopy {ϕtKsϕtG}t. Using that ϕ1
G displaces N , while

ϕtKs(N ) = N and outside of N one has ϕtKs = id, it follows that the fixed points of ϕ1
Ksϕ1

G

and ϕ1
G coincide. In particular the fixed points of ϕ1

Ksϕ1
G are s-independent and under the

correspondence between fixed points and orbits in CKs#G it is known [HZ94, ch. 5.5] that the
actions AKs#G are also s-independent. It follows that the (non-monotone) homotopy Ks#G
induces an isomorphism

HF ∗(−a,0](H#G)
∼=−→ HF ∗(−a,0](MH +G) (5.20)

see for instance [Gin07, § 3.2.3] or [BPS03, FH94, Vit99]. Since f − e0 6 Ks#G for all s, the
isomorphism (5.20) actually fits into the commutative diagram

HF ∗(−e0−ε,0](f − e0)

Φ1

**
Φ0

��
HF ∗(−e0−ε,0](H#G)

∼= // HF ∗(−e0−ε,0](MH +G)

(5.21)

where Φ0 and Φ1 are monotone continuation maps [Gin10, § 2.2.2].
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Since MH + G > 0, we can factor the monotone continuation map Φ1 into two monotone
continuation maps

HF ∗(−e0−ε,0](f − e0) → HF ∗(−e0−ε,0](h) → HF ∗(−e0−ε,0](MH +G) (5.22)

where h : M → R is an admissible Hamiltonian whose only 1-periodic orbits are critical points
and is such that 0 < h 6MH +G. Since these conditions on h imply that HF ∗(−e0−ε,0](h) = 0, we

know that Φ1 = 0 and therefore by (5.21) that Φ0 = 0. We also have the commutative diagram
of monotone continuation maps

HF ∗(−e0−ε,0](f)

ΦfH

��

HF ∗(−e0−ε,0](f − e0)
∼=oo

Φ0=0

��
HF ∗(−e0−ε,0](H) HF ∗(−e0−ε,0](H#G)oo

Since the top map is an isomorphism we have that the continuation map

ΦfH : HF ∗(−e0−ε,0](f) → HF ∗(−e0−ε,0](H)

is zero. Therefore by Lemma 5.4 we have cFHW(X) 6 e0 + ε and letting e0 tend to e(X;M) and
ε tend to 0 gives the result. 2

The proof of Theorem 1.5(ii) in the Lagrangian case is analogous. The only slight difference
is one takes a Hamiltonian G that displaces L from X so that G 6 0 and supS1×L |G(t, x)| < e0.
Then at the part corresponding to (5.22), one factors

HF ∗(−e0−ε,0](L; f − e0) → HF ∗(−e0−ε,0](L;h) → HF ∗(−e0−ε,0](L;MH +G) (5.23)

where h : M → R is admissible, h|L is positive, and all chords Ch(L) correspond to critical
points of h|L. This forces all chords x ∈ Ch(L) to have positive action Ah,L(x) > 0 and hence
HF ∗(−e0−ε,0](L;h) = 0.

List of Notation

AH Hamiltonian action, see (5.3)

AH,L Lagrangian action, see (2.5)

AT
∗Q

H,L Lagrangian cotangent bundle action, see (3.4)

CH Contractible chords, see § 2.1.2

C∗H All chords, see § 2.1.2

H Admissible Hamiltonians, see Definition 2.4

HX Admissible Hamiltonians for X, see (2.19)

HQN ,g Admissible Hamiltonians for Q localized in N , see Definition 3.2

fH , εH , ρH Terms used to define elements in HQN ,g, see Definition 3.2

Jθ Admissible almost complex structures, see Definition 2.2

Jι J ∈ Jθ that are standard on the image of ι, see Definition 3.5

Jcyl,g(N ) J ∈ Jθ of contact type near ∂N , see Definition 4.2

near/far chord Types of chords, see § 3.1.1

path/loop chord Types of chords, see § 3.1.1

xn, xf The near and far chords corresponding to a geodesic, see § 3.1.1
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