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Abstract

Objective: The effectiveness of geographic targeting in nutrition programmes depends
largely on the degree to which malnutrition clusters within particular areas. This study
investigates the extent to which the childhood nutrition indicators, stunting (height-
for-age Z-score ,22) and wasting (weight-for-height Z-score ,22), are spatially
clustered; this information is used to determine the implications of spatial clustering
for the effectiveness of geographic targeting.
Design: Analysis of data from Demographic and Health Survey (DHS) results.
Clustering is assessed by calculating intra-cluster correlation coefficients (ICCs).
Estimating the proportion of malnourished children covered by a programme
successfully targeting 10% of clusters with the highest malnutrition prevalences allows
an assessment of the effectiveness of geographic targeting.
Setting: Fifty-eight DHS III (1992–1997) and DHS IV (1998–2001) reports from 46
developing countries.
Subjects: Pre-school children of mothers interviewed by DHS.
Main results: The extent of clustering of nutritional status was surprisingly low
(median ICC for national samples: stunting ¼ 0.054, wasting ¼ 0.032) and most
countries were characterised by having an ICC ,0.1 – i.e. low clustering – for
childhood undernutrition (91% of countries for wasting and 78% for stunting). Our
assessment of the effectiveness of geographic targeting showed that coverage was
better for wasting than for stunting; for wasting, 23% of countries would achieve less
than 20% coverage, compared with 76% of countries achieving less than 20%
coverage for stunting. Coverage is dependent on the overall prevalence of
malnutrition and the ICC.
Conclusions: Childhood nutritional status is determined at the household, or even
individual, level; nutrition programmes that are geographically targeted may result in
high levels of under-coverage and leakage, thereby compromising their cost-
effectiveness; the lack of clustering questions the appropriateness of current nutrition
interventions.
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If the Millennium Development Goal of halving the

number of undernourished people by the year 2015 is to

be met1, there is an urgent need to increase the coverage

of effective nutrition interventions. With insufficient

resources, budgetary constraints and programme trans-

parency increasingly on the agenda, emphasis has been

placed on targeting those who are most in need. But given

that children at nutritional risk do not come conveniently

labelled, how do we find those most in need of

intervention?

One option for focusing efforts on those at greatest risk

is geographic targeting, defined as concentrating

resources on groups from areas that have been ranked

on some measure of risk2. In nutrition programming,

geographic targeting is a widely used strategy and, in

contrast to general subsidies, it has been shown ‘to be

effective at maximizing . . . coverage . . .whilst minimizing

leakage’2.

However, geographic targeting will only work well if

there is a range of contrasting environments to choose

from (i.e. between-area variability must be high), so that

targeted areas will ‘look’ substantially different from non-

targeted areas. As well as this, there must be substantial

homogeneity within targeted areas (i.e. within-area

variability must be low) to avoid leakage of benefits to

low-risk individuals3,4. Nutrition programmes that are

targeted geographically implicitly assume homogeneity of

risk within the targeted area. But how correct is this

assumption? There have been few reviews of the

magnitude of between- and within-area variance in
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nutritional risk in children in developing countries4–6, and

some commentators have pointed out that the require-

ment for within-area homogeneity ‘is one that sometimes

goes unappreciated’3.

In fact, the importance of knowing how similar two

randomly chosen children from the same area are likely to

be in nutritional risk goes far beyond arguments for or

against geographic targeting of interventions. If there is

little area-level clustering of nutritional risk, then the true

determinants of poor growth must lie in household-level

behaviours, or even in idiosyncratic characteristics of

particular children. Establishing this would have far-

reaching consequences for the design of appropriate

nutrition interventions.

This paper uses existing national survey data from 46

different countries to quantify the extent of within-area

clustering of both stunting and wasting, and then

considers the implications of the findings for the design

of cost-effective nutrition programmes.

Methods

This study was based on a meta-analysis of published data

from the Demographic and Health Surveys (DHS) rounds

III (1992–1997) and IV (1998–2001). Earlier survey rounds

(DHS I and II) were excluded because of inconsistencies

in the reporting by each country of the data required for

this study.

This study was specifically concerned with the

information collected on two indicators of the nutritional

status of pre-school children: weight-for-height and

height-for-age. Both of these indicators are measured in

Z-scores, which equate to standard deviations from the

median of a reference population (US data collected by the

National Center for Health Statistics)7. Children with a

weight-for-height Z-score less than 22 are termed

‘wasted’ while those with a height-for-age Z-score less

than 22 are termed ‘stunted’8. Wasting is often considered

an indicator of the current or recent situation; stunting is

more likely an indicator of the long-term cumulative

effects of nutrition deficiency. Stunting is generally far

more common than wasting, in both urban and rural

settings, and this is a reflection of their different

aetiologies, determinants and recovery rates.

Information on immunisation status was included as a

benchmark for clustering, as this variable is known to be

highly clustered9. This is because immunisation coverage

tends to be a function of distance from the nearest health

centre and the particular outreach strategy adopted in

each health centre.

DHS sampling strategy

The DHS are all stratified, two-stage (very occasionally,

three-stage) cluster surveys. Cluster sampling involves

randomly selecting households that are geographically

close to each other, resulting in ‘clusters’ or groups of

people who are essentially related in some way or another

– here by environment – and thus have some similar

characteristics. Wherever cluster sampling is used, it is

possible to assess whether individuals living in close

proximity to each other are in fact more similar than would

be expected by chance alone.

The DHS survey designs are approximately self-

weighting, and it has been demonstrated that most of

the design effect is due to clustering rather than

stratification or weighting10, meaning that the intra-cluster

correlation coefficient (ICC) is an appropriate indicator of

the clustering effect.

Intra-cluster correlation coefficient

The ICC is a measure of the extent to which observations

on a variable x from the same cluster are correlated. It is

defined as11:

ICC ¼ s2
b=s

2
x;

where s2
b is the between-cluster variance of x and s2

x is the

total variance of x. For continuous outcome variables

s2
x ¼ s2

b þ s2
w, where s2

w is the within-cluster variance12.

For binary outcomes such as wasting and stunting, s2
x ¼

pð1 2 pÞ; where p is the mean of the cluster-specific

prevalences13.

The ICC commonly takes values between zero and one:

the nearer the ICC is to one, the larger the variability

between clusters. The ICC is thus a measure of within-

cluster homogeneity14. ICCs above 0.4 are not common

unless they are associated with area-level variables, which

are clustered by definition15. To interpret ICC values, the

following cut-off points, which were also used in the study

by Morris et al.5, were used to classify the extent of

clustering:

. , 0.1, low clustering;

. 0.1–0.199, moderately low clustering;

. 0.2–0.299, moderately high clustering; and

. $ 0.3, high clustering.

A better-known measure related to the ICC is the ‘design

effect’ due to clustering, defined as ‘the loss of

effectiveness [resulting from] use of cluster sampling,

instead of simple random sampling’16. The relationship

between design effect, cluster size and ICC is represented

in the following equation:

D 2 < 1 þ ðb 2 1ÞICC;

where D 2 is the design effect (expressed on a variance

scale) and b is the average number of respondents per

cluster, or average cluster size6,17.

Re-arranging this identity gives:

ICC < ðD 2 2 1Þ=ðb 2 1Þ:

Design effects expressed on a standard-deviation scale (D)

are routinely reported in the Sampling Error appendices of
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all DHS surveys and can be used to estimate the ICC as

indicated. The ICC is a portable parameter that can be

compared across studies since it does not depend on the

cluster size or on the numbers of clusters (although it may

be imprecisely estimated due to sampling variability). The

design effect, on the other hand, is affected by the sample

design, and is strongly dependent on cluster size18,19.

Compiling the database

Information from a large number of different DHS surveys

was collated in a database, with separate entries for

national samples and urban and rural sub-samples.

Average cluster size (b) for each variable was calculated

by dividing the variable sample size by the total number of

clusters. ICC was calculated as ðD 2 2 1Þ=ðb 2 1Þ, as

described above. Where the design effect was less than

one, the ICC was truncated at zero. Results were excluded

if the ICC was above one, which occurred when the

average cluster size was less than one. This could happen

because DHS sample sizes were not calculated with

specific reference to nutritional status as an outcome, so

that average cluster sizes of less than one were possible

when only a proportion of women interviewed had an

eligible child. This phenomenon was even more marked

for immunisation status, as the age range of interest was

even narrower so the chance of finding a child was lower,

resulting in a further reduction in sample size.

Statistical methods

Median prevalences and interquartile ranges were

calculated for wasting and stunting in rural, urban and

national settings.

The distributions of the ICC across the different surveys

were found to be highly asymmetric, with many low

values and some high ones. For this reason, medians were

used to summarise the distributions, and non-parametric

tests were used throughout20.

Since age criteria for children in the different

DHS surveys varied widely (24 reports measured children

0–35 months of age, six reports measured children aged

0–47 months and 28 reports measured children aged 0–59

months), a Mann–Whitney rank sum test20 was carried out

to determine whether it was appropriate to combine

surveys or whether analysis could only be carried out on

surveys with identical age groupings.

Survey results from 46 different countries were included

in the study. There was no evidence to suggest that ICC

varied according to the age group studied for either

stunting or wasting (P . 0.6 for combined and urban

samples and P . 0.4 for rural; Mann–Whitney rank sum

test). Surveys that used different age criteria for anthro-

pometric measurements were therefore combined.

All analyses were carried out using STATA, version 7

(Stata Corp., College Station, TX, USA).

Effectiveness of geographical targeting

We investigated the effectiveness of geographic targeting,

at the levels of malnutrition and ICC encountered in each

survey, by estimating the proportion of malnourished

children who would be covered by a programme

successfully targeting the 10% of clusters with the highest

malnutrition rates. This was done by making the

frequently adopted assumption21,22 that the cluster-

specific rates ( p) of stunting and wasting follow beta

distributions defined by the ICC (r) and mean cluster-

specific rate (p). Beta, rather than normal, distributions are

used here since they are bounded by zero and 100% (see

Appendix for full explanation of formulae).

Results

Table 1 shows the median prevalences of undernutrition

by area. The prevalence of stunting was greater than that

of wasting. The median prevalence for stunting was 4.6

times higher than that for wasting in the national sample.

The corresponding ratios for urban and rural settings were

3.9 and 5.0, respectively.

Wasting and stunting were more common in rural than

in urban settings. The median prevalence of wasting was

1.2 times, and of stunting 1.5 times, higher in rural

compared with urban settings.

Most countries showed very little evidence of within-

cluster correlation of childhood undernutrition (Figs 1

and 2). For wasting, 53/58 (91%) of the national samples

were characterised by ICC below 0.1 (low clustering). The

number of surveys with ICC below 0.1 was greater in rural

(49/52, 94%) than in urban (42/52, 81%) samples. For

stunting, 45/58 (78%) of national samples were below the

0.1 cut-off point for low levels of clustering, with

frequencies similar for urban (38/51, 74%) and rural (40/

Table 1 Prevalence (%) of wasting and stunting by national,
urban and rural area. Values are expressed as median (interquar-
tile range)

Urban Rural National

Wasting 5.8 (2.7–9.3) 7.0 (3.0–11.6) 6.3 (2.8–10.4)
Stunting 22.4 (15.3–32.4) 34.7 (26.6–43.0) 29.1 (19.2–37.7)

Fig. 1 Distribution of the values of the intra-cluster correlation
coefficient (ICC) for wasting, stunting and immunisation status;
national samples
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52, 77%) samples. In stark contrast, the distribution of ICC

for immunisation status showed evidence of substantial

clustering: just 5/50 (10%) of ICCs were below 0.1 in the

national samples, with 10/41 (24%) below 0.1 in the urban

samples and 7/46 (15%) in the rural samples.

The ICCs for stunting were significantly higher than

those for wasting for national (median: 0.054 vs. 0.032,

P ¼ 0.002; Wilcoxon signed rank test), urban (0.068 vs.

0.032, P ¼ 0.022) and rural (0.035 vs. 0.022, P ¼ 0.005)

samples. ICCs for stunting were significantly higher in

urban than in rural samples (median: 0.068 vs. 0.035,

P ¼ 0.014; Wilcoxon signed rank test). Significant urban–

rural differentials in the extent of area-level clustering

were not observed for wasting (0.032 vs. 0.035, P ¼ 0.090)

or immunisation status (0.261 vs. 0.258, P ¼ 0.728).

Calculation of the proportion of malnourished children

who would be covered by a national programme

successfully targeting the 10% of clusters with the highest

malnutrition prevalences showed that coverage for

wasting was better than for stunting. For wasting, 23% of

countries would achieve less than 20% coverage,

compared with 76% of countries achieving less than 20%

coverage for stunting. For stunting there were no countries

that would achieve a coverage rate greater than 40%,

whereas for wasting 21% of countries had a coverage rate

between 40 and 60%, and 6% of countries a coverage rate

between 60 and 80%.

Figures 3 and 4 illustrate the coverage of malnourished

children achieved by a programme that targets the 10% of

clusters with the highest prevalence of undernutrition, by

prevalence of undernutrition and level of clustering. The

figures illustrate the fact that coverage is crucially

dependent on the overall prevalence of malnutrition as

well as the ICC. If the prevalence is only 1%, then an ICC of

0.1 yields over 75% coverage whereas if the prevalence is

20% then the equivalent coverage is below 25%. Coverage

also increases with ICC, and the increase in coverage is

greater where the prevalence of malnutrition is lower.

Discussion

This study shows that across a wide range of developing

countries, there is little area-level clustering of childhood

undernutrition. This is true at the national level, and for

rural communities and urban neighbourhoods separately.

This surprising result suggests that virtually all of the

observed within-country differences in childhood nutri-

tional status are determined at the level of the household,

or even the individual child, rather than being the result of

shared unfavourable environmental conditions.

On the face of it, this finding may seem incompatible

with what is widely known about the marked differences

in the prevalence of childhood undernutrition between,

for example, urban and rural areas of the same country23.

However, it is quite possible to have a rather large average

difference in nutritional status between urban and rural

areas and still show a low ICC if the within-area variance of

nutritional status is sufficiently large. This is precisely the

situation revealed by this study, repeated in country after

country. It underlines the importance of the issue of

within-area heterogeneity of nutritional risk first raised by

Hoddinott3.

The virtual absence of clustering in childhood under-

nutrition was underscored by the comparison with

Fig. 2 Distribution of the values of the intra-cluster correlation
coefficient (ICC) for wasting and stunting; urban and rural samples

Fig. 4 Coverage of malnourished children achieved by a pro-
gramme that targets the 10% of clusters with the highest rate
of stunting, by prevalence of malnutrition and level of clustering.
ICC – intra-cluster correlation coefficient

Fig. 3 Coverage of malnourished children achieved by a pro-
gramme that targets the 10% of clusters with the highest rate
of wasting, by prevalence of malnutrition and level of clustering.
ICC – intra-cluster correlation coefficient
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immunisation status. Immunisation status, as a measure of

both access to health care and of the effectiveness of area

health services, is bound to be similar in children who live

close to each other. In many countries, parents scarcely

influence whether or not their children get vaccinated;

rather, this is mostly left to the discretion of their health-

care providers. Childhood nutritional status, on the other

hand, is the outcome of myriad decisions about resource

allocation taken within the household. It is therefore not

surprising that it varies dramatically from neighbour to

neighbour.

The DHS sampling methodology requires that all

eligible children within the age range be selected in each

family and where there is homogeneity within the family

then this can lead to an overestimation of ICC. However,

analyses carried out by Lé and Verma24 using DHS I and

DHS II reports, looking at the effect of clustering of child

nutritional indicators on the design effect, within a

sample of women, concluded either a small or negligible

increase in design effect. They attributed this to the fact

that the age range for inclusion into the survey was

narrow and that in the majority of cases more than one

child was not common.

The present analysis assumes that the randomly selected

clusters were a reasonable proxy for the communities or

neighbourhoods in which households are located.

However, it might be argued that DHS survey clusters

are a poor proxy for a true ‘neighbourhood’. Often, they

consist only of a few city blocks or a segment of a village.

Since clustering is always more pronounced within small

geographic areas than within larger ones25, this will lead to

our study overestimating the degree of true neighbour-

hood-level clustering. This effect might explain the

observed differences in the clustering of stunting between

urban and rural samples, but does not explain why, in

general, levels of clustering of malnutrition are so

uniformly low. We also recognise that, in a few rural

areas of very low population density, DHS clusters are

actually quite large, encompassing children living in

numerous ‘locations’. However, children living in these

large, dispersed clusters still share many environmental

constraints with their nearest neighbours and might have

been expected to show similar nutritional outcomes.

The study found that there was even less within-area

homogeneity for wasting than for stunting. This may be to

some extent explained by the different mechanisms by

which such nutritional deficits occur. Wasting is more

immediate and susceptible to recovery, whereas with

stunting there is little chance of catch-up after being

stunted during the first two years of life26. Stunting is

associated with socio-economic status26, which is more

likely to be similar within areas. Thus it would be expected

that stunting would cluster more, although not necessarily

to the same extent as socio-economic status since there

will be different driving forces affecting clustering for the

different variables.

The lack of clustering of childhood undernutrition

would suggest that targeting on a geographic basis would

frequently result in relatively high levels of leakage and

under-coverage, and therefore poor cost-effectiveness. A

literature review revealed only two papers4,5 that had

examined the effect of clustering of childhood nutritional

indicators and that these studies were both in agreement

with the findings of this study. For example, in a study of

seven different cities in Africa, Asia and Latin America,

Morris has demonstrated that there were very low levels of

clustering for weight-based indicators (ICC ¼ 0.04,

median weight/height and ICC ¼ 0.08, median weight/

age) and low/moderate clustering for the height-based

indicator (ICC ¼ 0.12, median height/age)4.

Our study also revealed that very low levels of clustering

call into question the appropriateness of geographic

targeting. In fact, for stunting, the prevalence of which is

rarely below 10% in developing countries, low levels of

clustering would result in very poor coverage for a

hypothetical programme successfully targeting the 10% of

clusters with the highest stunting rates. For example, if we

took the median stunting ICC from this study (0.054) and

the median prevalence (30%), then targeting the 10% of

clusters with the highest rates of stunting would only

achieve around 15% coverage of stunting cases. The

programme would not reach the remaining 85% of stunted

children. Even at higher levels of clustering, geographic

targeting would still result in low coverage levels. Wasting

would fare slightly better, but only where the prevalence

rates were so low that it would not be targeted for large-

scale interventions anyway.

In general, geographic targeting is an attractive targeting

mechanism that is easy to implement, has low adminis-

trative costs, minimises the potential for fraud, and

requires limited household- and individual-level infor-

mation compared with other forms of targeting2. However,

if geographic factors are not especially good predictors of

childhood undernutrition, as demonstrated in this study,

and where prevalence rates are high, as is often the case,

then geographic targeting of interventions may lead to

excessive leakage of benefits to those at low risk while

leaving many of those at higher risk uncovered.

Given the problems of geographic targeting, house-

hold-level targeting might seem to be a more appropriate

mechanism. However, this implies having to be able to

predict those households at highest risk, and it is not

obvious that this would be able to be done with an

acceptable level of precision. The only options left would

be blanket coverage or screening for the first signs of

malnutrition. The former has cost–benefit implications

and the latter is only acceptable if rapid remedial action is

possible. One other alternative method is to combine

geographic with household targeting, where areas are

selected first on a geographic basis and then targeting is

refined to household level. Above all, with the knowledge

in mind that undernutrition may not be well defined by
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geographic area, as was originally thought, this study

addresses the need for greater clarity in clearer targeting

criteria.

More importantly, the fact that a randomly selected pair

of children from the same area in a developing country

appear to share so little common risk indicates a clear

need to develop a new generation of nutrition interven-

tions that are flexible enough to respond to the needs of

every individual family and child.

References

1 Millennium Development Goals. Millennium Declaration
2000 [online]. Available at www.developmentgoals.org.
Accessed 1 July 2002.

2 Baker JL, Grosh ME. Poverty reduction through geographic
targeting: how well does it work? World Development 1994;
22: 983–95.

3 Hoddinott J. Targeting: Principles and Practice. Technical
Report No. 9. Washington, DC: International Food Policy
Research Institute, 1999.

4 Morris SS. Targeting urban malnutrition: a multi-city analysis
of the spatial distribution of childhood nutritional status.
Food Policy 2001; 26: 49–64.

5 Morris SS, Levin C, Armar-Klemesu M, Maxwell D, Ruel M.
Does Geographic Targeting of Nutrition Interventions Make
Sense in Cities? Evidence from Abidjan and Accra. FCND
Discussion Paper No. 61. Washington, DC: International
Food Policy Research Institute, Food Consumption and
Nutrition Division, 1999.

6 Bennett S. The EPI cluster sampling method. A critical
appraisal. Bulletin of the International Statistical Institute
1993; 55(Book 2): 21–35.

7 Hamil PVV, Drizid TA, Johnson CL, Reed RB, Roche AF,
Moore WM. NCHS Growth Curves for Children Birth–18
years. Vital and Health Statistics Series 11, No. 165. DHEW
Publication No. (PHS):78-1650. Hyattsville, MD: Department
of Health, Education and Welfare, 1977.

8 World Health Organization (WHO). Physical Status: The Use
and Interpretation of Anthropometry. Geneva: WHO, 1995.

9 Megill DJ. Recommended Sample Design for 1999 Enquete
Permanenet Aupres des Ménages. Washington, DC:
US Bureau of the Census, 1999.

10 Yansaneh IS, Eltinge JL. Empirical Studies of Design Effect
Components in the Demographic and Health Surveys 2003
[online]. Available at http://unstats.un.org/unsd/hhsurveys/
final.htm. Accessed April 2003.

11 Commenges D, Jacqmin H. The intraclass correlation
coefficient: distribution-free definition and test. Biometrics
1994; 50: 517–26.

12 Snedecor GW, Cochran WG. Statistical Methods, 8th ed.
Ames, IA: Iowa State University Press, 1989.

13 Donald A, Donner A. Adjustment to the Mantel–Haenszel
chi-square statistic and odds ratio variance estimator when
data are clustered. Statistics in Medicine 1987; 6: 491–9.

14 Edwards TC, Moisen GG, Cutler DR. Assessing Map Accuracy
in Remotely-Sensed, Ecoregion-Scale Cover Map [online],
1998. Available at http://ella.nr.usu.edu/,utcoop/tce/
publications/rse98.pdf. Accessed 9 July 2002.

15 Bennett S, Woods T, Liyanage W, Smith D. A simplified
general method for cluster-sample surveys of health in
developing countries. World Health Statistics Quarterly
1991; 44: 98–106.

16 Shackman G. Sample size and design effect. Presented at
Albany Chapter of American Statistical Association, March
2001 [online]. Available at http://faculty.smu.edu/slstokes/
stat6380/deff%20doc.pdf. Accessed 8 July 2002.

17 Kish L. Survey Sampling. New York: John Wiley & Sons,
1965.

18 Katz J, Carey VJ, Zeger SL, Sommer A. Estimation of design
effects and diarrhea clustering within households and
villages. American Journal of Epidemiology 1993; 138:
994–1006.

19 Katz J. Sample-size implications for population-based cluster
surveys of nutritional status. American Journal of Clinical
Nutrition 1995; 61: 155–60.

20 Hollander M, Wolfe DA. Nonparametric Statistical Methods.
New York: John Wiley & Sons, 1973.

21 Donald AW, Gardner IA, Wiggins AD. Cut-off points for
aggregate herd testing in the presence of disease clustering
and correlation of test errors. Preventive Veterinary Medicine
1994; 19: 167–87.

22 Bohning D, Greiner M. Prevalence estimation under
heterogeneity in the example of bovine trypanosomosis in
Uganda. Preventive Veterinary Medicine 1998; 36: 11–23.

23 Menon P, Ruel MT, Morris SS. Socioeconomic Differentials in
Child Stunting are Consistently Larger in Urban than in
Rural Areas. FCND Discussion Paper No. 97. Washington,
DC: International Food Policy Research Institute, Food
Consumption and Nutrition Division, 2000.
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Appendix

The distribution function of the cluster-specific rates for

known p and r is as follows:

fðp=a;bÞ ¼ p ða21Þð1 2 pÞðb21Þ Gðaþ bÞ

GðaÞGðbÞ
;

where a ¼ ðp=rÞ2 p, b ¼ ½ð1 2 pÞ=r� þ pþ 1 and Gð:Þ

denotes the Gamma function.

Defining k as the 90th centile of the cluster-specific rates

(i.e. Fa;bðkÞ ¼ 0:9, where Fa;b is the distribution function

of the beta distribution), it follows that the proportion

of cases found in the 10% of clusters with highest rate is

given by:

Ð 1

k pfðp=a;bÞ d pÐ 1

0 pfðp=a;bÞ d p
¼

ð1

k

fðp=aþ 1;bÞ d p

¼ Faþ1;bðkÞ ¼ Faþ1;bðF
21
a;bð0:9ÞÞ:

This formula was used to estimate the proportion of cases

found in the 10% of clusters with highest rate for each

survey, and to construct predictive graphs showing the

relationship between ICC and the prevalence of malnu-

trition and this proportion. The statistics package R

(Lucent Technologies, NJ, USA) was used in the

calculations involving beta distributions.
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