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SOME REMARKS CONCERNING CONTRACTION
MAPPINGS

BY
SIMEON REICH

The following result is proved in [1, p. 6].

THEOREM 1. Let X be a complete metric space, and let T and T, (n=1,2,...) be
contraction mappings of X into itself with the same Lipschitz constant k<1, and
with fixed points u and u, respectively. Suppose that lim,_, ., T,(x)=T(x) for every
xe€ X. Then lim,_, , u,=u.

The next result was established by Singh and Russell [4].

THEOREM 2. Let (X,d) be a complete e-chainable metric space, and let
T,(n=1,2,...) be mappings of X into itself, and suppose that there is a real number
k with 0<k<1 such that d(x, y)<e=d(T,(x), T,.(»))<kd(x,y) for all n. If u,
(n=1,2,...) are the fixed points for T, and lim,_, ., T,(x)=T(x) for every x € X,
then T has a unique fixed point u and lim, , , u,=u.

The aim of this note is to generalize Theorem 1 as well as Theorem 2.

Part 1. We begin with

THEOREM 3. Let X be a complete metric space with metric d, and let T: X - X
be a function with the following property:

M AT, T(y) < ad(x, T(x))+bd(y, T(y)) +cd(x,y), x,y€X,

where a, b, ¢ are nonnegative and satisfy a+b+c <1. Then T has a unique fixed point.

Note that a=b=0 yields Banach’s fixed point theorem, while a=5, ¢c=0 yields
Kannan’s fixed point theorem, mentioned in [5, p. 406]. Of course, we may assume
always that a=5, but this is not essential.

Proof. Take any point x € X and consider the sequence {T"(x)}. Putting x=T"(x),
y=T""1(x) in (1) we obtain for n>1,

d(T"+Y(x), T"(x)) < ad(T™(x), T***(x))+bd(T"~(x), T"(x))
+cd(T™(x), T"~1(x)).
Hence

d(T"*}(x), T™(x)) < pd(T"(x), T"~X(x)),

where p=(b+c)/(1—a). Note that p<1. It follows that d(T"**(x), T"(x)) < p"d(x,
T(x)), and that for any m>n, d(T™(x), T*(x)) <p"d(x, T(x))/(1—p). Thus {T"*(x)}
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is a Cauchy sequence and therefore 7"(x) — z. Now we will show that T(z)=z. It
is sufficient to prove that 7" *(x) — T(z).
Indeed we have, taking x=7"(x), y=z in (1),

d(T"*Y(x), T(2)) < ad(T™*Y(x), T™(x))+bd(T(z), z) + cd(T™(x), 2)
< ad(T"*¥(x), T"(x))+bd(T™**(x), T(z)) + bd(T™* X(x), z) + cd(T™(x), z
< apd(T(x), x)+ bd(T"*X(x), T(2))+ bd(T"* X(x), )+ cd(T™(x), z).

Hence
d(T"*Y(x), T(z)) < (ap™d(T(x), x)+bd(T"*(x), z)+ cd(T™(x), 2))/(1=b) — 0.

Finally we prove that there is only one fixed point. Let x, y be two fixed points.
Then

d(x,y) = d(T(x), T(y)) < ad(x, x)+bd(y, y)+cd(x, y) = cd(x, y).

Were d(x, y) nonzero, we would have 1 <c, a contradiction.

To see that this theorem is stronger than Banach’s and Kannan’s theorems,
consider the following example: X=[0,1], 7(x)=x/3 for 0<x<1 and T(1)=¢. T
does not satisfy Banach’s condition because it is not continuous at 1. Kannan’s
condition also cannot be satisfied because d(7(0), 7(3)) =4(d(0, T(0)) +d(},T(3))).
But it satisfies condition (1) if we put a=%, b=4, c=1 (these are not the smallest
possible values).

Using this result we obtain

THEOREM 4. Let X be a complete metric space, andlet T, (n=1, 2,. ..) be mappings
of X into itself satisfying (1) with the same constants a, b, c, and with fixed points u,.
Suppose that a mapping T of X into itself can be defined by T(x)=lim,_, , T,(x).
Then u=1im, _,, u, is the unique fixed point of T.

Proof. Since d is a continuous function of both its variables we immediately see
that T satisfies (1) and therefore has a unique fixed point u. Now

d(uy, u) = d(T(uy), T(W)) < d(To(un), To(w) +d(T,(u), T(w))
< ad(uy, To(un)) + bd(u, T,(w) + cd(un, u) + d(T,(u), T(u)).
Hence
d(u,, u) < [(b+1)A(To(w), Tw))])/(1—c).

The result follows.

Part 2. Suppose the nonnegative function k(x, y) satisfies the following condi-
tions:

(a) k(x, y)=k(d(x, )
(b) k(d)<1 for any d>0
(¢) k(d)is a monotonically decreasing function of d.
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Rakotch proved the following result [2, p. 463].

THEOREM 5. If T: X — X where X is a complete metric space, satisfies
@ d(T(x), T(y) < k(x,y)d(x,y), x,yeX, x#y

then T has a unique fixed point.
Using this we obtain

THEOREM 6. Let X be a complete metric space and let T,(n=1, 2,...) be contrac-
tion mappings of X into itself with the same k(x, y), and with fixed points u,. If T
can be defined by T(x)=lim, ., T,(x), x € X, then T has a unique fixed point u and
lim, o u,=u.

Proof. By the continuity of d, T satisfies (2), and therefore has a unique fixed
point u. Now

d(uy, u) = d(Ty(u,), TW)) < d(To(uy), To(W)+d(To(u), T(w))
< k(uy, wyd(uy, u)+d(T,(u), T(u)).

Hence
d(um u) < [d(Tn(u)9 T(u))]/(l —k(um u))

Let >0 be given, and denote k(¢) by p. We can find an N such that for n> N,
d(T(u), T(u)) <(1—p)e. Take any n>N. We intend to show that d(u,, u)<e. If
d(u,, u) <e, there is nothing to prove. If d(u,, u) > then k(u,, u) <p. Therefore

d(un, w) < [d(To(w), Tw))/(1-p) < e.

The proof is complete.
We state now another result due to Rakotch [3].

THEOREM 7. Let T be a mapping of a complete e-chainable metric space into itself,
and suppose there is a function k(x, y), satisfying (a), (b), (c), such that d(x, y)<e
=>d(T(x), T(»)) <k(x, y)d(x, y), x#y, where d is the metric of the space. Then T
has a unique fixed point.

This theorem enables us to present a generalization of Theorem 2.

THEOREM 8. Let (X,d) be a complete e-chainable metric space, and let T,
(n=1,2,...) be mappings of X into itself, and suppose that there is a nonnegative
Sunction k(x, y) which satisfies (a), (b), (c) such that d(x, y)<e=d(T(x), T.(»))
<k(x,y)d(x,y) , x#y, for all n. If u, are the fixed points of T, and lim, _, ,, T,(x)=
T(x) for every x € X, then T has a unique fixed point u and lim,,_, ., u, =u.

Proof. We define a new metric for our space by d(x, y)=inf >7_, d(x,_,, x)),
where the infimum is taken over all e-chains x,, xy,. . ., X, joining xo=x and x,=y.
(X, d,) is a complete metric space. By a part of the proof of the previous theorem
[3, p. 56] we have d.T,(x), T,((»)) < k'(x, y)d.(x, ), x#y, where k’ satisfies (a), (b),
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(c). Since d(x, y)=d,(x, y) when d(x, y)<e, T, converges to T with respect to d, too.
By Theorem 6, T has a unique fixed point u, and lim,. . d.(u,, #©)=0. Since
d(x, y) <d.(u,, u), we obtain the desired result.
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