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A Stone-Weierstrass theorem for

random functions

A. Mukherjea

It is shown in this note that if Q is an algebra of uniformly-

bounded mean-square continuous real-valued random functions

indexed in a compact set T , containing all bounded random

variables and separating points of T (i.e., given t\ and t2

in T , there is a random function X, in Q such that

- X = 1), then given any mean square continuous random
*1

function, there is a sequence in Q converging in mean square to

the given random function uniformly on T .

The purpose of this note is to present a Stone-Weierstrass type

theorem for random functions which might find possible future applications

in probability theory or analysis. Tzannes in [2] showed that a mean

square continuous (m.s.c.) second order random function (r.f.) can be

approximated uniformly in mean square by a sequence of random polynomials

(i.e., polynomials with random variables as co-efficients). So it is

natural to consider the same problem in the more general situation which

we describe in the following paragraph.

Let T be a compact set in some topological space. Let us restrict

our attention to real-valued random functions on some probability space

indexed in the parameter set T . A r.f. X, is said to be m.s.c. on

T if for every t in T , fif^l = | X* < °° and
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and nix -X ) = \\ [x -X 1 \2 tends to 0 as s tends to t . A r . f .
v s U L r SJ J

Xj. i s uniformly bounded i f there i s a constant M such that for every

t , I*. I < M . A family Q of random functions is called an algebra i f
I I

(i) X, and Y in Q implies that X..Y (pointwise

multiplication) is also in Q and

(ii) X. and JT in Q implies that X, + I, is also in Q .

The uniformly bounded m.s.c. random functions can be easily seen to form

an algebra. Q is said to separate points in T if given t\ and t2

in T , there exists a r.f. X, in $ .such that

T = [0, l] , the algebra of random polynomials separate points of T .

This is the desired Stone-Weierstrass setting in which we consider the

problem mentioned in the first paragraph. We have, as can be expected,

the following theorem.

THEOREM. Let Q be an algebra of uniformly bounded m.s.c. random

functions containing all bounded random variables. Let Q also separate

points of T . Then given a m.s.c. .r.f. ., there exists a sequence in Q

which converges in mean square to the given r.f. uniformly on T .

Proof. The proof follows closely the classical pattern.

Following the classical proof (see page 131, [?]), one can easily

check that if X. is in Q , then \X,\ is in Q , the closure of Q in

II
the uniform mean square limit sense.

Next, given tj and t2 and any two random variables Xi and X2

in Q , we can find Z, in Q such that Z = Zi and Z = X2 i for
t t\ v2

we can take Z.=X1+ \X,-X, ,{X2-X\) where X is in Q such that
I 1

Now let W. be any m.s.c. non-negative r.f. . We wish to show

that W, is in Q . With no loss of generality, we can assume that W

is uniformly bounded. For, given e > 0 , using the mean square continuity
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of W and the r.f. W. = inf{m, WA , where m is a constant, and the

compactness of T , we can find a m such that n[W,-W ) < e for every

t in T • [Note that here n denotes the L2~nor n l 1 ]

So we assume that W^ is uniformly bounded by a constant m . Let

J_ be the characteristic function of the measurable set D and so it is

a random variable in Q . Let t be in T . Then for every t' in

T , we can find a neighbourhood N., of t' and Y in Q such that

t ' ! t' 1
Y. = V and n\Y .1 \ < n(w .1 1 + e/3m for every t in i?, , andv

0
 V

Q { v uj v u t

every measurable set D . Then using the compactness of T and noting

*0
that inf{X,, Y,} is in 3 for X, and Y, in J , we can find a Y,

t t t t t

in Q such that

t
Y ° = (/ and

0 0

for every t in T and every measurable set D . Now we can find a

neighbourhood ff. of t such that for every £ in ff. and every
o o

measurable set D ,

> n{W..lJ - e/3m .

Doing this for every t in T , then we can find a Y, in <j such
o ~o

that n(Yt.ID) - n[Wi..ID) < e/3m for every t in T and every

measurable set D . Then \E(Y^.I^ - E[w^.l^}\ < e . How let

At = [Wt * Y j . Then

each of which is less than -/z ; for
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and similarly the other one.

Finally, let £/. be any m.s.c. r.f. . Then since T is compact

and W. is m.s.c. , given e > 0 , we can find 8 > 0 such that

P(B) < & (where P is the measure in the probability space) implies that

n[W' .1 ) < e for every t in T . Noting that E[W^) is a bounded

function of t , we can find a number k > 0 such that for every t in

T , there is a B, , a measurable set such that P(s.) < 3 and on B. ,

W,\ is less than k . Then we write V. = sup^j-/:, inf(V, , k) V so that

£/. is clearly a m.s.c. r.f. bounded by fe for all t . We note that

on B , U = W and therefore, since
t

, it is easy to see

tha t n(w.-U ) = n (la • [W.-U.)} < 2e . Now k - 13. is a non-negative

m.s.c. r .f . and so we can find Y. in Q such that

t

.and t h i s proves that there is a Z, = k - Y. in Q such that

n[w -Z ) < 3£ for every t in T . This completes the proof of the

theorem.
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