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This paper focuses on the linear evolution of Mack instability modes in a hypersonic
boundary layer over a flat plate that is partially coated by a compliant section. The
compliant section is a thin, flexible membrane covering on a porous wall consisting of
micro holes. The instability pressure could induce a vibration of the membrane, leading
to a feedback to the boundary-layer fluids through the transverse velocity fluctuation.
Such a process is formulated by an admittance boundary condition for the boundary-layer
perturbation, which is dependent on the thickness and tension of the membrane, the
properties of the porous wall, and the frequency of the Mack-mode perturbation. Using
this admittance condition, the impact of the compliant coating on the Mack growth rate is
studied systematically by solving the compressible Orr–Sommerfeld equations. It is found
that the compliant coating could suppress the Mack instability with a frequency band in the
neighbourhood of the most unstable frequency, and the stabilising frequency band widens
as the membrane thickness and tension decrease, indicating a more favourable effect of
a softer membrane. For a Mack mode with a specified dimensional frequency – since its
dimensionless frequency, normalised by the local boundary-layer thickness and oncoming
velocity, increases as it propagates downstream – the second-mode frequency band usually
appears in downstream locations, and so does the stabilising effect of the membrane. Thus
it is favourable to apply a compliant panel at a downstream region. In this situation, the
solid–compliant junction could produce an additional scattering effect on the evolution
of the Mack mode due to the sudden change of its boundary condition. The scattering
effect is quantified by a transmission coefficient defined by the equivalent amplitude of
the compliant-wall perturbation to the solid-wall perturbation, which can be obtained by
the harmonic linearised Navier–Stokes (HLNS) approach. If the admittance is weak, then
the transmission coefficient can also be predicted by an analytical solution based on the
residue theorem. It is found that most of the second modes are suppressed by the scattering
effect as long as the argument of the admittance is in the interval [150◦, 210◦], agreeing

† Email addresses for correspondence: dongming@imech.ac.cn, lei_zhao@tju.edu.cn

© The Author(s), 2023. Published by Cambridge University Press 974 A1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:dongming@imech.ac.cn
mailto:lei{_}zhao@tju.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.731&domain=pdf
https://doi.org/10.1017/jfm.2023.731


X. Ji, M. Dong and L. Zhao

with most of the physical situation. The analytical predictions agree well with the HLNS
calculations when the modulus of the admittance is less than O(0.1).

Key words: boundary layer stability, transition to turbulence

1. Introduction

Since the surface friction and heat flux in laminar boundary layers are remarkably smaller
than those in turbulent boundary layers, to develop a laminar-flow control (LFC) strategy
to postpone the onset of transition to turbulence is favourable in the aerodynamic design
of high-speed flying vehicles. In flight conditions, the environmental perturbations are
usually low and the laminar–turbulence transition follows a natural route (Morkovin 1969;
Kachanov 1994), which is initiated by the receptivity process to excite the boundary-layer
instability modes, followed by their linear and nonlinear evolution, until the breakdown
of the laminar phase and the emergence of the turbulence. Since the linear evolution of
the instability modes dominates the laminar phase, most LFC designs are based on the
suppression of the growth rates of the dominant linear instability modes.

1.1. Hypersonic boundary-layer instability
For hypersonic boundary layers, there exist a multiplicity of linear instability modes, which
are referred to as the Mack first mode, second mode, etc., in ascending order of their
frequencies; see Mack (1987). For an insulated supersonic boundary layer, the second
mode becomes unstable when the oncoming Mach number M is approximately greater
than 4, and for cooler walls, the second mode could dominate at lower Mach numbers.
Asymptotic analyses have revealed that only the first mode with an oblique wave angle
greater than

√
M2 − 1 is viscous, driven by the balance of the inertial, pressure-gradient

and viscous terms, as pointed out based on the triple-deck theory by Smith (1986); the
quasi-two-dimensional (quasi-2-D) first modes and all the higher-order modes are inviscid,
associated with the generalised inflectional point, as studied asymptotically by Smith &
Brown (1990) and Cowley & Hall (1990).

The first step of the natural transition process, receptivity, is induced by the interaction
of freestream perturbations with mean-flow distortions. The latter may appear in either
the leading-edge vicinity or a local region where surface imperfections appear. These
two types of mean-flow distortions link to two types of receptivity mechanisms, the
leading-edge receptivity and the local receptivity. In supersonic or hypersonic boundary
layers, the former was attributed to the synchronisation mechanism as formulated by
Fedorov & Khokhlov (1991, 2001) and Fedorov (2003a) based on the bi-orthogonal
eigenvalue system, whereas the latter was described by a local scattering mechanism as
formulated by Dong, Liu & Wu (2020), Liu, Dong & Wu (2020) and Zhao, He & Dong
(2023) based on the high-Reynolds-number asymptotic technique.

For a smooth wall, the length scale of the boundary-layer profile in the streamwise
direction is much greater than the instability wavelength, for which the base flow can
be assumed to be parallel to leading order, and linear stability theory can be used to
describe the evolution of boundary-layer instability modes. Alternatively, one can employ
the parabolised stability equation to take into account the weak non-parallelism of the
base flow. However, application of the LFC strategy often induces a localised distortion
on the mean flow or on the boundary-layer perturbation, and if its streamwise length
scale is comparable with the instability wavelength, then the above approaches become
invalid; such a scenario is referred to as the local scattering process. In the subsonic
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Impact of compliant coating on Mack-mode evolution

regime, the scattering of the Tollmien–Schlichting mode by a surface roughness element
was formulated by Wu & Dong (2016b) using the triple-deck formalism. To quantify the
scattering effect, they introduced a transmission coefficient defined by the amplitude of the
downstream Tollmien–Schlichting mode to that upstream. In the large-Reynolds-number
framework, the scattering system is reduced to a generalised eigenvalue problem based on
the triple-deck formalism. However, for supersonic and hypersonic boundary layers, since
the majority of the Mack instability is of an inviscid nature, the aforementioned system
ceases to be valid, and the scattering process induced by roughness is described by a
different asymptotic theory (Dong & Zhao 2021). Using the multi-scale analysis combined
with the bi-orthogonal decomposition of the eigenmode, the transmission coefficient is
expressed with the impacts of the instability property and mean-flow distortion being
separated explicitly. The asymptotic theory was extended later to the scattering problem
induced by surface heating or cooling strips (Zhao & Dong 2022). The accuracy of
the asymptotic predictions was confirmed by comparing with the harmonic linearised
Navier–Stokes (HLNS) calculations (Zhao, Dong & Yang 2019) and direct numerical
simulations (DNS) (Dong & Li 2021; Li & Dong 2021).

1.2. Laminar-flow control
In the application of LFC strategies, the linear accumulations of the instability modes are
of particular interest. Early numerical calculations (Mack 1984) showed that the second
mode, which is the most amplified perturbation, is usually destabilised when the wall
temperature is reduced. However, subsequent theoretical (Malik 1989) and experimental
(Masad & Nayfeh 1992) works revealed that the transition could be delayed if a cooling
or heating strip is located judiciously. A similar experimental observation was provided
by Fujii (2006), who reported that the transition could be delayed by a roughness element
if the latter is placed at a relatively downstream location. This was confirmed later by the
DNS results of Fong, Wang & Zhong (2014) and Fong et al. (2015), in which a critical
location of the roughness was reported. If the roughness were placed downstream of this
critical location, then the transition would be delayed; however, the opposite is true if
the roughness is upstream of this location. The critical location was found to agree with
the synchronisation point of the fast and slow modes, whose phase speeds approach the
freestream fast and slow acoustic waves, respectively. Such a phenomenon was revisited
recently by employing an efficient numerical approach, the HLNS approach, in Zhao
et al. (2019), and explained by an asymptotic model in Dong & Zhao (2021) and Zhao
& Dong (2022), and the traditional e-N approach fails to predict this phenomenon due
to the neglect of the non-parallelism. Because the oncoming condition of flying vehicles
changes with the cruising altitude, the critical location would change accordingly, which
makes a uniformly effective design almost impossible.

A porous coating with micro holes is considered as another type of LFC strategy
that in general affects the evolution of boundary-layer perturbations without inducing
evident mean-flow distortions. Because the Mack second mode shows an acoustic mode
property, analogous to an acoustic wave reflecting and dissipating between the wall
and the sonic line, the presence of the porous wall allows the acoustic wave to be
directed into the micro holes and reflected with a different phase and amplitude. This
can be modelled by an admittance boundary condition to the second mode, leading to a
modification of the second-mode growth rate that eventually affects the transition onset.
Fedorov et al. (2003) developed a mathematical model to describe the admittance
boundary condition for the boundary-layer perturbations, and found that the porous coating
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could suppress the second-mode growth rate and weakly affects the first mode. This
was confirmed by numerical (Egorov, Fedorov & Soudakov 2008) and experimental
(Rasheed et al. 2002) results. The nonlinear aspects of the porous coatings with regular
microstructures were studied by Chokani et al. (2005) using bi-orthogonal analysis, and
the results indicate that the harmonic resonance is also suppressed by the porous coating.
Guidelines for the choice of the hole depth and porosity were suggested by Brès et al.
(2009, 2013).

Although the porous coating shows superior behaviour compared to the localised
roughness and heating/cooling strips due to its successive modification on the Mack-mode
growth rate, there are still two shortcomings. First, in the engineering applications, the
porous coatings may also induce surface geometric fluctuations, which may behave as
distributed roughness and induce certain mean-flow distortions. As a result, the theoretical
prediction of the instability growth may not agree with the real situation, so a favourable
theoretical design may not be realised in practice. Second, the porous coating could
suppress the perturbations in only a portion of the second-mode frequency band, and
the stabilising frequency band is dependent of the properties of the porous coating and
the oncoming condition. It is rather difficult to increase the stabilising frequency band
because of the restriction of the phase angle of the admittance boundary condition. In fact,
if the porous coating is covered by a thin, flexible membrane, then the surface geometric
fluctuations are avoided, and the phase angle of the admittance boundary condition can
be adjusted to a much wider extent, making a more efficient design possible. Gaponov
(2014) investigated the linear stability of the supersonic boundary layer over a flexible
membrane covering on a porous wall, and the decreases of the spatial growth rate of
unstable disturbances in certain frequency bands can be observed for high Reynolds
numbers. This strategy is our interest in this paper. The compliant coating applied in a
hypersonic boundary layer is different from that applied in the low-speed boundary layers
as in Carpenter & Morris (1990), because the latter is unable to respond effectively to the
high-frequency forcing induced by the hypersonic Mack mode.

It is also reported by Song & Zhao (2022) that the porous coatings may enhance the
Mack instability in upstream positions, but the stabilising effect is observed downstream.
Therefore, it is rational to apply the porous coating section at a downstream location. In
this situation, a rigid–porous junction could produce an additional scattering effect on the
oncoming Mack mode due to the sudden change of the boundary condition, which was
studied systematically by Song & Zhao (2022) using the HLNS approach. Such a scenario
may also occur for compliant coatings. Therefore, in this paper, both the growth-rate
modification and the scattering effect of the compliant coating will be considered.

The rest part of this paper is structured as follows. The physical model is introduced
in § 2. In particular, the admittance boundary condition to the unsteady perturbation is
formulated in § 2.3. Based on five representative case studies with different Mach numbers
and wall temperatures, the impact of compliant coatings on the linear growth of Mack
modes is discussed in § 3. In § 4, the numerical results for the scattering effect obtained
by the HLNS calculations and the analytical predictions are presented and compared.
Concluding remarks and discussions are provided in § 5.

2. Mathematical description

2.1. Physical model
The physical model to be considered is a 2-D isothermal flat plate with a partially coated
compliant section inserted into a uniform hypersonic stream with a zero angle of attack,
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Figure 1. Schematic of the physical model: (a) side view; (b) top view; (c) zoom-in plot of a micro hole.

as shown in figure 1(a). A compliant section, which is a flexible thin membrane covering
on a porous wall consisting of micro holes, is allocated from a distance L∗ downstream
of the leading edge of the plate. Each hole of the porous wall is assumed to be a long
pipe with its upper end connecting with the membrane and its lower end connecting
with a rigid plug; see the sketches in figures 1(b,c). The compliant section may appear
as an LFC strategy because it could lead to a change of the instability growth, as well
as the downstream transition onset. To unveil the underlying mechanism, an oncoming
Mack mode is introduced from the upstream solid-wall region. As it propagates over the
compliant coating, two factors affecting the accumulated Mack amplitude appear, namely,
(i) the Mack growth rate would be distorted successively, and (ii) a scattering effect due
to the sudden change of the wall boundary condition would appear in the vicinity of the
junction.

The oncoming flow is assumed to be a perfect gas, and the Cartesian coordinate system
(x∗, y∗, z∗) with its origin o at the solid–compliant junction is employed. In what follows,
an asterisk indicates a dimensional quantity. The characteristic length is defined as the
local boundary-layer characteristic thickness at the origin, δ∗ = √

ν∗
e L∗/U∗

e , where the
subscript e denotes the quantities of the oncoming flow, and U∗

e and ν∗
e represent the

dimensional velocity and the kinematic viscosity of the oncoming stream, respectively.
The dimensionless coordinate system (x, y, z) = (x∗, y∗, z∗)/δ∗ and the time t = t∗U∗

e /δ∗
are introduced, and the velocity field (u, v, w), density ρ, temperature T and pressure p are
normalised by their freestream quantities:

(u, v, w, ρ, T, p) =
(

u∗

U∗
e
,

v∗

U∗
e
,

w∗

U∗
e
,
ρ∗

ρ∗
e
,

T∗

T∗
e
,

p∗

ρ∗
e U∗

e
2

)
. (2.1)

The Reynolds number Re and the oncoming Mach number M are defined as

Re = U∗
e δ∗

ν∗
e

=
√

U∗
e L∗

ν∗
e

, M = U∗
e

a∗
e

, (2.2a,b)
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where a∗
e is the sound speed of the oncoming stream. Here, Re � 1 and M > 1 is

chosen.The dimensionless dynamic viscous coefficient μ is assumed to satisfy the
Sutherland’s law, and the heat conductivity κ is related to μ through a constant Prandtl
number Pr = 0.72. The dimensionless radius and depth of each micro hole are R and H,
respectively, and we take R � H.

2.2. Governing equations
The dimensionless Navier–Stokes (N–S) equations are (Dong & Zhao 2021)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3a)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + 1
Re

∇ · (2μe) + 1
Re

∇
(

−2
3

μ ∇ · u
)

, (2.3b)

∂T
∂t

+ ρ(u · ∇)T = (γ − 1)M2
[
∂p
∂t

+ (u · ∇)p
]

+ ∇ · (μ ∇T)

Pr Re
+ (γ − 1)M2Φ

Re
,

(2.3c)

γ M2p = ρT, (2.3d)

where the strain-rate tensor e and the dissipation function Φ are expressed as

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, Φ = 2μe : e − 2

3
μ(∇ · u)2, (2.4a,b)

and γ = 1.4 denotes the ratio of the specific heats.
For simplicity, the physical quantities are denoted by Φ ≡ (u, v, w, T, p)T. The

instantaneous flow field is decomposed as a sum of the base flow Φ0 and the unsteady
perturbation Φ̄:

Φ(x, y, z, t) = Φ0(x, y) + Φ̄(x, y, z, t). (2.5)

Because the radius of each micro hole is much smaller than the local boundary-layer
thickness, the effect of the compliant coating does not lead to any distortion of the mean
flow, and therefore the mean flow on either the solid wall or the compliant coating is
described by the compressible Blasius similarity solution

Φ0 = (UB, 0, 0, TB, 1/γ M2)T + O(Re−1), (2.6)

where UB and TB are the profiles of the streamwise velocity and temperature, respectively.
The mathematical description of the compressible Blasius solution can be found in Wu &
Dong (2016a).

2.3. Model of the admittance boundary condition on the compliant coating
Following Gaponov (2014), the compliant-wall effect on the unsteady perturbations can
be modelled by an admittance boundary condition. When a perturbation in the boundary
layer propagates over the compliant coating, the perturbation pressure at the wall excites an
oscillation of the membrane. The latter acts as a sound generator to induce acoustic waves
propagating along the micro holes underneath, as sketched in figure 1(c). The acoustic
wave then reflects after reaching the bottom end of the holes, adjusting the phase of the
oscillation of the membrane. In principle, the vibration of the membrane surface and the
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propagation of the acoustic waves could be resolved by DNS, which, however, require
huge computational cost. In this subsection, an alternative means is employed, namely,
describing the perturbation evolution over an equivalent rigid wall with an admittance
boundary condition.

The acoustic propagation in a long pipe can be formulated based on the work of
Tijdeman (1975). The dimensionless density, temperature and viscosity of the gas inside
the micro holes are denoted by ρh, Th and μh, respectively. These values remain uniform
throughout the hole. The perturbations propagating in the hole are described by a local
cylindrical coordinate system (r̄, θ, ξ̄ ), as shown in figure 1(c). Noticing that the internal
hole radius R is much smaller than the acoustic wavelength (∼2π

√
Th/(ωM)), two

rescaled coordinates are introduced:

r = r̄/R, ξ = ωMξ̄/
√

Th, (2.7a,b)

where r ∈ [0, 1] and ξ ∈ [−H0, 0], with H0 = HωM/
√

Th. The ratio of the two length
scales is quantified by a dimensionless parameter Ω = ωRM/

√
Th � 1.

The acoustic perturbations of the axial velocity, radial velocity, pressure, temperature
and density in the hole are expressed as(√

Th

M
vξ , Ω

√
Th

M
vr,

ρhTh

γ M2 ps, Thθs, ρhρs

)
exp(−iωt) + c.c., (2.8)

where vξ , vr, ps, θs and ρs denote the rescaled quantities, and c.c. denotes the complex
conjugate. Similar to the analysis in Tijdeman (1975), the acoustic velocity and pressure
are

vξ = i
γ

dps

dξ

[
1 − J0〈

√
i rs〉

J0〈
√

i s〉

]
, (2.9a)

ps = A(exp(Γ ξ + 2Γ H0) + exp(−Γ ξ)), (2.9b)

where

Γ =

√√√√√
⎡
⎣γ + (γ − 1)

J2

〈√
i Pr s

〉
J0

〈√
i Pr s

〉
⎤
⎦ J0

〈√
i s
〉

J2

〈√
i s
〉 , (2.10a)

s = R
√

Re ρhω/μh. (2.10b)

Here, A is an arbitrary constant related to the acoustic amplitude, and Jn is the Bessel
function of the nth order.

The investigation of the correlation between the perturbation velocity and the pressure
at the upper end of the membrane, particularly at the location where ξ = 0, is of interest.
Because the radii of the holes are sufficiently small, the wall-normal movement of the
membrane is related to the averaged axial velocity at the upper end of each hole by the
equation

v̄ξ (0) = 1
π

∫ 1

0
2πr vξ (0, r) dr = − iΓ J2(

√
i s)

γ J0(
√

i s)
tanh(Γ H0) ps(0). (2.11)

Introducing the dimensionless perturbation mean velocity vp(ξ) = √
Th v̄ξ (ξ)/M, the

perturbation pressure pp(ξ) = ρhThp̄s/γ M2 and the thickness H = H0
√

Th/ωM, (2.11)
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Figure 2. Schematic of the movement of the membrane (not to scale).

can be rewritten as

vp(0) = − tanh(ΛH)

Z0
pp(0), (2.12)

where

Z0 =
√

Z1/Y1, Λ =
√

Z1Y1, (2.13a)

Z1 = iω
Th

J0(
√

i s)

J2(
√

i s)
, Y1 = −iωM2

[
γ + (γ − 1)

J2(
√

i Pr s)

J0(
√

i Pr s)

]
. (2.13b)

Note that the relation (2.12) denotes the velocity–pressure relation of the acoustic wave
at one single hole. If a multiplicity of micro holes are considered, then the porosity of the
surface n needs to be introduced to denote the area of the holes per unit area. Therefore,
the total velocity at the lower surface of the membrane should be vw = n vp(0), and (2.12)
is recast to

vw = K pp(0) with K = −n tanh(ΛH)

Z0
. (2.14)

Then we focus on the movement of the membrane. Let h, ρm and Θ denote the
dimensionless thickness, density and tension coefficient of the membrane, respectively, as
shown in figure 2. The pressure at the upper surface is denoted by pw exp(−iωt), and that
at the lower surface is equal to pp(0) exp(−iωt). The vertical movement of the membrane
ym exp(−iωt) is described by

− ω2aym = −bym + n( pp(0) − pw), (2.15)

where a and b represent the normalised thickness and surface tension of the membrane,

a = ρmh, b = Θ

πR2 . (2.16a,b)

The movement of the membrane is related to the velocity of the acoustic wave at the upper
end of the hole via

vw = −iωym. (2.17)

974 A1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.731


Impact of compliant coating on Mack-mode evolution

By eliminating pp(0) and ym from (2.14), (2.15) and (2.17), the relation between vw and pw
in the spectrum space is obtained as

vw = Apw, (2.18)

where the admittance of the compliant coating is

A = n
iωa − ib/ω + n/K

. (2.19)

If the thickness and tension of the membrane are zero, i.e. a = b = 0, then the admittance
condition recovers to that of the porous wall, so the porous-wall admittance is K. The
admittance sometimes also appears as an impedance, which is the reciprocal of the former
(Scalo, Bodart & Lele 2015; Chen & Scalo 2021). At first glance, we may find that the
denominator of A shares the same form as the Helmholtz resonator impedance model as
in Tam & Auriault (1996), but there are certain differences.

An archetypal Helmholtz resonator consists of a neck and a cavity, and the length scales
of both components are much smaller than the acoustic wavelength. The mathematical
details from (2.7a,b)–(2.14) are also valid for the impedance model for a Helmholtz
resonator, but we need to take H to be much smaller than the acoustic wavelength. Such
a short length is not sufficient to damp the acoustic energy apparently, so the viscosity
is negligible. Therefore, we may take s � 1 and H � 1. Under such conditions, we can
approximate the ratio of the Bessel functions as

J0(
√

i s)

J2(
√

i s)
≈ −1 −

√
2

s
(1 + i). (2.20)

Thus the equations in (2.13) are approximated by

Z0 ≈ 1√
Th M

⎡
⎣1 +

(1 + i)
(√

Pr + 1 − γ
)

√
2 Pr s

⎤
⎦ ,

Λ ≈ ωM√
Th

⎡
⎣−i +

(1 − i)
(√

Pr − 1 + γ
)

√
2 Pr s

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.21a,b)

and the impedance is expressed as

Z̄ = −K−1 ≈ −i
nM

√
Th

(
MH

3
√

Th
ω −

√
Th

MH
ω−1

)
. (2.22)

Here, the negative sign in front of K−1 is because the definition of the velocity direction
in our paper is different from that in Tam & Auriault (1996). This formula agrees with the
analysis in Fahy (2001). The impedance (2.22) under the inviscid approximation is pure
imaginary. The term proportional to the frequency ω represents the stiffness, while the
term inversely proportional to the frequency represents the elasticity. If the viscosity is
taken into account, then a small real part is added to the impedance:

Z̄ = R̄ − i
nM

√
Th

(
MH

3
√

Th
ω −

√
Th

MH
ω−1

)
. (2.23)

In this sense, the real part R̄ is usually much smaller than the imaginary part, and
independent of ω, and the coefficients of ω and ω−1 can be obtained experimentally by
curve fitting (Tam & Auriault 1996).
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However, for the long-hole porous wall studied in this paper, H is much greater than
the acoustic wavelength, so the acoustic wave may damp remarkably when reaching the
bottom of the hole from its open side, implying that the viscosity is non-negligible. Also,
the radii of the holes are much smaller than unity, leading to a small s value. In the limit
of s � 1, we have

J2(
√

i s)

J0(
√

i s)
≈ i

s2

8
. (2.24)

Similar to the analysis from (2.21a,b) to (2.22), the impedance of the long-hole porous
wall is

Z̄ ≈ 2(1 + i)
nM

√
γ Th

s−1. (2.25)

The argument of Z̄ is approximately 45◦, so from the definition (Z̄ = −K−1) we know
that the argument of the admittance K for a long-hole porous wall is approximately 135◦.
Because in this model the viscous effect has already been considered, no additional term
as in (2.23) is needed. Different from the short-hole Helmholtz resonator, the impedance
of the long-hole porous wall has comparable real and imaginary parts, both of which are
dependent on ω since s ∼ √

ω.
When the compliant coating is covered on the surface of the long-hole porous wall, the

property of the impedance is modified as

Z̄c = Z̄ − i
n

(aω − b/ω). (2.26)

Since a and b represent the thickness and surface tension of the membrane, they are related
to the stiffness and elasticity, respectively, which, in principle, agrees with the analysis of
the Helmholtz resonator in Fahy (2001). However, Z̄ in (2.26) is complex and dependent
on ω, in contrast to R̄ in (2.23).

For moderate a and b values, the application of the compliant coating is to broaden
the argument range of the impedance or admittance of the porous coating, which will
be favourable in the application of the LFC, as will be shown later. The above analysis
also indicates that an acoustic liner, consisting of an array of Helmholtz resonators, if
applicable in hypersonic configurations, may also be a good candidate for the strategy of
the LFC.

The quantities Λ and Z0 in the definition of K in (2.14) are dependent on s, which
is related to the density of the gas in the holes ρh via (2.10b). Therefore, ρh affects K
indirectly. Because the outer gas in the boundary layer and the inner gas inside the holes
are separated by the membrane, the densities of the two gas flows could be different, i.e.
ρh /= ρB(0). Thus Cρ ≡ ρh/ρB(0) is introduced to quantify the ratio of the two densities.
The relation (2.18) appears as the admittance boundary condition for the Mack instability
as it propagates over the compliant coating, and the admittance A is determined by
(a, b, Cρ, H, R, n, ω).

2.4. Linear stability theory
At a position away from the solid–compliant junction, the base flow shows a weakly
non-parallel feature, and the propagation of a linear Mack mode, with an O(1) wavelength,
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is expressed in a Wenzel–Kramers–Brillouin form

Φ̄(x, y, z, t) = E Φ̂( y; X) exp
[

i
(∫

α(x) dx + βz − ωt
)]

+ c.c., (2.27)

where X = x/Re denotes a slow coordinate associated with the non-parallelism of the
basic flow, E � 1 denotes its amplitude, and Φ̂ is the Mack-mode eigenfunction. Here, ω

is the frequency of the Mack mode, which is the same as the frequency of the acoustic
perturbation propagating in the micro holes; α and β are the streamwise and spanwise
wavenumbers, respectively, and for a spatial mode, ω and β are taken to be real, while α ≡
αr + iαi is complex, with −αi representing the growth rate. The wall pressure perturbation
is set to be unity for normalization, namely, p̂(0; X) = 1.

By substituting (2.5) and (2.27) into the compressible N–S equations (2.3) and
neglecting the non-parallelism, the compressible Orr–Sommerfeld (O–S) equations are
obtained:

LOS(ω, α, β; Re) Φ̂ = 0, (2.28)

where LOS is the O–S operator and can be found in Malik (1990) and Wu & Dong (2016a).
The attenuation condition is imposed in the far field:

Φ̂ → 0 as y → ∞. (2.29)

Note that for a very cold wall, a radiating mode may appear near the upper-branch neutral
frequency of the second mode, for which the far-field boundary condition should be
replaced by the Neumann type, namely, each perturbation quantity for a sufficiently large
y is related linearly to its y-derivative; see Chuvakhov & Fedorov (2016) and Zhao &
Dong (2022). For the solid wall, the no-slip, non-penetration and isothermal conditions
are imposed:

(û, v̂, ŵ, T̂) = (0, 0, 0, 0) at y = 0. (2.30)

At the compliant coating, the wall-normal velocity perturbation is related to the pressure
perturbation via (2.18), and the no-slip and isothermal conditions in (2.30) are still valid.
Thus the boundary conditions for the compliant coating are

(û, v̂, ŵ, T̂) = (0,Ap̂, 0, 0) at y = 0. (2.31)

The linear system (2.28) with boundary conditions (2.29) and (2.30) or (2.31) forms an
eigenvalue problem, which can be solved numerically following Malik (1990), Dong et al.
(2020) and Dong & Zhao (2021). In the following, the eigenvalues and eigenfunctions of
Mack modes on the solid and compliant walls are distinguished by subscripts s and c,
respectively.

2.5. An analytical solution of the scattering process for small-admittance configurations
Now we consider the evolution of the Mack instability around the solid–compliant
junction. At a sufficiently upstream position, a Mack mode on the solid wall is introduced,
and its boundary condition is changed as it propagates over the junction. If the norm of
the admittance |A| is sufficiently small, then the scattering effect can be quantified by an
analytical solution. For convenience, a small parameter ε̄ = |A| � 1 is introduced, and
Ā = A/ε̄. Note that |Ā| = 1. Under such a condition, the difference of the growth rates
between the solid and compliant walls is only O(ε̄).
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The perturbation field is expressed in terms of a perturbative form

Φ̄ = E
(
Φ̃0(x, y) + ε̄ Φ̃1(x, y) + · · ·

)
exp(i(βz − ωt)) + c.c., (2.32)

where the O(E ε̄) term is the modification induced by the solid–compliant junction. The
no-slip, non-penetration and isothermal conditions are imposed for Φ̃0. However, for the
second-order perturbation, the transverse velocity ṽ1 yields

ṽ1(x, 0) = H(x) Ā p̃0(x, 0), (2.33)

where H(x) is the Heaviside step function. Substituting (2.32) into the N–S equations (2.3),
and performing the Fourier transform with respect to x, Φ̆(k, y) = F [Φ̃] = (1/

√
2π)∫ ∞

−∞ Φ̃(x, y) exp(−ikx)dx, the leading-order system is obtained as

LOS(ω, k, β; Re) Φ̆0 = 0,

(ŭ0, v̆0, w̆0, T̆0) = (0, 0, 0, 0) at y = 0; Φ̆0(k, ∞) → 0.

}
(2.34)

The eigenvalue system (2.34) is the same as that introduced in § 2.4 for the solid-wall
configuration, and its eigenvalue solution is denoted by k = α̂. The second-order
perturbation field Φ̃1 is governed by

LOS(ω, k, β; Re) Φ̆1 = 0,

(ŭ1, v̆1, w̆1, T̆1) =
(

0,
−iĀ p̆0(0; α̂)√

2π(k − α̂)
, 0, 0

)
at y = 0; Φ̆1(k, ∞) → 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.35)

Here, p̆0(0; α̂) is set to be unity for normalization.
Considering that the linear operator LOS has poles at k = α̂, the response of Φ̃1|k=α̂

may become infinite. In the physical space, the second-order perturbation is obtained by
performing the inverse Fourier transform

Φ̃1(x, y) = F−1[Φ̆1(k, y)] = 1√
2π

∫ ∞

−∞
Φ̆1(k, y) eikx dk. (2.36)

The integral on the right-hand side may be evaluated by closing the integration contour
in the upper half complex k-plane. The inverse Fourier integral corresponds to a sum of
contributions from the poles and branch cuts of the integrand Φ̆1 eikx. The contributions
from the latter represent the near field in the vicinity of the junction, and decay
algebraically as x → ∞. The disturbance sufficiently downstream is dominated by the
contribution from the pole, which is evaluated by use of the residue theorem:

Φ̃1 → i
√

2π Resk=α̂[Φ̆1(k, y) eikx] as x → ∞. (2.37)

Interestingly, the wall boundary condition of ṽ1 in (2.35) is also singular at k = α̂,
rendering a second-order singularity of the system. Expressing Φ̆1 in terms of the Laurent
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series in the neighbourhood of k = α̂,

Φ̆1(k, y) = c−2
1

(k − α̂)2 + c−1
1

(k − α̂)
+

∞∑
n=0

cn(k − α̂)n, (2.38)

the residual is expressed as

Resk=α̂[Φ̆1(k, y) eikx] = lim
k→α̂

d
dk

[
(k − α̂)2 Φ̆1(k, y) eikx

]
= (c−1 + ixc−2) eiα̂x. (2.39)

In order to obtain c−1 and c−2, we solve (2.35) at two perturbed wavenumbers k = α̂ ± Δα ,
with Δα � 1. Thus c−1 and c−2 are calculated by

c̄−1 = lim
Δα→0

Δα

2

[
Φ̆1(α̂ + Δα) − Φ̆1(α̂ − Δα)

]
, (2.40a)

c̄−2 = lim
Δα→0

Δ2
α

2

[
Φ̆1(α̂ + Δα) + Φ̆1(α̂ − Δα)

]
, (2.40b)

where the notations c̄−1, c̄−2, Φ̆1 represent each component in c−1, c−2, Φ̆1, respectively.
By substituting (2.39) into (2.37), the second-order perturbation is recast to

Φ̃1 →
√

2π i(c−1 + ixc−2) eiα̂x as x → ∞. (2.41)

Actually, because of the change of the wall boundary condition, the Mack growth rate over
the downstream compliant coating αc differs from that over the upstream solid wall α̂ by
a factor εα = αc − α̂. For a weak admittance, i.e. |εα| � 1, the downstream perturbation
should grow like exp(i(α̂ + εα)x) ≈ eiα̂x(1 + iεαx). Thus the emergence of the x eiα̂x term
in (2.41) is due to the successive modification of the Mack growth rate by the weak
admittance, which is irrelevant to the scattering effect at the junction.

The first term on the right-hand side of (2.41) shows a pure exponential growth eiα̂x,
which characterises the scattering effect at the junction. Thus the scattering effect is
quantified by introducing a transmission coefficient as in Wu & Dong (2016b) and Dong &
Zhao (2021), which is defined as the ratio of the equivalent amplitude of the downstream
Mack modes to that upstream:

T = 1 + ε̄
√

2π ic−1, (2.42)

where c−1 is the element of c−1 corresponding to the wall pressure, namely,

c−1 = lim
Δα→0

Δα

2

[
p̆1(α̂ + Δα, 0) − p̆1(α̂ − Δα, 0)

]
. (2.43)

Likewise,

c−2 = lim
Δα→0

Δ2
α

2

[
p̆1(α̂ + Δα, 0) + p̆1(α̂ − Δα, 0)

]
(2.44)

is introduced to quantify the growth-rate modification in the downstream compliant
coating.
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2.6. HLNS calculations for O(1)-admittance configurations
If the norm of the admittance is O(1), then the aforementioned analytical solution does
not apply, and a numerical approach is required. Because of the sudden change of the
wall boundary condition at the solid–compliant junction, the O–S equations under the
parallel-flow assumption cease to be valid. Therefore, an elliptic approach needs to be
introduced, i.e. the HLNS approach, to calculate the perturbation field in the vicinity of
the junction. Now, the perturbation field is expressed as

Φ̄ = E Φ̃(x, y) exp(i(α0x + βz − ωt)) + c.c.. (2.45)

Being different from (2.32), a reference complex wavenumber α0 is introduced to ease the
numerical process; see a detailed illustration in Zhao et al. (2019). Here, α0 is chosen
simply from the O–S solution based on the base flow at the inlet of the computation
domain. In contrast to the travelling wave form (2.27), Φ̃ is allowed to vary quickly in both
the x and y directions, in order to account for the scattering effect at the solid–compliant
junction.

Substituting (2.45) into the N–S equations (2.3) and retaining the O(E) terms, we arrive
at the harmonic linearised equation system,(

D + A
∂

∂x
+ B

∂

∂y
+ V xx

∂2

∂x2 + V yy
∂2

∂y2 + V xy
∂2

∂x ∂y

)
Φ̃(x, y) = 0, (2.46)

where D, A, B, V xx, V xy and V yy are 5 × 5 order coefficient matrices that can be found
in Zhao et al. (2019). The boundary conditions are Φ̃(x, ∞) → 0 and ũ(x, 0) = w̃(x, 0) =
T̃(x, 0) = 0. In particular, the transverse velocity at the wall is ṽ(x, 0) = H(x)A p̃(x, 0),
where, again, H(x) denotes the Heaviside step function. At the inlet of the computation
domain, x = x0, where the non-parallelism is rather weak, the perturbation is described by
the O–S solution for a solid wall, Φ̂s, whose amplitude is set to be unity for normalisation.
The outflow condition is applied at the outlet of the computational domain.

The HLNS equations are discretised in a 2-D computational domain x ∈ [x0, xI] and
y ∈ [0, yJ], and the numbers of the grid points are I + 1 and J + 1 in the streamwise and
wall-normal directions, respectively. Therefore, the discretisation ultimately yields a linear
algebraic equation system

Sq̃ = r̃, (2.47)

where S is a 5(I + 1)(J + 1) × 5(I + 1)(J + 1) dimension matrix, and

q̃ =
(
Φ̃T

0,0, . . . , Φ̃
T
0,J, . . . , Φ̃

T
i,0, . . . , Φ̃

T
i,J, . . . , Φ̃

T
I,0, . . . , Φ̃

T
I,J

)T
. (2.48)

The scattering effect of the solid–compliant junction could be quantified by solving the
aforementioned linear system. In the upstream and downstream limits, the perturbations
behave as

Φ̃ exp(iα0x) → As Φ̂s( y; x) exp
(

i
∫ x

0
α dx

)
as x → −∞, (2.49)

Φ̃ exp(iα0x) → Ac Φ̂c( y; x) exp
(

i
∫ x

0
α dx

)
as x → ∞, (2.50)

where As and Ac characterise the equivalent amplitude and phase of the Mack modes on
the solid and compliant walls, respectively. They are obtained by curve fitting from the
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Case M T∗
e (K) Tw Tw/Tad δ99 δ1 ωc ωs ωp

M1T1 5.92 48.69 6.95 1.0 20.0 16.9 0.0834 0.1120 0.118
M1T2 5.92 48.69 5.21 0.75 17.1 14.0 0.0927 0.1188 0.126
M1T3 5.92 48.69 3.48 0.5 13.9 10.8 — 0.1328 0.140
M1T4 5.92 48.69 1.74 0.25 10.7 7.47 — 0.1650 0.172
M2T1 4.5 65.15 4.42 1.0 13.5 10.4 0.1629 0.1972 0.200

Table 1. Parameters characterising the base flow.
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Figure 3. (a) The streamwise velocity and (b) the temperature of the compressible Blasius solution for cases
in table 1.

HLNS calculations. Note that the c−2x eiα̂x term as in (2.41) is included in the exponent
exp(i

∫ x
0 α dx). According to (2.42), the transmission coefficient is calculated by the HLNS

approach as
T = Ac/As. (2.51)

Equation (2.51) can be compared to (2.42) when |A| is sufficiently small.

3. Numerical results

3.1. Case studies and the base flow
For demonstration, five case studies are selected as shown in table 1. Each case is labelled
by a four-character string. The first two characters represent the Mach number M, which
is ‘M1’ for M = 5.92 and ‘M2’ for M = 4.5; the last two characters represent the wall
temperature, where ‘T1’, ‘T2’, ‘T3’ and ’T4’ are for Tw/Tad = 1, 0.75, 0.5, 0.25. Here,
Tad is the adiabatic wall temperature. These cases were also considered for the study of the
scattering of Mack instability by surface heating or cooling strips in Zhao & Dong (2022).
In the table, δ99 and δ1 denote the nominal and displacement boundary-layer thicknesses,
respectively; ωs, ωc and ωp denote the synchronisation frequency of the fast and slow
modes, the critical frequency distinguishing the first and second modes, and the most
unstable frequency, respectively.

The base flow for each case is given by the compressible Blasius similarity solution,
which is shown in figure 3. These plots can also be found in Dong & Zhao (2021) and Zhao
& Dong (2022). For the same Mach number, a decrease of the wall temperature leads to
a decrease of the boundary-layer thickness, whereas an increase of the Mach number with
the same Tw/Tad values leads to an increase of the boundary-layer thickness.
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Figure 4. Dependence on ω of (a,c,e,g,i) the phase speeds and (b,d, f,h,j) the growth rates of modes F and S
for Re = 1560 and β = 0, for cases (a,b) M1T1, (c,d) M1T2, (e, f ) M1T3, (h,h) M1T4, (i,j) M2T1. The vertical
solid, dashed and dotted blue lines mark ωc, ωs and ωp, respectively.

3.2. Instability of the Mack modes on a solid wall
The dispersion relation of the Mack modes for a solid wall can be obtained by solving
the O–S equations (2.28) with boundary conditions (2.29) and (2.30). The dependence
on the frequency ω of the growth rate −αi and the phase speed cr = (ω/α)r of the 2-D
Mack modes is plotted in figure 4, where the five cases listed in table 1 are all shown.
Two families of discrete modes are observed, which are termed the fast mode (mode
F) and the slow mode (mode S), following Fedorov & Khokhlov (2001), respectively.
As ω → 0, the phase speeds of the fast and slow modes approach those of the fast
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Figure 5. Dependence of the growth rate on ω for case M1T1: (a) for (H, R, n) = (∞, 0.5, 0.5); (b) for
(H, R, n) = (∞, 0.05, 0.5).

(c = 1 + 1/M) and slow (c = 1 − 1/M) acoustic waves, respectively, implying that the
two modes synchronise with the freestream acoustic waves in the low-frequency limit. As
ω increases, cr of mode F decreases, while that of mode S increases. The two phase-speed
curves intersect at a synchronisation frequency ωs, as shown by the blue vertical dashed
lines in figures 4(a,c,e,g,i).

Figures 4(b,d, f,h,j) show the growth rates of modes F and S. There are overall two
unstable frequency bands, which are named as the first and second modes according to the
ascending order of the frequency (Mack 1987). The second mode is more unstable, and the
frequency of the most unstable mode is denoted by ωp, plotted by the blue vertical dotted
lines. The second mode always belongs to the mode S branch. However, the first mode
belongs to the mode S branch for cases M1T1, M1T2 and M2T1, while it belongs to the
mode F branch for the very cold wall case M1T4. The intersection frequency of the first
and second modes ωc for the former three cases is defined by the local valley of the mode
S curve, as denoted by the vertical solid short lines. For cases M1T3 and M1T4, the first
mode is marginally stable, and ωc is not defined in this situation.

3.3. Mack instability modes over a compliant coating

3.3.1. Zero-thickness limit of the compliant coating: porous wall
If both the thickness and tension of the compliant coating are negligibly small, namely,
a, b ≈ 0, then (2.19) is reduced to the porous-wall configuration (Fedorov 2003a; Lysenko
et al. 2016). Now, the porous admittance A depends only on H, R, n and ω. The verification
of the O–S solver is provided in the Appendix.

Figure 5 shows the dependence of the growth rate −αi of the 2-D Mack mode
on the frequency ω for case M1T1, where three representative Reynolds numbers
(Re = 1560, 3490, 4940) are considered. Computations are performed for deep holes (i.e.
H → ∞) with n = 0.5 and R = 0.5 or 0.05. Note that the local nominal boundary-layer
thickness is about 20, as shown in table 1, so holes with R = 0.5 can still be regarded
as micro holes that do not disturb the mean flow. The dimensionless frequencies of the
most unstable first and second modes almost do not change with Re, but their growth

974 A1-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.731


X. Ji, M. Dong and L. Zhao

104

103

102

101

100

10–2 10–1 100

104

103

102

101

100

10–2 10–1 100

6 170

150

130

110

90

5

4

3

2

1
5

0

0
.5

1
.5

2
.5

3
.5

1
4
0

160

110
130

R

H

R

(a) (b)

Figure 6. Contours of (a) the modulus and (b) the argument of the admittance A in the R–H plane for case
M1T1, where (Re, n, ω) = (1560, 0.35, 0.118). The white circle denotes (H, R) = (42, 0.085).

rates increase with Re monotonically. The effect of the porous wall on the Mack-mode
growth rate is mixed: it destabilises the Mack modes when the frequency is lower than a
critical value, but stabilises the Mack modes for supercritical frequencies, which agrees
with a few previous works (Fedorov 2003b; Song & Zhao 2022). The impact of the porous
wall is greater for a larger R. Since the most amplified second mode is suppressed, the
application of the porous wall is favourable from the LFC point of view.

Choosing n = 0.35 and ω = 0.118, figures 6(a) and 6(b) show the contours of the
modulus and argument of the admittance A for case M1T1 in the R–H plane, respectively.
For a small hole radius, both the modulus and argument are almost independent of H as
long as H is sufficiently deep, and an increase of R leads to a greater |A| and a slightly
greater argA. The argument of the admittance ranges from 130◦ to 150◦. Note that we
must take R � H, otherwise the mean flow is likely to be distorted by wide holes, and our
admittance model would become invalid. As a representative configuration, we choose
(R, H, n) = (0.085, 42, 0.35) for further calculations (unless otherwise specified), which
is plotted by white circles in figure 6. For this case, |A| = 0.39 and argA = 135◦.

3.3.2. Compliant coating
Now the compliant-coating configuration with finite a and b values is considered. The
controlling parameters are chosen by the following estimate from practical viewpoints. The
density, thickness and tension of the compliant membrane are usually ρ∗

m ∼ 103 kg m−3,
h∗ ∼ 10−6 m and Θ∗ ∼ 10−3 kg s−2. The radius of the micro holes is R∗ ∼ 10−5 m. The
density of the oncoming gas may vary from ρ∗

e ∼ 0.001 to ρ∗
e ∼ 1 kg m−3, depending

on the wind tunnel condition or the flight condition. The boundary-layer thickness is
δ∗ ∼ O(10−4−10−3) m. Based on the flow conditions for case M1T1, as shown in table 1,
it can be estimated that a ∼ O(1−104) and b ∼ O(10−3−10) according to (2.16a,b). It
should be noted that one may argue that such a thin membrane may not sustain for a long
period in reality. However, we emphasise that as a theoretical work, this paper presents
conceptual evidence to show the reliability of the compliant coating on LFC, and this
technique may be realistic by performing a careful design in the near future.

The contours of the modulus and argument of the admittance A in the a–b plane for
case M1T1 and parameters (H, R, n, Re, ω) = (42, 0.085, 0.35, 1560, 0.118) are plotted
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Figure 7. Contours of (a,c) the modulus and (b,d) the argument of A in the a–b plane for case M1T1, where
(H, R, Re, n, ω) = (42, 0.085, 1560, 0.35, 0.118), for (a,b) Cρ = 1, (c,d) Cρ = 100. The white dashed lines
stand for b/a = ω2, and the white dotted lines represent −aω + bω = (n/K)i.

in figure 7. The application of compliant coating enlarges the range of the argument of A
from 130◦−150◦ for the porous configuration shown in figure 6, to 90◦−270◦, which is
favourable for LFC designs. Here, |A| is rather small when a or b is large, approaching the
solid-wall configuration. However, as a and b decrease, |A| reaches a moderate value in
a curved triangle region. From figures 7(a,c), it is found that as Cρ increases, this region
becomes narrower, and the peak value of |A| becomes greater. When a and b satisfy the
relation b/a = ω2, as plotted by the two white dashed lines in each image, the modulus
recovers to the porous coating case, namely, A = K. When the relation −aω + b/ω =
(n/K)i is satisfied, |A| reaches its maximum, as plotted by the white dotted lines. For this
case, argA = 180◦, and |A| is equal to |K|/Kr times that of the porous case. In the design
of the LFC strategy, if the selected (a, b) is located in this region, then the impact of the
compliant coating could be significant, and whether this impact leads to a stabilising or
destabilising effect will be discussed below.

In figures 8(a) and 8(b), the growth rates of the compliant-wall instability for various
Cρ values are presented, which are compared with those for the solid and porous walls. To
facilitate a direct comparison of the effect of compliant walls, the growth-rate modification
σ = (−αi)compliant( porous) − (−αi)solid is introduced, and its dependence on ω is plotted
in figures 8(c,d). Overall, both the porous and compliant coatings produce a stabilising
effect in the frequency band around the most unstable second mode, but a destabilising
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Figure 8. Dependence of (a,b) the growth rate −αi and (c,d) the growth-rate modification σ on ω for case
M1T1 with different Cρ ≡ ρh/ρB(0) values, where (H, R, Re, n) = (42, 0.085, 1560, 0.35): (a,c) for (a,b) =
(1, 0.01), (b,d) for (a,b) = (5, 0.065).

effect is observed in other frequency bands. Increase of Cρ leads to a stronger stabilising
or destabilising effect due to the increase of the admittance |A|, and a much greater
reduction of the most unstable growth rate than in the porous configuration is observed
for a large Cρ . Actually, a large Cρ is quite realistic, because under high-altitude flight
conditions, the background gas density is rather low, as well as the density of the fluid at
the wall ρB(0). Thus, in the following, Cρ is taken to be 100. It needs to be noted that for a
large density ratio Cρ , one may challenge the reliability of the admittance model because
both the acoustic propagation in the micro holes and the membrane vibration could be
affected by the prestress due to the pressure difference of the gases inside and outside
the membrane. The explanations are as follows. On the one hand, because the radius of
each micro hole is small, the transverse movement of the membrane from the flat state
induced by the prestress should be much smaller than the wavelength of the acoustic wave
propagating in the micro hole. Thus the formulae of the acoustic propagation, (2.8)–(2.14),
are good approximations. On the other hand, for the dynamics of the membrane, things
are not that simple. If the curvature of the membrane is not negligible, then the pressure
difference pp(0) − pw in (2.19) should be projected to the wall-normal direction, and a
less-than-unity coefficient C must appear as a prefactor of this term. Consequently, the
admittance formula is still correct, but the definitions of a and b should be changed to
a = ρmh/C and b = Θ/πR2C. From figures 8(c,d), it is found that as a and b increase, the
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Figure 9. Dependence of (a,b) the growth rate −αi and (c,d) the growth-rate modification σ on ω for case
M1T1 with (H, R, Re, n, Cρ) = (42, 0.085, 1560, 0.35, 100), for (a,c) b = 0.01, (b,d) a = 1.

frequency band for the stabilising effect becomes narrower, which is less efficient from the
LFC viewpoint.

Figure 9 shows the variation of the growth rate with ω for different a and b values. For
a very thick coating and/or a large surface tension (i.e. a and b are large), the compliant
coating behaves like a quasi-solid wall, and the growth rates for these cases are rather close
to the solid-wall configuration for all the frequency bands. As a and b decrease, the growth
rate of the second mode around the most unstable frequency band is reduced, implying that
a thin and soft coating is more effective.

Figure 10 shows the contours of the growth-rate modification σ in the |A|–argA plane
for the most unstable mode, ω = ωp. In the argument band 90◦ < argA < 270◦, the
most unstable Mack mode is overall suppressed. The stabilising effect increases with the
increase of |A|, and reaches its maxima at argA ≈ 90◦ and 270◦.

The contours of the growth-rate modification σ with |A| = 0.5 for three representative
cases are plotted in figures 11(a,d,g). The stabilising effect of the compliant coating in
the second-mode frequency band is shown clearly (blue region). Two destabilising regions
appear in the vicinity of the lower-branch and upper-branch second-mode frequency bands,
respectively. Because the growth rates there are small, as shown in figures 11(c, f,i), this
destabilising effect is not a big issue. When the admittance is increased to |A| = 4.0,
as shown in figures 11(b,e,h), the |σ | value becomes greater, and the stabilising frequency
band does not change much. Figures 11(c, f,i) depict the relationship between −αi and ω for
two different A values. The results for the solid case, A = 0, are included for comparison.
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Figure 10. Contours of the growth-rate modification σ induced by the compliant walls in the |A|–argA
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each case.

Here, argA is selected to be 140◦. The frequency of the most unstable second mode
is shifted to a higher value as |A| increases, but the peak value is remarkably reduced,
rendering an effective outcome.

4. Scattering calculations

4.1. HLNS calculations
The instability analyses in § 3 have shown that the compliant effect may destabilise the
low-frequency Mack mode, but suppress the second mode in the frequency band close to
the most unstable frequency. Usually, for a Mack mode with a fixed dimensional frequency,
the dimensionless frequency ω would increase with x, so the suppression frequency band
will appear in a downstream region. Now a global dimensionless frequency

F = ω∗ν∗
e

U∗
e

2 = ω

Re
, (4.1)

is introduced. The global frequency F is fixed as a particular perturbation evolves
downstream. Figure 12(a) compares the evolution of the growth rates between the solid and
compliant walls for F = 7.56 × 10−5 and b = 0.01. The difference of each compliant-wall
curve and the solid-wall curve is shown in figure 12(b). Evidently, in the upstream region,
the compliant wall plays a destabilising role, while a stabilising effect appears in a certain
downstream region where the second-mode growth rate is approximately its maximum.
Although in a further downstream region, the compliant coating plays a mild destabilising
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Figure 11. Effect of the compliant coating on the growth rate. (a,d,g) Contours of the growth-rate modification
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Figure 14. Evolution of the wall pressure perturbation for case M1T1, where (H, R, a, b, Cρ, Re, n)

= (42, 0.085, 1, 0.01, 100, 1560, 0.35). The result for a solid wall and a compliant coating are also shown
for reference. Plots for (a) ω = 0.094, (b) ω = 0.165.

effect again, the low-growth-rate nature determines that this region is of less interest.
Therefore, it is rational to introduce the compliant coating at a downstream location.

Now, we consider that the streamwise evolution of the 2-D Mack modes over the
solid–compliant wall is calculated by the HLNS approach, and the three-dimensional
(3-D) scattering effect will be probed by the analytical predictions in § 4.2. The 2-D
computational domain is selected as [x0, xI] × [y0, yJ] = [−720, 1820] × [0, 500], so 1101
uniform grid points are employed in the streamwise direction, while 301 non-uniform grid
points that are clustered in the near-wall region are employed in the wall-normal direction.

For case M1T1 with (a, b, Cρ, Re, n) = (1, 0.01, 100, 1560, 0.35), the pressure
perturbation field p̃(x, y) for two representative frequencies is calculated, ω = 0.094 and
0.165, as shown in figure 13. The values of A for the two frequencies are 3.11 exp(2.48i)
and 3.41 exp(−2.42i), respectively. The contours in the lower half-plane show the
perturbation field for a solid wall, while those in the upper half-plane are for the solid
to the compliant coating with its junction located at x = 0. Downstream of the junction,
the perturbation shows a phase difference in comparison with that of the solid case for
each frequency, and the amplitude also changes slightly.
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Figure 15. Dependence of the transmission coefficient on ω for different compliant coatings and oncoming
conditions, where (H, R, Cρ, Re, n) = (42, 0.085, 100, 1560, 0.35). Plots for (a) different membrane thickness
a for case M1T1, where b = 0.01; (b) different membrane tension b for M1T1, where a = 1; (c) different Mach
numbers with (a, b) = (1, 0.01); (d) different temperatures with (a, b) = (1, 0.01).

To quantify the scattering effect, figure 14 plots the streamwise evolution of the
wall pressure |p̃|y=0, representing the instability amplitude, for the two frequencies, and
the curves for the solid (|p̃s|y=0) and pure-compliant (|p̃c|y=0) cases are also shown
for comparison. The curves for |p̃c| are shifted such that their downstream amplitudes
agree with those of the scattering cases |p̃|. In the upstream limit, the amplitude of the
scattering case for each frequency agrees with p̃s. In the vicinity of the junction x = 0,
its amplitude shows a kink, indicating the rapid deformation of the perturbation filed
due to the sudden change of the wall boundary condition. In the downstream limit, the
amplitude evolution of p̃ approaches that of the compliant coating p̃c. Obviously, there
is a jump from p̃s to p̃c at the junction, as shown in the inset. Substituting p̃s and p̃c into
(2.51), the transmission coefficient could be calculated by T = p̃c/p̃s|y=0. For ω = 0.094,
|T | = 0.89 < 1, indicating a stabilising effect, whereas for ω = 0.165, |T | = 1.09 > 1,
indicating a destabilising effect.

A more instructive demonstration of the scattering effect is to plot the dependence of
the transmission coefficient on ω for different parameters, as shown in figure 15. In the
low-frequency band (including the first mode and a portion of the second mode), the
scattering effect plays a destabilising role; however, it suppresses the second mode in
the vicinity of the most unstable frequency band, which again is favourable from the
LFC viewpoint. As shown in figures 15(a,b), for a very thick coating or a large surface
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tension, as mentioned in § 3.3.2, the change of the wall condition is rather weak, leading
to a weak scattering effect. As a decreases, the stabilising frequency bands move to the
high-frequency direction and the stabilising effect becomes stronger. The effect of b on
the scattering effect is not monotonic, and the stabilising effect for b ≤ 0.01 is more
remarkable. When the Mach number decreases, as shown in figure 15(c), the stabilising
effect on the frequency band near the most unstable frequency becomes stronger, whereas
the destabilising effect in the low-frequency band is suppressed, implying that the
stabilising effect of the compliant coatings on a lower M is stronger. Figure 15(d) shows
the |T |−ω curves for M = 5.92 with different wall temperatures. The stabilising effect in
the supercritical frequency band for each case is more profound for a lower Tw value, but
the destabilising effect is hardly affected by Tw.

4.2. Analytical predicting for |A| � 1
When |A| � 1, the scattering effect can be quantified by the analytical solution (2.41).
Figure 16 shows the dependence of the Laurent coefficients c−1 and c−2 on ω and β for
case M1T1. As shown in figures 16(a–d), both c−1 and c−2 peak near the frequency of
the lower-branch second mode, and show a moderate value in the second-mode frequency
band, indicating a remarkable scattering effect on the second mode. The magnitude of c−2
is three orders of magnitude lower than that of c−1, indicating a rather weak modification
on the growth rates. The 3-D scattering effect is probed in figures 16(e, f ), in which the
impact of the spanwise wavenumber β on the scattering effect is shown. Here, |c−1|
increases slightly with β when the latter is smaller than 0.1, but c−2 stays almost constant.
For β > 0.1, both |c−1| and |c−2| decay drastically with increase of β. The implication is
that the 3-D effect is not distinguished, and the study based on the 2-D mode is sufficient.

According to (2.32), the perturbation pressure p̃ for a small admittance can be
expanded as a sum of the oncoming pressure p̃0 and the junction-induced scattering
perturbation ε̄p̃1. The solid lines in figures 17(a) and 17(b) show the streamwise evolution
of the junction-induced perturbation pressure |p̃1| obtained by the HLNS calculations
for two representative membranes, respectively, which are compared with the analytical
predictions plotted by the symbols. For figure 17(a), (a, b) = (1, 2) is selected, and
for the three selected frequencies ω = 0.077, 0.112 and 0.151, A = 0.013 exp(1.574i),
0.02 exp(1.576i) and 0.027 exp(1.577i), respectively. The arguments of A for these
frequencies are all approximately 90◦. For figure 17(b), (a, b) = (100, 0.01) is selected,
and the values of the admittance are A = 0.047 exp(−1.58i), 0.032 exp(−1.578i) and
0.023 exp(−1.576i) for the three frequencies. The arguments of A for these frequencies
are all approximately −90◦ (or 270◦). The base flow is assumed to be parallel for ease
of comparison, and the effect of non-parallelism will be considered later. The amplitude
obtained by HLNS for each curve shows a jump at the junction, and grows linearly
with x in the downstream, which agrees well with the analytical prediction given by
(2.41), indicating that both the scattering effect and the growth-rate modification are well
predicted.

The dependence of the transmission coefficient on ω is summarised in figures 18(a)
and 18(b) for the two membranes, respectively. The analytical predictions (red solid lines)
agree perfectly with the HLNS calculations with the non-parallelism neglected (green
dashed lines). For ω < 0.1, the transmission coefficient curve in figure 18(a) indicates a
destabilising effect, whereas that for ω > 0.1 indicates a stabilising effect. The opposite
is true for figure 18(b). This is caused by the difference of the argA values for the two
panels, which is approximately 90◦ for figure 18(a) and approximately −90◦ (or 270◦) for
figure 18(b). This confirms the significant role of argA in the scattering effect.
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Figure 16. The coefficients (a,c,e) c−1 and (b,d, f ) c−2 of the Laurent expansion (2.38) for case M1T1,
where (H, R, Cρ, Re, n) = (42, 0.085, 100, 1560, 0.35). Plots for (a,b) (a, b, β) = (1, 2, 0), (c,d) (a, b, β)

= (100, 0.01, 0), (e, f ) (a, b, ω) = (1, 2, 0.118).

When the non-parallelism is considered, as shown by the blue squares, the overall
trend of the T distribution does not change, although the values of T may vary by
a certain amount. This indicates that the analytical predictions are effective even for a
non-parallelism base flow as long as |A| is small.

4.3. Scattering calculations for O(1)-admittance configurations
The analytical theory ceases to be valid when |A| is O(1), and for this case only the HLNS
calculations are applicable. To evaluate the influence of nonlinearity, it is necessary to
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Figure 17. Streamwise evolution of the perturbation amplitude for a parallel base flow for case M1T1, where
(H, R, Cρ, Re, n) = (42, 0.085, 100, 1560, 0.35), for (a) (a, b) = (1, 2), (b) (a, b) = (100, 0.01).

0.06 0.10 0.14 0.18

Analytical
HLNS-parallel
HLNS-non-parallel

0.994

1.000

1.006

ω
0.06 0.10 0.14 0.18

0.990

0.994

0.998

1.002

1.006

ω

(a) (b)

|     |

Figure 18. Dependence of transmission coefficient T on frequency ω for case M1T1, where
(H, R, Cρ, Re, n) = (42, 0.085, 100, 1560, 0.35), for (a) (a, b) = (1, 2), (b) (a, b) = (100, 0.01).

introduce a ratio coefficient

R = |T | − 1
|A| . (4.2)

Here, R is positive (negative) when the scattering effect is destabilising (stabilising).
Obviously, R is a constant when |A| is small, but the nonlinearity for |A| = O(1) leads to
a remarkable variation of R on |A|. Figure 19 shows the dependence of R on |A| for two
representative frequencies. The HLNS calculations of R for a parallel base flow agree well
with the analytical predictions when |A| < 0.1, but deviate from the linear predictions for
greater |A| values. Overall, |R| is reduced as |A| increases, indicating that the nonlinearity
weakens the scattering effect. The non-parallelism of the base flow induces a quantitative
modification on R and T , but it does not affect the overall trend.

Figure 20 summarises the contours of the transmission coefficient |T | in the ω−argA
plane for |A| = 1 for all the cases considered. It is observed that when the admittance
argument is in the interval 150◦ < argA < 210◦, most of the second modes are suppressed
by the scattering effect, and this argument band is realistic, as indicated by figure 7.
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Figure 19. Dependence of the ratio coefficient R on the amplitude of the admittance |A| for case M1T1,
with Re = 1560, for (a) ω = 0.094, (b) ω = 0.165.
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Figure 20. Contour plots of the transmission coefficient |T | in the argA–ω plane for |A| = 1. Plots for (a–e)
cases M1T1, M1T2, M1T3, M1T4 and M2T1, respectively, with Re = 1560; ( f ) case M1T1 with Re = 4940.

Decrease of the Mach number and wall temperature or increases of Re lead to a stronger
scattering effect.

5. Conclusion

This paper studies the linear evolution of Mack modes in hypersonic boundary layers
over a flat plate with a partially coated compliant section. The compliant-coating
section is a flexible thin membrane covering on a porous wall consisting of numerous
micro holes. Based on five representative case studies with different Mach numbers
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and wall temperatures, two mechanisms are considered: (1) the successive modification
of the Mack mode by the compliant-wall effect; and (2) the scattering effect at the
solid–compliant junction.

Because the radii of the micro holes are much smaller than the boundary-layer thickness,
the compliant section has little impact on the base flow, so the compressible Blasius
solution is selected as the base flow for both the solid and compliant walls. The impact
of the compliant-wall effect on the perturbation is quantified by an admittance boundary
condition based on the analysis of the motion of the membrane and the propagation of the
acoustic wave in the micro holes underneath.

By solving the compressible O–S equations based on the admittance condition, the
modification of the Mack growth rate by the compliant coating is obtained for the five
case studies. The instability is dependent on the base flow, the perturbation frequency, and
the property of the micro holes and the membrane. For most cases, the majority of the
second mode is suppressed, especially in the frequency band close to the most unstable
mode, while the first mode and a small portion of the second mode with small growth
rates are enhanced. The impact of the compliant coating on the instability increases as the
thickness and the tension of the membrane reduce. Compared with the porous wall without
the membrane, it is found that the compliant coating can produce a greater admittance with
a wider argument range, which leads to a stronger stabilising effect on the second mode
with a frequency close to the most unstable state. This is indeed favourable from the LFC
viewpoint.

Due to the sudden change of the perturbation boundary conditions at the
solid–compliant junction, the oncoming Mack modes undergo a rapid distortion induced
by the scattering effect. Following Wu & Dong (2016b) and Dong & Zhao (2021), a
transmission coefficient is introduced to quantify the scattering effect, which is defined
by the ratio of the equivalent amplitudes of the downstream Mack mode to that upstream.
The majority of the Mack modes can be suppressed when the argument of the admittance
is in the interval [150◦, 210◦]. The stabilising effect of the solid–compliant junction in
the second-mode frequency band increases with decrease of the membrane thickness.
For a given thickness, the membrane tension does not affect the stabilising effect much
unless the tension is very large. For cases with a very large tension, the scattering effect
could be rather weak. If the admittance of the compliant coating is small, then the
transmission coefficient can be predicted by the analytical solution based on the residue
theorem. However, for an O(1) admittance, only the HLNS approach is applicable, and
the nonlinearity is found to weaken the scattering effect, including both the stabilising and
destabilising effects in different frequency bands. As the Mach number or wall temperature
decreases, or as the Reynolds number increases, the scattering effect becomes stronger.

It needs to be noted that in the physical situation, the environmental perturbations are
usually broadband, so are the boundary-layer instability modes excited due to certain
receptivity regimes. For convenience, the present study focuses only on the spatial
evolution of each Fourier component. This is a good approximation if the perturbation
amplitudes are sufficiently small, such that the interactions between different Fourier
components and their self-interactions are negligible. However, to prescribe whether
transition is delayed or promoted by the compliant coating requires consideration of the
combined behaviours of all the Fourier components with the nonlinearity included, which
could be a future work.

Funding. This research was supported by the National Science Foundation of China (grant nos U20B2003,
11988102, 12002235 and 91952202).
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Appendix. Code verification

To verify our O–S solver, the cases in Lysenko et al. (2016) are revisited. Figure 21
shows the comparison of the present results and the reference data, and good agreement is
achieved for all cases.
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