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Abstract

Let G be a group. We say that G € 7 (o) provided that every infinite set of elements of G contains three
distinct elements x, y, z such that x #y, [x,y,z] =1 =[y, z, x] = [z, x, y]. We use this to show that for a
finitely generated soluble group G, G/Z,(G) is finite if and only if G € 7 (c0).
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1. Introduction

Paul Erdds [10] posed the following question. Suppose that every infinite set of
elements of a group G contains a pair of elements which commute. Does there exist an
upper bound for the order of (finite) subsets of G consisting of pairwise noncommuting
elements?

An affirmative answer to this question was given by Neumann [10] who proved that
an infinite group G is centre-by-finite if and only if every infinite subset of G contains
two distinct commuting elements. Since this paper, problems of a similar nature have
been the object of several articles (for example, [1-10]).

Let G be a group and y a class of groups. We say that G satisfies the condition (y, o)
if every infinite subset of G contains a pair of elements which generate a subgroup in
the class y. We also say that G satisfies condition 7 (c0) (or G is in 7 (o0)) if every
infinite set of elements of G contains three elements x, y, z such that

x#y, [xyzl=1=[zx]I=[z x,y]

Our terminology and notation are standard and follow [4]. In this paper Z,(G) denotes
the (n + 1)th term of the upper central series of G, and I',,(G) denotes the nth term of
the lower central series of G. Let N, and &, be the classes of nilpotent groups of class
at most 2 and 2-Engel, respectively. Obviously

(N3, 00) C(Ey, 0) C T ().
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In [3], Delizia proved that a finitely generated soluble group G is in (N, o) if and
only if G/Z,(G) is finite. In [2], Abdollahi proved that a finitely generated soluble
group G is in (&;, ) if and only if G/Z,(G) is finite.

In this paper, we prove the following theorem.

MaiN Tueorem. Let G be a finitely generated soluble group. Then G € 7 (o0) if and
only if G/Z,(G) is finite.

The main theorem implies that, for a finitely generated soluble group G, the
following conditions are equivalent:

Ge(Ny, ), Ge(&E,), GeT (o), G/Zy(G)is finite.

2. Results
In the first result we prove the sufficiency.
Lemma 2.1. Let G be a group and suppose that G|Z,(G) is finite. Then G € T (c0).

Proor. Let X be an infinite subset of G. There exists an infinite subset X of X such
that xZ,(G) = yZ,(G) = z2Z>(G), for x, y,z€ Xp. So [x, y, z] = [y, z, x] = [z, x,y] = 1. O

Recall that a group G is called a restrained group if (x)®” is finitely generated for
all x,yeG.

ProposiTioN 2.2. Every group in T (o0) is a restrained group.

Proor. Let G be a group in 7 (c0) and x, y € G such that y has infinite order. Since
X ={xy' | i > 1} is an infinite subset of G, there exist three integers i < j < k such that

[0, 7/, 0/ = Do/, o, 0] = [of, 0y, xy/] = 1. 2.1)
It follows from the equations [xy’, xy’] = x> x*" and (2.1) that
iy Ly ik oY =1,
xy Ry jxyj—ixx_ijyk -1,
xyj_ix_lyi_kxyk_jxx_ykxyi =1,
and so ¥ = ¥ x Lx" ¥ x~!. In this case we conclude that
(xyi (P> 0) < (" 1 |n| <k).

Now starting from the infinite set X = {xy | i < 1} and repeating the previous argument,
we can prove that

(xyi <0y < (" sl < k),

for a suitable integer k' > 1. Therefore there exists a positive integer m such that
OO = (" 1 |n| < m). O
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LemmA 2.3. Let G be a finitely generated group in T (o). If G/Z3(G) is finite, then so
is 2,(Z3(G))/ Z:(G).

Proor. It is clear that Z,(G) < Z,(Z3(G)). Let x € Z5(Z3(G)) < Z3(G). Then, for any
v, 2, t €@,

[x,y’Z, t]: 1, [X,y’Z]t=[x,y,Zt]=[X,y,Z]- (22)
Let |G/Z3(G)| = n. It follows that, for any y, z€ G, [x,Y",7"] =1 and so, by (2.2),
[x, v, 2" =1=[x",y,z]. Thus X" € Z»(G) and Z,(Z5(G))/Z»(G) has finite exponent
dividing n?. Now Z(Z3(G))/Z»(G) is a finitely generated nilpotent torsion group and
thus finite as required. O

Levmma 2.4. Let G be a finitely generated nilpotent group of class at most 3 which
satisfies T (o). Then G/Z,(G) is finite.

Proor. We consider the following cases.

Case I. Let G be a torsion group. Then G is a finitely generated nilpotent torsion group
and thus finite.

Case 1. Let G be a torsion-free group. We claim that G = Z,(G). Since G is nilpotent
of class at most 3,

X, y", 21 =[x, p, 2", [x,9, 208 =[x, 9, 2], (2.3)

for all g, x,y,z in G and all integers m,n,k. Now consider the infinite subset
X = {xy', xy%, xy°, ...} of G. Since G is in 7 (c0), there exist three positive integers
i # j, k such that

[y, o/, 21 = 1= [y, o, 0] = Ik, o, o],
Repeated application of (2.3) yields
1= Do, w7, 151 = (Ly, x, xlx, v,y

Since G is torsion-free, [x,y, y]k =[y, x, x] and also [x,y,y) = [y, x, x]. Therefore
[x,y,y]¥/ =1, and hence [x,y,y] = 1. Thus G is a 2-Engel group. Now since G is
metabelian [11, Theorem 7.36] implies that ['3(G) = 1, and so G = Z,(G).

Case I11. Let G be neither a torsion nor a torsion-free group. Then G/G; is a torsion-
free group, where G, is a torsion subgroup of the nilpotent group G. Since 7 (o0) is
closed under taking subgroups and homomorphic images, we have by Case II that
G /G, is nilpotent of class 2 and thus I'3(G) < G; is finite. Therefore G/Z;(G) is
finite. m|

ProposiTiON 2.5. Let G be a finitely generated nilpotent group of class ¢ in T (o). Then
G/Z>(G) is finite.
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Proor. We argue by induction on c. Since G/Z(G) is nilpotent of class ¢ — 1, we have
that G/Z3(G) is finite. Now Z3(G)/Z>(Z3(G)) is also finite by Lemma 2.4. The result
follows from Lemma 2.3. O

The following result is analogous to [4, Lemma 1].

Lemma 2.6. Let G be an infinite residually finite group satisfying the condition T (o).
Then the centraliser Cg(x) is infinite, for all x in G.

Proor. Suppose, for a contradiction, that G has an element x with finite centraliser
Cg(x). Since G is residually finite, there exists a normal subgroup N of G such that
N N Cg(x) =1 and G/N is finite. In particular, N is infinite. Consider the infinite set
{x" :n e N}. Then, by the property 7 (c0), there exist three elements r, s, € N such
that r # s, [x", x*, x'] = [&, x", x*] = [x*, X', ¥] = 1. Now the equation [x", x*, x'] =1
implies that [x”, x4, x] = 1 with p = rt! € Nand g = st! € N. It follows that [x”, x9] €
NN Cg(x) =1, since [x7 ", x] = [gp~", x]*P9 ' [pg~", x] € N. Hence [x, x7] =1 and
xP1" € Cg(x). Since xP7' =[pg~!, x'Ix, we get [pg~',x'1e NN Cs(x)=1 and
pg~' € NN Cg(x) =1, so p = g. We thus obtain the contradiction that r = s. O

CoroLLARY 2.7. Let G be an infinite residually finite group satisfying the condition
T (c0). Then every element x of G is contained in an infinite abelian subgroup of G.

Lemma 2.8. Let G be an infinite residually finite group satisfying the condition T (o).
Then the centraliser Cg(X) is infinite, for any finite subset X of G.

Proor. The proof is by induction on m=|X|. If m=1, the result is true by
Lemma 2.6. Suppose that m > 1, X ={xy, ..., x,} and Cs(x1, ..., X,-1) is infinite.
Then, by Corollary 2.7, there exists an infinite abelian subgroup A of G such that
A <Cg(xy, ..., Xpu1). Put x,, = x. Since G is residually finite, there exists an infinite
descending sequence (V;);e; of normal subgroups of G with G/N; finite for any i € 1
and NN; = 1. Therefore, A N N; is infinite for any i € 1.

Now, as in the proof of [4, Lemma 3], we can prove that there exist a sequence
(ay)nen of elements of A that are pairwise distinct and a subsequence (M),),cn
of (NV;)ier such that for every neN we get a,. € M, and either [a,,x,x] =1 or
la,, x, x] ¢ M,. Moreover, if [a,, x,x]=1 and [a,, x, x;] # 1 for some se{l,...,
m — 1} then [a,, x, x;]* ¢ M,. Now we consider the infinite set {ax, ..., a,x,...}.
Since G satisfies the condition 7 (c0), there exist i, j, k€N with i< j<k such
that [a;x, a;x, axx] = 1 and [a;x, a;x, x][a;x, a;x, a;]* = 1; then [a;x, a;x, x] € (ap)C <
M;_1 £ M;. Since [a;x, aj, x] € (aj>G <M;_ £M;, we have [a;x, x, x] € M; and then
[ai, x, x] € M; which implies that [a;, x,x]=1. So B={a€(ay)pen:la, x, x] =1}
is an infinite set. Suppose that B={by,...,b,,...}. Let x;e{x,..., xXu-1}
and consider the infinite set {b;x;x:b; € B}. Then there exist r, s, € N with r<
s <t such that [b.x;x, byx;x, byx;x] = 1. Since [b,x;x, byxix, b] € (b))’ < M,_, < M,,
we have [b,xix, byxix, x;x] € My < M,. Since [bx;x, by, x;x] € (b,)¢ <M, < M,,
we have [b,, x;x, x;x] € M,. It follows that [b,, x, x;] € M, and then [b,, x, x;] =1,
as b, € Cg(xy,...,xn-1). Thus there exists an infinite subset B* of B such that
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[b, x, x;] = 1 for any b € B*. We can now easily prove that there exists an infinite subset
V of B such that [c, x] € Cg(x1, . .., x,-1) for every c € V. If the set {[c, x] : c € V}
is infinite the result follows. Otherwise, there exist ¢ € B and an infinite subset
{d;: j € J} C Bsuchthat [c, x] = [d}, x] for any j € J. Then the infinite set {cd/‘.1 1jeld}
is contained in Cg(xq, . .., X,_1), and the result follows. O

The following is an immediate corollary of Lemma 2.8.

CorOLLARY 2.9. Let G be a finitely generated infinite residually finite group in T (o).
Then Z(G) is infinite.

Denote by hl(G) the Hirsch length of G.

Lemma 2.10. Let G be a finitely generated infinite polycyclic group in 7 (o). Then
G/Z>(G) is finite.

Proor. If hl(G) =1 then, by Corollary 2.9, G/Z(G) is finite. Suppose then that
hl(G) > 1. It follows that hl(G) > hl(G/Z(G)). Now, by the induction hypothesis,

G/zZG) _ G
Z(G/Z(G)) ~ Z3(G)

is finite. Therefore, the result follows from Lemma 2.3 and Proposition 2.5. m|

ProOF OF THE MAIN THEOREM. To show that a finitely generated soluble group G in 7 (c0)
has G/Z,(G) finite, it is enough to show that G is polycyclic by Lemma 2.10. It follows
from Proposition 2.2 that G’ is finitely generated. Since a finitely generated abelian
group is polycyclic and the class of a polycyclic group is closed under extensions,
induction on the derived length then gives us G polycyclic. The other direction follows
immediately from Lemma 2.1.

CoroLLARY 2.11. Let G be a finitely generated soluble group. Then the following
conditions are equivalent.

() GeNy, ).
(i) G e (&, ).
(iii) G € T (co).
(iv) G/Zy(G).

Proor. This follows using also the main theorems of [2, 3]. O
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