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Abstract Let H ≤ F be two finitely generated free groups. Given g ∈ F , we study the ideal Ig of
equations for g with coefficients in H, i.e. the elements w(x) ∈ H ∗ 〈x〉 such that w(g) = 1 in F. The
ideal Ig is a normal subgroup of H ∗ 〈x〉, and it’s possible to algorithmically compute a finite normal
generating set for Ig ; we give a description of one such algorithm, based on Stallings folding operations.
We provide an algorithm to find an equation in w(x)∈Ig with minimum degree, i.e. such that its cyclic
reduction contains the minimum possible number of occurrences of x and x−1; this answers a question
of A. Rosenmann and E. Ventura. More generally, we show how to algorithmically compute the set Dg

of all integers d such that Ig contains equations of degree d ; we show that Dg coincides, up to a finite
set, with either N or 2N. Finally, we provide examples to illustrate the techniques introduced in this
paper. We discuss the case where rank(H) = 1. We prove that both kinds of sets Dg can actually occur.
We show that the equations of minimum possible degree aren’t in general enough to generate the whole
ideal Ig as a normal subgroup.

Keywords: geometric group theory; free groups; equations over groups; Stallings automata;
algorithms in group theory
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1. Introduction

Given an extension of fields K ⊆ F and an element α ∈ F , a first interesting question
to ask is to determine whether the element α is algebraic over K, i.e. whether it satisfies
some non-trivial equation with coefficients in K. In other words, we want to determine
whether there exists a non-trivial polynomial p(x) ∈ K[x] such that p(α) = 0. If the
answer is affirmative, one tries to study the ideal Iα ⊆ K[x] of equations for α over K :
this turns out to be a principal ideal, and thus its structure is very simple. Completely
analogous questions can be asked in the context of group theory, but the answers turn
out to be much more complicated.
Let Fn be a free group generated by n elements a1, ..., an. Let H ≤ Fn be a finitely

generated subgroup and consider an infinite cyclic group 〈x〉 ∼= Z. An equation in x
with coefficients in H is an equality of the form w(x) = 1 with w(x) ∈ H ∗ 〈x〉 in the
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2 D. Ascari

free product of H and 〈x〉. With an abuse of notation, we will also call the element w(x )
an ‘equation’, instead of the equality w(x) = 1. Every w(x) ∈ H ∗ 〈x〉 has a unique
expression as a reduced word in the alphabet {x, x−1}∪H \{1}; we define the degree of
w as the number of occurrences of x and x−1 in the cyclic reduction of w. For an element
g ∈ Fn, consider the map ϕg : H ∗ 〈x〉 → Fn that is the inclusion on H, and that sends x
to g ; this is the ‘evaluation in g ’ map. We say that g is a solution for the equation w if
ϕg(w) = 1. We define the ideal Ig to be the normal subgroup Ig = kerϕg of H ∗ 〈x〉.
First of all, given a finitely generated subgroup H ≤ Fn, we would like to deter-

mine for which elements g ∈ Fn the ideal Ig is non-trivial, i.e. which elements satisfy
some non-trivial equation over H. This has been answered recently by A. Rosenmann
and E. Ventura in [14]. Following their terminology, we say that g depends on H if
Ig 6= 1 or, equivalently, if rank(〈H, g〉) ≤ rank(H). In [14], they provide the following
characterization for the elements of Fn that depend on H.

Theorem 1.1 (Rosenmann and Ventura [14]). There is an algorithm that, given
a finite set of generators for a subgroup H ≤ Fn, computes a finite set of elements
g1, ..., gk ∈ Fn such that, for every g ∈ Fn, the following are equivalent:

(i) The element g depends on H.
(ii) The element g belongs to one of the double cosets Hg1H, ...,HgkH.

Given an arbitrary element g ∈ HgiH in one of the double cosets as in Theorem 1.1,
we have that the ideals Ig and Igi are strictly related: if g = hgih

′ with h, h′ ∈ H,
then we have that w(x) ∈ Ig if and only if w(hxh′) ∈ Igi . This means that, in order to
understand the structure of the ideal Ig for every element g ∈ Fn, it’s enough to focus
on the study of the finite family of ideals Ig1 , ..., Igk of the elements g1, ..., gk provided
by Theorem 1.1.
In this paper, we fix a finitely generated subgroup H ≤ Fn and an element g ∈ Fn,

and we study the structure of the ideal Ig. We answer several natural questions about
the structure of Ig, with a particular focus on properties related to the degree of the
equations in the ideal. Since the ideal Ig can be seen as the kernel of a map between two
free groups, it’s possible to algorithmically compute a finite set of generators for Ig as
normal subgroup of H ∗ 〈x〉 (this is done, for example, in [6]); we describe an algorithm
for this purpose, based on Stallings’ folding operations, and we apply it to work out
computations in several explicit examples. We show that there is an algorithm that
computes a non-trivial equation in Ig of minimum possible degree, answering a question
asked by A. Rosenmann and E. Ventura; more generally, we show that it’s possible to
algorithmically determine whether Ig contains equations of a given degree d ∈ N, and
we provide a characterization of all the equations of degree d in Ig. We also investigate
the properties of the set Dg = {d ∈ N : there is a non-trivial equation of degree d in Ig},
showing that it coincides, up to a finite set, with either the set of even numbers or with
the set of all natural numbers.
In the subsequent paper [1], we will further investigate the properties of the ideal Ig. In

this paper, we make use of techniques based on Stallings’ graphs and folding operations,
while in [1] we deal with the same questions using the theory of context-free languages,
a tool which is widely studied in computer science. To the best of our knowledge, some
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Ideals of equations for elements in a free group and stallings folding 3

results, such as explicit polynomial bounds on the length of the equations, can only be
obtained by means of the folding techniques, while others, such as algorithms running
in polynomial time, can only be obtained with context-free languages. We also remark
that context-free languages only allow to obtain results for virtually free groups, due
to Muller–Shupp theorem, see [11]; on the contrary, folding techniques might allow to
generalize the results of this paper to wider families of groups.

1.1. Algebraic extensions in free groups

We point out that a notion of algebraic extension in free groups had already been
introduced in [5] (see also [10], [9], [20]). Given H ≤ J ≤ Fn, we say that the extension
H ≤ J is algebraic if H isn’t contained in any proper free factor of J. Fixed H ≤ Fn

finitely generated, there are only a finite number of subgroups J ≤ Fn such that the
extension H ≤ J is algebraic: this follows from the work of Takahasi [19]. The notion of
algebraic extension is related to the notion of element that depends on a subgroup, as
follows. Let H ≤ Fn be a finitely generated subgroup and let g ∈ Fn be an element: then
g depends on H if and only if the extension H ≤ 〈H, g〉 is algebraic. However, we also
point out that it’s possible to find an algebraic extension H ≤ J and an element g ∈ J
such that g doesn’t depend on H ; in this sense, the notion of algebraic extension and
the notion of dependence on a subgroup aren’t equivalent. In [10], they also introduce a
notion of element algebraic over a subgroup. Given H ≤ Fn and g ∈ Fn we say that g is
Fn-algebraic over H if every free factor of Fn containing H also contains g. We point
out that, if g depends on H, then g is Fn-algebraic over H, but the converse isn’t true in
general.

1.2. Results and structure of the paper

Let Fn be a finitely generated subgroup on n generators a1, ..., an; let H ≤ Fn be a
finitely generated subgroup and let g ∈ Fn be an element. In this paper, we study the
structure of the ideal Ig of the equations with coefficients in H with g as a solution.
Most of our results can be generalized to equations in more variables, but, for simplicity
of notation, for most of the paper we deal only with the one-variable case; the results in
the multi-variate setting can be found in § 7 at the end of the paper.
For an arbitrary surjective homomorphism from a finitely generated free group to a

finitely presented group, the kernel is always finitely generated as a normal subgroup. If
the target is free, then it follows from Grushko’s Theorem that there is an algorithm to
find a finite normal generating set; the reader can also refer to [6] for such an algorithm. In
§ 3, we describe an efficient algorithm; the key idea, based on Stallings folding operations,
is the following. In a chain of folding operations, the rank-preserving folding operations
are homotopy equivalences, and thus isomorphisms at the level of fundamental group,
while the non-rank-preserving folding operations give a non-injective map of fundamental
groups (that means, in our case, adding generators to the kernel). The novel aspect of our
algorithm, which is explained in § 3, is the following: we show that the non-rank-preserving
folding operations can be postponed until the end of the chain of folding operations
(see Figure 4). This gives a clean and efficient way to produce a set of generators for the
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4 D. Ascari

kernel as a normal subgroup (which, in the particular case of the map ϕg : H ∗ 〈x〉 → Fn,
is exactly the ideal Ig).
In [14], Rosenmann and Ventura ask the following question:

Questions 1.2 Is it possible to (algorithmically) find an equation of minimum degree
for an element g that depends on H?

In § 4, we give an affirmative answer to this question.

Theorem A (See Corollary 4.13). There is an algorithm that, given a finite set of
generators for a subgroup H ≤ Fn and an element g ∈ Fn such that g depends on H,
produces a non-trivial equation w ∈ Ig of minimum possible degree.

We give a brief outline of the proof of Theorem A. We take a non-trivial (cyclically
reduced) equation w ∈ Ig of minimum possible degree; we think of w as a word in the
letters a1, ..., an, x (where a1, ..., an is a basis for Fn). We then prove that, for words
of sufficient length, some parts of the word w can be literally cut away, by means of a
move that we call a ‘parallel cancellation move’, introduced in Lemma 4.10; this produces
another equation w′ ∈ Ig, which is strictly shorter than w and which has the same degree.
By iterating this process, we prove that there is a (computable) bound B = B(H, g) ≥ 0
such that there is an equation in Ig of minimum possible degree and with length at most
B, see Theorem 4.4 for the precise value of B. With this bound established, the algorithm
now just takes all the (finitely many) elements of H ∗ 〈x〉 which are of length at most B,
and for each of them it checks whether it belongs to Ig, recording its degree.
A completely analogous result holds for equations of any fixed degree d : if Ig contains

a non-trivial equation of degree d, then it contains one whose length is bounded (see
Theorem 5.12 for the precise bound). In particular, we prove the following theorem:

Theorem B (See Corollary 5.13). There is an algorithm that, given a finite set of
generators for a subgroup H ≤ Fn, an element g ∈ Fn and an integer d ≥ 1, tells us
whether Ig contains non-trivial equations of degree d, and, if so, produces an equation
w ∈ Ig of degree d.

One of the interesting features of the algorithm is that the ‘parallel cancellation moves’
of Lemma 4.10 have inverses, namely the ‘parallel insertion moves’ which we introduce
in Lemma 5.4. This means that there is a (computable) bound C = C(H, g) ≥ 0 such
that every (cyclically reduced) equation of degree d can be obtained from an equation
of degree d whose length is at most C, by means of a finite number of insertion moves;
this gives a characterization of all the equations of degree d in terms of a finite number
of short equations (see Theorem 5.14 for the details).
Next, we study the set Dg of degrees of equations with coefficients in H and having g

as a solution. We prove that Dg coincides with either N or 2N (the set of non-negative
and non-negative even numbers, respectively), up to a finite set. We provide an algorithm
that, given H and g, computes the set Dg.

Theorem C (See Theorem 5.17). Exactly one of the following possibilities takes
place:
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(i) Dg contains an odd number and N \Dg is finite.
(ii) Dg contains only even numbers and 2N \Dg is finite.

Theorem D (See Theorem 5.19). There is an algorithm that, given a finite set of
generators for a subgroup H ≤ Fn and an element g ∈ Fn that depends on H, produces
the following outputs:

(i) Determines whether we fall into case (i) or (ii) of Theorem 5.17.
(ii) Computes the finite set N \Dg or 2N \Dg respectively.

In § 6, we make use of the tools developed in the rest of the paper in order to work
out explicit computations in some specific cases; in each case, we compute the minimum
degree dmin for an equation in Ig and the set Dg of possible degrees. In example 6.1,
we deal with the case where rank(H) = 1, showing that in this case dmin is either 1 or
2. The examples of § 6.2 and 6.3 show that both cases of Theorem C can occur. One
may be tempted to conjecture that the equations of Ig of minimum possible degree dmin

are enough to generate the ideal Ig; we give counterexamples to this (see § 6.3 and 6.4),
showing that the ideal Ig is not always generated by just the equations of degree dmin.
In § 7, we generalize most of the results of the paper to equations in more variables.

2. Preliminaries and notations

In this section, we introduce the notation about graphs that we are going to use along
the paper.

2.1. Graphs and paths

We consider graphs as combinatorial objects, following the notation of [18] and [15].
A graph Γ is a quadruple (V,E, ·, ι) consisting of a set V = V (Γ) of vertices, a set
E = E(Γ) of edges, a map · : E → E called reverse and a map ι : E → V called initial
endpoint ; we require that, for every edge e ∈ E, we have e 6= e and e = e. For an edge
e ∈ E, we denote with τ(e) = ι(e) the terminal endpoint of e.
A map of graphs f : Γ → Γ′ is just a couple of maps, vertices to vertices and edges

to edges, preserving the reverse and the initial endpoint. A subgraph of a graph Γ is
a graph Γ′′ such that V (Γ′′) ⊆ V (Γ) and E(Γ′′) ⊆ E(Γ) and the reverse and endpoint
maps on Γ′′ are the restrictions of the maps on Γ.
A path in a graph Γ, with initial endpoint u ∈ V (Γ) and terminal endpoint

v ∈ V (Γ), is a sequence σ = (e1, ..., e`) of edges e1, ..., e` ∈ E(Γ) for some integer ` ≥ 0,
with the conditions ι(e1) = u and τ(e`) = v and τ(ei) = ι(ei+1) for i = 1, ..., ` − 1. The
integer ` is called length of the path. For ` = 0, for every vertex v of Γ there is a unique
path of length 0 whose initial and terminal endpoints coincide and are equal to v ; we call
it the constant path at v. A graph is connected if for every couple of vertices there is
a path going from one to the other.
Given two paths σ = (e1, ..., e`) from u to v and σ′ = (e′1, ..., e

′
`′) from v to w we define

their concatenation as the path σ · σ′ = (e1, ..., e`, e
′
1, ..., e

′
`′) form u to w. Given a path
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6 D. Ascari

σ = (e1, ..., e`) from u to v we define its reverse as the path σ = (e`, ..., e1) from v to u.
Given a map of graphs f : Γ → Γ′ and a path σ = (e1, ..., e`) from u to v in Γ, we define
the path f∗(σ) from f (u) to f (v) in Γ′ given by f∗(σ) = (f(e1), ..., f(e`)). The image
of a path σ is the smallest subgraph of Γ containing all the edges e1, ..., e` (or the single
vertex v in case of the constant path at v).
A path (e1, ..., e`) is reduced if ei 6= ei+1 for every i ∈ {1, ..., `− 1}. A path (e1, ..., e`)

is closed if τ(e`) = ι(e1), i.e. if its two endpoints coincide. A closed path (e1, ..., e`)
is cyclically reduced if it’s reduced and e` 6= e1. A tree is a connected graph that
doesn’t contain any cyclically reduced closed path; we have that, in a tree, every couple
of vertices is connected by a unique reduced path.

2.2. Geometric realization and fundamental group

Let Γ = (V,E, ·, ι) be a graph. The geometric realization |Γ| is the one-dimensional
CW complex that has one 0-cell for every vertex v ∈ V and one 1-cell for every pair of
reverse edges {e, e} ⊆ E; the 1-cell corresponding to the pair {e, e} has its two endpoints
glued onto the vertices ι(e) and τ(e). A map of graphs f : Γ → Γ′ induces a cellular
map |f | : |Γ| → |Γ′| between the geometric realizations. A subgraph Γ′′ ⊆ Γ induces a
subcomplex |Γ′′| ⊆ |Γ|.
A path σ = (e1, ..., e`) for ` ≥ 1 induces a continuous map |σ| : [0, 1] → |Γ|: this sends

the point i
` to the vertex τ(ei−1) = ι(ei) for i = 0, ..., `, and the interval [ i−1

` , i` ] to the
1-cell corresponding to the edge ei. We denote with [σ] the homotopy class (relative to
the endpoints) of the geometric realization |σ|. We say that a path σ is homotopically
trivial if the homotopy class [σ] contains a constant path (in particular the two endpoints
of σ have to coincide).

Definition 2.1. For a finite graph Γ, define ‖Γ‖ := |E(Γ)|/2 as the number of 1-cells
in the geometric realization |Γ|.

Let Γ be a graph. Every covering space of |Γ| can be seen as the geometric realization
|q| : |Γ′| → |Γ| of some map of graphs q : Γ′ → Γ; with an abuse of notation, we will call
covering map also the map of graphs q (and not only its geometric realization |q|). In
particular, we can consider the universal cover p : Γ̃ → Γ; the graph Γ̃ is a tree.

Proposition 2.2. Let Γ be a connected graph and let c be a homotopy class of paths
in |Γ| relative to the endpoints. Then there is a unique reduced path σ such that [σ] = c.

Sketch of proof This is a standard application of the theory of covering spaces. Let
p : Γ̃ → Γ be the universal cover, let γ : [0, 1] → |Γ| be a path in the homotopy class c

and let v0 = γ(0) and v1 = γ(1). Choose ṽ0 ∈ p−1(v0), let γ̃ : [0, 1] → |Γ̃| be the unique
lifting of γ such that γ̃(0) = ṽ0 and let ṽ1 = γ(1).

The map p induces a bijection between paths σ̃ in Γ̃ from ṽ0 to ṽ1 and paths σ in
Γ with [σ] = c; moreover, reduced paths σ̃ are in bijection with reduced paths σ. In

particular, since Γ̃ is a tree, there is a unique reduced path in Γ̃ from ṽ0 to ṽ1, and thus
a unique reduced path in the homotopy class c. �
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A pointed graph (Γ, ∗) is a graph Γ together with a marked vertex ∗ ∈ V (Γ). For
a pointed graph (Γ, ∗) we define its fundamental group π1(Γ, ∗) to be the fundamental
group π1(|Γ|, ∗) of its geometric realization.
We shall need to work explicitly with the following well-known construction. Let (Γ, ∗)

be a finite connected pointed graph and let T be a maximal tree contained in Γ. Let E
′

be the set of edges which are not contained in T ; for each pair of reverse edges {e, e} ⊆ E′

choose one of the two elements, let’s say e, and consider the reduced path σe that starts
at ∗, moves to ι(e) along T, crosses e and goes back from τ(e) to ∗ along T.

Proposition 2.3. The fundamental group π1(Γ, ∗) is a free group with a basis given
by the homotopy classes [σe] for each pair of reverse edges {e, e} ⊆ E′.

Sketch of proof We consider the CW complex |Γ| and we collapse the subcomplex
|T |, obtaining a bouquet of circles, one for each pair of reverse edges {e, e} ⊆ E′. This
induces an isomorphism at the level of the fundamental groups, since the subcomplex |T |
is contractible. In the bouquet of circles, the image of |σe| crosses the 1-cell corresponding
to the pair {e, e} exactly once, and it doesn’t cross any other 1-cell. The result follows
by induction on the number of circles, using van Kampen’s theorem. �

We will also need the following basic operation between graphs.

Definition 2.4. Let (Γ, ∗), (∆, ∗) be pointed graphs. Define their join as the pointed
graph (Γ ∨ ∆, ∗) given by quotient of their disjoint union by the relation that identifies
their two basepoints.

We have a natural isomorphism π1(Γ ∨∆, ∗) = π1(Γ, ∗) ∗ π1(∆, ∗).

2.3. Core and pointed core of a graph

Let (Γ, ∗) be a connected pointed graph: define the pointed core of Γ, denoted by
core∗(Γ), as the subgraph given by the union of the images of all the reduced paths from
the basepoint to itself. Notice that core∗(Γ) is connected, and the inclusion core∗(Γ) → Γ
induces an isomorphism of fundamental groups π1(core∗(Γ), ∗) → π1(Γ, ∗).
Similarly, let Γ be a connected graph which is not a tree: define the core of Γ, denoted

by core(Γ), as the subgraph given by the union of the images of all the closed cyclically
reduced non-constant paths. The graph core(Γ) is connected. If (Γ, ∗) is a pointed graph
then core(Γ) is contained in core∗(Γ) as a subgraph; to be precise, there is a unique
shortest path γ (possibly a constant path) connecting the basepoint to core(Γ); the graph
core∗(Γ) consists exactly of the union of core(Γ) and of the image of γ.

2.4. Reduction of paths

Let Γ be a graph, let σ = (e1, ..., e`) be a path and suppose σ isn’t reduced.
Then we have es+1 = es for some s ∈ {1, ..., ` − 1}, and we can define the path
σ′ = (e1, ..., es−1, es+2, ..., e`); we say that σ′ is obtained from σ by means of an ele-
mentary reduction. Notice that if σ had length ` then σ′ has length `−2; moreover we
have [σ′] = [σ], i.e. their geometric realizations are homotopic relative to the endpoints.
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If the path σ′ is not yet reduced, then we can reiterate the same process; this motivates
the following definition:

Definition 2.5. Let Γ be a graph and let σ = (e1, ..., e`) be a path. A reduction
process for σ is a sequence (s1, t1), ..., (sm, tm) for m ∈ N with the following properties:

(i) s1, t1, ..., sm, tm are pairwise distinct integers in {1, ..., `}.
(ii) For every i = 1, ...,m we have si < ti.
(iii) For every i = 1, ...,m we have {si+1, si+2, ..., ti−2, ti−1} ⊆ {s1, t1, ..., si−1, ti−1}.
(iv) For every i = 1, ...,m we have esi = eti .

Think of esi , eti as the ith elementary reduction to be performed on the path σ.
Condition (iii) says that the edges es1 , et1 , ..., esi−1

, eti−1
cover interval from esi to eti , so

that, after performing the first i − 1 cancellations, the edges esi and eti become adjacent;
in particular, s1 and t1 have to be consecutive numbers. Condition (iv) ensures that
the ith elementary reduction can actually be performed. Condition (ii) is just a useful
convention, saying that the edges esi , eti appear in this order along the path.

Lemma 2.6. Let Γ be a graph and let σ = (e1, ..., e`) be a path, together with a
reduction process (s1, t1), ..., (sm, tm). Then for every 1 ≤ α < β ≤ m we have that either
sα < tα < sβ < tβ or sβ < tβ < sα < tα or sβ < sα < tα < tβ.

Proof. We have {sα + 1, sα + 2, ..., tα − 2, tα − 1} ⊆ {s1, t1, ..., sα−1, tα−1} and in
particular neither sβ nor tβ can occur in the interval {sα, sα + 1, ..., tα − 1, tα}. The
conclusion follows. �

Let σ be a path and let (s1, t1), ..., (sm, tm) be a reduction process for σ. Then we can
remove the edges es1 , et1 , ..., esm , etm from σ in order to obtain a well-defined path σ′.
This is the same as performing on σ the sequence of elementary reductions given by the
couples (si, ti) for i = 1, ...,m. We say that σ′ is the residual path of the reduction
process. In this case, we have [σ′] = [σ], i.e. their geometric realizations are homotopic
relative to the endpoints.

Proposition 2.7. Let Γ be a graph and let σ = (e1, ..., e`) be a path, together with a
reduction process (s1, t1), ..., (sm, tm). Then exactly one of the following holds:

(i) The residual path σ′ is reduced.
(ii) There is a couple (sm+1, tm+1) such that (s1, t1), ..., (sm, tm), (sm+1, tm+1) is a

reduction process for σ.

Proof. Suppose that the residual path σ′ isn’t reduced. Then there are integers s′, t′ ∈
{1, ..., `} \ {s1, t1, ..., sm, tm} such that s′ < t′ and es′ = et′ and es′ and et′ are adjacent
when seen as edges of the residual path σ′. This means that {s′+1, s′+2, ..., t′−2, t′−1} ⊆
{s1, t1, ..., sm, tm}, and in particular we can define the couple (sm+1, tm+1) := (s′, t′) and
this provides a reduction process (s1, t1), ..., (sm, tm), (sm+1, tm+1) for σ, as desired. �

The above proposition essentially says that a reduction process can be induc-
tively extended, until we get a residual path which is reduced. A reduction process
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. . . . . . . . . . . . . . . . .
si ti

Figure 1. An example of a possible diagram for a reduction process. The labels below the interval
put in evidence a couple (si, ti) of the reduction process.

(s1, t1), ..., (sm, tm) is called maximal if it can’t be extended by adding a couple of
edges (sm+1, tm+1), i.e. if it falls into case (i) of Proposition 2.7. Of course, every path
admits at least one maximal reduction process. Despite the maximal reduction process
not being unique in general, it turns out that the residual path is unique, as shown in
the following proposition:

Proposition 2.8. Let σ be a path in Γ, and let σ′ be the unique reduced path
such that [σ′] = [σ], as in Proposition 2.2. Then every maximal reduction process
(s1, t1), ..., (sm, tm) for σ has the same residual path, that coincides with σ′.

Proof. The residual path of the process is a reduced path in the homotopy class [σ].
But by Proposition 2.2, there is a unique such path. The conclusion follows. �

The following graphical representation of a reduction process will be useful. Let σ =
(e1, ..., e`) be a path in the graph Γ and let (s1, t1), ..., (sm, tm) be a reduction process for
σ. Consider the interval [0, 1]×{0} ⊆ R2 and subdivide it at the points ( 1` , 0)..., (

`−1
` , 0),

and let zj be the midpoint of the segment [ j−1
` , j` ]× {0} for j = 1, ..., `. For every couple

(si, ti), take a smooth curve ri in the upper half-plane connecting zsi to zti . The curves
r1, ..., rm can be taken to be pairwise disjoint, as in Figure 1.

2.5. Labelled graphs

We consider the finitely generated free group Fn of rank n, generated by a1, ..., an.
For an element h ∈ Fn we denote with h = h−1 the inverse of h. We denote with ∆n

the graph with one vertex V = {∗} and edges E = {a1, a1, ..., an, an}. The fundamental
group π1(∆n, ∗) will be identified with Fn: the path σi = (ai) from ∗ to ∗ corresponds to
the element ai ∈ Fn.

Definition 2.9. A labelled graph is a graph Γ together with a map of graphs f : Γ →
∆n.

This means that every edge of Γ is equipped with a label in {a1, a1, ..., an, an}, according
to which edge of ∆n it is mapped to, reverse edges having inverse labels; the map f :
Γ → ∆n is called labelling map for Γ.

Definition 2.10. Let Γ0,Γ1 be labelled graphs with labelling maps f0, f1 respectively.
A map of graphs h : Γ0 → Γ1 is called label-preserving if f1 ◦ h = f0.
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2.6. Core graph of a subgroup

From the theory of covering spaces, we know that pointed covering spaces of ∆n are
in bijection with subgroups of the fundamental group π1(∆n, ∗) = Fn. Given a pointed
covering space p : (Γ, ∗) → (∆n, ∗), we have that the map p∗ : π1(Γ, ∗) → Fn is injective,
and thus π1(Γ, ∗) can be identified with its image p∗(π1(Γ, ∗)) = H, determining a sub-
group H ≤ Fn. Conversely, given a subgroup H ≤ Fn, there is a unique pointed covering
space p : (Γ, ∗) → (∆n, ∗) such that p∗(π1(Γ, ∗)) = H: we define (cov(H), ∗) = (Γ, ∗) to
be such covering space.

Remark 2.11. A covering space p : (Γ, ∗) → (∆n, ∗) is in particular a labelled graph.

Definition 2.12. Define the core of H, denoted by core(H), and the pointed core of
H, denoted by core∗(H), to be the core and the pointed core of (cov(H), ∗), respectively.

Of course cov(H), core(H), core∗(H) are labelled graphs, with labelling map given by
the covering projection p, and by its restriction to the subgraphs core(H) and core∗(H)
respectively. The labelling map f : core∗(H) → ∆n gives a map f∗ : π1(core∗(H), ∗) → Fn

which induces an isomorphism f∗ : π1(core∗(H), ∗) → H.
We have that H is finitely generated if and only if core(H) is finite (and if and only if

core∗(H) is finite). In that case, core(H) and core∗(H) can be built algorithmically from
a finite set of generators for H, see Algorithm 5.4 in [18].

3. Equations and Stallings folding

It is well-known that, given an homomorphism between finitely generated free groups
ϕ : Fr → Fn, there is a free factor decomposition Fr = F ∗F ′ such that ϕ is injective on F
and trivial on F

′
. We here introduce an efficient way of computing such a decomposition.

The technique is based on the classical Stallings folding operations; the novel aspect
of what we do is that we focus on the non-rank-preserving folds, which are the ones
responsible for the generators of the kernel, and we delay them until the end of the chain
of folding operations. In particular, this can be applied to compute, for a given subgroup
H ≤ Fn and a given element g ∈ Fn, a set of generators of the ideal Ig E H ∗ 〈x〉 as a
normal subgroup.

3.1. Stallings folding operations

We will assume that the reader has some confidence with the classical Stallings folding
operation, for which we refer to [18]. We briefly recall the main properties that we are
going to use.
Let Γ be a finite connected labelled graph and suppose there are two distinct edges

e1, e2 with the same label and with a common endpoint v = ι(e1) = ι(e2). We can identify
e1 with e2 (and e1 with e2, and v1 = τ(e1) with v2 = τ(e2)): we obtain a label-preserving
quotient map of graphs q : Γ → Γ′.

Definition 3.1. The quotient map q : Γ → Γ′ is called Stallings folding.
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Given a finite connected labelled graph Γ, we can successively apply folding operations
to Γ in order to get a sequence Γ = Γ0 → Γ1 → · · · → Γm. Notice that the number ‖Γ‖ of
edges of Γ decreases by 1 at each step, and thus the length of any such chain is bounded
by ‖Γ‖. The following proposition, although not explicitly stated in [18], is a well-known
consequence; for an overview on the topic, the reader can refer to [3] (and for further
applications also to [2], [13]).

Proposition 3.2. Let Γ be a finite connected labelled graph and let Γ = Γ0 →
Γ1 → . . . → Γm be a maximal sequence of folding operations. Also, fix a basepoint
∗ ∈ Γ, inducing a basepoint ∗ ∈ Γi for i = 0, ...,m. Then we have the following:

(i) Each such sequence has the same length m and the same final graph Γm.
(ii) Let f i : Γi → ∆n be the i-th labelling map. Then the image of f i∗ : π1(Γ

i, ∗) →
π1(∆n, ∗) is the same subgroup H ≤ Fn for every i = 1, ...,m.

(iii) For every i = 1, ...,m there is a unique label-preserving map of pointed graphs
hi : Γi → cov(H). The image im(hi) is the same subgraph of cov(H) for every
i = 1, ...,m.

(iv) The map hm is injective, and thus we can see Γm as a subgraph of cov(H)
through hm; moreover the subgraph hm(Γm) contains core∗(H). In particular, hm∗ :
π1(Γ

m, ∗) → π1(cov(H), ∗) is an isomorphism and the map fm∗ : π1(Γ
m, ∗) → Fn

is injective.

Sketch of proof It’s easy to prove that the maps f i∗ : π1(Γ
i, ∗) → π1(∆n, ∗) and

f i+1
∗ : π1(Γ

i+1, ∗) → π1(∆n, ∗) have the same image. Now (ii) follows by induction.
We now consider the covering space p : (cov(H), ∗) → (∆n, ∗). The labelling map

f i : (Γi, ∗) → (∆n, ∗) satisfies the condition f i∗(π1(Γ
i, ∗)) ⊆ p∗(π1(cov(H), ∗)) on the

fundamental groups; by standard results about covering spaces, this implies the existence
of a unique lifting of the map f i : (Γi, ∗) → (∆n, ∗) to a map hi : (Γi, ∗) → (cov(H), ∗).
The condition of being a lifting (i.e. of having p ◦ hi = f i) is equivalent to the condition
of hi being label-preserving.
It is immediate to prove that the images of the maps hi : Γi → cov(H) and hi+1 :

Γi+1 → cov(H) are the same. Now (iii) follows by induction.
Since no folding operation is possible on Γm, we have that the labelling map fm : Γm →

∆n sends reduced paths to reduced paths. It follows from Proposition 2.2 that the map
fm∗ : π1(Γ, ∗) → π1(∆n, ∗) is injective, and thus the map hm∗ : π1(Γ

m, ∗) → π1(cov(H), ∗)
is an isomorphism.
Suppose that there are two distinct vertices of Γm that are identified by hm. Then there

is a reduced non-closed path σ in Γm that is sent to a closed path hm∗ (σ). Since no folding
operation is possible on Γm, this implies that hm∗ (σ) is reduced. Up to conjugation, we
can assume that σ goes from the basepoint ∗ to a different vertex. Take the homotopy
class [hm∗ (σ)] in π1(cov(H), ∗), use that hm∗ : π1(Γ

m, ∗) → π1(Γ
m, ∗) is an isomorphism,

and apply Proposition 2.2: there is a unique closed reduced path τ in Γm from ∗ to ∗
such that hm∗ (τ) = hm∗ (σ). In particular, the two paths τ, σ start at the same point,
and while going along them we read the same word fm∗ (τ) = fm∗ (σ): since no folding
operation is possible on Γm, this implies that τ = σ. But τ is a closed path while σ isn’t,
contradiction.
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Figure 2. Examples of (the geometric realizations of) configurations where a folding operation
is possible. The two examples on the left produce rank-preserving folding operations; the two
examples on the right produce non-rank-preserving folding operations.

This shows that hm : Γm → cov(H) is injective on the set of vertices. Since no folding
operation is possible on Γm, it follows immediately that hm is injective, allowing to see
Γm as a subgraph of cov(H). Since hm induces an isomorphism of fundamental groups,
we must have that the image of hm contains core∗(H), yielding (iv).
Finally, we observe that the final graph Γm is the image of the unique map h0 : Γ →

cov(H), and thus it doesn’t depend on the chosen folding sequence. Also, the number
of folding operations required is exactly m = ‖Γ‖ − ‖Γm‖, so it doesn’t depend on the
chosen folding sequence either. This proves (i). �

Definition 3.3. Let Γ be a finite connected labelled graph. Define its folded graph
fold(Γ) to be the labelled graph Γm obtained from any maximal sequence of folding
operations as in Proposition 3.2.

3.2. Rank-preserving and non-rank-preserving folding operations

Let Γ be a labelled graph and let q : Γ → Γ′ be a folding operation.

Definition 3.4. A Stallings folding q : Γ → Γ′ is called rank-preserving if the
induced map on the geometric realizations |q| : |Γ| → |Γ′| is a homotopy equivalence.

In that case, for every basepoint ∗ ∈ Γ, the map q : (Γ, ∗) → (Γ′, q(∗)) is a
pointed homotopy equivalence and q∗ : π1(Γ, ∗) → π1(Γ′, q(∗)) is an isomorphism. Being
rank-preserving is equivalent to the requirement that the two endpoints v1 = τ(e1)
and v2 = τ(e2) of the edges e1, e2 that we are identifying are distinct (see also
Figure 2).
In a sequence of folding operations as in Proposition 3.2, it is not always possible

to change the order of the operations, see for example Figure 3. Informally, we could
say that certain folding operations are required before being able to perform other
operations. The key observation is that non-rank-preserving folding operations change
the set of edges of Γ, but they do not change the set of vertices of Γ; as a conse-
quence, they are not a requirement for any other operation. This can be made precise as
follows.

Proposition 3.5. Let Γ be a finite connected labelled graph. Let Γ = Γ0 → Γ1 →
. . .→ Γk be a maximal sequence of rank-preserving folding operations. Let Γk → Γk+1 →
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Figure 3. Above we have two examples of (geometric realizations of) graphs, and in each of
them we want to perform two folding operations (one involving a-labelled edges, and the other
involving b-labelled edges). In the graph on the left, we can perform the two operations in any
order. In the graph on the right, we are forced to perform the operation on the a-labelled edges
first.

...→ Γm be a maximal sequence of folding operations for Γk. Also, fix a basepoint ∗ ∈ Γ,
inducing a basepoint ∗ ∈ Γi for every i = 1, ...,m. Then we have the following:

(i) Each map in the first sequence is a (pointed) homotopy equivalence; the map Γ0 →
Γk is a (pointed) homotopy equivalence.

(ii) The second sequence only contains non-rank-preserving folding operations; the map
Γk → Γm induces a bijection on the set of vertices.

(iii) The concatenation of the two sequences produces a folding sequence as in
Proposition 3.2. In particular Γm = fold(Γ).

(iv) The numbers k,m do not depend on the chosen sequences.

Remark 3.6. This shows that the graph Γk is essentially fold(Γ), but with some edge
repeated two or more times (see Figure 4). The repeated edges (and their multiplicity)
can depend on the chosen sequence of folding operations; the graph Γk is not uniquely
determined by Γ.

Proof. Part (i) is trivial.
For (ii), suppose the sequence Γk → · · · → Γm contains a rank-preserving folding oper-
ation, and let j ≥ k be the smallest integer such that Γj → Γj+1 is rank-preserving;
this means that there are two edges e1, e2 in Γj with the same label, an endpoint
v = ι(e1) = ι(e2) in common, and the other endpoints v1 = τ(e1) and v2 = τ(e2)
which are distinct. Let p : Γk → Γj be the composition of the sequence of folding
operations Γk → · · · → Γj : each of those operations is non-rank-preserving, and in par-
ticular it induces a bijection on the set of vertices. Let v′, v′1, v

′
2 be the unique vertices

of Γk such that p(v′) = v, p(v′1) = v1, p(v
′
2) = v2 respectively. Take any edges e′1, e

′
2 in

Γk such that p(e′1) = e1, p(e
′
2) = e2 and notice that we must have ι(e′1) = ι(e′2) = v

and τ(e′1) = v1, τ(e
′
2) = v2. Thus it’s possible to fold e′1 and e′2, performing a rank-

preserving folding operation on Γk. This gives a contradiction because the sequence of
rank-preserving folding operations Γ0 → · · · → Γk was maximal.
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Figure 4. An example of the result of the folding procedure described in Proposition 3.5 (the
labelling has been omitted). On the left, the (geometric realization of the) graph Γk, the result of
the sequence of only rank-preserving folding operations. On the right, the (geometric realization
of the) graph Γm obtained from a sequence of both rank-preserving and non-rank-preserving
operations.

Part (iii) is trivial.
For part (iv), we observe the following: along the sequence Γ0 → · · · → Γk, at each

step the number of vertices decreases by one, while along the sequence Γk → · · · → Γm

the number of vertices is preserved. Thus k is equal to the number of vertices of Γ minus
the number of vertices of fold(Γ), regardless of the chosen sequence. By Proposition 3.2,
the sum m + k doesn’t depend on the chosen sequence, and thus neither does m. �

Remark 3.7. The difference in rank from the graph at the beginning and at the end
of a folding sequence plays a role in several other applications. For example, it can be
useful to determine which subgroups of a free groups are free factors, see [16], [17], [12].
For a discussion about the rank in graph pairs, see also [4].

3.3. The kernel of a homomorphism between free groups

Let Fn = 〈a1, ..., an|−〉 and Fr = 〈b1, ..., br|−〉 be finitely generated free groups.

Theorem 3.8. There is an algorithm that, given a homomorphism ϕ : Fr → Fn by
means of the words ϕ(b1), ..., ϕ(br), determines two finite sets M,N ⊆ Fr such that:

(i) M ∪N is a basis for Fr.
(ii) ϕ is injective on 〈M〉.
(iii) ϕ is trivial on 〈N〉.
(iv) The length of bi as a reduced word in the basis M ∪N is at most twice the length

of ϕ(bi) as a reduced word in the basis a1, ..., an.

In particular, in Theorem 3.8, we have that kerϕ is the normal subgroup 〈〈N〉〉 E Fr.
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Figure 5. In the picture, we can see the (geometric realization of the) graph Γ, for the
homomorphism ϕ : 〈b1, b2, b3〉 → 〈a1, a2, a3〉 given by ϕ(b1) = a2a3a

3
1 and ϕ(b2) = a2

1 and
ϕ(b3) = a2

1a2a3a1. On the left of the basepoint the graph core∗(〈a2a3a
3
1〉), above the basepoint

the graph core∗(〈a2
1〉) and on the right of the basepoint the graph core∗(〈a2

1a2a3a1〉). The three
basepoints of the three core graphs are identified into a unique basepoint ∗.

Fr π1(Γ, ∗) π1(Γk, ∗) π1(Γm, ∗)

Fn = π1(Δn, ∗)

θ p∗ q∗

ϕ f∗ fk
∗ fm

∗

Figure 6. The diagram commutes.

Proof. If we have ϕ(br) = 1, then we just put br in N and then we restrict our
attention to the subgroup 〈b1, ..., br−1〉. Thus, it’s enough to prove the statement in the
case where ϕ(bi) 6= 1 for i = 1, .., r.
Let ∆n be the graph given by V (∆n) = {∗} and E(∆n) = {a1, a1, ..., an, an}. Let

Γ = core∗(〈ϕ(b1)〉) ∨ · · · ∨ core∗(〈ϕ(br)〉) be the labelled graph given by the join of
the graphs core∗(〈ϕ(bi)〉) for i = 1, ..., r (see Figure 5). For i = 1, ..., r, let βi be the
unique reduced path in core∗(〈ϕ(bi)〉) representing the element bi. Let f : Γ → ∆n be
the labelling map, inducing a map f∗ : π1(Γ, ∗) → π1(∆n, ∗) between the fundamental
groups. Let θ : Fr → π1(Γ, ∗) be the isomorphism given by θ(bi) = [βi] for i = 1, ..., r.
Observe that f∗ ◦ θ = ϕ as maps from Fr to π1(∆n, ∗) = Fn.
Let Γ = Γ0 → · · · → Γk be a maximal sequence of rank-preserving folding operations

and let Γk → · · · → Γm be a maximal sequence of folding operations for Γk, as in
Proposition 3.5. The basepoint ∗ ∈ Γ induces a basepoint ∗ ∈ Γj for every j = 0, ...,m.
Let p : Γ → Γk and q : Γk → Γm be the quotient maps given by the sequences of folds.
Let fk : Γk → ∆n and fm : Γm → ∆n be the labelling maps, and observe that the
diagram of Figure 6 commutes.
Our plan now is to study the map ϕ using the fact that ϕ = fm∗ ◦ q∗ ◦ p∗ ◦ θ. By

Propositions 3.5 and 3.2, we have that fm∗ is injective (and can thus be ignored) and the
maps θ, p∗ are isomorphisms. As we will see, the interesting map is q∗.
Since p is a homotopy equivalence, the fundamental group of Γk has rank r. Let

T be a maximal tree for Γk, and let {e1, e1, ..., er, er} be the list of edges in Γk \ T ,
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and for every pair {ei, ei} choose the one which has label in {a1, ..., an} (and not in
{a1, ..., an}) (without loss of generality assume it’s ei): these give a basis [σ1], ..., [σr] for
the fundamental group π1(Γ

k, ∗), according to Proposition 2.3.
By Proposition 3.5, the map q : Γk → Γm induces a bijection on the set of vertices

(see Figure 4); we consider the maximal tree T for Γk, and we observe that q
∣∣
T

is

injective and q(T ) is a maximal tree for Γm. Let {d1, d1, ..., ds, ds} be the list of edges
in Γm \ q(T ), and for every pair {dj , dj} choose the one which has label in {a1, ..., an}
(and not in {a1, ..., an}) (without loss of generality, assume it’s dj): these give a basis
[ρ1], ..., [ρs] for the fundamental group π1(Γ

m, ∗), as in Proposition 2.3.
The map q∗ : π1(Γ

k, ∗) → π1(Γ
m, ∗) is now very easy to describe: we have

q∗([σi]) =

1 if q(ei) ∈ q(T )

[ρj ] if q(ei) = dj ∈ Γm \ q(T ).

For each edge dj in Γm \ q(T ) fix an index i(j ) such that q(ei(j)) = dj . Define the sets

N ′ = {[σi] : q(ei) ∈ q(T )}∪{[σi′ ][σ−1
i(j)] : q(ei′) = djand i

′ 6= i(j)}M ′ = {[σi(j)] : j = 1, ..., s}

and we observe that M ′ ∪N ′ is a basis for π1(Γ
k, ∗) and that q∗ is injective on 〈M ′〉 and

zero on 〈N ′〉. Thus we set M = θ−1(p−1
∗ (M ′)) and N = θ−1(p−1

∗ (N ′)) and this yields (i),
(ii) and (iii).
We observe that the construction of the graphs Γ,Γk,Γm and of the maps p, q

is algorithmic. We use the bases Fr = 〈b1, ..., br〉 and π1(Γ, ∗) = 〈[β1], ..., [βr]〉 and
π1(Γ

k, ∗) = 〈[σ1], ..., [σr]〉. The maps θ and θ−1 are of course explicit in those bases.
The map p∗ can be algorithmically obtained too, because it is enough to look at the
paths p∗(βi) for i = 1, ..., r and at the occurrences of the edges e1, e1, ..., er, er along
those paths. In order to make explicit the map p−1

∗ , we observe that, for j = 1, ..., k, the
folding operation Γj−1 → Γj induces a pointed homotopy equivalence |Γj−1| → |Γj |, and
it’s easy to explicitly produce a pointed homotopy inverse ηj : |Γj | → |Γj−1|; thus, we
have p−1

∗ = η1∗◦· · ·◦ηk∗ , and by looking at the homotopy classes η1∗(· · · (ηk−1
∗ (ηk∗ ([σi]))) · · · )

we obtain a writing of p−1
∗ ([σi]) as a word in [β1], ..., [βr], for i = 1, ..., r. This shows that

M and N can be built in an algorithmic way.
Each of [σ1], ..., [σr] can be written as a word of length at most 2 in the elements of

N
′
. For i = 1, ..., r let `i be the length of the word ϕ(bi) in the basis a1, ..., an; the path

βi has length `i, and so does the path p∗(βi); in particular, p∗(βi) contains the edges
e1, e1, ..., er, er at most `i times, and thus p∗([βi]) can be written as a word in [σ1], ..., [σr]
of length at most `i. Finally, each bi is a word of length one in [β1], ..., [βr]. This proves
part (iv). �

As a corollary of Theorem 3.8, we obtain the following result about ideals of equations:

Corollary 3.9. Let H ≤ Fn be a finitely generated subgroup and g ∈ Fn be an element.
Then we have the following:

(i) The ideal Ig E H ∗ 〈x〉 is finitely generated as a normal subgroup.
(ii) The set of generators for Ig can be taken to be a subset of a basis for H ∗ 〈x〉.
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(iii) There is an algorithm that, given a finite set of generators for H and the element g,
computes a finite set of normal generators for Ig which is also a subset of a basis
for H ∗ 〈x〉.

Proof. Apply Theorem 3.8 to the evaluation homomorphism ϕg : H ∗〈x〉 → Fn (given
by the inclusion on H and by ϕg(x) = g). The algorithm of Theorem 3.8 produces a basis
for a free factor N of H ∗ 〈x〉; the ideal Ig coincides with kerϕg, which is the normal
subgroup generated by N. The conclusion follows. �

Remark 3.10. We also refer the reader to [14], where they present two algorithms
to determine a finite set of generators of Ig (as normal subgroup). The first algorithm is
based on Nielsen transformations, while the second one on Stallings’ folding techniques.

Remark 3.11. In the proof of Theorem 3.8, we make use of the basis [σ1], ..., [σr] for
π1(Γ

k, ∗), which corresponds to a basis c1, ..., cr for Fr (given by ci = θ−1(p−1
∗ ([σi])) for

i = 1, ..., r). We show that the kernel kerϕ is generated by words of length at most 2 in
the basis c1, ..., cr. Moreover we show that, for i = 1, ..., r, the length of bi written as a
reduced word in the basis c1, ..., cr is smaller or equal than the length of bi written as a
reduced word in the basis a1, ..., an.
In the setting of the particular case of Corollary 3.9, this gives us a basis c1, ..., cr+1

for H ∗ 〈x〉 satisfying the following two conditions:

(i) Ig is generated by words of length at most 2 in the basis c1, ..., cr+1;
(ii) The length of h1 (respectively h2, ..., hr, x) written as a reduced word in the basis

c1, ..., cr+1 is smaller or equal than the length of h1 (respectively h2, ..., hr, g) written
as a reduced word in the basis a1, ..., an.

4. The minimum degree of an equation

In this section, we work with a fixed finitely generated subgroup H ≤ Fn and with a
fixed element g ∈ Fn such that g depends on H. Let ϕg : H ∗ 〈x〉 → Fn be the map
of evaluation in g, and consider the ideal Ig = kerϕg. Recall that the degree of w is
defined as the total number of occurrences of x and x in the cyclic reduction of w.

4.1. Equations as paths

Let Γ = core∗(H) ∨ core∗(〈g〉) be the pointed labelled graph given by the join of
core∗(H) and core∗(〈g〉), see Figure 7. Let f : Γ → ∆n be the labelling map, inducing a
map f∗ : π1(Γ, ∗) → π1(∆n, ∗) between the fundamental groups.
Let θ : H ∗ 〈x〉 → π1(Γ, ∗) be the isomorphism sending each element of H to the

corresponding homotopy class of paths in core∗(H), and the element x to the homotopy
class of the path in core∗(〈g〉) corresponding to the element g. It is immediate to see that
f∗ ◦ θ = ϕg as maps from H ∗ 〈x〉 to π1(∆n, ∗) = Fn, see Figure 8. In particular, we have
Ig = kerϕg = ker(f∗ ◦ θ) = θ−1(ker f∗).
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Γ

Figure 7. In the picture, we can see the (geometric realization of the) graph Γ. Here F2 = 〈a, b〉
and H = 〈h1, h2〉 with h1 = b2ab and h2 = abab. On the left of the basepoint, we have the graph
core∗(H). On the right of the basepoint, we have the graph core∗(〈g〉) where g = b2a.

H ∗ 〈x〉 π1(Γ, ∗)

Fn = π1(Δn, ∗)

θ

ϕg f∗

Figure 8. The diagram commutes.

Definition 4.1. Let w ∈ H ∗ 〈x〉 be an equation. Define the corresponding path σ
as the unique reduced path in Γ from ∗ to ∗ belonging to the homotopy class θ(w) (see
Proposition 2.2).

Definition 4.2. Let σ be a reduced path in Γ from ∗ to ∗. Define the corresponding
equation w ∈ H ∗ 〈x〉 as w = θ−1([σ]).

The two above definitions give a bijection between equations w ∈ H ∗ 〈x〉 and reduced
paths σ in Γ from ∗ to ∗. We define the length of an equation w ∈ H ∗〈x〉 as the length of
the corresponding path. Cyclically reduced paths correspond to cyclically reduced equa-
tions, i.e. equations w ∈ H ∗ 〈x〉 such that, when we write w as a reduced word in the
letters a1, a1, ..., an, an, x, x, the word is also cyclically reduced. Equations belonging to
the ideal Ig correspond to paths σ such that f∗(σ) is homotopically trivial.

Definition 4.3. A lift is a reduced path σ in Γ from ∗ to ∗ such that f∗(σ) is
homotopically trivial.

Recall that ‖Γ‖ denotes the number of edges of the graph Γ (Definition 2.1). The aim
of this section is to prove the following theorem:

Theorem 4.4. Let dmin be the minimum possible degree for a non-trivial equation in
Ig. Then there is a non-trivial equation w ∈ Ig of degree dmin and length ` ≤ 8‖Γ‖2dmin.
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4.2. Innermost cancellations

The degree of a cyclically reduced equation can be computed by looking at how many
times the corresponding path crosses the edges of core(〈g〉).

Lemma 4.5. Let σ be a cyclically reduced path from ∗ to ∗ in Γ, with corresponding
cyclically reduced equation w ∈ H ∗ 〈x〉 of degree d. Then we have the following:

(i) For every edge e of core(〈g〉), the path σ contains exactly d occurrences of e, e (in
total).

(ii) For every edge e of core∗(〈g〉), the path σ contains at most 2d occurrences of e, e
(in total).

Proof. Write the equation w as a cyclically reduced word c1x
α1c2x

α2 · · ·crxαrcr+1

with α1, ..., αr ∈ Z \ {0} and c1, ..., cr+1 ∈ H. Then in the graph Γ we have that θ(w) =
θ(c1) · θ(xα1) · · · · · θ(xαr ) · θ(cr+1) (recall that the · symbol denotes the concatenation of
paths, without any homotopy).

(i) Fix an edge e of core(〈g〉). Then θ(xαi) contains exactly one of e and e, and exactly
|αi| times, for i = 1, ..., r. We have that θ(ci) is contained in core∗(H) and thus it
doesn’t contain any edge of core(〈g〉). The conclusion follows since |α1|+...+|αr| = d.

(ii) Fix an edge e of core∗(〈g〉) \ core(〈g〉). Then θ(xαi) contains exactly one occurrence
of e and exactly one occurrence of e, for i = 1, ..., r. We have that θ(ci) is contained
in core∗(H) and thus it doesn’t contain any edge of core(〈g〉). The conclusion follows
since r ≤ d.

�

Recall that equations w belonging to the ideal Ig are in bijection with lifts σ,
i.e. reduced paths in Γ from ∗ to ∗ such that f∗(σ) is homotopically trivial (see
Definition 4.3). Given a lift σ of length `, we can take a maximal reduction process
(s1, t1), ..., (s`/2, t`/2) for f∗(σ).

Definition 4.6. Let σ be a lift of length ` ≥ 2 and let (s1, t1), ..., (s`/2, t`/2) be a
maximal reduction process for f∗(σ). A couple (si, ti) is called innermost cancellation
if ti = si + 1.

The following two lemmas, which will be of fundamental importance in what follows,
tell us that the degree of w is closely related to the number of innermost cancellations in
the process.

Lemma 4.7. Let σ = (e1, ..., e`) be a lift of length ` ≥ 2 and let (s1, t1), ..., (s`/2, t`/2)
be a maximal reduction process for f∗(σ). Let (si, ti) be an innermost cancellation. Then,
among esi and eti , one is an edge of core∗(H) and the other is an edge of core∗(〈g〉) (and
τ(esi) = ι(eti) is the basepoint).

Proof. Since (si, ti) is a couple of a reduction process for f∗(σ), we have that f(eti) =
f(esi). This means that the two edges eti and esi have the same label. Observe that
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ι(eti) = ι(esi) but eti 6= esi , since σ is a reduced path and ti = si + 1. This means that
eti and esi can’t both belong to core∗(H) (because it is folded) and can’t both belong
to core∗(〈g〉) (because it is folded too). Thus one of them has to belong to core∗(H) and
the other to core∗(〈g〉), and the conclusion follows. �

Lemma 4.8. Let σ be a cyclically reduced lift of length ` ≥ 2 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Suppose that the cycli-
cally reduced equation w ∈ Ig corresponding to σ has degree d. Then the reduction process
contains at most 2d innermost cancellations.

Proof. As in the proof of Lemma 4.5, write the equation w as a cyclically reduced
word

c1x
α1c2x

α2 · · ·crxαrcr+1

with α1, ..., αr ∈ Z \ {0} and c1, ..., cr+1 ∈ H; we have σ = θ(w) = θ(c1) · θ(xα1) · · · · ·
θ(xαr ) ·θ(cr+1). We see that w has degree d = |α1|+ · · ·+ |αr| ≥ r and, using Lemma 4.7,
that the path σ contains at most 2r innermost cancellations. The conclusion follows. �

4.3. Parallel cancellation

In this subsection, we introduce the parallel cancellation moves, which allow us to
produce a shorter equation from a longer one.

Definition 4.9. Let σ = (e1, ..., e`) be a lift of length ` ≥ 4 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). We say that two couples
(sα, tα), (sβ , tβ) with α < β are parallel if sβ < sα < tα < tβ and we have esβ = esα
and etα = etβ .

The reason behind the definition of parallel couples is that they allow us to perform
a cancellation move, which we now describe, that will be of fundamental importance
in the proof of Theorem 4.4. Let σ = (e1, ..., e`) be a lift of length ` ≥ 4 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Let (sα, tα), (sβ , tβ) be
two parallel couples. Define

σ′ = (e1, ..., esβ−1, esα , ..., etα , etβ+1, ..., e`)

obtained removing the two segments (esβ , ..., esα−1) and (etα+1, ..., etβ ) from σ (see

also Figure 9). Notice that σ′ is a well-defined path in Γ from ∗ to ∗ and has length
`′ satisfying 2 ≤ `′ ≤ ` − 2 (because there are at least two edges that get removed,
namely esβ and etβ , and two that don’t get removed, namely esα and etα). We say

that the path σ′ is obtained from σ by means of a parallel cancellation move. Let
ω : {1, ..., sβ−1, sα, ..., tα, tβ+1, ..., `} → {1, ..., `′} be the unique non-decreasing bijection
(which is needed to reparametrize the indices).

Lemma 4.10 (Parallel cancellation). Let σ = (e1, ..., e`) be a lift of length
` ≥ 4 and let (s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Let
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. . . . . . . . . . . . . . .
sβ sα tα tβ

Figure 9. An example of a diagram for a maximal reduction process. The cancellation move
removes the two intervals that are painted below the diagram.

(sα, tα), (sβ , tβ) be two parallel couples, and let σ′ be obtained performing the parallel
cancellation move. Then σ′ is a lift (i.e. σ′ is reduced and f∗(σ

′) is homotopically triv-
ial). A maximal reduction process for f∗(σ

′) can be obtained from (s1, t1), ..., (s`/2, t`/2)
by removing the couples (si, ti) with sβ ≤ si < sα and by applying ω to each number in
each of the remaining couples.

Proof. We want to show that σ′ is reduced. For k = 1, ..., sβ − 2, we have that the
two consecutive edges ek, ek+1 in σ′ also appear as consecutive edges in σ, and since σ is
reduced we have ek 6= ek+1. The same holds for k = sα, ..., tα−1 and for k = tβ+1, ..., `−1.
For the two edges esβ−1, esα that appear consecutive in σ′, we notice that esα = esβ since

the couples are parallel, and esβ−1 6= esβ , yielding esβ−1 6= esα . The same holds for the

two edges etα , etβ+1. This proves that σ
′ is reduced.

For every i ∈ {1, ..., `/2} we have that esi is removed from σ if and only if sβ ≤ si < sα if
and only if (by Lemma 2.6) tα < ti ≤ tβ if and only if eti is removed from σ. Consider the
sequence (s1, t1), ..., (s`/2, t`/2) and remove the couples (si, ti) with sβ ≤ si < sα (whilst
preserving the order of the other couples): the remaining couples contain the indices of
the edges that remain in σ′, the index of each edge appearing exactly once. We can thus
apply ω to each number in each of the remaining couples, and we get a sequence of couples
(q1, r1), ..., (q`′/2, r`′/2) such that q1, r1, ..., q`′/2, r`′/2 are a permutation of 1, ..., `′. Since
ω is non-decreasing we also have qj < rj for j = 1, ..., `′/2.
Fix an index j ∈ {1, ..., `′/2} and we must have (qj , rj) = (ω(si), ω(ti)) for some

i ∈ {1, ..., `/2}. Since (s1, t1), ..., (s`/2, t`/2) is a reduction process for σ we have that
{si + 1, si + 2, ..., ti − 2, ti − 1} ⊆ {s1, t1, ..., si−1, ti−1}: we remove from both those
sets the indices in {sβ , ..., sα − 1, tα + 1, ..., tβ} and we apply ω, and we obtain that
{qj+1, qj+2, ..., rj−2, rj−1} ⊆ {q1, r1, ..., qj−1, rj−1}. Finally, we observe that f(esi) =
f(eti) implies f(eqj ) = f(erj ).

This proves that (q1, r1), ..., (q`′/2, r`′/2) is a maximal reduction process for f∗(σ
′), and

it contains all the indices from 1 to `′. In particular, f∗(σ
′) is homotopically trivial. The

conclusion follows. �

The following lemma shows that parallel cancellation move can’t increase the degree
of the corresponding equation.
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Lemma 4.11. Let σ, σ′ be cyclically reduced lifts. Suppose that σ′ is obtained from
σ by means of a parallel cancellation move. Then the degrees d, d′ of the corresponding
equations w,w′ satisfy d′ ≤ d.

Proof. Fix an edge e of Γ belonging to core(〈g〉) and apply Lemma 4.5. The sequence
of edges of σ′ is obtained from the sequence of edges of σ by removing some elements of
the sequence. In particular, the number of occurrences of e and e can’t increase. �

Later, in § 5.1, we will provide a more detailed discussion about parallel cancellation
moves that preserve the degree of the corresponding equation.

4.4. The minimum possible degree for a non-trivial equation

Recall that ‖Γ‖ denotes the number of edges of the graph Γ (Definition 2.1).

Proposition 4.12. Let w ∈ Ig be a cyclically reduced equation and let σ be the
corresponding cyclically reduced lift. Suppose w has degree d and length ` > 8‖Γ‖2d.
Then every maximal reduction process for f∗(σ) contains two parallel couples.

Proof. Fix a maximal reduction process (s1, t1), ..., (s`/2, t`/2) for f∗(σ). Let
Z = {(e, e′) ∈ E(Γ) × E(Γ) : f(e) = f(e′)} be the set of couples of edges with the
same label; we have 2‖Γ‖ possibilities for the choice of e, and fixed e we have at most
‖Γ‖ possibilities for the choice of e

′
(each label can appear on at most ‖Γ‖ edges, since

reverse edges have inverse label): this shows that |Z| ≤ 2‖Γ‖2.
Define the map {1, ..., `/2} → Z given by i 7→ (esi , eti). By hypothesis, we have `/2 >

2‖Γ‖2 · 2d and thus there is at least one element of Z which is the image of at least
2d + 1 indices i1 < · · · < i2d+1 in {1, ..., `/2}. This means that we have 2d + 1 pairwise
distinct couples (si1 , ti1), ..., (si2d+1

, ti2d+1
) in the reduction process satisfying esi1

=

esi2
= · · · = esi2d+1

and eti1
= eti2

= · · · = eti2d+1
.

For each k = 1, ..., 2d + 1, the couple (sik , tik) has to contain an innermost cancel-
lation, i.e. there is an innermost cancellation (qk, rk) with sik ≤ qk < rk ≤ tik . By
Lemma 4.8, there are at most 2d innermost cancellations: since we have 2d + 1 couples
(si1 , ti1), ..., (si2d+1

, ti2d+1
), two of them, let’s say (sij , tij ) and (sik , tik) with j < k, have

to contain the same innermost cancellation (qj , rj) = (qk, rk). But by Lemma 2.6, this
implies sij < sik < tik < tij . Thus the two couples (sij , tij ), (sik , tik) are parallel, as

desired. �

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Let w ∈ Ig be a non-trivial equation of degree dmin and of
minimum possible length ` ≥ 1. This in particular implies that w is cyclically reduced.
Let σ be the corresponding cyclically reduced lift (which has length ` too).
Assume by contradiction that ` > 8‖Γ‖2dmin. Let (s1, t1), ..., (s`/2, t`/2) be a maxi-

mal reduction process for f∗(σ): by Proposition 4.12 we can find two parallel couples
(si, ti), (sj , tj). We perform the corresponding parallel cancellation move (according to
Lemma 4.10) and we obtain a path σ′ of length `′, with corresponding equation w′ ∈ Ig
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with w′ 6= 1. Notice that `′ < `; moreover, by Lemma 4.11, the degree d
′
of w

′
satisfies

d′ ≤ dmin, but since dmin is the minimum possible this implies d′ = dmin. But then `
′ < `

contradicts the minimality of `. This proves the theorem. �

Corollary 4.13. There is an algorithm that, given a finite set of generators for a
subgroup H ≤ Fn and an element g ∈ Fn such that g depends on H, produces a non-trivial
equation w ∈ Ig of minimum possible degree.

Algorithm We first produce an upper bound D on the minimum degree of an equation
in Ig; this is done for example by taking any non-trivial equation in Ig, which we can
construct using the algorithm of Theorem 3.8, and taking its degree D. Given this upper
bound D, we take all the non-trivial reduced paths σ in Γ from ∗ to ∗ and of length
` ≤ 8‖Γ‖2D. For each such path σ, we check whether f∗(σ) is homotopically trivial (in
linear time on a pushdown automaton, with a free reduction process), and we compute
the degree of the corresponding equation w. We take the minimum of all the degrees
of those equations: this is also the minimum possible degree for a non-trivial equation
in Ig. �

5. The set of minimum-degree equations

In this section, we describe a parallel insertion move and we show that it is an inverse
to degree-preserving parallel cancellation moves. We also provide a few lemmas that
help us manipulate sequences of parallel insertion moves. The aim of this section is to
provide an explicit characterization of the set of all the equations of minimum pos-
sible degree (and more generally, of the set of all the equations of a certain fixed
degree).
We work with in the same setting as in previous § 4. We fix a finitely generated subgroup

H ≤ Fn and an element g ∈ Fn such that g depends on H. As in the previous section,
we consider the pointed labelled graph Γ = core∗(H) ∨ core∗(〈g〉) with labelling map
f : Γ → ∆n.

5.1. Degree-preserving parallel cancellation moves

Given two lifts σ and σ′, Lemma 4.11 tells us that, if σ′ is obtained from σ by means of
a parallel cancellation move, then the degrees d, d′ of the corresponding equations w,w′

satisfy d′ ≤ d. We now provide more precise information about which parallel cancellation
moves give an equality d′ = d between the degrees.

Definition 5.1. Let σ, σ′ be lifts and suppose σ′ is obtained from σ by means of a par-
allel cancellation move. We say that the parallel cancellation move is degree-preserving
if the two equations w,w′ corresponding to the paths σ, σ′ have the same degree d = d′.

Lemma 5.2. Let σ = (e1, ..., e`) be a cyclically reduced lift of length ` ≥ 4 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Suppose that there are
two parallel couples (sα, tα), (sβ , tβ) with 1 ≤ α < β ≤ `/2, and let σ′ be the cyclically
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reduced lift obtained from σ performing the parallel cancellation move. If the parallel
cancellation move is degree-preserving, then we have the following:

(i) The edges esβ , ..., esα , etα , ..., etβ belong to core(H).

(ii) We have that sα − sβ = tβ − tα and the maximal reduction process contains the
couples (sβ + i, tβ − i) for i = 0, 1, ..., sα − sβ.

Proof. We observe that Γ consists of the join of core(H), core(〈g〉) and a (possibly
trivial) edge-path connecting one point of core(H) to one point of core(〈g〉).

(i) Let ρ = (esβ , esβ+1, ..., esα) and we want to prove that ρ is contained in core(H).

Notice that ρ begins and ends with the same edge esβ = esα .

Suppose that esβ doesn’t belong to core(H). Then the path ρ is reduced, and begins

and ends with a same edge in Γ \ core(H). This implies that, for every edge e of
core(〈g〉), the path ρ is forced to contain either e or e at least once. It follows by
Lemma 4.5 that the parallel cancellation move can’t be degree-preserving.
Suppose now that there is an edge es with sβ < s < sα such that es doesn’t belong
to core(H). Then ρ is reduced, begins and ends in core(H), and contains an edge
in Γ \ core(H). This implies that, for every edge e of core(〈g〉), the path ρ is forced
to contain either e or e at least once. It follows by Lemma 4.5 that the parallel
cancellation move can’t be degree-preserving.
It follows that ρ = (esβ , esβ+1, ..., esα) is contained in core(H). Similarly, we have

that (etα , ..., etβ ) has to be contained in core(H), and this proves (i).

(ii) Suppose that a couple (si, ti) satisfies sβ < si < ti < sα for some 1 ≤ i < β. Then
there must be an innermost couple (sj , tj) with sβ < sj < tj < sα for some 1 ≤ j ≤
i. But then by Lemma 4.7, at least one of the edges esj , etj belongs to Γ \ core(H),

contradicting (iv). It follows that no couple (si, ti) can satisfy sβ < si < ti < sα;
similarly, no couple (si, ti) can satisfy tα < si < ti < tβ . By Lemma 2.6, we have that
the reduction process has to pair up numbers in {sβ , sβ + 1, ..., sα} with numbers
in {tα, tα + 1, ..., tβ}, and the pairing has to be done in decreasing order. This
proves (ii).

�

5.2. Parallel insertion moves

We here introduce the parallel insertion move, which allows us to produce longer
paths representing equations from shorter ones. We prove that this is the inverse of
the degree-preserving parallel cancellation moves. We provide a few lemmas that allow
us to manipulate sequences of moves, and which will be useful in what follows.

Definition 5.3. Let σ = (e1, ..., e`) be a lift of length ` ≥ 2 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Fix a couple (sα, tα)
such that esα , etα belong to core(H). An insertion for σ at (sα, tα) is a couple (ρ1, ρ2)
as follows:

(i) ρ1 is a cyclically reduced closed path in core(H) such that the first edge of ρ1 is
esα .

https://doi.org/10.1017/S0013091524000439 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000439


Ideals of equations for elements in a free group and stallings folding 25

. . . . . . . . .
sα tα

. . . . . . . . . . .
sα tα

. . . . . . . .
ρ1 ρ2

. . . . . . . . . . . . . . .
sα tαρ1 ρ2

Figure 10. An example of a parallel insertion move. In the image above, we can see a diagram
for a maximal reduction process for σ. In the image in the middle, we see the two cuts at ι(esα)
and τ(etα) and the two segments ρ1 and (the reverse of) ρ2 ready to be inserted. In the image
below, we see the result after the insertion move, and a diagram for a maximal reduction process
for σ′.

(ii) ρ2 is a cyclically reduced closed path in core(H) such that the first edge of ρ2 is
etα .

(iii) The two paths ρ1, ρ2 have the same length and satisfy f∗(ρ1) = f∗(ρ2) (i.e. we read
the same cyclically reduced word in a1, a1, ..., an, an while going along ρ1 and ρ2).

Let (ρ1, ρ2) be an insertion at (sα, tα) for the lift σ. Call σ = (e1, ..., e`) and ρ1 =
(e′1, e

′
2, ..., e

′
r) and ρ2 = (e1′′, e2′′..., er′′). Define

σ′ = (e1, e2, ..., esα−1, e
′
1, e

′
2, ..., e

′
r, esα , esα+1, ..., etα−1, etα , er′′, er−1′′, ..., e1′′,

etα+1, etα+2, ..., e`)

obtained by inserting the segment ρ1 immediately before the edge esα , and by inserting
the segment ρ2, in reverse direction, immediately after the edge etα (see also Figure 10).
Notice that σ′ is a well-defined path in Γ from ∗ to ∗, since we required ρ1, ρ2 to be
cyclically reduced and to begin with esα , etα respectively. The path σ′ has length `′ =
` + 2r where ` ≥ 2 is the length of σ and r ≥ 1 is the length of the segments of the
insertion. We say that the path σ′ is obtained from σ by means of a parallel insertion
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move. Let ν : {1, ..., `} → {1, 2, ..., sα − 1, r + sα, r + sα + 1, ..., r + tα − 1, r + tα, 2r +
tα + 1, 2r+ tα + 2, ..., 2r+ `} be the unique non-decreasing bijection (which is needed to
reparametrize the indices).

Lemma 5.4 (Parallel insertion). Let σ = (e1, ..., e`) be a lift of length ` ≥ 2 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Let (sα, tα) be a couple
such that esα , etα belong to core(H) and let (ρ1, ρ2) be an insertion for σ at (sα, tα). Let
σ′ be the path obtained performing the parallel insertion move. Then σ′ is a lift (i.e. σ′

is reduced and f∗(σ
′) is homotopically trivial). Moreover, there is a maximal reduction

process for f∗(σ
′) containing the couples (ν(si), ν(ti)) for i = 1, ..., `/2.

Proof. The fact that σ′ is reduced follows from the fact that σ is reduced and
from the fact that ρ1, ρ2 are cyclically reduced; here it’s important the property
that ρ1 begins with esα respectively (that grants us that esα−1 6= e′1 and e′r 6=
esα), and analogous for ρ2. A maximal reduction process for f∗(σ

′) is given by
(ν(s1), ν(t1)), ..., (ν(sα), ν(tα)), (sα+ r−1, tα+ r+1), (sα+ r−2, tα+ r+2), ..., (sα, tα+
2r), (ν(sα+1), ν(tα+1)), ..., (ν(s`/2), ν(t`/2)); in other words, in order to reduce σ′, we can-
cel the same couples of edges as in σ, until we cancel esα against etα ; at that point, we
cancel ρ1 against the reverse of ρ2 (and this can be done since by hypothesis we have
f∗(ρ1) = f∗(ρ2)); and then we conclude the reduction process in the same way as in σ.
In particular, f∗(σ

′) is homotopically trivial, as desired. �

Recall that f : Γ → ∆n is the labelling map, and with an abuse of notation
denote with f : core(H) → ∆n the labelling map of core(H), which is a restriction
of the same map to the subgraph core(H). Take two copies f1 : core(H) → ∆n and
f2 : core(H) → ∆n of the same map and consider the pull-back Ω = core(H)×∆n core(H)
as defined in Section 1.3 of [18]. This means that Ω has vertices V (Ω) = V (core(H)) ×
V (core(H)) and edges E(Ω) = {(e1, e2) ∈ E(core(H)) × E(core(H)) : f1(e1) = f2(e2)},
and the two projection maps p1 : Ω → core(H) and p2 : Ω → core(H) satisfy
f1 ◦ p1 = f2 ◦ p2.
Let σ = (e1, ..., e`) be a lift, let (s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for

f∗(σ) and let (sα, tα) be a couple such that esα , etα belong to core(H). By the universal
property of the pull-back, we have that insertions (ρ1, ρ2) as in Definition 5.3 are in
bijection with cyclically reduced closed paths ρ in Ω such that the first edge of ρ is
(esα , etα). This provides a characterization of all insertions for σ at (sα, tα) and provides
an algorithmic way to check the existence of an insertion, since the construction of the
finite graph Ω is algorithmic.
For every vertex v of core(H), the group π1(core(H), v) can be seen as a subgroup of

Fn (by means of the injective homomorphism induced by the labelling map). Similarly,
for every two vertices v1, v2 of core(H) the group π1(Ω, (v1, v2)) can be seen as a subgroup
of Fn. By Theorem 5.5 of [18], we have π1(Ω, (v1, v2)) = π1(core(H), v1)∩π1(core(H), v2)
as subgroups of Fn; notice that both π1(core(H), v1) and π1(core(H), v2) are conjugates
of H.
In particular, in order to have an insertion for σ at (sα, tα), we need to have non-

trivial intersection π1(core(H), ι(esα))∩π1(core(H), τ(etα)). We point out that there are
cases where the possibilities for parallel insertion moves are very limited (for example
if H is malnormal in Fn, meaning that every two distinct conjugates of H have trivial
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intersection). In any case, it is possible that ι(esα) = τ(etα) (i.e. esα = etα), giving the
possibility for at least some parallel insertion move to be performed.
The following two lemmas show that the parallel insertion moves of Lemma 5.4 are

essentially the inverse of the parallel cancellation moves of Lemma 4.10 which are degree-
preserving as in Definition 5.1.

Lemma 5.5. Let σ = (e1, ..., e`) be a cyclically reduced lift of length ` ≥ 2 and let
(s1, t1), ..., (s`/2, t`/2) be a maximal reduction process for f∗(σ). Let (sα, tα), (sβ , tβ) be two
parallel couples, and let σ′ be obtained performing the parallel cancellation move. Suppose
that the parallel cancellation move is degree-preserving and let ρ1 = (esβ , esβ+1, ..., esα−1)

and ρ2 = (etβ , etβ−1, ..., etα+1). Then (ρ1, ρ2) is an insertion for σ′ and if we perform

the parallel insertion move we obtain σ.

Proof. It follows from Lemma 5.2 that (ρ1, ρ2) is an insertion. The insertion move has
to be performed at (sβ , 2tα − tβ) = (ω(sα), ω(tα)), where ω is the ‘reparametrization of
indices’ map as in Lemma 4.10. It follows from the definitions that when we apply the
parallel insertion move to σ′ we obtain σ. �

Lemma 5.6. Let σ′ = (e1, ..., e`′) be a lift of length `′ ≥ 1 and let
(s1, t1), ..., (s`′/2, t`′/2) be a maximal reduction process for f∗(σ

′). Let (sα, tα) be a couple
such that esα , etα belong to core(H) and let (ρ1, ρ2) be an insertion for σ′ at (sα, tα);
let σ be obtained performing the parallel insertion move. Then σ′ can be obtained from
σ by means of a parallel cancellation move that removes the segments ρ1, ρ2 that we just
added; moreover, this parallel cancellation move is degree-preserving.

Proof. Immediate from the definitions. �

We are now going to prove the technical Lemmas 5.7, 5.8 and 5.9; these will allow us
to manipulate a sequence of insertion moves. The following Lemma 5.7 says that, if we
take a path σ and we have two parallel insertion moves that we want to perform on σ,
then we can perform them in any order that we want, and we get the same result.

Lemma 5.7. Let σ = (e1, ..., e`) be a lift of length ` ≥ 1 and let (s1, t1), ..., (s`/2, t`/2)
be a maximal reduction process for f∗(σ). Let (sα, tα), (sα′ , tα′) be couples such that
esα , etα , esα′ , etα′ belong to core(H) and let (ρ1, ρ2), (ρ

′
1, ρ

′
2) be insertions for σ at

(sα, tα), (sα′ , tα′) respectively. Then performing the two parallel insertion moves on σ
in one order or in the other gives as a result the same path.

Proof. When performing the moves in one order or in the other, we start with the
same path σ, and we add the same edges in the same places. The only thing that changes
is the order in which the edges are added, but the resulting paths are the same. �

The following Lemma 5.8 says that, if we take a path and we perform two parallel
insertion moves at the same couple of edges, then we can consolidate them into one
single insertion move instead (at the same couple of edges).

Lemma 5.8. Let σ = (e1, ..., e`) be a lift of length ` ≥ 1 and let (s1, t1), ..., (s`/2, t`/2)
be a maximal reduction process for f∗(σ). Let (sα, tα) be a couple such that esα , etα belong
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to core(H), and let (ρ1, ρ2), (ρ
′
1, ρ

′
2) be insertions for σ at (sα, tα). Then (ρ1 · ρ′1, ρ2 · ρ′2)

is an insertion for σ at (sα, tα). Moreover, performing on σ the parallel insertion move
relative to (ρ1, ρ2) and then the one relative to (ρ′1, ρ

′
2) gives the same result as performing

the parallel insertion move relative to (ρ1 · ρ′1, ρ2 · ρ′2).

Proof. Completely analogous to the proof of Lemma 5.7. �

The following Lemma 5.9 says that, if we take a path and we perform a parallel insertion
move at a couple of edges, and then another insertion move at a couple of edges that
we just added, then we can again consolidate the two insertion moves into a single one.
Notice that this is slightly different from the previous Lemma 5.8.

Lemma 5.9. Let σ = (e1, ..., e`) be a lift of length ` ≥ 1 and let (s1, t1), ..., (s`/2, t`/2)
be a maximal reduction process for f∗(σ). Let (sα, tα) be a couple such that esα , etα belong
to core(H), and let (ρ1, ρ2) be an insertion for σ at (sα, tα). Let σ

′ be the path obtained
performing the parallel insertion move and let (s′1, t

′
1), ..., (s

′
`′/2, t

′
`′/2) be a maximal reduc-

tion process for f∗(σ
′). Let (s′β , t

′
β) be a couple in the reduction process for f∗(σ

′) that
doesn’t come from a couple in the reduction process for f∗(σ) (see Lemma 5.4); let (ρ′1, ρ

′
2)

be an insertion for σ′ at (s′β , t
′
β) and let σ′′ be the path obtained performing the parallel

insertion move. Then there is an insertion (ρ1′′, ρ2′′) for σ at (sα, tα) such that, if we
perform on σ the corresponding parallel insertion move, we obtain σ′′.

Proof. Completely analogous to the proof of Lemma 5.7. �

5.3. Characterization of all the minimum-degree equations

Recall that ‖Γ‖ denotes the number of edges of the graph Γ (Definition 2.1). Let dmin

be the minimum possible degree for a non-trivial equation w ∈ Ig.

Theorem 5.10. Let w ∈ Ig be a cyclically reduced equation of degree dmin and let σ be
the corresponding cyclically reduced lift. Then there is a cyclically reduced equation w′ ∈
Ig of degree dmin with corresponding cyclically reduced lift σ′, and a maximal reduction
process for f∗(σ

′), such that:

(i) The path σ′ has length `′ ≤ 8‖Γ‖2dmin.
(ii) The path σ can be obtained from σ′ by means of at most `′/2 parallel insertion

moves (see Lemma 5.4), each of them performed at a distinct couple of the reduction
process for f∗(σ

′).

Proof. If the length of σ is ` > 8‖Γ‖2dmin, then by Proposition 4.12 we can perform
a parallel cancellation move on σ in order to get a shorter path. The degree can’t strictly
increase, by Lemma 4.11, and can’t strictly decrease, since dmin was minimum. Thus,
we obtain a strictly shorter path, whose corresponding equation has the same degree
dmin. We reiterate the process, and after a finite number of parallel cancellation moves
we have to obtain a path σ′ with corresponding equation of degree dmin and of length
`′ ≤ 8‖Γ‖2dmin.
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Since σ′ is obtained from σ by means of a finite number of parallel cancellation moves,
by Lemma 5.5, this means that σ can be obtained from σ′ by means of a sequence of
parallel insertion moves. Take a sequence of parallel insertion moves ξ1, ..., ξp that changes
σ′ into σ and has minimum length p between all such sequences.
Suppose that there are two parallel insertion moves ξq, ξr with q < r such that ξr acts

on a couple that is added to the reduction process by ξq (see Lemma 5.4): then we take
an innermost couple of parallel insertion moves with that property, so that each move ξj
with q < j < r acts on a couple in the reduction process different from the one of ξr.
In particular, by Lemma 5.7, we can change the order in our sequence in order to bring
ξr adjacent to ξq, and we can then apply Lemma 5.9 in order to substitute ξq, ξr with
a single parallel insertion move. This contradicts the minimality of the length p of the
sequence.
Thus in our sequence ξ1, ..., ξq, we have that each insertion move acts on a couple

coming from the initial reduction process of σ′. If two insertion moves ξq, ξr with q < r
act on the same couple, then we reason as above, and by means of Lemmas 5.7 and 5.8
we can substitute them with a single insertion move, contradicting the minimality of p.
It follows that each couple of parallel insertion moves of the sequence ξ1, ..., ξp acts

on a different couple coming from the initial reduction process of σ′, and in particular
p ≤ `′/2. The conclusion follows. �

5.4. Equations of an arbitrary fixed degree

Until now we focused on the study of the equations of minimum possible degree, but
the results can be generalized to equations of any fixed degree. The following proposition
is similar to Proposition 4.12, but with the difference that this time we are looking for a
parallel cancellation move which is degree-preserving.

Proposition 5.11. Let w ∈ Ig be a cyclically reduced equation and let σ be the cor-
responding cyclically reduced lift. Suppose w has degree d ≥ 1 and length ` > 64‖Γ‖4d2 +
16‖Γ‖3d+ 4‖Γ‖d. Then every maximal reduction process for f∗(σ) contains two parallel
couples such that the corresponding parallel cancellation move is degree-preserving.

Proof. Fix a maximal reduction process (s1, t1), ..., (s`/2, t`/2) for f∗(σ). We say that
a couple (si, ti) is bad if one of esi , eti belongs to core∗(〈g〉). There are at most ‖Γ‖ pairs
of edges {e, e} in core∗(〈g〉), and for each of them there are at most 2d edges of σ which
are equal to e or e (by Lemma 4.5). It follows that there are in total at most 2‖Γ‖d bad
couples.
Consider the set C = {1, 2, ..., `} \ {r : r belongs to a bad couple (si, ti)}. This means

that we remove at most 4‖Γ‖d elements from the set {1, ..., `}, and thus the remaining set
C can be written as a union of at most 4‖Γ‖d+1 intervals: we write C = C1∪...∪Ca with
a ≤ 4‖Γ‖d+1, where Ck = {bk, bk+1, ..., ck} for some 1 ≤ bk ≤ ck ≤ `, in such a way that
ck−1+2 ≤ bk ≤ ck ≤ bk+1−2 for k = 2, ..., a−1. We have |C1|+...+|Ca| = |C| ≥ `−4‖Γ‖d
and by hypothesis `− 4‖Γ‖d ≥ 16‖Γ‖3d(4‖Γ‖d+ 1) + 1: it follows that there is at least
one set C ∈ {C1, ..., Ca} of size at least |C| ≥ 16‖Γ‖3d+ 1.
We observe that there is no couple (si, ti) with both si, ti ∈ C: otherwise, we could find

an innermost cancellation (sj , tj) with si ≤ sj < tj ≤ ti, and by Lemma 4.7 (sj , tj) would
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be a bad couple, and thus C would contain elements of a bad couple, contradiction. Let
Z = {(e, e′, Ck) : e, e

′ ∈ E(Γ) with f∗(e) = f∗(e
′) and Ck ∈ {C1, ..., Ca} with Ck 6= C}:

we have 2‖Γ‖ possibilities for choice of e, fixed e we have at most ‖Γ‖ possibilities for
the choice of e

′
, and we have at most 4‖Γ‖d choices for Ck; it follows that |Z| ≤ 8‖Γ‖3d.

Without loss of generality, assume C contains at least 8‖Γ‖3d+1 elements si belonging
to couples (si, ti) of the reduction process (otherwise C has to contain at least 8‖Γ‖3d+1
elements ti belonging to couples (si, ti) of the reduction process, and the reasoning is
analogous). To each such edge si, we associate the triple (esi , eti , Ck) ∈ Z, where Ck ∈
{C1, ..., Ca}\{C} is the connected component to which ti belongs. Since we have at least
8‖Γ‖3d + 1 edges si in C, and at most |Z| ≤ 8‖Γ‖3d possible triples, there are at least
two elements si1 , si2 with the same associated triple (esi1

, eti1
, Ck) = (esi2

, eti2
, Ck).

It immediately follows that (si1 , ti1) and (si2 , ti2) are parallel couples. Without loss of
generality we can assume that si1 < si2 ; we have that the interval {si1 , si1 + 1, ..., si2}
is contained in C and the interval {ti2 , ti2 +1, ..., ti1} is contained in Ck. Thus, when we
perform the parallel cancellation move relative to the couples (si1 , ti1) and (si2 , ti2), we
only remove edges whose image is in core∗(H). We conclude from Lemma 4.5 that the
cancellation move is degree-preserving, as desired. �

We are now ready to state and prove the analogues to Theorem 4.4 and to
Theorem 5.10.

Theorem 5.12. Let d ≥ 1 be an integer. Suppose that Ig contains a non-trivial
equation of degree d. Then Ig contains a non-trivial equation w of degree d and length
` ≤ 64‖Γ‖4d2 + 16‖Γ‖3d+ 4‖Γ‖d.

Proof. Take any non-trivial equation w in Ig of degree d and minimum possible
length ` ≥ 1. This implies that w is cyclically reduced. Let σ be the corresponding
cyclically reduced lift (which has length ` too). If ` > 64‖Γ‖4d2 + 16‖Γ‖3d+ 4‖Γ‖d then
by Proposition 5.11 we can perform a degree-preserving cancellation move on σ, and thus
we can find a non-trivial equation in Ig of degree d whose corresponding lift is strictly
shorter, contradiction. Thus we must have ` ≤ 64‖Γ‖4d2 + 16‖Γ‖3d + 4‖Γ‖d, and the
conclusion follows. �

Corollary 5.13. There is an algorithm that, given a finite set of generators for a
subgroup H ≤ Fn, an element g ∈ Fn and an integer d ≥ 1, tells us whether Ig contains
non-trivial equations of degree d, and, if so, produces an equation w ∈ Ig of degree d.

Theorem 5.14. Let d ≥ 1 be an integer. Let w ∈ Ig be a cyclically reduced equation
of degree d and let σ be the corresponding cyclically reduced lift. Then there is a cyclically
reduced equation w′ ∈ Ig of degree d with corresponding cyclically reduced lift σ′, and a
maximal reduction process for f∗(σ

′), such that:

(i) The path σ′ has length `′ ≤ 64‖Γ‖4d2 + 16‖Γ‖3d+ 4‖Γ‖d.
(ii) The path σ can be obtained from σ′ by means of at most `′/2 insertion moves (see

Lemma 5.4), each of them performed at a distinct couple of the reduction process
for f∗(σ

′).
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Proof. Completely analogous to the proof of Theorem 5.10. �

5.5. The set of possible degrees

Let H ≤ Fn be a finitely generated subgroup, let g ∈ Fn be an element that depends
on H, and let Ig E H ∗ 〈x〉 be the ideal of the equations for g over H.

Definition 5.15. Define Dg = {d ∈ N : there is a non-trivial equation w ∈
Ig of degree d}.

Lemma 5.16. If d, d′ ∈ Dg and k ≥ 0 then d+ d′ + 2k ∈ Dg.

Proof. Let w ∈ Ig be an equation of degree d : up to cyclic permutation, we can
assume that w is of the form c1x

α1 · · ·crxαr with c1, ..., cr ∈ H \ {1} and α1, ..., αr ∈
Z \ {0}. Similarly, let w′ ∈ Ig be an equation of degree d

′
, and similarly we assume that

w′ = c′1x
α′1 · · ·c′sxα

′
s with c′1, ..., c

′
s ∈ H \ {1} and α′

1, ..., α
′
s ∈ Z \ {0}. Without loss of

generality, also assume that α′
s > 0 and we take h ∈ H \ {1, c1}. Then w′′ = hwhxkw′xk

belongs to Ig and has degree d+ d′ + 2k, for any k ≥ 0. The conclusion follows. �

Denote with 2N the set of non-negative even numbers.

Theorem 5.17. Exactly one of the following possibilities takes place:

(i) Dg contains an odd number and N \Dg is finite.
(ii) Dg contains only even numbers and 2N \Dg is finite.

Proof. If Ig contains only equations of even degree, then we take any equation of even
degree d, and by Lemma 5.16 we are able to obtain equations of degree d + d + 2k for
every k ≥ 0. Thus, in this case, we have that 2N \Dg is finite.
Suppose now that Ig contains an equation of odd degree d. Then by Lemma 5.16, we

are able to obtain equations of degree d+ d+ 2k for every k ≥ 0, and thus equations of
every even degree big enough. In particular, we are able to obtain an equation of degree
2d, and thus by Lemma 5.16 we are able to obtain equations of degree 2d + d + 2k for
every k ≥ 0, and thus equations of every odd degree big enough. Thus, in this case, we
have that N \Dg is finite. �

In order to understand whether we fall into case (i) or (ii) of Theorem 5.17, it is enough
to look at a set of normal generators for Ig.

Lemma 5.18. Let H ≤ Fn be a finitely generated subgroup and let g ∈ Fn be an
element that depends on H. Suppose that the set of equations W ⊆ Ig generates Ig as
normal subgroup of H ∗ 〈x〉, and suppose every equation w ∈ W has even degree. Then
every equation in Ig has even degree.

Proof. Consider the homomorphism φ : H ∗〈x〉 → Z/2Z defined by φ(h) = 0 for every
h ∈ H and φ(x) = 1. Observe that φ sends equations of even degree to 0 and equations
of odd degree to 1. Since every w ∈W has even degree, we have that W is contained in
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kerφ. But then the normal subgroup Ig generated by W is contained in kerφ too, and
thus Ig only contains equations of even degree. �

Theorem 5.19. There is an algorithm that, given a finite set of generators for a
subgroup H ≤ Fn and an element g ∈ Fn that depends on H, produces the following
outputs:

(i) Determines whether we fall into case (i) or (ii) of Theorem 5.17.
(ii) Computes the finite set N \Dg or 2N \Dg respectively.

Proof. Let Ig = 〈〈w1, ..., wk〉〉 be a finite set of normal generators for Ig, which can be
computed algorithmically by Corollary 3.9. According to Lemma 5.18, if one of w1, ..., wk

has odd degree then we fall into case (i) of Theorem 5.17, otherwise we fall in case (ii)
of Theorem 5.17.
If we fall into case (i), then we take wi of degree di odd, and with the same proof of

Theorem 5.17 we have that N \Dg ⊆ {1, ..., 3di}. For each degree d ∈ {1, ..., 3di}, we use
Corollary 5.13 to determine whether d belongs to Dg. If we fall into case (ii), we perform
an analogous procedure. �

6. Examples

We now provide a few examples for the reader, to illustrate the techniques introduced in
the present paper. In each example Dg = {d ∈ N : Ig contains a non-trivial equation of
degree d}, as in Definition 5.15, and dmin denotes the minimum of Dg.

6.1. Cyclic subgroups

Let Fn = 〈a1, ..., an〉 and suppose that H has rank 1, let’s say H = 〈h〉 for some h ∈ Fn

with h 6= 1. In order for an element g to depend on H, we must have that g, h belong to
a common cyclic subgroup of Fn (otherwise g and h generate a free subgroup of rank 2).
We can use 〈H, g〉 as ambient free group instead of Fn: without loss of generality, in the
following we assume that Fn = 〈a〉 and that H = 〈h〉 where h = am with m ≥ 1, and
that g = ak with k ≥ 0 coprime with m.
The graph Γ = core∗(H) ∨ core∗(〈g〉) here has rank 2 while core∗(〈H, g〉) has rank 1.

This means that the algorithm of Theorem 3.8 produces a single generator for the ideal
Ig E H ∗ 〈x〉. One possible such generator wm,k for each m ≥ 1 and k ≥ 0 coprime can
be obtained by means of the following recursive formula:

w1,0(h, x) = x

wm,k(h, x) = wm−k,k(hx, x)for m > k

wm,k(h, x) = wm,k−m(h, xh)for m ≤ k.

Moreover, with this definition, it is possible to prove by induction that wm,k(h, x) contains
k occurrences of h, no occurrence of h, no occurrence of x and m occurrences of x. In
particular, wm,k ∈ Ig is an equation of degree m.
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Remark 6.1. In the case h = a5 and g = a2, we have the generator w5,2(h, x) =
hx2hx3 for the ideal Ig. We observe that the most immediate candidate h2x5 doesn’t
work, because it is contained in Ig but it doesn’t generate the whole ideal.

Remark 6.2. The following is a well-known property of one-relator groups due to
Magnus (see [8] and [7]): if two elements of a free group generate the same normal
subgroup, then they coincide, up to conjugation and inverse. In particular, the generator
wm,k defined above is essentially the unique generator for the ideal Ig.

Let w ∈ 〈h, x〉 be a non-trivial cyclically reduced element, which up to conjugation can
be written in the form w = hα1xβ1 · · ·hαrxβr with r ≥ 1 and α1, ..., αr, β1, ..., βr ∈ Z\{0}.
The condition w ∈ Ig is equivalent to (α1 + · · ·+ αr)m+ (β1 + · · ·+ βr)k = 0, and since
m, k are coprime this means that for some p ∈ Z we have β1 + · · · + βr = pm and
α1 + · · ·+ αr = −pk. The degree of the equation is d = |β1|+ · · ·+ |βr|.
Suppose that m =1. Then we have w1,k = hkx. In this case dmin = 1 and Dg = N\{0}.
Suppose that m ≥ 2 is even. Then dmin = 2 and Dg = 2N \ {0}. For the ⊇ inclusion,

we have the equation [h, xs] of degree 2s for each s ≥ 1. For the ⊆ inclusion, notice that
the unique generator wm,k has even degree, and thus by Lemma 5.18 each equation has
even degree.
Suppose that m ≥ 2 is odd. Then dmin = 2 and Dg = {d : d ≥ 2 even} ∪ {d : d ≥ m

odd}. For the ⊇ inclusion, we have the equation [h, x] of degree 2 and the equation wm,k of
degree m, and we can use Lemma 5.16. For the ⊆ inclusion, we notice that, if an equation
is written in the form w = hα1xβ1 · · ·hαrxβr as above, then either β1 + · · · + βr = 0, in
which case the degree d = |β1|+ · · ·+ |βr| is even, or m ≤ |β1 + · · ·+ βr| ≤ |β1|+ · · ·+
|βr| = d.

6.2. An ideal with only even-degree equations

Let F2 = 〈a, b〉 and consider the subgroup H = 〈h1, h2〉 with h1 = ba and h2 = ab2a
and the element g = a. We can build the corresponding graph Γ, see Figure 11, and
we have that π1(Γ, ∗) is a free group with three generators [µh1

], [µh2
], [µg], which are

the homotopy classes of the reduced paths µh1
, µh2

, µg corresponding to the elements
h1, h2 ∈ H and g respectively. We can perform a sequence of rank-preserving folding
operations on Γ, see Figure 12, and we end up with a rose ∆′ with one a-labelled edge e1
and two b-labelled edges e2, e3 (and their reverses). Let p : (Γ, ∗) → (∆′, ∗) be the map
given by the composition of the folding operations, and notice that by Proposition 3.5
the geometric realization |p| : |Γ| → |∆′| is a pointed homotopy equivalence: a pointed
homotopy inverse η : |∆′| → |Γ| can be built following the chain of folding operations, and
it sends the 1-cells corresponding to e1, e2, e3 to the geometric realizations of the paths µg

and µh1
µg and µgµh2

µgµgµh1
respectively. In order to obtain generators for the kernel

Ig ≤ H ∗〈x〉, we have to look at the image through η of the path e3e2: we obtain that the
kernel is generated (as a normal subgroup) by just one equation Ig = 〈〈xh2xxh1xh1〉〉.
We observe that this unique generator has even degree, and thus Lemma 5.18 tells us

that every equation in Ig has even degree. We shall explain why there is no equation of
degree 2, there is exactly one equation of degree 4 up to conjugation and inverse and there
are equations of degree 6. By Lemma 5.16, it follows that dmin = 4 and Dg = 2N \ {0, 2}.
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Figure 11. In the picture, we can see the (geometric realization of the) graph Γ of § 6.2. Here
H = 〈ba, ab2a〉 and g = a. On the left of the basepoint, we have the graph core∗(H), while on
the right we have core∗(〈g〉).
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Figure 12. A maximal rank-preserving folding sequence for the graph Γ of § 6.2. At each step,
we highlight in bold the two edges that are going to be folded in the next step.

Remark 6.3. In order characterize all the equations of degrees 2, 4, 6, we could use
Theorem 5.14; this is too long to do by hand, but quite easy to do with the aid of a
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Figure 13. In the picture, we can see the (geometric realization of the) graph Γ of § 6.3. Here
H = 〈b, ababa〉 and g = a. On the left of the basepoint, we have the graph core∗(H). On the
right of the basepoint, we have the graph core∗(〈g〉).

computer. It is also possible to prove them with some combinatorics of the cancellation
between words; we do not provide a full proof here, but rather a sketch.
Consider the map between free groups ψ : 〈h1, h2, x〉 → 〈h1, x〉 with ψ(h1) = h1, ψ(x) =

x, ψ(h2) = xh1xh1xx and notice that Ig = kerψ. Up to conjugation, an equation w ∈
Ig can be written as reduced word w(h1, h2, x) = u1(h1, h2)x

α1 · · ·ur(h1, h2)xαr . We
now substitute each occurrence of h2 with xh1xh1xx, and each occurrence of h2 with
xxh1xh1x, and after this substitution we reduce the obtained word, until we get the trivial
word. During the reduction process, each block xh1xh1xx and xxh1xh1x, obtained from
an occurrence of h2 or h2, will completely cancel at some point: we take the occurrence of
h2 such that the corresponding block is the first to completely cancel during the reduction
process. We now look at the word w near that occurrence of h2 or h2, and we obtain that
w contains at least one of

h2xxh1x, xh2xx, xh1xh2x, xh1xh1xh2, h2xxh1xh2, h2xxh1xh2

(or of their inverses) as a subword. These can be substituted with (respectively)
xh1, h1xh1, h1x, x, xxh1x, xxh1x

in order to get a shorter (possibly not reduced) equation.
This immediately implies that Ig contains no equation of degree 2, and it also allows

to deduce that the only equations of degree 4 are the conjugates of the generator. With
some more work, it is also possible to give a characterization of all the degree 6 equations.

6.3. An ideal with both even-degree and odd-degree equations

Consider the subgroup H = 〈h1, h2〉 with h1 = b and h2 = ababa and the element
g = a. We see the corresponding graph Γ in Figure 13. We can now proceed as in § 6.2:
we choose a maximal sequence of rank-preserving folding operations for Γ, we build a
homotopy inverse to the sequence of folding operations, we obtain a generator for the
normal subgroup Ig E H ∗ 〈x〉. Whatever sequence of folding operations you choose,
you will always get the same generator, up to inverse and cyclic permutations, namely
Ig = 〈〈h2xh1xh1x〉〉.
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We have that Ig contains no equation of degree 1. It contains equations of degree 2,
which are exactly the ones of the form [(h2h1)

i, xh1] for i 6= 0 up to conjugation and
inverses. It also contains equations of degree 3 (possibly essentially different from the
generator). By Lemma 5.16, it follows that dmin = 2 and Dg = {d : d ≥ 2}. We observe
that the equations of minimum possible degree are not enough in this case to generate the
whole ideal: in fact, according to Lemma 5.18, equations of degree 2 generate a normal
subgroup containing only even-degree equations.

Remark 6.4. As in the example of § 6.2, it is possible to characterize equations of
degree 2 and 3 with Theorem 5.14, using a computer, or it is possible to do it by hand
with some combinatorics of the cancellations inside the words; and again, for this second
method, we provide a sketch below.
Consider the map between free groups ψ : 〈h1, h2, x〉 → 〈h1, x〉 with ψ(h1) = h1, ψ(x) =

x, ψ(h2) = xh1xh1x and notice that Ig = kerψ. Up to conjugation, an equation w ∈ Ig
can be written as reduced word w(h1, h2, x) = u1(h1, h2)x

α1 ...ur(h1, h2)x
αr . We now

substitute each occurrence of h2 with xh1xh1x and each occurrence of h2 with xh1xh1x;
as in § 6.2 we take the occurrence of h2 or h2 such that the corresponding xh1xh1x or
xh1xh1x is the first to completely cancel, and we look at the word w near that occurrence
of h2 or h2. We obtain that w contains at least one of

h2xh1x, xh2x, xh1xh2, h2xh1h2, h2h1xh2,

(or of their inverses) as a subword. These can be substituted with (respectively)
xh1, h1xh1, h1x, h1x, xh1

in order to get a shorter (possibly not reduced) equation.
Dealing with some cases it can be proved that equations of degree 2 are exactly the

ones of the form [(h2h1)
i, xh1] for i 6= 0 up to conjugation and inverses, and one can

produce equations of degree 3 which are essentially different from the generator.

6.4. An ideal with two generators

Consider the subgroup H = 〈h1, h2, h3〉 with h1 = a2ba and h2 = a3 and h3 = bab
and the element g = a2b. We can see the corresponding graph Γ in Figure 14 and a
maximal sequence of rank-preserving folding operations in Figure 15. The group π1(Γ, ∗)
is a free group with four generators [µh1

], [µh2
], [µh3

], [µg], which are the homotopy classes
of the reduced paths µh1

, µh2
, µh3

, µg corresponding to the elements h1, h2, h3 ∈ H and
g respectively. At the end of the sequence of folding operations, we obtain a rose ∆′

with one b-labelled edge e1 and three a-labelled edges e2, e3, e4. The map p : (Γ, ∗) →
(∆′, ∗) given by the composition of the folding operations is a homotopy equivalence,
according to Proposition 3.5, and a pointed homotopy inverse is η : |∆′| → |Γ| which
sends the 1-cells corresponding to the edges e1, e2, e3, e4 to the geometric realizations
of the paths µh3

µgµh1
µg and µgµh1

µgµh3
µgµh2

and µh1
µg and µgµh1

µgµh3
µgµh1

µg

respectively. We look at the images through η of the paths e2e3 and e4e3 and we obtain
that the kernel Ig ≤ H ∗ 〈x〉 is generated (as normal subgroup) by the equations Ig =
〈〈xh1xh3xh2xh1, xh1xh3x〉〉.
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Figure 14. In the picture, we can see the (geometric realization of the) graph Γ of § 6.4. Here
H = 〈a2ba, a3, bab〉 and g = a2b. On the left of the basepoint, we have the graph core∗(H). On
the right of the basepoint, we have the graph core∗(〈g〉).

It is easy to show that Ig contains equations of degree 2, but not equations of degree 1.
It follows that dmin = 2 and Dg = N\{0, 1}. We observe that, despite dmin = 2, equations
of degree 2 are not enough to generate the whole ideal Ig; in fact, the equations of degree
2 generate a normal subgroup containing only even-degree equations (see Lemma 5.18),
while Ig also contains equations of odd degree.

7. Equations in more variables

We point out that most of the results of this paper can be generalized to equations in
more than one variable. In this section, we provide the statements of the theorems in the
multivariate setting. Since the proofs are very similar to the one-variable case, we only
provide sketches.
Let Fn be a free group generated by n elements a1, ..., an. Let H ≤ Fn be a finitely

generated subgroup and let 〈x1〉, 〈x2〉, ..., 〈xm〉 be infinite cyclic groups. An equation
with coefficients in H is an element w ∈ H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉. The multi-degree of w is
the m-tuple (d1, ..., dm) of integer numbers, where di is given by the sum of the number
of occurrences of xi plus the number of occurrences of xi in the cyclic reduction of w.
For (g1, ..., gm) ∈ (Fn)

m, we define the map ϕg1,...,gm
: H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉 → Fn such

that ϕg1,...,gm

∣∣
H

is the inclusion and ϕg1,...,gm
(xi) = gi for i = 1, ...,m. We say that an

m-tuple (g1, ..., gm) ∈ (Fn)
m is a solution to the equation w ∈ H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉 if

w ∈ kerϕg1,...,gm
. For (g1, ..., gm) ∈ (Fn)

m, we define the ideal Ig1,...,gm to be the normal
subgroup Ig1,...,gm = kerϕg1,...,gm

E H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉.

Definition 7.1. We say that (g1, ..., gm) ∈ (Fn)
m depends on H if Ig1,...,gm is

non-trivial.

From Theorem 3.8, we immediately deduce the following:

Corollary 7.2. Let H ≤ Fn be a finitely generated subgroup and let (g1, ..., gm) ∈
(Fn)

m. Then we have the following:

(i) The ideal Ig1,...,gm E H ∗〈x1〉∗· · ·∗〈xm〉 is finitely generated as a normal subgroup.
(ii) The set of generators for Ig1,...,gm can be taken to be a subset of a basis for H ∗

〈x1〉 ∗ · · · ∗ 〈xm〉.
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Figure 15. A maximal rank-preserving folding sequence for the graph Γ of § 6.4. At each step,
we highlight in bold the two edges that are going to be folded in the next step.

(iii) There is an algorithm that, given H and g1, ..., gm, computes a finite set of normal
generators for Ig1,...,gm which is also a subset of a basis for H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉.

Proof. Apply Theorem 3.8 to the evaluation homomorphism ϕg1,...,gm
: H ∗〈x1〉∗· · ·∗

〈xm〉 → Fn. �
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Fix now an m-tuple (g1, ..., gm) ∈ (Fn)
m. As we did in the one-variable case,

we want to see equations as paths in a suitable graph. Let Γ = core∗(H) ∨
core∗(〈g1〉) ∨ · · · ∨ core∗(〈gm〉) be the labelled graph given by the join of
core∗(H), core∗(〈g1〉), ..., core∗(〈gm〉), where we identify all the basepoints to a unique
point. Let also f : Γ → ∆n be the labelling map. We have an isomorphism θ :
H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉 → π1(Γ, ∗) so that we can define the same correspondence as in
Definitions 4.1 and 4.2. We define the length of an equation w ∈ H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉 as
the length of the corresponding reduced path from ∗ to ∗ in Γ. Equations w ∈ Ig1,...,gm
correspond to reduced paths σ in Γ from ∗ to ∗ such that f∗(σ) is homotopically trivial
(relative to its endpoints), and we call such paths lifts. The following three lemmas relate
the degree of an equation to its corresponding path, and the proofs are essentially the
same as for Lemmas 4.5, 4.7 and 4.8.

Lemma 7.3. Let σ be a cyclically reduced path from ∗ to ∗ in Γ, with corresponding
cyclically reduced equation w ∈ H ∗ 〈x1〉 ∗ · · · ∗ 〈xm〉 of multi-degree (d1, ..., dm). Then for
i = 1, ..., r we have the following:

(i) For every edge e of core(〈gi〉), the path σ contains exactly di occurrences of e, e (in
total).

(ii) For every edge e of core∗(〈gi〉), the path σ contains at most 2di occurrences of e, e
(in total).

Proof. Sketch of proof We proceed as in the proof of Lemma 4.5. Fix i ∈ {1, ..., r}
and write w = c1x

α1
i c2x

α2
i · · ·crxαri cr+1 with α1, ..., αr ∈ Z \ {0} and c1, ..., cr+1 ∈ H ∗

〈x1, ..., xi−1, xi+1, ..., xm〉. Then in the graph Γ we have that θ(w) = θ(c1) · θ(x
α1
i ) · · · · ·

θ(xαri ) · θ(cr+1).

(i) Fix an edge e of core(〈gi〉). Then θ(xαj ) contains exactly one of e and e, and
exactly |αj | times, for j = 1, ..., r. We have that θ(cj) is contained in core∗(H)
and thus it doesn’t contain any occurrence of e or e. The conclusion follows since
|α1|+ · · ·+ |αr| = di.

(ii) Fix an edge e of core∗(〈gi〉)\core(〈gi〉). Then θ(xαj ) contains exactly one occurrence
of e and exactly one occurrence of e, for j = 1, ..., r. We have that θ(cj) is contained
in core∗(H) and thus it doesn’t contain any occurrence of e or e. The conclusion
follows since r ≤ di.

�

Lemma 7.4. Let σ = (e1, ..., e`) be a lift of length ` ≥ 2 and let (s1, t1), ..., (s`/2, t`/2)
be a maximal reduction process for f∗(σ). Let (si, ti) be an innermost cancellation. Then
esi and eti belong to two different graphs between core∗(H), core∗(〈g1〉), ..., core∗(〈gm〉)
(and τ(esi) = ι(eti) is the basepoint).

Sketch of proof This is analogous to the proof of Lemma 4.7. The hypothesis implies
that f(eti) = f(esi) and ι(eti) = ι(esi) but eti 6= esi . This means that eti and esi
can’t both belong to core∗(H) (because it is folded) and can’t both belong to the same
core∗(〈gi〉) for some 1 ≤ i ≤ m (because it is folded too). The conclusion follows. �
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We can define a parallel cancellation move, in the exact same way as in Definition 4.9
and Lemma 4.10. We say that a parallel cancellation move is degree-preserving if the
equations w and w

′
, corresponding to the paths before and after the parallel cancellation

move respectively, have the same multi-degree (d1, ..., dm) = (d′1, ..., d
′
m). With this defi-

nition, Lemma 5.2 about degree-preserving parallel cancellation moves remains true too.
It is also possible to define a parallel insertion move, as in Definition 5.3 and Lemma 5.4.
The two Lemmas 5.5 and 5.6, stating that parallel insertion moves are an inverse to
degree-preserving parallel cancellation moves, remain true. Lemmas 5.7, 5.8 and 5.9 hold
in the same way, allowing to manipulate sequences of parallel insertion moves. Finally,
in the same way as we obtained Proposition 5.11 and Theorems 5.12 and 5.14, we can
prove the following.

Proposition 7.5. Let w ∈ Ig1,...,gm be a cyclically reduced equation and let σ be the
corresponding cyclically reduced representative. Suppose w has multi-degree (d1, ..., dm)
and length ` > 64‖Γ‖4D2 + 16‖Γ‖3D + 4‖Γ‖D where D = max{d1, ..., dm}. Then
every maximal reduction process for f∗(σ) contains two parallel couples such that the
corresponding parallel cancellation move is degree-preserving.

Sketch of proof We proceed as in the proof of Proposition 5.11. Fix a maximal
reduction process (s1, t1), ..., (s`/2, t`/2) for f∗(σ). There are at most ‖Γ‖ pairs of edges
{e, e} belonging to core∗(〈g1〉) ∨ · · · ∨ core∗(〈gm〉), and for each pair we have at most
2D occurrences in total of e and e in σ (by Lemma 7.3). We remove from {1, ..., `}
the elements si, ti of the couples such that one of esi , eti belongs to core∗(〈g1〉) ∨ · · · ∨
core∗(〈gm〉). We are removing at most 4‖Γ‖D elements from {1, ..., `}, so we are left with
a set C that can be written as a union C = C1 ∪ · · · ∪Ca of a ≤ 4‖Γ‖D+1 intervals. Of
these intervals, at least one, let’s say C ∈ {C1, ..., Ca} has size at least |C| ≥ 16‖Γ‖3D+1.
There is no couple (si, ti) with both si, ti ∈ C (otherwise we can find an innermost

cancellation in C, and we have a contradiction, since we have removed from {1, ..., `}
all the indices of the innermost cancellations). Let Z = {(e, e′, Ck) : e, e′ ∈ E(Γ) with
f∗(e) = f∗(e

′) and Ck ∈ {C1, ..., Ca} with Ck 6= C} and notice that |Z| ≤ 8‖Γ‖3D.
Without loss of generality, we assume C contains at least 8‖Γ‖3D + 1 elements si

belonging to couples (si, ti) of the reduction process. To each such edge si, we associate
the triple (esi , eti , Ck) ∈ Z where Ck ∈ {C1, ..., Ca} \ {C} is the connected component
to which ti belongs. By pigeonhole principle, there are at least two elements si1 , si2 with
the same associated triple (esi1

, eti1
, Ck) = (esi2

, eti2
, Ck).

It immediately follows that (si1 , ti1) and (si2 , ti2) are parallel couples. We assume

that si1 < si2 and we have that the interval {si1 , si1 + 1, ..., si2} is contained in C and
the interval {ti2 , ti2 + 1, ..., ti1} is contained in Ck. Thus, when we perform the parallel
cancellation move relative to the couples (si1 , ti1) and (si2 , ti2), we only remove edges
whose image is in core∗(H). It follows that the cancellation move is degree-preserving,
as desired. �

Theorem 7.6. Suppose that Ig1,...,gm contains a non-trivial equation of multi-degree
(d1, ..., dm) and let D = max{d1, ..., dm}. Then Ig1,...,gm contains non-trivial equation w
of multi-degree (d1, ..., dm) and length ` ≤ 64‖Γ‖4D2 + 16‖Γ‖3D + 4‖Γ‖D.
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Sketch of proof We proceed as in the proof of Theorem 5.12. Take any non-trivial
equation in Ig1,...,gm of multi-degree (d1, ..., dm) and such that the corresponding lift σ
has minimum length `. If ` > 64‖Γ‖4D2 + 16‖Γ‖3D + 4‖Γ‖D then we can perform a
degree-preserving cancellation move on σ in order to make it shorter, contradiction. The
conclusion follows. �

Corollary 7.7. There is an algorithm that, given a finite set of generators for
a subgroup H ≤ Fn, elements g1, ..., gm ∈ Fn and an m-tuple (d1, ..., dm) of non-
negative integers, tells us whether Ig1,...,gm contains non-trivial equations of multi-degree
(d1, ..., dm), and, if so, produces an equation w ∈ Ig1,...,gm of multi-degree (d1, ..., dm).

Theorem 7.8. Let w ∈ Ig1,...,gm be a cyclically reduced equation of multi-degree
(d1, ..., dm) and let D = max{d1, ..., dm}. Let σ be the corresponding cyclically reduced
lift. Then there is a cyclically reduced equation w′ ∈ Ig1,...,gm of degree (d1, ..., dm) with
corresponding cyclically reduced lift σ′, and a maximal reduction process for f∗(σ

′), such
that:

(i) The path σ′ has length `′ ≤ 64‖Γ‖4D2 + 16‖Γ‖3D + 4‖Γ‖D.
(ii) The path σ can be obtained from σ′ by means of at most `′/2 insertion moves, each

of them performed at a distinct couple of the reduction process for f∗(σ
′).

Proof. Completely analogous to the proof of Theorem 5.10. �
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