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Via Lombroso 6/17, 50134 Firenze, Italy (giulio.pianigiani@unifi.it)

(Received 23 July 2009)

Abstract The existence of mild solutions to the non-convex Cauchy problem

ẋ(t) ∈ Ax(t) + ∂F (t, x(t)), x(t0) = a,

is investigated. Here A is the infinitesimal generator of a C0-semigroup in a reflexive and separable
Banach space E, F is a Pompeiu–Hausdorff lower semicontinuous multifunction whose values are closed
convex and bounded sets with non-empty interior contained in E, and ∂F (t, x(t)) denotes the boundary of
F (t, x(t)). Our approach is based on the Baire category method, with appropriate modifications which are
actually necessary because, under our assumptions, the underlying metric space that naturally enters in
the Baire method, i.e. the solution set of the convexified Cauchy problem (CF ), can fail to be a complete
metric space.
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1. Introduction

In recent years non-convex differential inclusions have been investigated by several
authors (see [1–4,14,17,18,21–23,28–30] and the references therein).

In this paper we study the existence of solutions for non-convex differential inclusions.
For this kind of problem the method of approach based on the Baire category has proven
to be useful, provided the corresponding convex differential inclusion has an h-continuous
(i.e. in the Pompeiu–Hausdorff metric h) right-hand side. In this case the solution set
of the convex differential inclusion is a complete metric space and the basic idea is to
prove that most elements (in the sense of the Baire category) of this space are actually
solutions of the original non-convex differential inclusion.

Such a procedure may fail, whenever the corresponding convex differential inclusion
is only h-lower semicontinuous because, in this case, its solution set is not necessarily
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closed (see Example 3.7). A situation of this type is investigated in this paper. More
precisely, we consider a non-convex evolution differential inclusion in a Banach space E,
of the form

ẋ(t) ∈ Ax(t) + ∂F (t, x(t)), x(t0) = a ∈ E. (C)

Here A is the infinitesimal generator of a C0-semigroup on E, F is a bounded h-lower semi-
continuous multifunction defined on [t0, t1] × E, whose values F (t, x) are closed, convex
and bounded subsets of E with non-empty interior, and ∂F (t, x) denotes the boundary of
F (t, x). If the space E is reflexive and separable, then we shall prove (Theorem 4.3) that
the Cauchy problem (C) has mild solutions defined on [t0, t1]. Our method of approach
is based on the Baire category. This method was introduced in [8,10,11], starting from
a generic type result due to Cellina [5]. For further information on the Baire method and
differential inclusions see [6,12,17,25,30].

It is worth noting that the non-convex term ∂F (t, x) in (C) can have a very irregular
behaviour since an h-lower semicontinuous multifunction F can be discontinuous on a
dense set of points (see Example 4.4). Furthermore, observe that without the assump-
tion that F (t, x) has non-empty interior the existence of solutions may fail, in view of
Godunov’s counter-example [15].

In conclusion, we note that, in addition to the Baire category method, another method
of approach, essentially based on Gromov convex integration theory [16], has proven to
be useful in the investigation of existence problems for some important classes of non-
convex differential inclusions [19, 20, 26]. However, it is not clear whether this second
approach can be suitably adapted for non-continuous differential inclusions and, if it can,
whether it is eventually more effective, making it possible to avoid some technicalities of
the Baire category method.

2. Notation, terminology and auxiliary results

Let (M, d) be a metric space. If A ⊂ M , by intA, Ā and ∂A we denote the interior,
the closure and the boundary of A, respectively. For x ∈ M and r > 0 we set B(x, r) =
{z ∈ M | d(z, x) < r} and B[x, r] = {z ∈ M | d(z, x) � r}. For x ∈ M and A ⊂ M ,
A �= ∅, we set d(x, A) = inf{d(x, a) | a ∈ A}. If X, Y are non-empty (closed) bounded
subsets of M we denote by h(X, Y ) the Pompeiu–Hausdorff distance, i.e.

h(X, Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X)
}

.

We denote by B (respectively, U) the unit closed ball centred at 0 contained in a Banach
space E (respectively, R). A closed (respectively, open) segment with endpoints a, b ∈ E,
a �= b, is denoted by [a, b] (respectively, (a, b)) and, if a ∈ R, we set Ja,δ = (a − δ, a + δ),
δ > 0.

For J ⊂ R, we denote by |J | the Lebesgue measure of J and by χJ the characteristic
function of J .

Throughout this paper E is a reflexive and separable real Banach space with norm ‖·‖,
and

B(E) = {X ⊂ E | X is closed convex bounded with intX �= ∅}.

https://doi.org/10.1017/S0013091509001059 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001059


Baire’s category in existence problems 647

B(E) is endowed with the Pompeiu–Hausdorff metric h. If X is a non-empty subset of E

we set ‖X‖ = sup{‖x‖ | x ∈ X}. A map Φ : M → B(E) is said h-lower semicontinuous
(h-l.s.c.) (respectively, h-continuous) at x0 if for every ε > 0 there exists δ > 0 such that
x ∈ B(x0, δ) implies Φ(x0) ⊂ Φ(x) + εB (respectively, h(Φ(x0), Φ(x)) < ε).

For Φ : X → Y and A ⊂ X, by Φ|A we denote the restriction of Φ to A.
Let I = [t0, t1]. A finite family ∆ = {Ai}M

i=1 of intervals Ai ⊂ I given by Ai = [ai−1, ai),
i = 1, . . . , M − 1, AM = [aM−1, aM ], where t0 = a0 < a1 < · · · < aM = t1 is called a
partition of I. If the intervals Ai, i = 1, . . . , M , have equal length λ(∆), this length is
called the step of the partition.

Given a map F : I × E → B(E) and a ∈ E, consider the following non-convex and
convex Cauchy problems:

ẋ(t) ∈ Ax(t) + ∂F (t, x(t)), x(t0) = a, (C∂F )

ẋ(t) ∈ Ax(t) + F (t, x(t)), x(t0) = a. (CF )

We assume the following:

(h1) A is the infinitesimal generator of a C0-semigroup T (t), t � 0, on E;

(h2) F is h-l.s.c. on I × E;

(h3) ‖F (t, x)‖ < r for every (t, x) ∈ I × E, r a positive constant.

As is known [24], there exist constants α � 0 and L � 1 such that

‖T (t)‖ � Leαt, t � 0. (2.1)

A function x : I → E is said to be a mild solution of the Cauchy problem (C∂F )
(respectively, (CF )) if x is continuous and there exists a Bochner integrable function
ux : I → E such that

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)ux(s) ds, t ∈ I,

ux(t) ∈ ∂F (t, x(t)) (respectively, ux(t) ∈ F (t, x(t))), t ∈ I a.e.

Since the function ux associated to x is unique in the L∞(I, E) sense [13], we agree to
say that ux corresponds to x and we call ux the pseudo-derivative of x.

We denote by C(I, E) the Banach space of all continuous functions x : I → E equipped
with the norm of uniform convergence ‖x‖I = max{‖x(t)‖ | t ∈ I}. The meaning of
Lp(I, E), 1 � p � +∞, is the standard one.

We set

M∂F = {x : I → E | x is a mild solution of (C∂F )},

MF = {x : I → E | x is a mild solution of (CF )}.

Under the assumptions (h1)–(h3), F admits locally Lipschitzian selections, and thus
MF is non-empty. This is no longer true, in general, if the assumption that intF (t, x) �= ∅,
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(t, x) ∈ I ×E, is removed. To see this it suffices to take A = 0 and F a continuous single-
valued map as in the Godunov counter-example [15].

In the following, we shall use some auxiliary results, stated as Propositions 2.1–2.3,
whose proofs are included for completeness.

Proposition 2.1. Let F : M → B(E) be h-l.s.c. Then there exists a sequence {Gn} of
h-continuous multifunctions Gn : M → B(E) and a sequence {θn} of continuous functions
θn : M → (0, +∞) such that for each x ∈ M the following properties hold:

(a1) Gn(x) + θn(x)B ⊂ F (x), n ∈ N;

(a2) Gn(x) + θn(x)B ⊂ Gn+1(x), n ∈ N;

(a3) limn→∞ h(Gn(x), F (x)) = 0.

Proof. By virtue of [7, Theorem 3.6], there exists a sequence {Γn} of h-continuous
multifunctions Γn : M → B(E) satisfying, for every x ∈ M , the following properties:

(i) Γn(x) ⊂ F (x), n ∈ N,

(ii) Γn(x) ⊂ Γn+1(x), n ∈ N,

(iii) limn→∞ h(Γn(x), F (x)) = 0.

Let Γ : M → B(E) be an h-continuous map satisfying Γ (x) ⊂ intΓ1(x), x ∈ M [9,
Proposition 3.7], and let f : M → E be a continuous selection of Γ . Clearly, there is a
continuous θ : M → (0,∞) such that

f(x) + θ(x)B ⊂ Γ1(x), x ∈ M.

For n ∈ N define Gn : M → B(E) by

Gn(x) =
(

1 − 1
n + 1

)
Γn(x) +

1
n + 1

f(x), x ∈ M.

We claim that, for each n ∈ N,

Gn(x) +
θ(x)

(n + 1)(n + 2)
B ⊂ Gn+1(x), x ∈ M. (2.2)

In fact, since Γn(x) ⊂ Γn+1(x) and f(x) + θ(x)B ⊂ Γn+1(x), we have

(
1 − 1

n + 1

)
Γn(x) +

f(x)
(n + 1)(n + 2)

+
θ(x)

(n + 1)(n + 2)
B

⊂
(

1 − 1
n + 1

)
Γn+1(x) +

1
(n + 1)(n + 2)

Γn+1(x)

and thus(
1 − 1

n + 1

)
Γn(x) +

f(x)
n + 1

+
θ(x)

(n + 1)(n + 2)
B ⊂

(
1 − 1

n + 2

)
Γn+1(x) +

f(x)
n + 2

.
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Therefore, (2.2) holds and hence (a2) is satisfied with θn(x) = θ(x)/(n + 1)(n + 2).
Furthermore, (a3) is valid since, for each x ∈ M , we have

h(Gn(x), F (x)) �
(

1 − 1
n + 1

)
h(Γn(x), F (x)) +

1
n + 1

h(f(x), F (x)).

As (a1) is obvious, the proof is complete. �

Proposition 2.2. Let F : I → B(E) be h-l.s.c. Then for every ε > 0 there exists a
compact J ⊂ I, with |I \ J | < ε, such that F |J is h-continuous.

Proof. Let {Gn} be as in Proposition 2.1 (with M = I). For each n ∈ N the real-
valued function h(Gn(·), F (·)) is lower semicontinuous on I. In fact, let t0 ∈ I and σ > 0
be arbitrary. Since F is h-l.s.c. and Gn is h-continuous there exists δ > 0 such that
|t − t0| < δ, t ∈ I, implies

F (t0) ⊂ F (t) + σB, h(Gn(t), Gn(t0)) < σ. (2.3)

Moreover, setting ht0 = h(Gn(t0), F (t0)) and ht = h(Gn(t), F (t)), we have

F (t0) ⊂ Gn(t0) + (ht0 + σ)B, F (t) ⊂ Gn(t) + (ht + σ)B. (2.4)

By virtue of (2.3) and (2.4) we obtain

F (t0) ⊂ F (t) + σB ⊂ Gn(t) + (ht + 2σ)B ⊂ Gn(t0) + (ht + 3σ)B.

Since, on the other hand, Gn(t0) ⊂ F (t0), we infer that ht0 � ht + 3σ, and thus
h(Gn(·), F (·)) is lower semicontinuous on I.

By Luzin’s Theorem there exists a compact set J ⊂ I, with |I \ J | < ε, such that for
each n ∈ N the function h(Gn(·), F (·))|J is continuous.

It remains to be shown that F |J is h-continuous. Let t0 ∈ J and σ > 0 be arbitrary. Fix
n̄ ∈ N so that h(Gn̄(t0), F (t0)) < σ. Since Gn̄(·)|J and h(Gn̄(·), F (·))|J are continuous
at t0, there exists δ > 0 such that |t − t0| < δ, t ∈ J , implies

h(Gn̄(t), F (t)) < h(Gn̄(t0), F (t0)) + σ, h(Gn̄(t), Gn̄(t0)) < σ. (2.5)

In view of (2.5), for any t ∈ J , with |t − t0| < δ, we have

h(F (t), F (t0)) � h(F (t), Gn̄(t)) + h(Gn̄(t), Gn̄(t0)) + h(Gn̄(t0), F (t0))

< 2h(Gn̄(t0), F (t0)) + 2σ < 4σ.

Hence F |J is h-continuous. This completes the proof. �

Proposition 2.3. Let F, G ∈ B(E) satisfy G ⊂ intF ⊂ rB, and let ρ > 2r. Then for
each x ∈ F we have the following:

(b1) x ∈ ∂G ⇔ d(x, ∂(G + ρB)) = ρ;

(b2) x ∈ intG ⇔ d(x, ∂(G + ρB)) > ρ;

(b3) x ∈ F \ G ⇔ d(x, ∂(G + ρB)) < ρ.
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Moreover, the function φ : F → [0, +∞) given by φ(x) = d(x, ∂(G + ρB)), x ∈ F , is
concave and continuous.

Proof. Clearly, under our assumptions, we have that G + ρB ∈ B(E).
(b1) Let us prove ⇒. Suppose d(x, ∂(G + ρB)) < ρ. Then the ball x + ρB contains

some point y /∈ G + ρB and thus x + ρB is not contained in G + ρB, which implies that
x /∈ G: a contradiction. Suppose d(x, ∂(G + ρB)) = ρ′ > ρ. As x ∈ F ⊂ G + ρB, we have
x + ρ′B ⊂ G + ρB, which implies that x + (ρ′ − ρ)B ⊂ G: a contradiction. Therefore,
d(x, ∂(G + ρB)) = ρ.

Let us prove ⇐. Suppose x ∈ intG. Then, for some δ > 0, we have x + δB ⊂ G and
thus x + (ρ + δ)B ⊂ G + ρB, which implies d(x, ∂(G + ρB)) � ρ + δ: a contradiction.
Suppose x ∈ F \ G. As x ∈ F ⊂ G + ρB and d(x, ∂(G + ρB)) = ρ, it follows that
x + ρB ⊂ G + ρB, which implies that x ∈ G: a contradiction. Therefore, x ∈ ∂G, and
(b1) holds. Similarly, one can show (b2), (b3). Since F ⊂ G + ρB, we have that

φ(x) = sup{s � 0 | x + sB ⊂ G + ρB},

and thus φ is concave. The continuity is obvious. This completes the proof. �

3. The convex Cauchy problem

In this section we consider the convex Cauchy problem (CF ) and, for this problem, we
construct a suitable space of mild solutions. Its closure, say M, might contain elements
that are not mild solutions of (CF ). Yet it will be proved that most elements of M are
actually solutions of (CF ).

Let A and F : I × E → B(E) satisfy the assumptions (h1)–(h3). By Proposition 2.1
there exist a sequence {Gn} of h-continuous maps Gn : I × E → B(E) and a sequence
{θn} of continuous functions θn : I × E → (0, +∞) such that, for each (t, x) ∈ I × E, the
following properties hold:

(c1) Gn(t, x) + θn(t, x)B ⊂ F (t, x), n ∈ N;

(c2) Gn(t, x) + θn(t, x)B ⊂ Gn+1(t, x), n ∈ N,

(c3) limn→∞ h(Gn(t, x), F (t, x)) = 0.

For n ∈ N, consider the Cauchy problem

ẋ(t) ∈ Ax(t) + Gn(t, x(t)), x(t0) = a. (CGn)

Let x : I → E be a mild solution of (CGn), with pseudo-derivative ux, satisfying the
following two conditions:

(j) (respectively, (j′)) there exists a partition ∆ = {Ai}M
i=1 of I (respectively, partition

∆ = {Ai}M
i=1 of I with step λ(∆)), given by Ai = [ai−1, ai), i = 1, . . . , M − 1, AM =

[aM−1, aM ], where t0 = a0 < a1 < · · · < aM = t1, such that

ux(t) =
M∑
i=1

uiχAi(t), t ∈ I;
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(jj) there exists θ > 0 such that

B(ux(t), θ) ⊂ Gn(t, x(t)), t ∈ I.

Now set

M0
Gn

= {x : I → E | x is a mild solution of (CGn
) satisfying (j), (jj)}

and

M =
∞⋃

n=1

M0
Gn

,

where the closure is in C(I, E). We equip M with the metric of C(I, E), that is, ‖x1 −
x2‖I = maxt∈I ‖x1(t) − x2(t)‖, x1, x2 ∈ M.

Proposition 3.1. For every x ∈ M0
Gn

, n ∈ N, and ε > 0, there exists a y ∈ M0
Gn

,
with pseudo-derivative uy, satisfying (j′) and (jj) and such that ‖y − x‖I < ε.

Proof. Consider an arbitrary x ∈ M0
Gn

, with pseudo-derivative ux and corresponding
partition ∆ = {Ai}M

i=1 as in (j), and let ε > 0. As Gn is h-continuous and ux satisfies (j)
and (jj), then, by taking a partition ∆′ = {Bk}N

k=1 of I with step sufficiently small and
modifying, if necessary, the values of ux only on those intervals Bk ∈ ∆′ that contain a
point ai of the partition ∆, one can easily construct a y ∈ M0

Gn
with pseudo-derivative

uy, so that ‖y − x‖I < ε and, moreover, (j′) and (jj) are satisfied. This completes the
proof. �

Proposition 3.2. Each x ∈ M is given by

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)ux(s) ds, t ∈ I,

where ux, the pseudo-derivative of x, is unique in the L∞(I, E) sense and satisfies
‖ux(t)‖ � r, t ∈ I a.e. (r is the constant in (h3).)

Proof. Let x ∈ M. By definition of M there exists a sequence {xn} of mild solu-
tions xn ∈

⋃∞
n=1 M0

Gn
, with pseudo-derivative uxn

, such that xn → x as n → ∞. Since
‖uxn(t)‖ � r, t ∈ I a.e., the sequence {uxn} is contained in a closed ball of L2(I, E).
As L2(I, E) is reflexive, there exists a subsequence, say {uxn}, which converges weakly
in L2(I, E) (and thus in L1(I, E)) to some ω ∈ L2(I, E). Then, by virtue of Mazur’s
Theorem, one has ‖ω(t)‖ � r, t ∈ I a.e., and, moreover,

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)ω(s) ds, t ∈ I.

From the latter, setting ux = ω, the statement follows, completing the proof. �

It is worth noting that an x ∈ M is in MF if and only if x has pseudo-derivative ux

satisfying ux(t) ∈ F (t, x(t)), t ∈ I a.e., and thus it can happen that the set M \ MF is
non-empty. However, most (in the sense of the Baire’s category) x ∈ M are actually in
MF , as is shown by Theorem 3.6.
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Proposition 3.3. M is a complete metric space.

Proof. Let us prove that M is non-empty, the completeness being obvious. To this
end, it suffices to show that M0

G2
�= ∅. Let g : I×E → E be a locally Lipschitzian selection

of G1 : I × E → B(E). Clearly, for each (t, x) ∈ I × E, we have

g(t, x) + θ1(t, x)B ⊂ G2(t, x),

for G1(t, x) + θ1(t, x)B ⊂ G2(t, x). Since g is locally Lipschitzian and bounded, the
Cauchy problem

ẋ(t) = Ax(t) + g(t, x(t)), x(t0) = a,

has a mild solution x : I → E given by

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)g(s, x(s)) ds, t ∈ I.

Moreover, for some 0 < θ < mint∈I θ1(t, x(t)), we have

g(t, x(t)) + 2θB ⊂ G2(t, x(t)), t ∈ I.

Since g and G2 are continuous on the graph of x, a compact set, by Lebesgue’s covering
lemma there exists a δ > 0 such that t ∈ I and ‖z − x(t)‖ < δ imply

g(t, z) + θB ⊂ G2(t, z), (3.1)

‖g(t, z) − g(t, x(t))‖ < 1
4θ. (3.2)

Using the notation in (j), let ∆ = {Ai}M
i=1 be a partition of I with step λ(∆), and set

ω(t) =
M∑
i=1

uiχAi(t), where ui = g(ai−1, x(ai−1)), t ∈ I,

z(t) = T (t − t0)a +
∫ t

t0

T (t − s)ω(s) ds, t ∈ I.

Now fix the step λ(∆) small enough to have

‖ω(t) − g(t, x(t))‖ < 1
4θ, t ∈ I, (3.3)

‖z(t) − x(t)‖ < δ, t ∈ I. (3.4)

From (3.1) and (3.2), by virtue of (3.4), it follows that

g(t, z(t)) + θB ⊂ G2(t, z(t)), t ∈ I, (3.5)

‖g(t, z(t)) − g(t, x(t))‖ < 1
4θ, t ∈ I. (3.6)

Moreover, (3.3) and (3.6) imply ω(t) ∈ g(t, z(t)) + 1
2θB and hence, by (3.5),

ω(t) + 1
2θB ⊂ G2(t, z(t)), t ∈ I.

Therefore, z is a mild solution of (CG2), with pseudo-derivative uz = ω, satisfying (j)
and (jj), and so z ∈ M0

G2
. This completes the proof. �
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By hypothesis, the Banach space E is reflexive and separable, and hence its dual E
∗ is

also reflexive and separable. Consequently, L2(I, E∗) is separable, and thus it contains a
sequence {fk}∞

k=1 that is dense in L2(I, E∗). Denote by ‖ · ‖2 the norm of L2(I, E∗), and
by 〈· , ·〉 the pairing between E and E

∗.
For k ∈ N and α > 0 set

Mk
α =

{
x ∈ M

∣∣∣∣ d

( ∫
I

〈fk(t), ux(t)〉 dt,

∫
I

〈fk(t), F (t, x(t))〉 dt

)
< α

}
,

where ux corresponds to x according to Proposition 3.2, and∫
I

〈fk(t), F (t, x(t))〉 dt =
{ ∫

I

〈fk(t), y(t)〉 dt

∣∣∣∣ y(t) ∈ F (t, x(t)) a.e., y measurable
}

.

Lemma 3.4. Mk
α is dense in M.

Proof. Let z ∈ M and ε > 0 be arbitrary. Take x ∈ M0
Gn

, for some n ∈ N so that
‖x − z‖I < ε, and let ux correspond. Since ux(t) ∈ Gn(t, x(t)) ⊂ F (t, x(t)), we have

d

( ∫
I

〈fk(t), ux(t)〉 dt,

∫
I

〈fk(t), F (t, x(t))〉 dt

)
= 0.

Hence x ∈ Mk
α, completing the proof. �

Lemma 3.5. Mk
α is open in M.

Proof. Let {xn} ⊂ M \ Mk
α be a sequence converging to an x ∈ M and let {uxn

} ⊂
L2(I, E) correspond, according to Proposition 3.2. Since {uxn} is uniformly bounded and
L2(I, E) is reflexive, passing to a subsequence (without changing notation), we have that
uxn

→ ux weakly in L2(I, E).
Let ε > 0 be arbitrary. Fix σ so that

0 < σ <
ε

1 + 2(r +
√

|I|)‖fk‖2
, (3.7)

where |I| = t2 − t1 and r is the constant in assumption (h3).
We claim that there exists n0 ∈ N such that n > n0 implies∫

I

〈fk(t), F (t, x(t))〉 dt ⊂
∫

I

〈fk(t), F (t, xn(t))〉 dt + εU. (3.8)

Indeed, by virtue of Proposition 2.2, there exists a compact J ⊂ I, with |I \ J | < σ2,
such that F (· , x(·))|J is h-continuous. Let τ ∈ J be arbitrary. Since F (· , x(·))|J is h-
continuous at τ and F is h-l.s.c. at (τ, x(τ)), there exist δτ > 0 and nτ ∈ N such that
t ∈ Jτ,δτ ∩ J and n > nτ imply

h(F (t, x(t)), F (τ, x(τ))) < σ, F (τ, x(τ)) ⊂ F (t, xn(t)) + σB,

and hence
F (t, x(t)) ⊂ F (t, xn(t)) + 2σB. (3.9)
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Now {Jτ,δτ
}τ∈J is an open covering of J , and thus it admits a finite subcovering, say

{Jτi,δτi
}N

i=1. Setting n0 = max{nτ1 , . . . , nτN
} it follows that (3.9) holds for any n > n0

and all t ∈ J . Thus, for every n > n0 we have∫
J

〈fk(t), F (t, x(t))〉 dt ⊂
∫

J

〈fk(t), F (t, xn(t))〉 dt + 2σ
√

|I|‖fk‖2U. (3.10)

On the other hand, in view of assumption (h3), as |I \ J | < σ2, one can easily show that∫
I

〈fk(t), F (t, x(t))〉 dt ⊂
∫

J

〈fk(t), F (t, x(t))〉 dt + σr‖fk‖2U (3.11)

and ∫
J

〈fk(t), F (t, xn(t))〉 dt ⊂
∫

I

〈fk(t), F (t, xn(t))〉 dt + σr‖fk‖2U, n ∈ N. (3.12)

From (3.11), by virtue of (3.10) and (3.12), for every n > n0 we have∫
I

〈fk(t), F (t, x(t))〉 dt ⊂
∫

I

〈fk(t), F (t, xn(t))〉 dt + 2σ(r +
√

|I|)‖fk‖2U,

which yields (3.8), as σ satisfies (3.7).
We are now ready to finish the proof of the lemma. Indeed, as uxn

→ ux weakly in
L2(I, E), there exists n1 > n0 such that n > n1 implies∣∣∣∣

∫
I

〈fk(t), uxn
(t)〉 dt −

∫
I

〈fk(t), ux(t)〉 dt

∣∣∣∣ < ε. (3.13)

For a fixed n > n1, by virtue of (3.13) and (3.8) we have

d

( ∫
I

〈fk(t), ux(t)〉 dt,

∫
I

〈fk(t), F (t, x(t))〉 dt

)

� d

( ∫
I

〈fk(t), uxn(t)〉 dt,

∫
I

〈fk(t), F (t, x(t))〉 dt

)
− ε

� d

( ∫
I

〈fk(t), uxn(t)〉 dt,

∫
I

〈fk(t), F (t, xn(t))〉 dt + εU

)
− ε

� d

( ∫
I

〈fk(t), uxn(t)〉 dt,

∫
I

〈fk(t), F (t, xn(t))〉 dt

)
− ε − ε

� α − 2ε,

since xn ∈ M \ Mk
α. As ε > 0 is arbitrary, it follows that x ∈ M \ Mk

α. This completes
the proof. �

In a complete metric space, the complement of any set of Baire first category is called
a residual set.

Theorem 3.6. The set M̃ = M ∩ MF is residual in M.
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Proof. By virtue of Lemmas 3.4 and 3.5, the set

M∗ =
∞⋂

k=1

∞⋂
h=1

Mk
αh

, αh = 1/h

is residual in M, which is a complete metric space by Proposition 3.3. Therefore, to prove
the theorem it suffices to show that

M∗ ⊂ MF , (3.14)

since in this case we have M∗ ⊂ M̃ ⊂ M, which implies that M̃ is residual in M.
Suppose, on the contrary, that (3.14) does not hold, and take an x ∈ M∗ such that
x /∈ MF . Clearly, x ∈ M \ MF and thus its pseudo-derivative ux, which exists by
Proposition 3.2, satisfies

ux(t) /∈ F (t, x(t)), t ∈ J0,

for some measurable set J0 ⊂ I, with |J0| > 0. By virtue of Luzin’s Theorem and Propo-
sition 2.2, there exists a compact J ⊂ J0, with |J | > 0, such that ux|J and F (· , x(·))|J
are continuous. Let τ ∈ J be a point of density of J . By the Hahn–Banach Theorem
there exists an x∗ ∈ E

∗ separating ux(τ) and F (τ, x(τ)), i.e.

〈x∗, ux(τ)〉 � c + ε, 〈x∗, F (τ, x(τ))〉 � c − ε,

for some constants c and ε, ε > 0. Hence, for every t ∈ Jτ,δ ∩ J with δ > 0 sufficiently
small, we have

〈x∗, ux(t)〉 � c + 1
2ε, 〈x∗, F (t, x(t))〉 � c − 1

2ε. (3.15)

Let f ∈ L2(I, E∗) be given by

f(t) =

{
x∗, t ∈ Jτ,δ ∩ J,

0, t ∈ I \ (Jτ,δ ∩ J).

By virtue of (3.15), which is valid for t ∈ Jτ,δ ∩ J , a set of strictly positive measure, we
have

d

( ∫
I

〈f(t), ux(t)〉 dt,

∫
I

〈f(t), F (t, x(t))〉 dt

)
= λ > 0

and hence

d

( ∫
I

〈fk(t), ux(t)〉 dt,

∫
I

〈fk(t), F (t, x(t))〉 dt

)
> 1

2λ, (3.16)

for some fk sufficiently close to f in the L2(I, E∗) norm. In view of (3.16) it follows that
x /∈ Mk

αh
, if αh < 1

2λ, and hence x /∈ M∗: a contradiction. Consequently, (3.14) is valid.
This completes the proof. �
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In the following example we present an h-l.s.c. differential inclusion of the form

ẋ(t) ∈ F (x(t)), x(0) = 0, (P)

whose solution set MF has the property that M̄F \ MF is dense in M̄F (closure in the
metric of uniform convergence).

Example 3.7. Consider the Cauchy problem (P), where F : R → B(R) is given by

F (x) =

{
[0, 1], x �= 0,

[ 12 , 1], x = 0,

and denote by MF the space of all solutions of (P) defined on [0, 1].
The set MF is not closed, since, for each n ∈ N, xn(t) = t/n is in MF , while its

limit x0(t) ≡ 0 is in M̄F \ MF . Actually, M̄F \ MF is dense in M̄F . To see this, let
y0 ∈ M̄F and 0 < ε < 1

2 be arbitrary. Take y ∈ MF so that ‖y − y0‖I < ε. Clearly, y is
non-decreasing on [0, 1] and satisfies 0 � y(t) � t, t ∈ [0, 1], since 0 � ẏ(t) � 1, t ∈ [0, 1]
a.e. If y(τ) = 0 for some 0 < τ � 1, then y(t) = 0 for all t ∈ [0, τ ], which implies that
0 ∈ F (0): a contradiction. Hence 0 < y(t) � 1 for each t ∈ (0, 1]. Now define x : [0, 1] → R

by

x(t) =

{
0, t ∈ [0, ε],

y(t − ε), t ∈ (ε, 1],

and observe that x /∈ MF and ‖x − y‖I � ε. Moreover, x ∈ M̄F . To see this, consider a
strictly decreasing sequence {tn} ⊂ (ε, 2ε] converging to ε and define zn : [0, 1] → R by

zn(t) =

⎧⎪⎨
⎪⎩

x(tn)
tn

t, t ∈ [0, tn],

x(t), t ∈ (tn, 1].

Clearly, x ∈ M̄F for zn ∈ MF and {zn} converges to x. Hence x ∈ M̄F \ MF . Since, in
addition, ‖x − y0‖I � ‖x − y‖I + ‖y − y0‖I < 2ε, it follows that M̄F \ MF is dense in
M̄F .

4. The non-convex Cauchy problem

In this section, we use the results of § 3 to establish the existence of mild solutions to the
following non-convex Cauchy problem

ẋ(t) ∈ Ax(t) + ∂F (t, x(t)), x(t0) = a. (C∂F )

Let A and F : I × E → B(E) satisfy the assumptions (h1)–(h3). Using the notation of
§ 3, let {Gn} be a sequence of h-continuous maps Gn : I × E → B(E) and let {θn} be a
sequence of continuous functions θn : I × E → (0,∞) satisfying, for each (t, x) ∈ I × E,
the properties (c1)–(c3).
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Fix ρ > 2r, where r is the constant in (h3). Since Gn(t, x) ⊂ F (t, x) ⊂ rB we have

F (t, x) ⊂ Gn(t, x) + ρB for every (t, x) ∈ I × E, n ∈ N.

Observe that the set

M̃ = M ∩ MF , where M =
∞⋃

n=1

M0
Gn

,

is residual in M, by Theorem 3.6.
For n ∈ N, set

Mn =
{

x ∈ M̃
∣∣∣∣ 1

|I|

∫
I

d(ux(t), ∂(Gn(t, x(t)) + ρB)) dt < ρ

}
.

Lemma 4.1. Mn is open in M̃.

Proof. It is sufficient to show that if {xk} ⊂ M̃ \ Mn is a sequence which converges
uniformly to x ∈ M̃, then x ∈ M̃ \ Mn. Consider the sequence {uxk

}, where uxk

corresponds to xk. Clearly, ‖uxk
(t)‖ � r, t ∈ I a.e., and thus {uxk

} is contained in
a closed ball of L2(I, E). As L2(I, E) is reflexive there exists a subsequence, say {uxk

},
which converges weakly in L2(I, E) (and so in L1(I, E)) to some ω ∈ L2(I, E). By Mazur’s
Theorem, there exists a sequence of convex combinations

{ nk+1−1∑
i=nk

λk
i uxi

}
, (4.1)

where n1 < n2 < · · · , λk
i � 0,

∑nk+1−1
i=nk

λk
i = 1, which converges to ω in L1(I, E). For

each i ∈ N we have

xi(t) = T (t − t0)a +
∫ t

t0

T (t − s)uxi(s) ds, t ∈ I,

and hence
nk+1−1∑

i=nk

λk
i xi(t) = T (t − t0)a +

∫ t

t0

T (t − s)
( nk+1−1∑

i=nk

λk
i uxi

(s)
)

ds, t ∈ I,

from which, letting k → ∞, it follows that

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)ω(s) ds, t ∈ I. (4.2)

On the other hand, since x ∈ M̃ ⊂ MF , we have

x(t) = T (t − t0)a +
∫ t

t0

T (t − s)ux(s) ds, t ∈ I,

which combined with (4.2) implies that ω = ux.
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In order to prove that x ∈ M̃ \ Mn it remains to show that

1
|I|

∫
I

d(ω(t), ∂(Gn(t, x(t)) + ρB)) dt � ρ.

Since the multifunction (t, z) → ∂(Gn(t, z) + ρB) is h-continuous on I × E and the set
Γ = {(t, x(t)) | t ∈ I} ⊂ I × E is compact, there exists a δ > 0 such that

h(∂(Gn(t, z) + ρB), ∂(Gn(t, x(t)) + ρB)) < ε/|I|

for every t ∈ I and ‖z − x(t)‖ < δ. As xk → x uniformly on I, it follows that for i large
enough, say i � ν, and t ∈ I we have

h(∂(Gn(t, xi(t)) + ρB), ∂(Gn(t, x(t)) + ρB)) < ε/|I|. (4.3)

On the other hand, the sequence of functions (4.1) converges to ω in L1(I, E), and thus,
passing to a subsequence, without change of notation, we can assume that it converges
to ω a.e. in I. Fix k0 > ν so that k � k0 implies

∫
I

∥∥∥∥
nk+1−1∑

i=nk

λk
i uxi

(t) − ω(t)
∥∥∥∥dt < ε|I|. (4.4)

In view of (4.4), taking into account the fact that, by Proposition 2.3, the function
u → d(u, ∂(Gn(t, x(t)) + ρB)) is concave on F (t, x(t)), for each k � k0 we have∫

I

d(ω(t), ∂(Gn(t, x(t)) + ρB)) dt

�
∫

I

d

( nk+1−1∑
i=nk

λk
i uxi(t), ∂(Gn(t, x(t)) + ρB)

)
dt −

∫
I

∥∥∥∥
nk+1−1∑

i=nk

λk
i uxi(t) − ω(t)

∥∥∥∥dt

�
∥∥∥∥

nk+1−1∑
i=nk

λk
i

∫
I

d(uxi(t), ∂(Gn(t, x(t)) + ρB)) dt

∥∥∥∥ − ε|I|

�
∥∥∥∥

nk+1−1∑
i=nk

λk
i

∫
I

d(uxi(t), ∂(Gn(t, xi(t)) + ρB)) dt

∥∥∥∥ − ε|I|

−
∥∥∥∥

nk+1−1∑
i=nk

λk
i

∫
I

h(∂(Gn(t, xi(t)) + ρB), ∂(Gn(t, x(t)) + ρB)) dt

∥∥∥∥
� (ρ − 2ε)|I|, (4.5)

where the last inequality holds because the functions xi are in M̃\Mn and satisfy (4.3),
as i � nk � k0 > ν. From (4.5), since ε > 0 is arbitrary, it follows that x ∈ M̃ \ Mn.
This completes the proof. �

Lemma 4.2. Mn is dense in M̃.
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Proof. Let x ∈ M̃ and ε > 0 be arbitrary. Take x̃ ∈ M0
Gm

, for some m > n, so that
‖x̃ − x‖I < 1

4ε. This is certainly possible since

M̃ ⊂ M =
∞⋃

k=1

M0
Gk

and M0
Gk

⊂ M0
Gk+1

for every k ∈ N. Now x̃ ∈ M0
Gm

, and hence by Proposition 3.1
there exists a y ∈ M0

Gm
with pseudo-derivative uy, so that (j′) and (jj) are satisfied and

‖x̃ − y‖I < 1
4ε. Consequently,

‖y − x‖I < 1
2ε. (4.6)

Furthermore, we have

y(t) = T (t − t0)a +
∫ t

t0

T (t − s)uy(s) ds, t ∈ I, (4.7)

uy(t) =
M∑
i=1

uiχAi(t), t ∈ I, (4.8)

where ∆ = {Ai}M
i=1 is a partition of I, with step λ(∆) = |I|/M , given by

Ai = [ai−1, ai), i = 1, . . . , M − 1, AM = [aM−1, aM ]

and
ai = t0 +

i

M
(t1 − t0), i = 0, . . . , M.

Moreover, for some θ0 > 0, we have

ui + 2θ0B ⊂ Gm(t, y(t)), t ∈ Āi, i = 1, . . . , M.

Our aim is to find a z ∈ Mn such that ‖z − y‖I < 1
2ε. To this end we first construct a

suitable function ω : I → E satisfying ω(t) ∈ intGm+1(t, y(t)) \ Gm(t, y(t)), t ∈ I. Then,
setting

z(t) = T (t − t0)a +
∫ t

t0

T (t − s)ω(s) ds, t ∈ I,

we show that z ∈ Mn and ‖z − y‖I < 1
2ε, and thus ‖z − x‖I < ε by (4.6).

Step 1. Construction of ω and z.
Consider an arbitrary interval Ai ∈ ∆ and let Āi = [ai−1, ai]. For e ∈ E \ {0},

set r(λ) = ui + λe, λ ∈ R. For t ∈ Āi denote by e1
m(t), e1

m+1(t) (respectively,
e2
m(t), e2

m+1(t)) the points at which r(λ), with λ > 0 (respectively, λ < 0), meets
∂Gm(t, y(t)), ∂Gm+1(t, y(t)). Each of the functions eh

m(·), eh
m+1(·), h = 1, 2, is continuous,

for ∂Gm(· , y(·)) and ∂Gm+1(· , y(·)) are continuous [9]. For h = 1, 2 set

fh
m+1(t) = 1

2 (eh
m(t) + eh

m+1(t)), t ∈ Āi.

Evidently,
fh

m+1(t) ∈ intGm+1(t, y(t)), t ∈ Āi, h = 1, 2,
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and thus, in view of the continuity of the maps involved, for some 0 < θ1 < θ0, we have

B[fh
m+1(t), 3θ1] ⊂ Gm+1(t, y(t)) \ Gm(t, y(t)), t ∈ Āi, h = 1, 2. (4.9)

There exists a δi > 0 such that t ∈ Āi and z ∈ B(y(t), δi) imply

B[fh
m+1(t), 2θ1] ⊂ Gm+1(t, z) \ Gm(t, z), h = 1, 2. (4.10)

Indeed, let τ ∈ Āi be arbitrary. In view of (4.9), taking into account the h-continuity
of Gm and Gm+1 at (τ, y(τ)) and the continuity of f1

m+1 and f2
m+1 at τ , it follows

that there is a δτ such that (4.10) holds for every (t, z) ∈ (Jτ,δτ
∩ Āi) × B(y(τ), δτ ).

Now {(Jτ,δτ ∩ Āi) × B(y(τ), δτ )}τ∈Āi
is an open covering of Γ = {(t, y(t)) | t ∈ Āi}, a

compact set, and thus it contains a finite subcovering, say

{(Jτk,δτk
∩ Āi) × B(y(τk), δτk

)}m
k=1.

Let δi be a Lebesgue number of this subcovering. Then (4.10) is satisfied, if t ∈ Āi and
z ∈ B(y(t), δi), since for some 1 � k � m we have

(t, z) ∈ (Jt,δi ∩ Āi) × B(y(t), δi) ⊂ (Jτk,δτk
∩ Āi) × B(y(τk), δτk

).

Now denote by ∆i = {Bi,j}Ni
j=1 a partition of Ai, with step λ(Ai) = |Ai|/Ni, given by

Bi,j = [bi,j−1, bi,j), j = 1, . . . , Ni − 1, Bi,Ni = [bi,Ni−1, bi,Ni
),

where
bi,j = ai−1 +

j

Ni
(ai − ai−1), j = 0, 1, . . . , Ni.

In view of (4.9) and the uniform continuity of f1
m+1 and f2

m+1 on Āi, there exists a
partition of Ai, say ∆i = {Bi,j}Ni

j=1, such that, setting

φh
m+1(t) =

Ni∑
j=1

vh
i,jχBi,j

(t), h = 1, 2, (4.11)

where vh
i,j = fh

m+1(bi,j−1), j = 1, . . . , Ni, h = 1, 2, we have

B[φh
m+1(t), θ1] ⊂ Gm+1(t, z) \ Gm(t, z), t ∈ Āi, z ∈ B(y(t), δi), h = 1, 2. (4.12)

Fix σ as follows

0 < σ <
δ

2Leα|I|(r + |I|) , where δ = min{ 1
2ε, δ1, . . . , δM}, (4.13)

and α, L are the constants in (2.1).
For each Bi,j ∈ ∆i denote by ∆i,j = {Ci,j,k}Pi,j

k=1 a partition of Bi,j , with step λ(∆i,j) =
|Bi,j |/Pi,j , given by

Ci,j,k = [ci,j,k−1, ci,j,k), k = 1, . . . , Pi,j − 1, Ci,j,Pi,j = [ci,j,Pi,j−1, ci,j,Pi,j ],
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where
ci,j,k = bi,j−1 +

k

Pi,j
(bi,j − bi,j−1), k = 0, 1, . . . , Pi,j .

Now fix ∆i,j with step
λ(∆i,j) < σ (4.14)

small enough so that, for any k = 1, . . . , Pi,j , t ∈ Ci,j,k and ci,j,k−1 � s � t, we have

‖T (t − s)vh
i,j − vh

i,j‖ < σ, h = 1, 2, (4.15)

and

‖T (t − s)ui − ui‖ < σ. (4.16)

Observe that the family F of all intervals Ci,j,k, i.e.

F = {Ci,j,k | 1 � i � M, 1 � j � Ni, 1 � k � Pi,j},

is a partition of I, since ∆ = {Ai}M
i=1, ∆i = {Bi,j}Ni

j=1 and ∆i,j = {Ci,j,k}Pi,j

k=1 are parti-
tions of I, Ai and Bi,j , respectively. In view of (4.12) and the definition of φ1

m+1 and
φ2

m+1, for each t ∈ Ci,j,k we have

ui ∈ (φ1
m+1(t), φ

2
m+1(t)) = (v1

i,j , v
2
i,j),

and hence there exist λ1
i,j , λ

2
i,j ∈ (0, 1) with λ1

i,j + λ2
i,j = 1 such that

ui = λ1
i,jv

1
i,j + λ2

i,jv
2
i,j . (4.17)

Divide accordingly each interval Ci,j,k into two intervals C1
i,j,k = [ci,j,k−1, γ) and C2

i,j,k =
[γ, ci,j,k) (or C2

i,j,k = [γ, ci,j,k] if Ci,j,k is closed) so that

|Ch
i,j,k| = λh

i,j |Ci,j,k|, h = 1, 2. (4.18)

Now define ω : I → E and z : I → E as follows:

ω(t) =
M∑
i=1

Ni∑
j=1

Pi,j∑
k=1

(v1
i,j χ

C1
i,j,k

(t) + v2
i,j χ

C2
i,j,k

(t)), t ∈ I, (4.19)

z(t) = T (t − t0)a +
∫ t

t0

T (t − s)ω(s) ds, t ∈ I. (4.20)

Step 2. We have that z is a mild solution of (CGm+1), with pseudo-derivative uz = ω,
so that z ∈ M0

Gm+1
; moreover, z ∈ M̃.

We first show that
‖z(t) − y(t)‖ < δ for every t ∈ I. (4.21)

Let t ∈ (t0, t1] be arbitrary ((4.21) trivially holds for t = t0). Take t ∈ Cp,q,r for some
1 � p � M , 1 � q � Np, 1 � r � Pp,q. To fix the ideas we suppose that

t ∈ Cp,q,r = [cp,q,r−1, cp,q,r) and t0 < cp,q,r−1
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(in the other cases the argument is similar). From (4.7) and (4.20) it follows that

z(t) − y(t) =
∫ t

t0

T (t − s)(ω(s) − uy(s)) ds = J1 + J2, (4.22)

where

J1 =
∫ cp,q,r−1

t0

T (t − s)(ω(s) − uy(s)) ds,

J2 =
∫ t

cp,q,r−1

T (t − s)(ω(s) − uy(s)) ds.

Let G be the set of all intervals Ci,j,k ∈ F whose union is equal to [t0, cp,q,r−1).
Let us evaluate J1. Clearly,

J1 =
∑

Ci,j,k∈G

∫
Ci,j,k

T (t − s)(ω(s) − uy(s)) ds

=
∑

Ci,j,k∈G
T (t − ci,j,k)

∫
Ci,j,k

T (ci,j,k − s)(ω(s) − uy(s)) ds,

since ci,j,k � t for each Ci,j,k ∈ G, and thus, by (2.1),

‖J1‖ �
∑

Ci,j,k∈G
Leα|I|

∥∥∥∥
∫

Ci,j,k

T (ci,j,k − s)(ω(s) − uy(s)) ds

∥∥∥∥. (4.23)

Denote by Λ the integral on the right-hand side of (4.23). In view of (4.19) and (4.8),
ω(s) = v1

i,jχC1
i,j,k

(s) + v2
i,jχC2

i,j,k
(s) and uy(s) = ui, s ∈ Ci,j,k. Thus, we have

Λ =
∫

C1
i,j,k

T (ci,j,k − s)v1
i,j ds +

∫
C2

i,j,k

T (ci,j,k − s)v2
i,j ds −

∫
Ci,j,k

T (ci,j,k − s)uy(s) ds

=
∫

C1
i,j,k

(T (ci,j,k − s)v1
i,j − v1

i,j) ds +
∫

C2
i,j,k

(T (ci,j,k − s)v2
i,j − v2

i,j) ds

−
∫

Ci,j,k

(T (ci,j,k − s)ui − ui) ds +
∫

Ci,j,k

(v1
i,jχC1

i,j,k
(s) + v2

i,jχC2
i,j,k

(s) − ui) ds.

Denote by Λ1, Λ2, Λ3, Λ4 the first, second, third and fourth integrals above, respectively.
By virtue of (4.15) and (4.16) we have

‖Λ1‖ < σ|C1
i,j,k|, ‖Λ2‖ < σ|C2

i,j,k|, ‖Λ3‖ < σ|Ci,j,k|.

Moreover, Λ4 = 0 because, in view of (4.17) and (4.18),

Λ4 = v1
i,j |C1

i,j,k| + v2
i,j |C2

i,j,k| − ui|Ci,j,k| = (λ1
i,jv

1
i,j + λ2

i,jv
2
i,j − ui)|Ci,j,k| = 0.

Therefore, ‖Λ‖ < 2σ|Ci,j,k|. From this and (4.23) it follows that

‖J1‖ < 2σLeα|I|
∑

Ci,j,k∈G
|Ci,j,k| = 2σLeα|I|(cp,q,r−1 − t0) < 2σLeα|I||I|. (4.24)
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Let us evaluate J2. We have

‖J2‖ �
∫ t

cp,q,r−1

‖T (t − s)‖ ‖ω(s) − uy(s)‖ ds � Leα|I|2r|Cp,q,r| < 2σrLeα|I|, (4.25)

since |Cp,q,r| < σ, by (4.14).
From (4.22), (4.24) and (4.25), since t ∈ I is arbitrary, it follows that

‖z(t) − y(t)‖ < 2σLeα|I|(r + |I|), t ∈ I,

and thus (4.21) is valid, as σ satisfies (4.13).
We are now ready to prove that z ∈ M0

Gm+1
. It suffices to show that ω satisfies the

conditions (j) and (jj) stated in § 3. By virtue of (4.19), ω verifies (j). Furthermore, (jj)
holds if we show that

B(ω(t), θ1) ⊂ Gm+1(t, z(t)), t ∈ I. (4.26)

Let t ∈ I be arbitrary. Then t ∈ Ci,j,k, for some 1 � i � M , 1 � j � Ni, 1 � k � Pi,j

and thus, by (4.19),
ω(t) = v1

i,jχC1
i,j,k

(t) + v2
i,jχC2

i,j,k
(t).

As C1
i,j,k and C2

i,j,k are contained in Bi,j , in view of (4.19) we have

ω(t) = vh
i,j = φh

m+1(t) for t ∈ Ch
i,j,k, h = 1, 2.

Moreover, ‖z(t) − y(t)‖ < δ by (4.21). Therefore, (4.12) implies

B(ω(t), θ1) ⊂ Gm+1(t, z(t)) \ Gm(t, z(t)), (4.27)

and hence (4.26) holds as t ∈ I is arbitrary. Thus, z is a solution of (CGm+1), with
pseudo-derivative uz = ω, satisfying (j) and (jj), and hence z ∈ M0

Gm+1
. Furthermore,

as M0
Gm+1

⊂ MF , we have that

z ∈
( ∞⋃

n=1

M0
Gn

)
∩ MF = M̃,

and Step 2 is proved.

Step 3. We have z ∈ Mn and ‖z − x‖I < ε.
As z ∈ M̃ and uz = ω, to prove that z ∈ Mn it suffices to show that

1
|I|

∫
I

d(ω(t), ∂(Gn(t, z(t)) + ρB)) dt < ρ. (4.28)

Indeed, since m > n we have Gn(t, x) ⊂ Gm(t, x) ⊂ Gm+1(t, x) ⊂ F (t, x), for all (t, x) ∈
I × E and thus, by (4.27),

B(ω(t), θ1) ⊂ F (t, z(t)) \ Gn(t, z(t)), t ∈ I.
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Hence, by Proposition 2.3, we have

d(ω(t), ∂(Gn(t, z(t)) + ρB)) < ρ, t ∈ I,

and thus (4.28) holds. Therefore, z ∈ Mn. On the other hand, by virtue of (4.6) and
(4.21), we have

‖z − x‖I � ‖z − y‖I + ‖y − x‖I < δ + 1
2ε < ε,

as δ < 1
2ε by (4.13), and Step 3 is proved.

Since x ∈ M̃ and ε > 0 are arbitrary and z ∈ Mn, it follows that the set Mn is dense
in M̃. This completes the proof. �

We are now in a position to prove our main result concerning the existence of mild
solutions to the following non-convex Cauchy problem:

ẋ(t) ∈ Ax(t) + ∂F (t, x(t)), x(t0) = a. (C∂F )

Theorem 4.3. Let A and F : I × E → B(E) satisfy the assumptions (h1)–(h3). Then
the Cauchy problem (C∂F ) has a mild solution x : I → E.

Proof. Set

M∗ =
∞⋂

n=1

Mn

and observe that
M∗ ⊂ M̃ ⊂ M,

where M is a non-empty complete metric space, by Proposition 3.3.
We first prove that M∗ is dense in M. Since

M = M∗ ∪ (M \ M∗),

it suffices to show that M \ M∗ is of the Baire first category in M. It is evident that

M \ M∗ = (M \ M̃) ∪
∞⋃

n=1

(M̃ \ Mn).

Now M \ M̃ is of the Baire first category in M, by Theorem 3.6. Furthermore, in view
of Lemmas 4.1 and 4.2, each set M̃ \ Mn is nowhere dense in M̃ and thus also in
M [27, p. 129]. Consequently, M\M∗ is of the Baire first category in M and hence, by
the Baire Category Theorem, the set M∗ is dense in M and, in particular, M∗ �= ∅.

We now prove that M∗ ⊂ M∂F . Let x ∈ M∗. Clearly, x ∈ MF , for M∗ ⊂ M̃ ⊂ MF .
Suppose, on the contrary, that x /∈ M∂F . This implies that the set

J0 = {t ∈ I | d(ux(t), ∂F (t, x(t))) > 0}

has measure |J0| > 0 and hence, for some η > 0, also the set

J = {t ∈ I | d(ux(t), ∂F (t, x(t))) > η}
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has measure |J | > 0. It is evident that d(ux(t), ∂(F (t, x(t)) + ρB)) � ρ, for t ∈ I a.e.
Furthermore, for t ∈ J a.e. we have ux(t)+ηB ⊂ F (t, x(t)) and hence ux(t)+(η+ρ)B ⊂
F (t, x(t)) + ρB, which implies that

d(ux(t), ∂(F (t, x(t)) + ρB)) � ρ + η, t ∈ J a.e.

Now, we have∫
I

d(ux(t), ∂(F (t, x(t)) + ρB)) dt =
∫

I\J

d(ux(t), ∂(F (t, x(t)) + ρB)) dt

+
∫

J

d(ux(t), ∂(F (t, x(t)) + ρB)) dt

� ρ|I \ J | + (ρ + η)|J |
= ρ|I| + η|J |. (4.29)

On the other hand, for any t ∈ I, as n → ∞ we have h(Gn(t, x(t))+ρB, F (t, x(t))+ρB) →
0 and thus, by [9], h(∂(Gn(t, x(t)) + ρB), ∂(F (t, x(t)) + ρB)) → 0. Consequently,

lim
n→∞

∫
I

d(ux(t), ∂(Gn(t, x(t)) + ρB)) dt =
∫

I

d(ux(t), ∂(F (t, x(t)) + ρB)) dt.

Hence, for n large enough, say n � n0, we have∫
I

d(ux(t), ∂(Gn(t, x(t)) + ρB)) dt >

∫
I

d(ux(t), ∂(F (t, x(t)) + ρB)) dt − 1
2η|J |. (4.30)

By combining (4.30) with (4.29) we obtain

1
|I|

∫
I

d(ux(t), ∂(Gn(t, x(t)) + ρB)) dt > ρ +
η|J |
2|I| , n � n0.

This implies that x /∈ Mn: a contradiction, since x ∈ M∗. Therefore, x ∈ M∂F , i.e. x

is a mild solution of (C∂F ). This completes the proof. �

The following example shows that an h-l.s.c. multifunction can be discontinuous on a
dense set of points.

Example 4.4. Let X = {xn}∞
n=1 be a set dense in E. Let φ : E → B(E) be given by

φ(x) =

{
{0} if x = 0,

B if x ∈ E \ {0}.

Now define F : E → B(E) by

F (x) =
∞∑

n=1

φ(x − xn)
2n

, x ∈ E.
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Let us show that F is h-l.s.c. We have F (x) = B if x ∈ E\X, and F (xk) = (1−2−k)B
if xk ∈ X. Let x̄ ∈ E and ε > 0 be arbitrary.

If x̄ ∈ X, say x̄ = xk, then F (x̄) ⊂ F (x) for each x ∈ E \ X and F (x̄) ⊂ F (xn) for all
n � k. Hence, setting δ = min1�n�k{‖xn − x̄‖}, we have

F (x̄) ⊂ F (x), for every x ∈ B(x̄, δ). (4.31)

Let x̄ ∈ E \ X, and fix k0 so that 2−k0 < ε. Then for every n � k0 we have F (xn) =
(1− 2−n)B ⊃ (1− ε)B, which implies F (xn)+ εB ⊃ B, i.e. F (xn)+ εB ⊃ F (x̄). Clearly,
F (x̄) = F (x) for each x ∈ E \ X. Hence, setting δ = min1�n�k0 ‖xn − x̄‖, we have

F (x̄) ⊂ F (x) + εB for every x ∈ B(x̄, δ). (4.32)

In view of (4.31) and (4.32) it follows that F is h-l.s.c. Moreover, F is not h-continuous
at each xk ∈ X, because F (xk) = (1 − 2−k)B, while F (x) = B for every x ∈ E \ X.

Acknowledgements. The authors are very grateful to the referees for their con-
structive criticism.
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