A Stone-Weierstrass theorem for random functions

A. Mukherjea

Abstract

It is shown in this note that if Q is an algebra of uniformly bounded mean-square continuous real-valued random functions indexed in a compact set T, containing all bounded random variables and separating points of T (i.e., given t_{1} and t_{2} in T, there is a random function X_{t} in Q such that $\left|X_{t_{1}}-X_{t_{2}}\right|=1$), then given any mean square continuous random function, there is a sequence in Q converging in mean square to the given random function uniformly on T.

The purpose of this note is to present a Stone-Weierstrass type theorem for random functions which might find possible future applications in probability theory or analysis. Tzannes in [2] showed that a mean square continuous (m.s.c.) second order random function (r.f.) can be approximated uniformly in mean square by a sequence of random polynomials (i.e., polynomials with random variables as co-efficients). So it is natural to consider the same problem in the more general situation which we describe in the following paragraph.

Let T be a compact set in some topological space. Let us restrict our attention to real-valued random functions on some probability space indexed in the parameter set T. A r.f. X_{t} is said to be m.s.c. on T if for every t in $T, E\left[X_{t}^{2}\right]=\int X_{t}^{2}<\infty$ and

Received 22 December 1969.
and $n\left(X_{t}-X_{s}\right)=\left\{\int\left[X_{t}-X_{s}\right]^{2}\right\}^{\frac{1}{2}}$ tends to 0 as s tends to t. A r.f. X_{t} is uniformly bounded if there is a constant M such that for every $t,\left|X_{t}\right|<M$. A family Q of random functions is called an algebra if
(i) X_{t} and Y_{t} in Q implies that $X_{t} \cdot Y_{t}$ (pointwise multiplication) is also in Q and
(ii) X_{t} and Y_{t} in Q implies that $X_{t}+Y_{t}$ is also in Q.

The uniformly bounded m.s.c. random functions can be easily seen to form an algebra. Q is said to separate points in T if given t_{1} and t_{2} in T, there exists a r.f. X_{t} in Q such that $\left|X_{t_{1}}-X_{t_{2}}\right|=1$. If $T=[0,1]$, the algebra of random polynomials separate points of T. This is the desired Stone-Weierstrass setting in which we consider the problem mentioned in the first paragraph. We have, as can be expected, the following theorem.

THEOREM. Let Q be an algebra of uniformly bounded m.s.c. random functions containing all bounded random variables. Let Q also separate points of T. Then given a m.s.c. r.f., there exists a sequence in Q which converges in mean square to the given r.f. uniformly on T.

Proof. The proof follows closely the classical pattern.
Following the classical proof (see page 131, [1]), one can easily check that if X_{t} is in Q, then $\left|X_{t}\right|$ is in \bar{Q}, the closure of Q in the uniform mean square limit sense.

Next, given t_{1} and t_{2} and any two random variables X_{1} and X_{2} in Q, we can find Z_{t} in \bar{Q} such that $Z_{t_{1}}=X_{1}$ and $z_{t_{2}}=X_{2}$; for we can take $z_{t}=X_{1}+\left|X_{t}-X_{t_{1}}\right| \cdot\left(X_{2}-X_{1}\right)$ where X_{t} is in Q such that $\left|x_{t_{1}}-x_{t_{2}}\right|=1$.

Now let W_{t} be any m.s.c. non-negative r.f. We wish to show that W_{t} is in \bar{Q}. With no loss of generality, we can assume that W_{t} is uniformly bounded. For, given $\varepsilon>0$, using the mean square continuity
of W_{t} and the r.f. $W_{t m}=\inf \left\{m, W_{t}\right\}$, where m is a constant, and the compactness of T, we can find a m such that $n\left(W_{t}-W_{t m}\right)<\varepsilon$ for every t in T. [Note that here n denotes the L_{2}-norm.]

So we assume that W_{t} is uniformly bounded by a constant m. Let I_{D} be the characteristic function of the measurable set D and so it is a random variable in Q. Let t_{0} be in T. Then for every t^{\prime} in T, we can find a neighbourhood $N_{t^{\prime}}$ of t^{\prime} and $y_{t}^{t^{\prime}}$ in \bar{Q} such that $y_{t_{0}}^{t^{\prime}}=W_{t_{0}}$ and $n\left(Y_{t}^{t^{\prime}} \cdot I_{D}\right)<n\left(W_{t} \cdot I_{D}\right)+\varepsilon / 3 m$ for every t in $N_{t^{\prime}}$ and every measurable set D. Then using the compactness of T and noting that $\inf \left\{X_{t}, Y_{t}\right\}$ is in \bar{Q} for X_{t} and Y_{t} in \bar{Q}, we can find a $Y_{t}^{t_{0}}$ in \bar{Q} such that

$$
Y_{t_{0}}^{t_{0}}=W_{t_{0}} \text { and } n\left(Y_{t}^{t_{0}} \cdot I_{D}\right)<n\left(W_{t} \cdot I_{D}\right)+\varepsilon / 3 m
$$

for every t in T and every measurable set D. Now we can find a neighbourhood $N_{t_{0}}$ of t_{0} such that for every t in $N_{t_{0}}$ and every measurable set D,

$$
n\left(Y_{t}^{t_{0}} \cdot I_{D}\right)>n\left(W_{t} \cdot I_{D}\right)-\varepsilon / 3 m
$$

Doing this for every t_{0} in T, then we can find a Y_{t} in \bar{Q} such that $\left|n\left(Y_{t} \cdot I_{D}\right)-n\left(W_{t} \cdot I_{D}\right)\right|<\varepsilon / 3 m$ for every t in T and every measurable set D. Then $\left|E\left(Y_{t}^{2} \cdot I_{D}\right)-E\left(W_{t}^{2} \cdot I_{D}\right)\right|<\varepsilon$. Now let $A_{t}=\left[W_{t} \geqq Y_{t}\right]$. Then

$$
n\left(Y_{t}-W_{t}\right) \leqq n\left(I_{A_{t}} \cdot\left(Y_{t}-W_{t}\right)\right)+n\left(I_{A_{t}} c \cdot\left(Y_{t}-W_{t}\right)\right)
$$

each of which is less than $\sqrt{\varepsilon}$; for

$$
\begin{aligned}
& E\left(I_{A_{t}} \cdot\left(Y_{t}-W_{t}\right)^{2}\right)=E\left(W_{t}^{2} \cdot I_{A_{t}}\right)+E\left(Y_{t}^{2} \cdot I_{A_{t}}\right)-2 E\left(Y_{t} \cdot W_{t} \cdot I_{A_{t}}\right) \\
& \leqq E\left(W_{t}^{2} \cdot I_{A_{t}}\right)-E\left(Y_{t}^{2} \cdot I_{A_{t}}\right)<\varepsilon
\end{aligned}
$$

and similarly the other one.
Finally, let W_{t} be any m.s.c. r.f. . Then since T is compact and W_{t} is m.s.c., given $\varepsilon>0$, we can find $\beta>0$ such that $P(B)<\beta$ (where P is the measure in the probability space) implies that $n\left(W_{t} . I_{B}\right)<\varepsilon$ for every t in T. Noting that $E\left(W_{t}^{2}\right)$ is a bounded function of t, we can find a number $k>0$ such that for every t in T, there is a B_{t}, a measurable set such that $P\left(B_{t}\right)<\beta$ and on B_{t}^{c}, $\left|W_{t}\right|$ is less than k. Then we write $U_{t}=\sup \left\{-k, \inf \left(W_{t}, k\right)\right\}$ so that U_{t} is clearly a m.s.c. r.f. bounded by k for all t. We note that on $B_{t}^{c}, U_{t}=W_{t}$ and therefore, since $\left|U_{t}\right| \leqq\left|W_{t}\right|$, it is easy to see that $n\left(W_{t}-U_{t}\right)=n\left(I_{B_{t}} \cdot\left(W_{t}-U_{t}\right)\right)<2 \varepsilon$. Now $k-U_{t}$ is a non-negative m.s.c. r.f. and so we can find Y_{t} in \bar{Q} such that $n\left(U_{t}-\left(k-Y_{t}\right)\right)<\varepsilon$.and this proves that there is a $Z_{t}=k-Y_{t}$ in \bar{Q} such that $n\left(W_{t}-2 t\right)<3 \varepsilon$ for every t in T. This completes the proof of the theorem.

References

[1] J. Dieudonné, Foundations of modern analysis (Academic Press, New York, London, 1960).
[2] Nicolaos S. Tzannes, "Polynomial expansions of random functions", IEEE Trans. Information Theory IT-13 (1967), 314.

University of South Florida,
Tampa, Florida, USA.

