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Universal Entire Functions That Define
Order Isomorphisms of Countable Real Sets

P. M. Gauthier

Abstract. In 1895, Cantor showed that between every two countable dense real sets, there is an order
isomorphism. In fact, there is always such an order isomorphism that is the restriction of a universal
entire function.

1 Introduction

In 1895, Cantor proved that every two countable dense sets of reals are order isomor-
phic. he same year, Stäckel [17] showed that if A is a countable and B a dense subset
of C, then there exists a non-constant entire function that maps A into B. He also
claimed the corresponding result if A is a countable real set and B is a dense real set.

he following striking result was published by Franklin in 1925.

heorem 1.1 ([11]) Let A and B be countable dense subsets ofR. hen, there exists an

analytic function f ∶ R→ R that restricts to an order isomorphism of A onto B.

Unfortunately, the proof invoked the statement that the uniform limit of analytic
functions is analytic, which is false, as one can see, for example, from theWeierstrass
approximation theorem. Fortunately, Franklin’s theorem follows from amore general
result of Burke [7].

In this paper, we present the following two extensions of Franklin’s heorem.

heorem 1.2 Let A and B be countable dense subsets of R and 0 < m ≤ M < +∞.

Let Φ be an entire function such that, for x ∈ R, Φ(x) ∈ R and m ≤ Φ′(x) ≤ M. hen

there is an entire function f of the form

f (z) = Φ(z) +
∞

∑
j=1

λ jH j(z),

H1 = 1, H j(z) = e−Φ2
(z)

j−1

∏
k=1

(Φ(z) −Φ(αk)) for j = 2, 3, . . . ,

such that f (R) = R, f restricts to an order isomorphism of A onto B, and f ′(x) > 0,
for x ∈ R, so the mapping f ∶ R → R is bianalytic. An example of such a function Φ is

the function Φ(z) = z and, for this example, it is possible to choose the λ j ’s such that the

function f is of ûnite order of growth.
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We present this improvement of Franklin’s theorem, ûrst, because of the error in
Franklin’s proof, butmainly because the functionswe obtain can bemodiûed to prove
the following.

heorem 1.3 Let A and B be countable dense subsets of R. hen there exists a uni-

versal entire function F of the form

F(z) = z +
∞

∑
j=1

Λ j(z)H j(z),

H1 = 1, H j(z) = e−z
2

j−1

∏
k=1

(z − αk) for j = 2, 3, . . . ,

such that F(R) = R, F restricts to an order isomorphism of A onto B, and F′(x) > 0,
for x ∈ R.

Here, by a universal entire function, we mean an entire function having the re-
markable property that its translates are dense in the space of all entire functions. he
existence of a universal entire function was proved in 1929 by George Birkhoò [5].

In higher dimensions, the following result,was proved byMorayne [14] in 1987 for
Rn and Cn and by Rosay and Rudin [16] in 1988, with a diòerent proof for Cn .

heorem 1.4 (Morayne [14], Rosay and Rudin [16]) Let A and B be countable dense

subsets ofCn (respectively,Rn), n > 1. hen there is ameasure preserving biholomorphic

mapping of Cn (respectively, bianalyticmapping of Rn), that maps A onto B.

his theorem appears to be stronger than Franklin’s heorem, however the proof
of heorem 1.4 fails for n = 1. Moreover, for n = 1, all measure-preserving automor-
phisms are of the form z ↦ az + b, ∣a∣ = 1, so the only automorphic images of a set A
are the sets aA+ b.
Erdős [10] askedwhether, given countable dense subsets A and B ofC, there exists

an entire function f that maps A onto B, cf. Stäckel [17]. Maurer [13] gave an aõr-
mative answer. In this context, there are the following two interesting results of Barth
and Schneider [2,3], the second of which improves the result ofMaurer.

heorem 1.5 Let A and B be countable dense subsets ofR. hen there exists an entire

transcendental function f such that f (z) ∈ B if and only if z ∈ A.

heorem 1.6 Let Aand B be countable dense subsets ofC. hen there exists an entire

function f , such that f (z) ∈ B if and only if z ∈ A.

Although the next result is not directly on the topic of the present paper, we con-
sider it worth mentioning, perhaps as a distant cousin.

heorem 1.7 ([15]) Let A and B be countable dense subsets of the Hilbert cube

H = [0, 1]N. hen, for every є > 0, there is a measure preserving homeomorphism f

of H that maps A onto B, and ρ( f , id) < є, where ρ is a distance on the set of continu-

ous mappings H → H and id is the identity mapping.
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In recent years,Maxim Burke obtained deep results of a nature similar to ours and
Franklin’s [6–8]. I thank the referees for pointing out an important error in an earlier
version.

2 Proof of Theorem 1.2

Proof In proving heorem 1.2 we shall also show that f can be further required to
map a preassigned point a ∈ A to a preassigned point b ∈ B. he desired function f
will be of the form

f (z) = lim
n→∞

fn(z) = Φ(z) +
∞

∑
j=1

λ jH j(z),

where fn(z) = Φ(z) + ∑n
j=1 λ jH j(z). he purpose of the H j ’s, which we will mo-

mentarily deûne, is to recursively make adjustments to obtain more of the desired
mapping properties, without losing those properties that we have previously assured.

Recalling that by hypothesis, Φ′(x) ≥ m for x ∈ R, let {єn} be a sequence of posi-
tive numbers whose sum is less than m and let {rn} be a strictly increasing sequence
of positive numbers such that rn → +∞. We shall construct an enumeration (αn) of
A, an enumeration (βn) of B, and a real sequence (λn) such that, taking the functions
H j of the form

H1 = 1, H j(z) = e−Φ(z)2
j−1

∏
k=1

(Φ(z) −Φ(αk)) for j = 2, 3, . . . ,

we shall have that, for n = 1, 2, . . . ,

fn(α j) = β j , j = 1, . . . , n,(2.1)
λ1 = β1 − α1 , and ∣λnHn(z)∣ < єn if ∣z∣ ≤ rn , n > 1,(2.2)

∣λnH
′
n(x)∣ < єn , if x ∈ R,(2.3)
fn(R) ⊂ R.(2.4)

From the second condition, f will be an entire function, and the third condition will
allow us to diòerentiate this series term by term on R. On R we have

f
′(x) ≥ m +

∞

∑
j=1

λ jH
′
j(x) > m −

∞

∑
j=1

є j > 0.

Hence, f ∶ R → R is strictly increasing and, consequently, injective. Moreover, since
f (x) → ±∞ as x → ±∞, the function f ∶ R → R is surjective and, consequently,
bianalytic.
Choose a1 ∈ A and b1 ∈ B. Now we shall choose the sequences {αn}, {βn}, and

{λn}. First, we choose enumerations {an} and {bn} of A and B. he sequences {αn}
and {βn} will be rearrangements of {an} and {bn} chosen recursively. Set α1 = a1,
β1 = b1, λ1 = β1 − Φ(α1). We have deûned α1, λ1, β1, and hence also h1, f1, and H2.
Note that f1(a1) = f1(α1) = β1 = b1. Let β2 be the ûrst b j not equal to β1 = b1. In fact
β2 = b2.
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Suppose we have chosen

● distinctmembers α1 , . . . , α2n−1 of the sequence {a i} such that, for each k = 1, . . . , n,
α2k−1 is the ûrst a i not previously chosen;

● distinct β1 , . . . , β2n from the sequence {b j} such that, for each k = 1, . . . , n, β2k is
the ûrst b j not previously chosen;

● real numbers λ1 , . . . , λ2n−1, such that conditions (2.1)–(2.3) are satisûed.

We shall now choose α2n , λ2n , α2n+1, λ2n+1, β2n+1, and β2(n+1).
Since H2n is locally bounded and Φ′ is bounded on R, we can choose η > 0

such that (2.2) and (2.3) hold for H2n and ∣λ∣ < η. Now it follows from (2.3) that
f ′2n−1(x) ≥ m −∑∞

j=1 є j > 0 for all x ∈ R. hus the function f2n−1 is surjective on R.
Choose a number xn such that f2n−1(xn) = β2n . We claim that H2n(xn) /= 0. To see
this, suppose, to obtain a contradiction, that H2n(xn) = 0. hen xn = α j , for some
j = 1, . . . , 2n − 1, and f2n−1(α j) = β2n . However, f2n−1(α j) = β j . hus, β2n = β j .
But this contradicts the choice of β2n as being distinct from β j , for j < 2n. Since
H2n(xn) /= 0, the function

λ(x) = β2n − f2n−1(x)
H2n(x)

is deûned and continuous in a neighbourhood I of xn , with λ(xn) = 0; by choosing I

smaller we can also have that ∣λ(x)∣ < η for x ∈ I. By the density of A there is some
α2n ∈ A ∖ {α1 , . . . , α2n−1} in I. Write λ2n = λ(α2n). hen we have that ∣λ2n ∣ < η and
f2n−1(α2n) + λ2nH2n(α2n) = β2n . We have established (2.1)–(2.3) for 2n.

he choice of α2n+1 is easy. We choose the ûrst of the a j diòerent from α1 , . . . , α2n
and call it α2n+1 .

Since H2n+1(α2n+1) /= 0, the linear function

β(λ) = f2n(α2n+1) + λH2n+1(α2n+1)

is non-constant. Hence Jn = {β(λ) ∶ ∣λ∣ < є} is a non-empty open interval and, since
B is dense, we can choose an element of (B∩ Jn)∖{β1 , . . . , β2n}, whichwe call β2n+1.
he element β2n+1 by deûnition has the form β2n+1 = β(λ) for a certain λ,with ∣λ∣ < є.
We denote this λ by λ2n+1. If є is suõciently small, then λ2n+1 satisûes (2.2) and (2.3).
Condition (2.1) is satisûed by the choice we have just made for β2n+1 and λ2n+1.
For β2(n+1) we choose the ûrst of the b j ’s diòerent from β1 , . . . , β2n+1.
he construction of the sequences (αn), (λn), and (βn), and hence also of the the

entire function f is complete. his concludes the proof of heorem 1.2, except for
the ûnal statement regarding the existence of such a function having ûnite order of
growth.

To obtain a function of ûnite order, we take as Φ the function Φ(z) = z. hen
at each step of the proof, in addition to making sure that conditions (2.1)–(2.3) are
satisûed, we can choose λn smaller so that the condition

∣λn ∣
n−1

∏
k=1

∣z − αk ∣ < e∣z∣/2n , for all z ∈ C,
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is also satisûed. It is straightforward to check that the function

f (z) = z + e−z
2 ∞

∑
n=1

λn

n−1

∏
k=1

(z − αk)

so obtained is indeed of ûnite order. ∎

3 Approximation by Entire Functions

For a set S ⊂ C we denote by S0 the interior of S. We say that a function f ∶ S → C
is holomorphic on S if there is an open neighbourhood U of S and a holomorphic
function F on U such that F = f on S. We denote by H(S) the class of functions
holomorphic on S and by A(S) the class of functions continuous on S and holomor-
phic on S0. he extended complex plane is denoted by C. Let E ⊂ C be symmetric
with respect to the real axis. We shall say that a function f ∶ E → C deûned on such a
set E is symmetric with respect to the real axis if f (z) = f (z), for z ∈ E.
A compact set K ⊂ C is a Mergelyan set if every f ∈ A(K) can be uniformly ap-

proximated by polynomials.

heorem 3.1 A compact set K ⊂ C is aMergelyan set if and only ifC∖K is connected.

Moreover, if K is symmetric with respect to the real axis, f ∈ A(K) and f (z) = f (z),
z ∈ K, the approximating polynomials can be taken with real coeõcients.

Proof To verify the last statement,which is not part of the original Mergelyanheo-
rem, suppose K is symmetricwith respect to the real axis, f ∈ A(K) and f (z) = f (z),
z ∈ K. Let pn , n = 1, 2, . . . , be a sequence of polynomials that converges uniformly
to f and set qn(z) = (pn(z) + pn(z))/2. hen the sequence of polynomials qn also
converges uniformly to f and,moreover, have real coeõcients. ∎

For a topological vector space X, we denote by X∗ the continuous dual space. he
followingWalsh-type lemma on simultaneous approximation and interpolation isdue
to Frank Deutsch.

Lemma 3.2 ([9]) Let X be a locally convex topological complex vector space and Y a

dense subspace. hen if x ∈ X, U is a neighbourhood of 0, and L1 , . . . , Ln ∈ X∗, there is

a y ∈ Y such that y ∈ x +U and L j(y) = L j(x), for j = 1, . . . , n.

Let E be a closed set that is starlike with respect to the origin. For f ∶ E → C, we
shall write f ∈ A1(E), if f ∈ H(E0) and f has a radial derivative at each point of E,
which by abuse of notation, we shall also denote as f ′, such that f ′ is continuous
on E. We note that there aremany other meanings assigned to the notation A1(E) in
the literature.

Lemma 3.3 Let K ⊂ C be compact and starlike with respect to the origin, let E be a

Mergelyan set disjoint from K, and set Q = K ∪ E. Suppose f ∈ A(Q), f ∣K ∈ A1(K),
and z1 , . . . , zn are distinct points in K. hen for every є > 0, there is a polynomial p
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such that

∣p − f ∣Q < є, ∣p′ − f ′∣K < є,

p(z j) = f (z j), p
′(z j) = f ′(z j), j = 1, . . . , n.

If Q is symmetricwith respect to the real axis, the z j are real numbers, and f (z) = f (z)
for z ∈ Q, we can take p with real coeõcients.

Proof Without loss of generality, we can assume that f (0) = 0. Choose a number
r > 1 such that r > ∣z∣, for all z ∈ K. Byheorem 3.1, there is a polynomial q, for which
∣q(z) − f ′(z)∣ < є/r < є, for all z ∈ K and ∣q(z) − f (z)∣ < є for all z ∈ E. Consider the
polynomial p(z) = ∫

z
0 q(ζ) dζ, z ∈ K. hus,

(3.1) ∣p − f ∣K < є, ∣p′ − f ′∣K < є, ∣q − f ∣E < є.

LetUK andUE be open simply connected (but not necessarily connected) neighbour-
hoods of K and E, respectively, with disjoint closures, and deûne g ∈ H(UK ∪ UE)
by setting g = p on UK and g = q on UE . hen by Runge’s theorem and the fact that
local uniform convergence implies local uniform convergence of derivatives, there is
a polynomial p̃ such that

∣p̃ − p∣K < є, ∣p̃ ′ − p
′∣K < є, ∣p̃ − q∣E < є.

Together with (3.1) we see that the polynomials are dense in X = A1(K) ∩ A(E), en-
dowedwith the canonical norm. In addition, point evaluation at points ofQ and point
derivation at points of K are continuous linear functionals on X. hus, Lemma 3.2
implies themain part of the result. he last part of the lemma follows as in the proof
ofheorem 3.1 above. ∎

A chaplet is a closed set which is the union of an inûnite family of disjoint closed
discs that is locally ûnite, i.e., each compact set meets at most ûnitelymanymembers
of the family. Henceforth, E will denote a chaplet that is disjoint from the real axis
and is symmetric with respect to the real axis. hus, E is the union of an inûnite, but
locally ûnite, family of disjoint closed discs E+n in the open upper half-plane and their
re�ections E−n in the open lower half-plane. We shall suppose that the radii of the E±n
tend to inûnity. We shall also suppose that these discs are ordered and separated in
the following sense. here is a sequence rn > 0, rn ↗∞, such that E±n is contained in
the annulus rn < ∣z∣ < rn+1, for each n. A chapelet E having all of these properties will
be called a special chaplet.

Lemma 3.4 LetK be a closed disc centered at the origin, E be a special chaplet disjoint

from K, and set F = K ∪ R ∪ E. Let є be a positive continuous function on C. hen,

for every function g ∈ A(F) such that g(z) = g(z) and g ∈ C1(K ∪R), there exists an
entire function Λ such that Λ(z) = Λ(z) and

∣Λ(z) − g(z)∣ < є(z)∀z ∈ F , ∣Λ′(z) − g
′(z)∣ < є(z)∀z ∈ K ∪R.
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Proof We can consider the radius r1 of K as the ûrst member of a sequence {rn} of
separating radii for the chaplet E. For n = 1, 2, . . . , set

Dn = {z ∶ ∣z∣ ≤ rn},
Sn = [−rn+1 ,−rn] ∪ Dn ∪ [rn , rn+1].

Without loss of generality,we can assume that є(z) = є(∣z∣) and that є(r) is strictly
decreasing on [0,+∞). Let є1 , є2 , . . . , be a strictly decreasing sequence of positive
numbers, such that

єn < min
z∈Kn∪En

є(z) = є(rn+1) and
∞

∑
k=n+1

єk < єn , n = 1, 2, . . . .

he compact sets Sn are starlike with respect to the origin and symmetric with
respect to the real axis. he union En of the two closed discs E±n is a Mergelyan set
disjoint from Sn . Each compact setQn = Sn∪En satisûes thehypotheses ofLemma 3.3;
we shall recursively deûne corresponding functions fn .

Set f1 = g. By Lemma 3.3, there is a polynomial p1, with real coeõcients, such that

∣p1 − f1∣Q1 < є2 , ∣p′1 − f ′1 ∣S1 < є2 ,

and
p1(±r2) = g(±r2), p

′
1(±r2) = g

′(±r2).
Set p0 = p1 and suppose, for n ≥ 1 and k = 1, . . . , n−1,we already have polynomials

pk , with real coeõcients, such that, for

fk(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pk−1(z) z ∈ Dk ,
g(z) z ∈ [−rk+1 ,−rk] ∪ [rk , rk+1],
g(z) z ∈ Ek ,

we have
∣pk − fk ∣Qk < єk+1 , ∣p′k − f ′k ∣Sk < єk+1 ,

and
pk(±rk+1) = g(±rk+1), p

′
k(±rk+1) = g

′(±rk+1).
We deûne fn ∈ A1(Qn), by setting

fn(z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pn−1(z) z ∈ Dn ,
g(z) z ∈ [−rn+1 ,−rn] ∪ [rn , rn+1],
g(z) z ∈ En .

By Lemma 3.3, there is a polynomial pn , with real coeõcients, such that

∣pn − fn ∣Qn < єn+1 , ∣p′n − f ′n ∣Sn < єn+1 ,

and
pn(±rn+1) = g(±rn+1), p

′
1(±rn+1) = g

′(±rn+1).
By induction, the polynomials pn are now deûned for all n = 1, 2, . . . .
Fix positive integers k < m < n. On Dk , we have

∣pn(z) − pm(z)∣ ≤
n−1

∑
j=m

∣p j+1(z) − p j(z)∣ <
n−1

∑
j=m

є j+1
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and, since ∑ є j is convergent, the sequence pn is uniformly Cauchy on each Dk and
hence converges uniformly on compact subsets to an entire function Λ. Of course,
we also have that p′n → Λ′ uniformly on compact subsets. Since all of the pn have real
coeõcients, Λ(z) = Λ(z).
Fix z ∈ E. hen z ∈ Em , for some m and g(z) = fm(z). Choose n > m such that

∣Λ(z) − pn(z)∣ < єm+1. hen

∣Λ(z) − g(z)∣ ≤ ∣Λ(z) − pn(z)∣ + ∣pn(z) − fm(z)∣ ≤ єm+1 +
n+1

∑
m+1

єk < єm < є(z).

It remains to show that Λ has the desired approximation properties on K ∪ R,
namely ∣Λ(z) − g(z)∣ < є(z) and ∣Λ′(z) − g′(z)∣ < є(z), for all z ∈ K ∪ R. Fix
z ∈ K ∪ R. Let m = mz be the ûrst m such that z ∈ K ∪ [−rm+1 , rm+1]. Noting that
g = f1 on S1 and g = fm on [−rm+1 ,−rm] ∪ [rm , rm+1], we have

∣pn(z) − g(z)∣ = ∣pn(z) − fm(z)∣ ≤ ∣pm(z) − fm(z)∣ +
n−1

∑
k=m

∣pk+1(z) − pk(z)∣

≤ єm+1 +
n−1

∑
k=m

єk+2 <
∞

∑
k=m+1

єk < єm < є(x).

hus, ∣Λ(z) − g(z)∣ < є(z), for all z ∈ K ∪ R. he proof that ∣Λ′(z) − g′(z)∣ < є(x),
for all z ∈ K ∪R, is completely analogous. ∎

Lemma 3.5 Let K be a closed disc centered at the origin, let E be a special chaplet

disjoint from K, let g ∈ A(E) with g(z) = g(z), let є be a positive continuous function

on C. hen there is an entire function Λ with Λ(z) = Λ(z) such that

∣Λ(z) − g(z)∣ < є(z), z ∈ E , max{∣Λ(z)∣, ∣Λ′(z)∣} < є(z), z ∈ K ∪R.

Moreover, if we are given a real number α, there is such a function Λα for which

Λα(α) /= 0.

Proof he ûrst part is merely an instance of Lemma 3.4, obtained by putting g = 0
on K ∪R.
For the second part, suppose we are given a real number α. Let U be a neigh-

bourhood of K ∪ R disjoint from E and symmetric with respect to R and consider
a function γ ∈ C1(U) that is of compact support and equal to 1 in a neighbourhood
of K ∪ {α} and such that γ(z) = γ(z). We obtain the second assertion of the lemma
from Lemma 3.4 by putting g = δγ on K ∪R for a suõciently small real δ. ∎

4 Proof of Theorem 1.3

By heorem 1.2, there is a function of the form

(4.1)

f (z) = z +
∞

∑
j=1

λ jH j(z),

H1 = 1, H j(z) = e−z
2

j−1

∏
k=1

(z − αk) for j = 2, 3, . . . ,
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such that f (R) = R, f restricts to an order isomorphism of A onto B and f ′(x) > 0,
for x ∈ R, so themapping f ∶ R → R is bianalytic. All that might be lacking to satisfy
the conclusion ofheorem 1.3 is universality.

To obtain a function F of the form

F(z) = z +
∞

∑
n=1

Λn(z)Hn(z) = lim
n→∞

Fn(z)

satisfying the conclusion of heorem 1.3, we shall imitate the proof of heorem 1.2.
Namely, appropriate arrangements {αn} of A, {βn} of B, and {Λn}will be chosen re-
cursively. he only diòerence between the function f ofheorem 1.2 and the function
F ofheorem 1.3, is that the coeõcients λn of f are numbers,whereas the coeõcients
Λn of F are functions.

Let {rn} be the sequence used in the proof of heorem 1.2 to obtain the func-
tion (4.1). Let {Kn} be the associated exhaustion, Kn = {z ∶ ∣z∣ ≤ rn}, and let An =
{z ∶ rn < ∣z∣ < rn+1} be the associated annuli. We can assume that rn+1 − rn ↗ +∞
and we use this to deûne a special chaplet E, whose closed discs E±n = E(c±n , ρn) of
centers c±n and radii ρn lie in the annuli An . Since E is a special chaplet ρn → +∞, but
since rn+1 − rn ↗ +∞, we can also assume that R(c±n − ρn)→ +∞ and that there is a
δ > 0 such that E(c±n , ρn + δ) is also contained in An . Denoting by Dn the closed disc
centered at the origin of radius ρn , we have E±n = Dn + c±n .

Let pn , n = 1, 2, . . . , be a sequence of all the polynomials whose coeõcients have
both real and imaginary parts rational. Since these polynomials are dense in the space
of entire functions, an entire function will be universal, providing its translates ap-
proximate each pn . We shall assume that each polynomial of the sequence occurs
inûnitely o�en in the sequence.

Let {єn} be a sequence of positive numbers such that є1 < 1 and for each n > 1 we
have єn < min{1/(n − 1)2 , єn−1/2} and so∑k>n єk < єn . For n = 1, 2 . . . , let Λn be an
entire function, such that

Λn(x) ∈ R, x ∈ R,(4.2)
∣Λn(z)Hn(z)∣ < єn , z ∈ Kn ∪R,(4.3)

∣Λn(z)Hn(z)∣ < єk , z ∈ E+k , k > n,(4.4)

∣z + Λn(z)Hn(z) − pn(z − cn)∣ < єn , z ∈ E+n ,(4.5)

max{∣Λn(x)H′
n(x)∣, ∣Λ′

n(x)Hn(x)∣} < єn/2, x ∈ R,(4.6)

hen the function (4.1) is again an entire function for which F(R) ⊂ R and, for
z ∈ E+n ,

∣F(z) − pn(z − cn)∣ < ∣z + Λn(z)Hn(z) − pn(z − cn)∣ +∑
k/=n

∣Λk(z)Hk(z)∣

≤ (∑
k<n

∣Λk(z)Hk(z)∣ + єn) +∑
k>n

∣Λk(z)Hk(z)∣

< ((n − 1)єn + єn) +∑
k>n

єk < nєn + єn <
1
n
+ 1

n2 < 2
n
.
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hus, ∣F(z) − pn(z − cn)∣ < 2
n , z ∈ E

+
n . Equivalently,

∣F(z + cn) − pn(z)∣ <
2
n
, z ∈ Dn .

Hence, translates of F approximate all polynomials,whichmeans that the entire func-
tion F is universal.

Since ∣Λn(x)Hn(x)∣ < єn , for x ∈ R, we have ∣x − F(x)∣ ≤ 1, for x ∈ R. hus
F(x)→ ±∞, as x → ±∞. It follows from (4.6) that F′(x) > 0, for x ∈ R so F ∶ R→ R
is bianalytic.

Two properties of F remain to be established to complete the proof ofheorem 1.3:
that F exists and that F restricts to an order isomorphim A → B. We have indeed
shown that if the Λn ’s satisfy (4.2)–(4.6), then F is well deûned and has all of the de-
sired properties except possibly that of being an order isomorphism A→ B. We shall
now show, by essentially the same recursive argument as in the proof ofheorem 1.2,
that appropriateΛ j ’s indeed exist. he recursionwill also yield the order isomorphism
F ∶ A→ B, thus completing the proof ofheorem 1.3.

he recursive choice of the sequences αn , βn , and Λn is the same (with the help
of Section 3) as in the proof of heorem 1.2, but there are technical diõculties that
justify our presenting this part of the proof again in this new context.
Choose enumerations {an} and {bn} of A and B. Set

α1 = a1 . β1 = b1 , Λ1 = β1 − α1 .

We have deûned α1, Λ1, β1 and hence also F1 and H2. Note that F1(α1) = β1. Let β2
be the ûrst b j not equal to β1. In fact β2 = b2. Suppose we have chosen

● distinctmembers α1 , . . . , α2n−1 of the sequence {a i}, such that, for each k = 1, . . . , n,
α2k−1 is the ûrst a i not previously chosen;

● distinct β1 , . . . , β2n from the sequence {b j}, such that, for each k = 1, . . . , n, β2k is
the ûrst b j not previously chosen;

● entire functions Λ1 , . . . ,Λ2n−1, such that conditions (4.2)–(4.6) and

(4.7) Fn(αk) = βk , k = 1, . . . , 2k − 1

are satisûed.

We shall now choose α2n , Λ2n , α2n+1, Λ2n+1, β2n+1, and β2(n+1).
Set

g(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 z ∈ D2n ∩⋃k>2n E
±
k ∪R,

(p2n(z − c+2n) − z))/H2n(z) z ∈ E+2n ,

g(z) z ∈ E−2n .

It follows from Lemma 3.5 that there is an entire function Λ that satisûes the condi-
tions (4.2), (4.3), (4.4), (4.5), and (4.6), with n replaced by 2n and Λn replaced by Λ.
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hat is,

Λ(x) ∈ R, x ∈ R,(4.8)
∣Λ(z)H2n(z)∣ < є2n , z ∈ K2n ∪R,(4.9)

∣Λ(z)Hn(z)∣ < єk , z ∈ E+k , k > 2n,(4.10)

∣z + Λ(z)H2n(z) − p2n(z − c2n)∣ < є2n , z ∈ E+2n ,(4.11)

max{∣Λ(x)H′
2n(x)∣, ∣Λ′(x)H2n(x)∣} < є2n/2, x ∈ R,(4.12)

For (z, λ) ∈ C ×R, set

G(z, λ) = z +
2n−1

∑
k=1

Λk(z)Hk(z) + λΛ(z)H2n(z) = F2n−1(z) + λΛ(z)H2n(z).

Choose є > 0 so small that (4.11) holdswith Λ replaced by λΛ for each λ in the interval
1 − є < λ < 1 and choose such a λ0. It follows from (4.9) together with (4.3), which
holds for k = 1, . . . , 2n − 1 by the induction hypothesis, that ∣x − G(x , λ0)∣ < 1 for all
x ∈ R, so G( ⋅ , λ0) ∶ R → R is surjective. In particular, there is a point x0 ∈ R such
that G(x0 , λ0) = β2n . Since

∂G

∂λ
(x0 , λ0) > 1 −

∞

∑
k=1

єk > 0,

it follows from the implicit function theorem that there is a continuous function ℓ(x)
in an interval (x0 − δ, x0 + δ) such that ℓ(x0) = λ0 and G(x , ℓ(x)) = β2n , for all x in
this interval. Since A is dense in R, we can choose a point α2n ∈ A, which is in this
interval and is suõciently close to x0 that 1− є < ℓ(α2n) < 1. Now set Λ2n = ℓ(α2n)Λ.
Since 0 < ℓ(α2n < 1, the function Λ2n satisûes (4.8), (4.9), (4.10), and (4.12). Moreover,
from the choice of є, it follows that Λ2n also satisûes (4.11). We have veriûed that Λ2n
satisûes conditions (4.2), (4.3), (4.4), (4.5), and (4.6). Also, condition (4.7) is satisûed
by Λ2n , since

F2n(α2n) = F2n−1(z) + Λ2n(z)H2n(z) = G(α2n , ℓ(α2n)) = β2n .

he choice of α2n+1 is easy. We choose the ûrst of the a j diòerent from α1 , . . . , α2n
and call it α2n+1. he construction of the corresponding Λ2n+1 and β2n+1 is very similar
to the construction of Λ2n and α2n that we just completed. Indeed, it follows from
Lemma 3.5 that there is an entire function Λ that satisûes the conditions (4.2), (4.3),
(4.4), (4.5), and (4.6), with n replaced by 2n + 1 and Λn replaced by Λ and with the
additional property that Λ(α2n+1) /= 0.
For (z, λ) ∈ C ×R, set

G(z, λ) = z +
2n

∑
k=1

Λk(z)Hk(z) + λΛ(z)H2n+1(z) = F2n(z) + λΛ(z)H2n+1(z).

Since Λ(α2n+1)H2n+1(α2n+1) /= 0, the linear function

β(λ) = G(α2n+1 , λ) = F2n(α2n+1) + λΛ(α2n+1)H2n+1(α2n+1)
is non-constant. Hence Jn = {β(λ) ∶ ∣λ∣ < є} is a non-empty open interval and, since
B is dense, we can choose an element of (B∩ Jn)∖{β1 , . . . , β2n}thatwe call β2n+1. By
deûnition, the element β2n+1 has the form β2n+1 = β(λ) for a certain λ, with ∣λ∣ < є.
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We denote this λ by λ2n+1 and set Λ2n+1 = λ2n+1Λ. If є is suõciently small, then Λ2n+1
satisûes the conditions (4.2), (4.3), (4.4), (4.5), and (4.6). Condition (4.7) is satisûed
by the choice we have just made for β2n+1 and Λ2n+1.
For β2(n+1) we choose the ûrst of the b j ’s diòerent from β1 , . . . , β2n+1.
he construction of the sequences (αn), (λn), and (βn), and hence also of the the

entire function F, is complete. his concludes the proof ofheorem 1.3.

5 Universality and Linear Dynamics

By an argument anticipating those of the present paper,G.D. Birkhoò [5] established
the existence of universal entire functions. It turned out that universality is generic.
hat is,most entire functions are universal. More precisely, the family of universal en-
tire functions is residual (it is of Baire category II and its complement is of category I)
in the space of all entire functions. However, the situation for order isomorphisms be-
tween countable dense subsets of the reals is quite the opposite. LetE denote the space
of entire functions, let ER be the “real” entire functions, that is, the entire functions
that map reals to reals. And let E→ be the space of functions in ER whose restrictions
to the reals are non-decreasing. hen ER is a closed nowhere-dense subset of E and
E→ is a closed nowhere-dense subset of ER . hus, the class of universal entire func-
tions constructed here is, within the space of all entire functions, “topologically thin”
i.e., of ûrst Baire category,whereas the space of all universal entire functions is “thick,”
i.e., of second category. In other words, the “hard analysis” driving our constructions
cannot be replaced by “so�” methods.
Although most entire functions are universal, no explicit example is known. he

only known function that has a universality property in the sense of Birkhoò (uni-
versality of translations) is the Riemann zeta-function! It is not entire, but as close
to entire as possible. It has only one pole and that pole is simple. More precisely, the
spectacular universality theorem ofVoronin [18] states that vertical translates of ζ(z)
“frequently” approach all functions holomorphic in the strip 1/2 < Rz < 1 having
no zeros. Moreover, Bagchi [1] showed that the Riemann Hypothesis is equivalent
to the possibility of approximating the function ζ(z) itself in this fashion by its own
translates (a sort of almost periodicity). Bagchi established this formulation of the
Riemann Hypothesis in the language of topological dynamics.

Universality in the sense of the present paper is also connected to the burgeon-
ing ûeld of linear dynamics in which the concept of universality has evolved within
the past thirty or so years. Linear dynamics is a fusion of the (usually nonlinear)
study of dynamical systems with the theory of linear operators on topological vector
spaces. In this setting, Birkhoò ’s universality theorem becomes the statement that
translation operators on the space of entire functions are hypercyclic. An operator
on a linear topological space is called cyclic if there is a vector whose orbit under
the operator’s iterates has dense linear span. Hypercyclic means that the orbit itself
is dense.

Recently the subject of linear dynamics has attained enoughmaturity to justify two
recent books written by accomplished young researchers [4, 12]. It is possible that the
results and methods of the present paper, given their intrinsically non-so� nature,
might be of interest to researchers in this burgeoning area.
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