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Abstract

We present an operator algebraic approach to Wigner's unitary-antiunitary theorem using some classical
results from ring theory. To show how effective this approach is, we prove a generalization of this
celebrated theorem for Hilbert modules over matrix algebras. We also present a Wigner-type result for
maps on prime C*-algebras.
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1. Introduction and statement of the results

Wigner's unitary-antiunitary theorem reads as follows. Let H be a complex Hilbert
space and let T : H —> H be a surjective map (linearity is not assumed) with the
property that

\{Tx,Ty)\ = \(x,y)\ (x, y e H).

Then T is of the form

Tx = <p(x)Ux (xeH).
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[2] Algebraic approach to Wigner's theorem 355

where U : H —> H is either a unitary or an antiunitary operator (that is, U is either
an inner product preserving linear bijection or a bijective conjugate-linear map with
the property that (U.x, Uy) = (v, x) for all x,y e H) and <p : H —• C is a so-called
phase-function which means that its values are of modulus one. This celebrated result
plays a very important role in quantum mechanics and in representation theory in
physics.

There are several proofs of this theorem in the literature. See, for example, [LoMe],
[Rat], [ShAl], [Uhl] and the references therein. The common characteristic of the
arguments presented in those papers is that they manipulate within the Hilbert space
which seems to be very natural, of course. In this paper we offer a different approach
to Wigner's theorem. Namely, instead of working in H, we push the problem to a
certain operator algebra over H and apply some well-known results from ring theory to
obtain the desired conclusion. We should remark that in relation to Wigner's theorem,
operator algebras appear also in the papers of Uhlhorn [Uhl] and Wright [Wri].
However, in [Uhl] they have nothing to do with the proof of the unitary-antiunitary
theorem. Indeed, Uhlhorn presents an argument which can be classified into the first
mentioned group of proofs. Moreover, in [Wri] the author uses Gleason's theorem
at a crucial point of the proof which is a deep result with long proof. The advantage
of our algebraic approach is that in the classical case, our proof is very clear and
short, and it uses only a well-known theorem of Herstein on Jordan homomorphisms
of rings whose proof needs only few lines of elementary algebraic computation. It
is noteworthy that this result of Herstein was known before the first complete proofs
of Wigner's theorem appeared. Furthermore, which is more important, our approach
makes it possible to generalize Wigner's original theorem for Hilbert modules, that
is, for inner product structures where the inner product takes its values in an algebra,
not necessarily in the complex field. Considering the previously mentioned proofs,
they are based on such characteristic properties of the complex field that one would
meet very serious difficulties if one tried to reach our more general result using those
methods (in fact, we are convinced that such an approach simply cannot be successful).

We now turn to our results. Let A be a C*-algebra. Let Jf be a left A-module with
a map [•. •] : Jf x Jf ->• A satisfying

(i) [f + g.h] = [f,h] + [g,h]
(ii) [af, g] =a[f,g]

("0 [g,f] = lf.g]*
(iv) [/. / ] > 0 and [/, / ] = 0 if and only if / = 0

for every f, g.h e Jf and a € A. If Jif is complete with respect to the the norm
/ •-*• ll[/- /111'72, then we say that Jf is a Hilbert A-module with generalized inner
product [•, •]. This concept is due to Kaplansky [Kap] and in its full generality to
Paschke [Pas]. Nowadays, Hilbert modules over C*-algebras play a very important
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role for example in the K-theory of C*-algebras.
There is another concept of Hilbert modules due to Saworotnow [Saw]. These are

modules over //*-algebras. //'-algebras are common generalizations of L2-algebras
(convolution algebras) of compact groups and Hilbert-Schmidt operator algebras on
Hilbert spaces. The only formal difference in the definition is that in the case of
Saworotnow's modules, the generalized inner product takes its values in the trace-
class of the underlying //*-algebra and the norm with respect to which we require
completeness is / i-> (tr[/. /])1 / 2 . Here, trdenotes the trace-functional corresponding
to A (see [SaFr]). We should note that Saworotnow originally posed another axiom,
namely, a Schwarz-type inequality [Saw, Definition 1], However, as we proved in
[Moll, Theorem], this axiom is redundant. Saworotnow's modules appear naturally
when dealing with multivariate stochastic processes (see [WiMa, Section 5], [Mas]).
Moreover, as it turns out from [Cno, Section 3]. for example, they have applications
in Clifford analysis and hence in some parts of mathematical physics. The theory
of these modules is more satisfactory in the sense that many more Hilbert space-like
results have counterparts in Hilbert modules over //"-algebras than in Hilbert modules
over C*-algebras. Note that it seems to be more common to use right modules instead
of left ones. Of course, this is not a real difference, only a question of taste.

If A = M(/(C) the algebra of all d x d complex matrices, then, A being finite
dimensional, the norms on A are all equivalent. Therefore, the Hilbert modules over
the C*-algebra M,,(C) are the same as the Hilbert modules over the //*-algebra Mr/(C).

Theorem 1 generalizes the original unitary-antiunitary theorem. As usual, in a C*-
algebra A, \a\ denotes the absolute value of the element a which is the unique positive
square-root of a*a. If J ^ is a Hilbert module, then the linear bijection U : Jtf -> Jf
is called A-unitary ifU(af) = aUf ( / e Jff, a e A) and [Uf, Uf] = [/. / ' ] holds
true for every / , / ' € Jf.

THEOREM 1. Let J^f be a Hilbert module over the matrix algebra A = A/,/(C) and
suppose that there exist vectors g,h e J5C such that [g, h] = I. Let T : Jf —* JSP be
a surjective function with the property that

(1) |[7-/,r/']| = |[/./']| (f.fe.Jf).

Ifd > 1, then there exist an A-unitary operator U : J? —> Jf? and a phase-function
(p : Jf -> C such that

Tf = <p{f)Uf (feJT).

Ifd = 1, then there exist an either unitary or antiunitary operator U on Jf? and a
phase-function <p : 3f —> C such that

Tf = <p(f)Uf (f€,Jf).
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It seems natural to ask what happens if A is an infinite dimensional algebra. We
have the following result for trivial modules over prime C*-algebras. If s/ is a C*-
algebra, then si is a left module over itself and if we set [/. g] = fg*(f.g e ,e/),then
si becomes a Hilbert module over si. This is what we mean when speaking about
trivial modules. A ring 3?. is called prime if for any a. b e 3$, the relation atffb = {0}
implies that either a — 0 or b = 0. For example, every algebra of operators which
contains the ideal of all finite rank operators is easily seen to be prime. Moreover, von
Neumann algebras with trivial centre, that is, factors, are prime C*-algebras.

THEOREM 2. Let si be a prime C*-algebra with unit and let <p : si —»• si be a
surjective function such that

(2) \<j>(A)<p(B)*\ = \AB*\ (A, Be si).

Then there exist a unitary element U € si and a phase-function <p : si —>• C such
that (p is of the form

<p(A) = <p(A)AU (Aesi).

This result is in accordance with Theorem 1. In fact, every A-linear operator on
the trivial module si is equal to the operator of right multiplication by an element of
si. It is easy to see that if such a map is A-unitary, then the corresponding element of
si is unitary.

Finally, we give a new proof of the real version of Wigner's theorem.

THEOREM 3. Let H be a real Hilbert space and T : H -* H be a surjective
function with the property that

(3) | ( 7 \ v . 7 » | = |(*,y)l ( x , v € / / ) .

Then there exist a unitary operator U : H —> H and a function q> : H —>• {— 1, 1}
such that T is of the form

Tx=<p(x)Ux (x € H).

The proofs of the results are based on the following theorems from ring theory:

— Herstein's homomorphism-antihomomorphism theorem for Jordan homomor-
phisms which map onto prime rings.

— A result of Martindale on elementary operators on prime rings.
— A theorem of Martindale (or a result of Jacobson and Rickart) on the extend-

ability of Jordan homomorphisms defined on the symmetric elements of a ring
with involution.
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2. Proofs

As mentioned in the introduction, Saworotnow's modules have many convenient
properties which are familiar in the theory of Hilbert spaces. First of all, if JV is a
Hilbert module over an //*-algebra A, then JV is a Hilbert space with the inner product
(•, •) = tr[-, •]. If M c Jff is a closed submodule, then for the closed submodule
Af = {/ € J f : [/, g] = 0(g G M)} we obtain M1' = ML. So, we have the
orthogonal decomposition J¥ = M © Mp [Saw, Lemma 3]. A linear operator T on
Jf which is bounded with respect to the Hilbert space norm defined above is called
an A-linear operator if T{af) = aTf holds true for every f e Jff and a € A. Every
A-linear operator T is adjointable, namely, the adjoint T* of T in the Hilbert space
sense is A-linear and we have [ 7 / , g] = [f, T*g] (/, g e Jff) [Saw, Theorem 4].
Consequently, the collection of all A-linear operators forms a C*-subalgebra of the
full operator algebra on the Hilbert space Jff.

For the proof of our Theorem 1 we need the following lemma. In the case of
a Hilbert module Jff over an //"-algebra, the natural equivalent of the Hilbert base
is the so-called modular base [Mol2]. A family {/„}„ C Jff is said to be modular
orthonormal if

(a) [fa, fp] = 0 if a ?0,
(b) [fa, fa] is a minimal projection in A for every a.

A maximal modular orthonormal family of vectors in ,jff is called a modular base.
The common cardinality of modular bases in Jff is called the modular dimension of
Jff (see [Mol2, Theorem 2]).

LEMMA 1. Let Jif be a Hilbert A-module over the matrix algebra A = Md(C).
If M C JfC is a submodule which is generated by finitely many vectors, then M has
finite modular dimension.

PROOF. Observe that since A is finite dimensional, the submodule generated by
finitely many vectors has finite linear dimension. Therefore, every such submodule
is closed. Let M be generated by the vectors / , , . . . . /„. Consider the submodule
M! = Aft c M. By orthogonal decomposition we can write f2 = g2 + h2, where
h2 e Mi, g2 € M D Mf. Clearly, M2 = Ag2 C Mf and we have / , , f2 e M, 4- M2 c
M. Next, let / 3 = g3 + h3, where /i3 e M, + M2 and #, e M D (M, + M2)';. Let
M3 = i4g3. We have f,f2,f € M| + M2 + M3 C Af. Continuing the process
we obtain vectors gi,g2, ... , gn with [g,, g,] = 0 (/ ^ ; ) for which / , , . . . , / „ is
included in the submodule generated by gi, . . . , gn. Consequently, M is generated
by theg/t's.

Let g e J^5 be a nonzero vector. Write [g, g] = ^ n A.j;en, where the et's are
pairwise orthogonal minimal projections. Let hk = (\/Xk)ekg. Apparently, we
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have [hj,hj] = 0 (i' ^ j) and [hk,hk] is a minimal projection. We assert that
^2k Xkekhk = g. This can be verified by taking the generalized inner product of both
sides of this equation with g and then with any vector / e Jiff for which [/, g] — 0.
Collecting the ft's corresponding to the generating vectors g\,... , g,, of M, by [Mol2,
Theorem 1] we obtain a finite modular base in M. •

REMARK 1. The previous lemma tells us that, under the above assumption on Jff,
a submodule of Jtf has finite modular dimension if and only if it has a finite linear
dimension.

To emphasize how different the behaviour of Hilbert modules can be from that of
Hilbert spaces, we note that in general the statement of the previous lemma does not
hold true for Hilbert modules over infinite dimensional //'-algebras.

In what follows we define operators which are the natural equivalent of the finite
rank operators in the case of Hilbert spaces. If / , g € Jf7, then let f Q g denote the
A-linear operator defined by

(fOg)h = [h,g]f (h

It is easy to see that for every A-linear operator S we have

(4) S(fQg) = (Sf)Qg, (fOg)S = fO(S*g)

and

(5) (/ O g)(f O g') = ([/', g]f) Og' = fO ([g, f']g').

Define

*© gk : / , , gk € JT{k = 1, ...,n), n e N

which is a *-ideal of the C*-algebra of all A-linear operators. We note that if Jff is a
Hilbert module over Mrf(C), then the range of every element of &(Jt?) has finite linear
dimension, but there can be finite rank operators on the Hilbert space Jff which do not
belong to &(J4f). In general, if the underlying //*-algebra is infinite dimensional,
then these two classes of operators have nothing to do with each other.

The following lemma is a spectral theorem for the self-adjoint elements

LEMMA 2. Let -Jff be a Hilbert module over the matrix algebra A = Md(C). If
S e &(Jf?) is a self-adjoint operator, then S can be written in the form

where {A.l5... , kn] C R and {/i, . . . , / „ } C Jtf is modular orthonormal.
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PROOF. Let S e ^{Jf) be a self-adjoint operator. Since the range of S has finite
linear dimension, 5 can be written in the form

where the Xk's are the pairwise different nonzero eigenvalues of S and the £ t ' s are
the corresponding spectral projections. Since S is A-linear, its eigensubspaces are
submodules. Hence, every spectral projection is A-linear with range included in the
range of S. Lemma 1 yields that the range of Ek has finite modular dimension. Choose
a modular base in the range of every Ek. Using the analog of the Fourier expansion
given in [Mol2, Theorem 1, (iv)] we easily conclude that S can be written in the
desired form. •

Now, we are in a position to prove our first theorem. For the proof we need the
concept of Jordan homomorphisms. A linear map (p between algebras .$/ and 38 is
said to be a Jordan homomorphism if it satisfies

(p(x)2 =(j)(x2) (xestf).

or equivalently

4>(xy + yx) = <p(x)<t>(y) + 4>(y)4>{x) (x, y e srf).

P R O O F O F T H E O R E M 1. We define a linear transformation \j/ on the set of all self-

adjoint elements of &{JV) as follows. For any {A.|, . . . .A.,,} C R and {/.. . . . , / „ } c

Jtf (we do not require modular orthonormality) if

(6) S

then let

To see that \J/ is well-defined, let Hi e R and g, e Jtf be such that
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J2kkTfkQTfk \Th.Th = Y,hlTh,Tfk]{Tfk,Th]

Q gi\h,h\=

I J

Since T is surjective, we obtain that \]/ is well-defined. Due to the fact that in the form
(6) of S we have not required anything from the vectors fk, we obtain readily that \j/
is additive and real linear.

We next show that \(r is a Jordan homomorphism. Let

where {A., A.,,} c IR and {/, /„} C J(f is modular orthonormal. If {/, g} C
y? is modular orthonormal. then according to (5) we have

and

fQf-gOg=0

/ O / • / O / = ([/, /]/) ©/ = /©/

where we have used the equality [/, / ] / = / (see [Mol2, Lemma 1]). Therefore,
we have S2 = Ylk ^-\fk © fk- Since {Tf\,... , Tf,} is modular orthonormal, we have
xl/(S)2 = J^k xlTfk O Tfk. This results in

Consequently, ^ is a Jordan homomorphism, more precisely, a Jordan automorphism
of the self-adjoint elements of J?(Jf). Linearizing the equality above, that is, replac-
ing 5 by S + R we deduce

\{/(S)i/(R) + yJr(R)ilr(S) = ir(SR + RS)

for every self-adjoint S, R e ^{Jf). It is now easy to check that the map * :
defined by

https://doi.org/10.1017/S144678870003593X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003593X


362 Lajos Molnar [9]

for every self-adjoint S, R € &(Jf?) is a Jordan *-automorphism of J?(Jf?) which
extends ifr.

We claim that &(Jf?) is a prime ring. Let 5, R be A-linear operators such that
S(f O g)R = 0 holds true for every / , g € J f . For an arbitrary a e A we infer

[fl/i, g]a[Sf, h'] = [Rh, g][S(af), h'] = [S(af Q g)Rh, h'] = 0 (h, h' e Jf).

Since A is clearly a prime ring, we obtain that for every / , g,h,h' we have either
[Rh, g] = 0 or [5/ , h'] = 0. This implies that either S = 0 or R = 0 holds true
verifying the primeness of ^(Jff).

A well-known theorem of Herstein [Herl] says that every Jordan homomorphism
onto a prime algebra is either a homomorphism or an antihomomorphism. Accord-
ingly, *I> is either a *-automorphism or a *-antiautomorphism of ^(Jif). Suppose
first that it is a *-automorphism. Let g, h € J f be fixed vectors with the property that
[g, h] = I. Define a linear operator U : Jf? ->• ^ f by

(fe.Jf).

For any /? e J*" ( J f ) we have

(7) URf = V(RfOg)Th = V(R)V(fOg)Th = ̂ (R)Uf (f € Jff).

Using (5) and (1) we compute

[£//. I//] = [*0» O / ) * ( / O g)Th, Th] = [*(g O / • / O g)77i, 7A]

= [̂ CyL/TTT̂  O VUJ]g)Th, Th] = [T(J[fJ]g) Q T(y/[fJ]8)Th, Th]

= [Th, T(y/[f,f]g)][T(y/[f,f]g), Th] = [h, JU7T]g][^f[fJ]g. h]

Clearly, U is injective. Moreover, just as in the case of Hilbert spaces, by polarization
we obtain

(8) [Uf,Uf] = [f,f] (f,f'eJff).

To show the surjectivity of U we compute

URg = V(R)Ug = *(/?)*(g O g)Th = *(R)(Tg 0 Tg)Th

= *(R)([Th, Tg]Tg) = [Th, Tg]V(R)Tg.

For an arbitrary / e Jif we have *(/?) = / QTh for some R € &(Jt?). Thus the
range of [/ contains the vector

[7/i, Tg](f O r/z)(7^) = [r/i, Tg][Tg, Th]f = [h, g][g, h]f = f,
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verifying the surjectivity of U. Now, by (8) it follows that U is A-linear and hence an
A-unitary operator.

From (7) we get *(/?) = URU* (R e &(J?)). Therefore, for every / e Jf we
obtain

TfQTf = * ( / O /) = U(f © f)U* = UfQ Uf.

In view of (1), this gives us that

If, /][/, /'] = [Tf, Tf][Tf, Tf] = [(Tf 0 77)77', Tf]

= [(Uf O £7)77', Tf] = [Tf, Uf][Uf, Tf]

= [U*Tf, /][/, ITTf]

holds true for every / , / ' 6 ,Jf. Replacing / by xf (x e A), we deduce

[/'• f]x*x[f, f] = [WTf, f]x*x[f U*Tf].

Since every x € A is a linear combination of positive elements, we have

(9) [f',f]x[f,f\ = [U*Tf,fMf,U'Tf] Ore A).

According to a result of Martindale [Mar2] (see [Her2, Lemma 1.3.2]), if an elementary
operator* M> Yll=\ ak*bkdefined on a prime ring ̂  is identically 0, then a,, . . . , an e
3f. are linearly dependent over the extended centroid of £% and the same is true for
b\,... , bn e 0?.. By the remark after [Mat, Proposition 2.5], the extended centroid
of a prime C*-algebra is just C (this remarkable fact will be used also in the proof
of our Theorem 2). So, from (9) we get that for every f,feJf the elements
[/, / ' ] and [/, U*Tf] of A are linearly dependent. Fix / ' e JF. We know that the
linear operators / i-> [/, / ' ] and / i-> [/, U*Tf] are locally linearly dependent. It
is elementary linear algebra to verify that in this case these operators are (globally)
linearly dependent. Hence, we conclude that for every / ' e Jif there is a scalar ip(f')
such that cp(f)f = U*Tf. It follows that

Tf = <p(f)Uf (f

Since

||Tf ||2 = tr[77 Tf] = tr[/, / ] = tr[Uf, Uf] = \\Uf\\2

we obtain that cp is a phase-function.
It remains to consider the case when *!> is *-antiautomorphism. Just as above, let

g, h € Jf be fixed such that [g, h] = I. Define U : Jf -+ Jif by

Uf = *(g O f)Th {f € JP)-
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Clearly, U is a conjugate-linear operator. Similarly to (7). it is easy to verify that

(10) URf = V(R)*Uf

holds true for every R e &(Jf?) and / € Jf. Moreover, just as in the case when *
is a *-automorphism, we obtain

(ID [Uf,Uf] = [f.f] (feJf).

In particular. U is injective. By (10), using an argument similar to what we have
followed in the first case, one can check that U is surjective. By the conjugate-
linearity of £/, (11) yields

[Uf, Uf'] = [/', /] (/, / ' € -Jf).

Let / € Jf and define S = f O / . From (10) we obtain

= [ ( / O f)K. H\ = IK- Si=] = [U(S$), UK]

= [(77 © TfKUl-), UK\ = [U1-, Tf][Tf. UK]

for every £, § e ^f. This gives us that

l 1 = [7-§, Tf][Tf,

holds true for every / . £ € =if. Fixing £, just as in the case when ty is an auto-
morphism, we obtain that [/, £] and [/, £/"' 7"§] are linearly dependent for every / .
Therefore, § and U~lT% are linearly dependent for every £ e Jf. This shows that
there exists a phase-function q> : JF -> C such that

(12) Tf = <p(f)Uf (f€jf).

The proof is now complete in the case when d = 1.
Suppose that d > 1. In the antiautomorphic case, by (12) we have

|[ / . / ']l = \[Tf, Tf']\ = |[{//, f// '] | = | [ / ' , / ] ! (/, / ' 6 SP).

Since there are vectors g, h € J f such that [g, /j] = / , it follows that |a| = |a*| holds
true for every a e A = Md(C). As d > 1, it is an obvious contradiction, so this case
cannot arise. •

REMARK 2. Observe that if n = 1, that is, when we have the classical situation of
Hilbert spaces, our proof is much shorter (see [Mol3, Theorem 1 ] where this case was
treated) and uses only Herstein's homomorphism-antihomomorphism theorem whose
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proof needs only few lines of algebraic computation (see, for example, [Bre, Theorem
2.1] or [Pal. 6.3.2 Lemma. 6.3.6 Lemma and 6.3.7 Theorem]).

From the proof of Theorem 1 it should be clear why we have considered modules
over matrix algebras. Namely, by the structure theorem of //"-algebras due to Ambrose
[Amb]. the full matrix algebras are the only unital prime //"-algebras.

One may ask the meaning of the existence of two vectors g. h e Jf with the
property [g. h] = I which appeared in the formulation of the theorem above. We
claim that this is equivalent to the requirement that the modular dimension of Jf
is not less than d. To see this, let {/i ftl} C Jf be modular orthonormal.
Choose appropriate matrices a, e Mf/(C) such that for the vectors g, = a, f, we have
[g;, g,] = a,{f,. fj]a* = e,, (i = 1 d), the standard matrix units. It follows that
[g] + • • • + £</• g\ + • • • + gd\ = 1 • Now, let the modular dimension of Jf be less than
d and choose a modular base {/, /„} C 34?, where n < d. By [Mol2, Theorem
1, (v)] and [Mol2, Lemma 1 ] we have

[g. h] = J j g . fk][fk. h] = J > . fk][fk, fk][fk, h].
/. = ! k=\

Since [/<. /<] is a rank-one projection, we obtain that the rank of [g. h] is not greater
than n. This shows that [g. h] ^ / for every g. h e ^f. It would be interesting to
investigate Wigner's theorem also in these low-dimensional cases.

PROOF OF THEOREM 2. Let A, B e srf be arbitrary. Define

\[/(A*A- B*B) =(p(A)*4>(A) -<f>(B)*<p(B).

To see that \f/ is well-defined, let A', B' e &/ be such that

A*A - B*B = A'*A' - B'*B'.

For every S e s/ have

SA*AS- - SB"BS* = SA'*A'S* - SB'*B'S*

and by (2) we deduce

By the surjectivity of 0 there exists an S € s/ for which <p(S) = / . We infer

- <HB)"4>(B) = 4>(A')*0(A') - 4>{B'y4>(B').
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Therefore, \j/ is a well-defined map on the self-adjoint elements of si. Using an
argument very similar to the one we have just applied, one can prove that \j/ is additive.
We claim that f(I) = I. Let <f>(S) = / . We have / = 0(S)*0(S) = iJf(S*S). Since
\j/ is positivity preserving and hence monotone, by the inequality S*S < \\S\\2I < nl,
which holds true for some n e N, we infer that

On the other hand, ii{l) is a projection. In fact, we have \j/(I) = 0( / )*0( / ) . From
(2) it follows that i/f(/)2 = ty(I). By the spectral mapping theorem this means that
the spectrum of \j/(I) is included in {0, 1}. Since \{/(I) is self-adjoint, we obtain that
xjf(I) is a projection. From (13) we now get \j/(I) = I. Iff/ = 0 ( 7 ) , then we have
U*U = 4/{I) = I. On the other hand, by (2) it follows that UU* = 0 ( / )0 ( / )* =
/ /* = / . Consequently, U e si is unitary. From (2) we deduce that

AT*TA* = <p(A)4>(Ty4>(T)4>(Ay = 4>(A)\J/(T*T)<t>(Ay

holds true for every A, T e si. Choosing A = I, we obtain \(r(T*T) = U*(T*T)U.
Therefore, we get

AT*TA* = (<l>(A)U*)T*T(<t>(A)U*y.

Since this equation holds true for every T e si, it follows that

AX A* = (<p(A)U*)X(<p(A)U*y (Xesi).

By the primeness of si, using [Her2, Lemma 1.3.2] and the remark after [Mat,
Proposition 2.5] just as in the proof of Theorem 1, it follows that for every A e si the
elements A and <f>(A)U* are linearly dependent. Consequently, there exists a scalar
valued function <p : si —> C such that

cp(A)AU = 0(A) (Aesi).

This relation yields that

|^,(A)|2 | |A| |2 = | |0(A) | | 2 = | |0 (A)0(A)* | | = ||AA*|| = ||A||2 (A e si)

which implies \<p(A)\ = 1 (0 ^ A e si). U

PROOF OF THEOREM 3. If x, y e H, then let x ® y be the rank-one operator defined
by (x <S> y)z = (z, y)x (z € H). By the real version of the spectral theorem, every
symmetric (that is, real self-adjoint) finite rank operator 5 can be written in the form

S =
k=i
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where A.; € R. and xk e H. Similarly to the proof of Theorem 1, we define \{f(S) by
the formula

Repeating the argument in the corresponding part of the proof of Theorem 1, we see
that ^ is a Jordan automorphism of the symmetric elements of the ring F(H) of all
finite rank operators on H. In what follows suppose that dim H > 2. In fact, if H is
one-dimensional, then the statement of the theorem is trivial.

Consider the unitalized algebra F(H) ® RI (of course, we have to add the identity
only in the infinite dimensional case). Defining \j/(I) = I, we can extend \j/ to the
set of all symmetric elements of the enlarged algebra in an obvious way. Now we are
in a position to apply two general algebraic results of Martindale on the extension of
Jordan homomorphisms of the symmetric elements of rings with involution [Marl].
To be precise, in [Marl] Jordan homomorphism means an additive map 0 which,
besides <p(s)2 = <j>(s2), satisfies <p(sts) = 4>(s)4>(t)(p(s) as well. But if the ring
in question is 2-torsion free (in particular, if it is an algebra), this second equality
follows from the first one (see, for example, the proof of [Pal, 6.3.2 Lemma]). The
statements [Marl, Theorem 1] in the case dim H > 3 and [Marl, Theorem 2] when
dim H = 2 imply that \J/ can be extended uniquely to an associative homomorphism
of F(H) ® K/ into itself. To be honest, since the results of Martindale concern rings
and hence linearity does not appear, we could guarantee only the additivity of the
extension of i/f. However, the construction in [Marl] clearly shows that in the case of
algebras, linear Jordan homomorphisms have linear extensions. By the uniqueness of
the extension it is apparent that the extension is *-preserving. Next, observe that our
extension maps F(H) into itself. Thus we have an associative *-homomorphism «!>
of F{H) into itself which extends ty. It is easy to see that * is a bijection. Indeed,
for arbitrary nonzero vectors x, y e H pick a vector z e H with (x, z), (v, z) ^ 0.
Plainly, x ® v is a nonzero scalar multiple of the operator x®x-z®z-y<8y. Since our
i/f is a bijection from the set of symmetric elements of F(H) onto itself and * is an
(associative) homomorphism, we obtain that every rank-one operator is in the range
of ^ . This proves the surjectivity of * . The injectivity follows from the simplicity of
the algebra F(H).

The form of *-automorphisms of subalgebras of the full operator algebra on H
containing F(H) is well-known. It follows easily from [Che, 3.2. Corollary], for
example, that there is a unitary operator U on H for which

(A e

This gives us that

Tx ®Tx = * (x <g> x) = U(x (8) x)U* = (Ux) (8) (Ux) (x e H).
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This implies that Tx is a scalar multiple of U.x, and the scalar must be of modulus
one. The proof is now complete. •

REMARK 3. Observe that in the case when n > 3 we could have used a theorem of
Jacobson and Rickart [JaRi, Theorem 5]. Nevertheless, we referred to Martindale's
paper since it covers the two-dimensional case as well.
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