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In a horizontally heated melting system, where a solid substance is subject to melting by a
warmer liquid beneath, the presence of solute in the liquid introduces a complex interplay
between temperature and concentration dynamics. Employing a recently developed sharp
interface method (Xue et al., J. Comput. Phys., vol. 491, 2023), we conduct direct
numerical simulations to investigate the transient behaviour of the system across a broad
range of Rayleigh numbers and solute concentrations. Our observations reveal distinct
flow regimes: at low concentrations, the system resembles a temperature-driven melting
problem, characterized by vortex rolls beneath the melting interface. As the solute
concentration increases, a stably stratified layer emerges beneath the interface, leading to
the transition from thermal convection to penetrative convection, which resembles those
flow characteristics observed in the double-diffusive convection. This shift results from
the competition between the stabilizing effect induced by solute concentration gradient
and the destabilizing effect caused by temperature gradient. Otherwise in the diffusion
regime, characterized by very high solute concentrations, the flow becomes static due to
the complete suppression of convection by the stably stratified layer. This regime further
exhibits two distinct patterns: ‘melting’ and ‘dissolution’. Beyond characterizing diverse
flow patterns, our study conducts a quantitative analysis, examining heat/mass transfer,
melting rates, and the evolution of temperature and concentration at the interface. These
insights contribute to a better understanding of the intricate interplay between temperature
and solute concentration during phase change, with implications for accurately estimating
melting rates in binary fluid systems.
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1. Introduction

Solid–liquid phase change phenomena, encompassing processes such as melting and
solidification, finds wide-ranging applications in diverse fields such as the metallurgical
industry, geophysics and oceanography. In particular, when natural convection is present,
the dynamics of interface patterns, such as the formation of freckles during crystal growth
(Amberg & Homsy 1993), the crystallization of magma oceans (Labrosse, Hernlund &
Coltice 2007), and the melting of the Antarctic Ice Sheet (Rosevear, Gayen & Galton-Fenzi
2021), are known to be highly influenced by fluid flow and the distribution of the
temperature field. In this context, the composition of the system, characterized by solute
concentration, plays a pivotal role, especially in the context of binary fluid systems such
as binary alloys and salt water.

In the last two decades, significant attention has been directed towards the intricate
coupling problem of melting and fluid flow. The pioneering investigations can be traced
back to early experiments conducted by Davis, Müller & Dietsche (1984), wherein the
evolution of interface patterns during melting was studied in the presence of substantial
thermal convection flows in the liquid. Subsequently, the Rayleigh–Bénard convection
(RBC) physical model (Ahlers, Grossmann & Lohse 2009), featuring an upper melting
liquid–solid interface, emerged as a compelling framework for exploring melting problems
coupled with fluid flow. The work by Vasil & Proctor (2011) contributed by deriving
theoretical scaling to predict the onset of weakly nonlinear convection at small Stefan
number (St) number limits. Additionally, in tandem with the melting RBC, direct
numerical simulations (Ulvrová et al. 2012; Rabbanipour Esfahani et al. 2018; Favier,
Purseed & Duchemin 2019; Yang et al. 2023b) have provided a comprehensive map of
the evolving flow patterns with increasing effective Rayleigh number. These simulations
elucidate the transition path from the initiation of convection flow to merged convective
rolls, culminating in turbulence. Moreover, this body of work systematically addresses
the global system responses, including heat transfer, and the characteristics of the wavy
interface such as height, roughness and wavelength.

It is imperative to note that the aforementioned studies focus primarily on the
one-component melting RBC system, wherein the driving force is exclusively attributed
to temperature-induced stratification. However, in real-world scenarios, encountering
liquids composed of multi-component substances is more commonplace. In such cases,
convection is not solely propelled by thermal buoyant force but is also contingent upon
the inhomogeneity of the solute concentration. This multi-component nature is frequently
encountered in natural settings, such as the ocean and the Earth’s mantle, resulting in
intriguing flow phenomena (Radko 2013). The interplay between thermal and solutal
buoyancy effects gives rise to double-diffusive convection (DDC), where the temperature
gradient stabilizes (destabilizes) the flow, while the concentration gradient destabilizes
(stabilizes) it, manifesting in diverse parameter regimes (Yang, Verzicco & Lohse 2016;
Chong et al. 2020b; Yang et al. 2022). Moreover, when a warmer liquid induces the
melting of a solid, the evolution of interface patterns becomes contingent upon the
distributions of both temperature and concentration fields. These two variables are strongly
coupled at the interface through the Gibbs–Thomson effect, the Stefan condition, and
the well-known solute-rejection relation (Davis 2001). This coupling adds a layer of
complexity to the melting RBC system, as exemplified by distinctions between iceberg
melting in oceans and that in pure water (Cenedese & Straneo 2023). A recent numerical
study by Yang et al. (2023a) provides a preliminary insight into the interaction between the
melting interface and DDC flow, specifically examining the lateral melting of an ice block
in stably stratified saline water. Also recently, Rosevear et al. (2021) and Rosevear, Gayen
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& Galton-Fenzi (2022) demonstrated that DDC was the first-order process controlling
the ocean-driven melt rate, even more important than vertical shear due to a mean
flow. However, understanding this melting system remains limited due to its inherent
complexity, particularly with regard to the role played by solutes in the RBC problem,
which remains unclear as per current knowledge.

In the current investigation, our objective is to explore the influences of solute
concentration in a horizontal melting system subjected to heating from below. The
outcomes are derived through two-dimensional (2-D) numerical simulations utilizing a
volume-of-fluid based sharp interface method, as detailed in our recent work (Xue et al.
2023). The adopted numerical method allows for the separate solution of temperature and
solute concentration in both liquid and solid phases, by imposing the jump conditions
for these variables sharply at the interface. The buoyancy-driven convection patterns
are observed to depend intricately on the coupling effects between temperature and
concentration. Consequently, the shape of the interface exhibits significant variations
across different parameter spaces characterizing the relative strength between temperature
and concentration. While acknowledging the limitations inherent in our adoption of
a 2-D numerical model, it offers notable advantages. On the one hand, it enables
us to explore a broader parameter space owing to the lower computational overhead
compared to three-dimensional (3-D) simulations. On the other hand, previous studies
have demonstrated close similarities between 2-D and 3-D thermal-driven RBC (van der
Poel, Stevens & Lohse 2013; Rabbanipour Esfahani et al. 2018), as well as DDC (Chong
et al. 2020a), particularly in scenarios where the Prandtl number (Pr) exceeds 1, as in our
present investigation. Therefore, the present 2-D numerical study, through the variation of
the dimensionless strength of solutal effects represented by Λ, can already shed some light
on the transition from thermal convection at small Λ to penetrative convection at moderate
Λ, and finally to pure diffusion at high Λ.

The paper is structured as follows. In § 2, we formulate the problem, delineate the range
of parameters under consideration, and provide an overview of our numerical approach.
Section 3 is dedicated to an in-depth discussion of the flow patterns observed in our
simulations. Quantitative statistics for different types of melting dynamics are presented
in § 4. Finally, concluding remarks are presented in § 5.

2. Problem statement and methodology

The physical model governing the melting of solid by the warmer binary fluid, along
with the corresponding boundary conditions, is elucidated in figure 1, where figure 1(a)
represents the initial condition, and figure 1(b) illustrates the melting stage. Conceptually,
the melting process unfolds as follows. A binary fluid, with solute concentration denoted
by C, is subjected to heating from below. The pure solid phase at the top, identical to
the solvent in the liquid, undergoes melting due to the influence of the warmer liquid,
leading to a dilution of the solute concentration in the liquid phase. The bottom wall,
situated at z = 0, is maintained at specified temperature and concentration values, denoted
as Tbot = T1 = T0 + �T and Cbot = C0, respectively. The top wall, positioned at z = H, is
characterized by boundary conditions Ttop = T0 and Ctop = 0. Both walls are considered
to be infinitely long so that periodic conditions are applied at the left and the right
boundaries.

As for the initial conditions, the temperature and concentration are set to T = T0
and C = 0 in the solid phase, while in the liquid phase, they are prescribed as
T(z) = T0 + �T (Hh0 − z)/Hh0 and C = C0. Here, h0 represents the initial dimensionless
height of the liquid layer. Throughout the melting process, the temporal evolution of the
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Figure 1. Schematic illustration of the melting problem involving a binary fluid. (a) The initial configuration
for the simulations. (b) The evolving stage of the system. The significance of the symbols in the images is
explained in the text.

interfacial topography, denoted as Γ in the figure, is governed by the transient distribution
of temperature and concentration fields in proximity to the interface. As indicated in
figure 1, the temperature is continuous across the interface and its interfacial value is
denoted as TΓ . We refer to the value of the concentration from the liquid side C� at the
interface as the interfacial concentration CΓ . In our numerical investigations, we assume
constant and identical density ρ and thermal diffusivity α in the solid and liquid phases,
with constant kinematic viscosity ν and solutal diffusivity D in the liquid phase during the
phase change. Specifically, the same density in two phases implies no volume expansion
during the process.

We implement a rescaling strategy by normalizing the length with H and time with
H2/α. Employing the Boussinesq approximation, the dimensionless equations governing
velocity, temperature and concentration in the liquid phase are expressed as

∂tu + (u · ∇)u = −∇p + Pr ∇2u + Pr Ra (θ − Λφ)ez, (2.1)

∇ · u = 0, (2.2)

∂tθ + (u · ∇)θ = ∇2θ, (2.3)

∂tφ + (u · ∇)φ = Le−1 ∇2φ, (2.4)

where u represents the velocity field, p is the pressure, and the unit vector in the
vertical direction is denoted by ez. The term Pr Ra (θ − Λφ)ez represents the buoyant
force along the z-direction generated by inhomogeneous temperature and concentration
fields. Here, θ = (T − T0)/�T and φ = C/C0 denote the dimensionless temperature
and concentration, respectively. It is crucial to note that temperature and solute
concentration exert opposing effects on the buoyant force, a distinctive feature compared
to one-component melting systems. The Prandtl number, denoted as Pr and defined as
ν/α, and the Lewis number, denoted as Le and defined as α/D, characterize the ratio of
diffusive effects between momentum and temperature, and temperature and concentration,
respectively. The Rayleigh number, denoted as Ra and defined as gβT �T H3/αν,
quantifies the strength of the thermal buoyant force. On the other hand, Λ = βCC0/βT �T
denotes the ratio of concentration to temperature effects in the induced buoyant force.
Notably, the parameter Λ is expected to significantly influence the flow pattern in
the liquid, as it alters the strength of the buoyant effects. For dimensional values, g
represents gravity along the z-direction, and βT , βC are the expansion coefficients induced
by temperature and concentration, respectively. It is important to highlight that in the
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solid phase, (2.4) becomes irrelevant since solute concentration maintains φ = 0 during
melting. Moreover, (2.3) transforms into a purely diffusive equation in the solid phase as
the advection term is eliminated.

Compared to the one-component melting problem driven solely by the temperature, the
interfacial conditions in the present binary system are more complex. The temperature at
the interface is not only dependent on the melting point θM but also highly influenced by
the local concentration of the solute. This strong coupling between interfacial temperature
and solute concentration is expressed through the depression of the freezing point, as
described by the Gibbs–Thomson relation (Rosevear et al. 2021; Xue et al. 2023), which
can be written in dimensionless form as

θΓ = θM + mLφΓ . (2.5)

In this context, the microscopic kinetic and capillary undercooling effects are considered
negligible compared to the depression effect, thus are omitted from the correlation, as
adopted by previous studies (Favier et al. 2019; Rosevear et al. 2021; Li, Jiao & Jia
2022). In the Gibbs–Thomson relation (2.5), mL represents the dimensionless slope of the
linearized liquidus line of the binary liquid, defined as mL = βTΛML/βC, where ML is the
dimensional counterpart. Moreover, the melting process of the binary fluid necessitates the
simultaneous conservation of energy and mass at the interface. This implies that the heat
and concentration fluxes to the interface must be balanced by the latent heat and solute
fluxes during melting (Rosevear et al. 2021). Consequently, the heat flux balance at the
interface is described by the dimensionless equation

vΓ = St (∇θ s − ∇θ�) · n. (2.6)

The equation is also known as the Stefan condition. Here, vΓ is the propagation rate of the
interface, correlated to the melt rate, and n denotes the normal vector of the interface (see
figure 1). The superscripts � and s denote the liquid and solid phases, respectively. The
Stefan number, defined as St = c�

p �T/L, characterizes the ratio between specific heat
and latent heat, with c�

p representing the specific heat capacity of the liquid, and L the
latent heat of fusion. Additionally, the concentration flux balance at the interface yields
the solute-rejection relation, leading to a dimensionless formulation

φΓ vΓ = Le−1 (∇φs − ∇φ�) · n. (2.7)

Equations (2.5), (2.6) and (2.7) collectively describe the interfacial conditions for
temperature and solute concentration, which are strongly coupled at the interface. Xue
et al. (2023) emphasized that this coupling presents significant challenges in numerical
simulations, rendering the solution of (2.1)–(2.7) non-trivial due to their interdependence.

For the initial conditions, the interface has dimensionless height h0 = 0.2, which is
uniform along the x-direction. The dimensionless temperature distribution is set as θ(z, t =
0) = 1 − z/h0 in the liquid, and θ(t = 0) = 0 in the solid. The solute concentration
is initialized with φ(t = 0) = 1 in the liquid, and φ(t = 0) = 0 in the solid, such that
the solutal flux in the solid vanishes in (2.7). To satisfy the chemical equilibrium
condition (2.5), the melting temperature is set to θM = −mL, ensuring θΓ (t = 0) = 0 at
the interface. Due to the temporally evolving interface, we define an effective Rayleigh
number Rae(t) = Ra h̄3(t) (1 − θ̄Γ (t)), where operator ·̄ denotes the averaged value along
the wavy interface. This effective Rayleigh number more accurately describes the strength
of the temperature-induced buoyant force, considering the real height of the liquid layer
as Hh̄(t) rather than H. In the subsequent numerical investigations, we vary only Ra and
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Λ to examine the solute’s influence on the melting RBC system. In the present study,
physical properties are held constant in accordance with the Boussinesq approximation,
and these properties closely approximate those found in ocean-driven melting systems
(Rosevear et al. 2021). For example, cold saline water has molecular viscosity
ν = 2 × 10−6 m2 s−1, thermal diffusivity α = 1.4 × 10−7 m2 s−1, solutal diffusivity
D = 1.3 × 10−9 m2 s−1, thermal expansion coefficient βT = 3.8 × 10−5 ◦C−1, and
solutal expansion coefficient 7.8 × 10−4 kg g−1. These dimensional properties translate
to dimensionless values close to Pr = 10, Le = 100 and mL = −3 × 10−3Λ, which are
utilized in the current study. Furthermore, the Stefan number is maintained at St = 0.1
to ensure that the convective turnover time scale is significantly shorter than that of
the melting dynamics. This approximation allows for the solid–liquid interface to be
considered nearly static in the analysis of the flow behaviour. A similar Stefan number
has been adopted in the previous relevant work (Favier et al. 2019; Yang et al. 2022),
given that ocean-driven melting systems also exhibit low St values. With a dimensional
temperature difference 0.05 ◦C between the top and bottom boundaries, and varying the
size of the domain in 0.115 � H � 1.15 m, the resulting Rayleigh number is in the range
105 � Ra � 108, precisely the range investigated in this study. It is important to note
that Rae(t) is a dynamic parameter dependent on the time-varying height of the liquid
layer h̄(t). The initial effective Rayleigh number falls within the range 8 × 103 � Rae

(t = 0) � 8 × 106. Furthermore, Λ is controlled within the range 10−4 � Λ � 103,
covering a wide parameter space from a temperature-dominated regime to a solute-
dominated regime.

Numerically, addressing the challenge of enforcing the jump conditions (2.5), (2.6)
and (2.7) at the interface is crucial. This is achieved through the implementation of a
volume-of-fluid based sharp interface method, as elaborated by Xue et al. (2023). The
key aspect of this method involves separately computing the liquid and solid phases,
and the conditions (2.5), (2.6) and (2.7) are imposed directly at the interface using
an embedded boundary framework. The implementation utilizes the open-source solver
Basilisk (Popinet 2009, 2015), and we will not specify the numerical details herein as they
can be found in the above-mentioned references. A computational domain [0, 4] × [0, 1]
with periodic boundary conditions at left wall x = 0 and right wall x = L = 4 is used
to mimic the infinitely long domain, with spatial resolution 2048 × 512 for situations
with low-to-moderate Ra (Ra � 107), and 4096 × 1024 for higher Ra. The numerical
simulation is terminated manually when the liquid fraction reaches 90 % of the domain
or the interface touches the top wall. Additional details regarding the validations, and grid
independence studies, can be found in Appendix A.

3. Melting dynamics and flow structures

The dynamics of the one-component melting RBC system, driven solely by temperature
(i.e. at Λ = 0 in the current study), has been investigated systematically in existing studies
(Rabbanipour Esfahani et al. 2018; Favier et al. 2019; Yang et al. 2023b). The primary
features are observed when the effective Rayleigh number Rae surpasses a well-established
threshold of critical Rayleigh number Racr ≈ 1295.78 for the RBC with a top melting
boundary (Vasil & Proctor 2011), leading to the onset of thermal convection. Concurrently,
the vortex cells beneath the rising interface generate convexities and cusps along the
melting interface, with the potential to merge into wider structures once their aspect ratios
reach approximately 1/3 (Favier et al. 2019).
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Figure 2. Flow patterns exhibited by the binary fluid melting system. (a) The distribution of these flow patterns
on a phase map of (Ra, Λ) investigated in this study. The inset provides a magnified view of the region 1 �
Λ � 10 for improved visualization. The green dotted line at Ra ≈ 1.62 × 105 marks the threshold for the onset
of RBC at the beginning of the simulation, estimated based on the critical Rayleigh number Racr ≈ 1295.78
derived by Vasil & Proctor (2011). Sketches of (b) the convection regime, (c) the layering regime, and (d) the
diffusion regime are provided for clarity.

For the melting of the binary fluid, where Λ > 0, it is anticipated that the flow
characteristics, coupled with the involvement of interface patterns, will depend not only
on the value of Ra but also on Λ. Figure 2(a) illustrates the phase diagram depicting
different flow regimes across a wide parameter space of (Ra, Λ). These regimes are
identified through the present numerical simulations and include a convection regime
at small Λ, a diffusion regime at very large Λ, and a layering regime in between them
when Ra exceeds approximately 3 × 106. The corresponding flow patterns are described
in figures 2(b)–2(d). These figures reveal that by enhancing the solute concentration in
the liquid, the convection regime transits to the layering regime and eventually reaches
the diffusion regime. Such regime transition, characterized by weakened or suppressed
vortex rolls beneath the interface, originates from the absence of solute in the melted
solid, leading to a reduced concentration in the upper layer of the liquid. Consequently, the
concentration exhibits a negative gradient in the vertical direction, activating a stabilizing
effect on the bulk flow. This is in contrast to the destabilizing effect caused by the
temperature gradient (as seen in the last term of (2.1)). As a result, with increasing Λ,
the stabilizing effect induced by solute concentration gradually dominates, transforming
the purely thermal convection flow into penetrative convection flow (Ding & Wu 2021;
Wang et al. 2021a). Ultimately, a stable stratified flow without convection is established.
In the subsequent subsections (§§ 3.1–3.3), we will discuss each of these flow patterns in
detail.

3.1. Convection regime
Let us begin by discussing the convection regime, taking the case (Ra, Λ) = (106, 10−2)
as an example. Figure 3(a) provides snapshots of the temperature field (left half), the
concentration field (right half) and the solid–liquid interfaces (white solid lines). Clearly,
a ‘cell merging’ phenomenon, similar to that observed in the melting RBC system driven
solely by temperature (Rabbanipour Esfahani et al. 2018; Favier et al. 2019), is evident.
The number of convective cells decreases as the interface rises, as convection spreads
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Figure 3. Characteristics of the convection regime at (Ra, Λ) = (106, 10−2). (a) Snapshots of the temperature
field (left-hand image), the concentration field (right-hand image), and the solid–liquid interfaces (white
solid lines) at different times: t = 5 × 10−3, 0.1, 0.3, 0.6. (b–d) Time evolution of the horizontally averaged
(b) temperature θ̃ , (c) concentration φ̃, and (d) effective density ρ̃ along the vertical direction z. Here, θ̃ , φ̃ and
ρ̃ denote the averaged values at a given z. The red portion of a single line represents the liquid phase, while
the purple portion indicates the solid phase, with the gradient depicting the presence of a wavy interface at this
height. The insets of (b) and (c) present sharp temperature and concentration profiles within the slice x = 2 at
t = 0.48, revealing interfacial values θΓ ≈ 0 and φΓ ≈ 0.2, discussed further in § 4.2.

horizontally with the increasing liquid layer. In this case, Λ = 10−2 is too small to induce
any observable stabilizing effect on the flow. It is important to note that although a
thin stably stratified layer (SSL) is initially generated beneath the interface due to the
locally huge concentration gradient, it is quite vulnerable. The lower convection flow
can easily penetrate this layer, leading to the formation of convexities and cusps on the
interface features that are qualitatively similar to those observed at Λ = 0. This penetration
behaviour and interface deformation are reminiscent of the findings reported by Wang
et al. (2021b) for the icing problem in pure water, where density anomalies also lead to
the coexistence of stable and unstable stratifications. Given that the flow structure in the
convection regime has been investigated thoroughly by Favier et al. (2019), and additional
numerical results for quantitative illustration are presented in Appendix A, we will not
delve into further details on the flow structure in this regime.

In figure 3(b), the temporal distribution of temperature along the vertical direction is
illustrated, where θ̃ (z, t) = (1/L)

∫ L
0 θ(x, z, t) dx represents the averaged temperature at a

given dimensionless height z and time moment t. The red portion of a single line denotes
the liquid phase, and the purple portion represents the solid phase, with the gradient
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indicating the presence of a wavy interface at this height. The dotted line represents
the initial temperature distribution. Observations reveal that as RBC initiates during the
melting process, the initially linearly distributed temperature transforms into a stair-like
profile within the liquid. This pattern is characterized by the well-known ‘BL-shortcut-BL’
structure seen in classic RBC (Grossmann & Lohse 2000), with BL abbreviating the
boundary layer. Specifically, θ̃ experiences a sharp decrease in the lower and upper
boundary layers, levelling off in a plateau between the two boundary layers. Notably, the
value of this plateau remains nearly constant over time, estimated to be 1/2 (indicated
by the dashed horizontal line) from the numerical results. This observation aligns with
findings reported by Favier et al. (2019), and we will utilize this conclusion in § 4 for
quantitative analysis. Additionally, Chong et al. (2020b) observed a similar temperature
profile in DDC at Λ = 0.1. In figure 3(c), the corresponding curves for the distribution of
concentration φ̃ are depicted, representing the averaged value at z. Similar BL-shortcut-BL
profiles are observed, showing a sharp decrease at the lower and upper boundary layers
in the liquid, but stabilizing at a plateau φ̃ = 1/2 at the developed stage. Notably, the
thickness of the concentration boundary layer is smaller than that of the temperature,
attributable to the solute concentration having a smaller diffusion coefficient compared
to temperature, characterized by Le = 100. It is crucial to acknowledge that the ·̃ notation
is employed to smooth out the discontinuity in the gradient of θ and φ at the interface.
Consequently, θ̃ or φ̃ may not precisely capture their interfacial values at a specific x.
To illustrate this point, we examine the vertical distribution of θ and φ at x = 2 and
time t = 0.48, as depicted in the insets of figures 3(b) and 3(c). Here, we observe that
the local interfacial temperature is approximately θΓ ≈ 0, while the local concentration
is approximately φΓ ≈ 0.2. Importantly, these interfacial values remain consistent across
various x locations, a topic we will delve into further in § 4.2. Additionally, we estimate the
averaged effective density at height z using ρ̃(z, t) = Λ φ̃(z, t) − θ̃ (z, t), and present it in
figure 3(d). Here, we observe a stair-like profile that generally increases with z, indicating
that the lighter fluid at the bottom of the liquid tends to rise upwards, triggering RBC.

However, the question arises: does the concentration field act as a passive tracer
at small Λ? To elucidate the role that the solute plays in this scenario, figure 4(a)
presents the temporal evolution of the temperature distribution located at (x, h̄(x, t)/2),
with constant Ra = 106 but Λ varying between 0.1, 0.5, 1. The white dotted line in the
image indicates the first moment of observing cell merging. Clearly, a larger Λ results
in earlier cell merging, suggesting that the solute helps to destabilize the flow. This
observation appears to be inconsistent with the previously mentioned solute-stabilizing
effect. However, this apparent paradox can be understood by considering the significant
difference in diffusivities between the two scalars, with Le = α/D = 100. In simpler
terms, when the descending flow reaches the bottom boundary layer, the melted fresh
fluid carried along by the thermal plume cannot immediately adapt its concentration with
the surrounding fluid due to the small diffusivity of the solute concentration. These diluted
fluids are then swept horizontally, generating a fluctuating upward buoyancy force because
of the lower concentration. This fluctuated motion can penetrate and agitate the thermal
boundary layer at the bottom, eventually creating additional thermal plumes that further
destabilize the flow. Figures 4(b) and 4(c) support this argument by focusing on the flow
structures at t = 0.228 for Λ = 1. We observe thermal plumes (figure 4c) launching from
positions where lower concentrations of solute are located (figure 4b), as highlighted by
the closed dotted circles.
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Figure 4. Influences of Λ in the convection regime while maintaining the Rayleigh number at Ra = 106.
(a) Temporal evolution of the temperature distribution located at (x, h̄(t)/2), with Λ varied between 0.1, 0.5
and 1. The white dotted line indicates the occurrence of the first cell merging in each case. (a) Images reveal
that a larger Λ leads to earlier cell merging. Contour maps of (b) solute concentration and (c) temperature
are shown at t = 0.228 for Λ = 1. Comparing (b,c) indicates that thermal plumes are launched from positions
where fresher plumes are located.

3.2. Diffusion regime
Now let us examine the diffusion regime. Figure 5 presents snapshots of the temperature
field (left-hand images), the concentration field (right-hand images) and the solid–liquid
interfaces (white solid lines), with figures 5(a,b) corresponding to the cases (Ra, Λ) =
(106, 5) and (Ra, Λ) = (106, 103), respectively. In the case (Ra, Λ) = (106, 5), it is
evident that although convection rolls are still observable at t = 10−2, their strength
diminishes by t = 5 × 10−2 and is fully suppressed by t = 1. As the solid melts,
the fresh fluid forms an SSL that develops downwards, compressing the convection
structure. However, the convection rolls are unable to penetrate the SSL. Consequently,
the solute-stabilizing effect gradually dominates over the temperature-destabilizing effect,
and ultimately, the fluid becomes almost static, with heat and mass transported only in a
diffusive manner. In the case (Ra, Λ) = (106, 103), as shown in figure 5(b) at the same
time moments, we observe the convection flow transitioning to a diffusion structure as
soon as the melt begins. This transition happens more rapidly than in the former case.
Additionally, figure 5 reveals that the temperature exhibits stratification only in the liquid
phase for Λ = 5, while such stratification spreads to the solid phase for Λ = 103. These
distinct scenarios imply that the underlying physics of melting for Λ = 5 and 103 are not
identical, even though both belong to the diffusion regime.

To elucidate this issue, let us revisit the Gibbs–Thomson correlation that couples
the temperature and concentration at the interface: θΓ (x, t) = θM + mL φΓ (x, t) (see
(2.5)), where mL φΓ (x, t) represents the concentration-induced undercooling effect. It is
important to note that in our study, we have mL = −3 × 10−3Λ. For a small Λ, this implies
θΓ (x, t) ≈ θM , resulting in an adiabatic interface and an almost homogeneous temperature
in the solid phase during melting. This observation aligns with what we see in figure 5(a)
for Λ = 5. In contrast, for a much larger value of Λ, the undercooling effect becomes more
pronounced, causing θΓ (x, t) to increase with time. This variation in θΓ (x, t) leads to a
more continuous heat flux across the interface, as depicted in figure 5(b). To provide a more
quantitative understanding, figure 6 illustrates the time evolution of the temperature and
concentration distribution across the entire domain for different values of Λ (specifically,
5, 102 and 103). As we increase Λ, we observe the final temperature distribution aligning
with our expectations: Λ = 5 results in θ̃ distributing quasi-linearly only in the liquid, but
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(a)

(b)

t

t

Figure 5. Snapshots depicting the temperature field (left-hand images), the concentration field
(right-hand images), and the positions of the solid–liquid interfaces (illustrated by white solid lines)
within the diffusion regime. These snapshots correspond to scenarios at (a) (Ra, Λ) = (106, 5) and
(b) (Ra, Λ) = (106, 103). The progression of time is displayed from bottom to top: t = 10−2, 5 × 10−2 and 1.
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Figure 6. Temporal evolution of the horizontally averaged (a,c,e) temperature and (b,d, f ) concentration in the
vertical direction, maintaining Ra = 106 and varying Λ between 5, 102, 103. The descriptions are consistent
with those of figure 3. It is evident that at Λ = 5, the temperature remains nearly constant at θ̃ = 0 within the
solid, while becoming linearly distributed across the entire domain at Λ > 102. Concerning the concentration,
a higher Λ leads to a more pronounced discontinuity of φ̃ at the interface.
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remaining almost 0 in the solid, while Λ > 102 corresponds to a quasi-linear θ̃ in both
liquid and solid. Additionally, a small Λ corresponds to a more concave and nonlinear
curve for φ̃, while a larger Λ leads to a more pronounced jump in φ̃ at the interface.

Having understood the impact of Λ on temperature and concentration distributions in
the diffusion regime, we revisit the Stefan condition (2.6), which governs the propagation
velocity of the interface. At relatively small Λ in this regime, such as Λ = 5, the
discontinuity of the thermal flux at the interface still drives the phase change, thus it can be
considered a ‘melting’ phenomenon (Woods 1992). However, in the case of a very large Λ,
e.g. Λ = 103, the negligible jump in the thermal flux at the interface means that the phase
change is no longer driven primarily by temperature but strongly depends on the solute
concentration. In this case, this diffusion regime should be identified as ‘dissolution’ rather
than ‘melting’, as distinguished by Woods (1992). We will distinguish these two diffusion
regimes, namely melting and dissolution, in the following paragraphs because they exhibit
different behaviours in mass and heat transfer.

3.3. Layering regime
Finally, let us discuss the observed layering structure at moderate values of Λ. The term
‘layering’ is used here to describe the stratified structures similar to those documented in
the DDC literature (Rosevear et al. 2021, 2022; Yang et al. 2022, 2023a). This structure
shares similarities with the flow characteristics observed in DDC scenarios. In this regime,
we anticipate that the solute-stabilizing effect will prevail in the upper liquid layer, as
convection is unable to fully penetrate the stably stratified layer (SSL). Conversely, the
temperature-destabilizing effect will dominate in the lower liquid layer, since the SSL
does not extend downwards sufficiently to completely inhibit the convection flow. As a
result, an equilibrated double-layer structure may emerge, reflecting the interplay between
solute and temperature effects in this intermediate regime.

Figure 7(a) illustrates a case within the layering regime at (Ra, Λ) = (107, 3), where
the coexistence of upper and lower liquid layers is evident as the solid melts. Additionally,
the final distributions of temperature and concentration, as shown in figures 7(b) and 7(c),
reveal a clear double-layer structure (Wang et al. 2021a; Ding & Wu 2021) within the
liquid, akin to the findings reported by Rosevear et al. (2021, 2022) in their study of
ocean-driven melting of horizontal ice. This structure transitions from a BL-shortcut-BL
to linear diffusion from the bottom to the top of the liquid. The former represents the
convective flow, while the latter characterizes the diffusive behaviour. To quantify this
layering structure, we define a new dimensionless parameter, the local density ratio, given
by Λ∗(x, t) = Λ∂zφ(x, t)/∂zθ(x, t). We then estimate the averaged value of Λ∗(x, t) at
a given height, and figure 7(e) presents the spatio-temporal evolution of Λ̃∗. The figure
shows that at any given time t, the convection and diffusion layers are distinctly separated
along the height z, with a narrow band of high Λ̃∗ (indicated by the dark red colour)
situated between them. Furthermore, the solid–liquid interface (denoted by the blue solid
line) rises as the diffusion layer thickens. This ‘narrow band region’ was also identified by
Rosevear et al. (2022) in their investigation of DDC in ice–ocean interactions; however, the
development of the diffusion layer was not as apparent in their study. The larger melting
time scale in their work resulted in a nearly stationary solid–liquid interface during the
investigated period. Additionally, within the diffusion layer, Λ̃∗ is observed to decrease
with height, consistent with the diminishing density gradient with height (i.e. a more
flattened curve with z) as shown in figure 7(d). Specifically, Λ̃∗ decreases to a value less
than 1 in the fluid layer adjacent to the solid–liquid interface, where Λ̃∗ < 1 indicates an
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Figure 7. Characteristics of the layering regime with penetrative convection at (Ra, Λ) = (107, 3).
(a) Snapshots of the temperature field (left-hand image), concentration field (right-hand image) and solid–liquid
interfaces (indicated by white solid lines) at times t = 10−2, 0.1, 0.5 and 1.5, from bottom to top. (b–d) The
time evolutions of the vertical distribution of the averaged temperature, concentration and density at a given
height, respectively. Descriptions are consistent with those provided in figure 3. (e) The time evolution of the
averaged local density ratio along the height, Λ̃∗(z, t), in the (t, z) plot, with the blue solid line denoting the
position of the solid–liquid interface.

unstably stratified flow. This observation raises the question: can this unstable stratification
in the diffusion layer trigger convection?

We investigate this by increasing Ra to a higher value, such as (Ra, Λ) = (108, 3), as
shown in figure 8. Figure 8(a) illustrates a convection–convection double-layer structure
in the liquid. Here, the unstable stratification below the interface destabilizes the diffusion
layer, leading to its transition into the upper convection layer. This double-layer structure
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resembles the well-known ‘thermohaline staircase’ observed in the DDC literature
(Rosevear et al. 2021; Yang et al. 2020, 2022). It is characterized by the double staircases
in the profiles of θ̃ and φ̃, as depicted in figures 8(b) and 8(c). As presented in figure 8(e),
the two layers are separated by a narrow band of high Λ̃∗, whose strength decreases along
the melting process. This implies a further destabilization of this double-layer structure.
Although this transition is not captured in this case due to the top boundary, we have
further simulated a case (Ra, Λ) = (107, 2.5) with an enlarged domain in Appendix B,
which allows us to capture the entire transition from a convection–diffusion layering
regime to a convection regime. Additionally, figure 2(a) demonstrates that for Ra <

3 × 106, the layering regime does not manifest in the simulations. These observations
strongly suggest that the layering regime is transient, ultimately evolving into either a
convection-dominant regime or a diffusion-dominant regime as melting progresses.

We now revisit figure 2(a), focusing on the region of relatively low Rayleigh number
(Ra), specifically below the green dotted line that denotes the threshold for the onset
of RBC at the beginning of the simulation. In this regime, both the temperature and
concentration fields initially exhibit purely diffusive transport. The onset of convection, as
the solid melts, is influenced by local stratification. According to Radko (2013), a critical
value Λcr = (Pr + 1)/(Pr + Le−1) ≈ 1.1 is predicted for the onset of thermohaline
convection through linear stability analysis (LSA). This critical value is slightly higher
than our numerical result Λcr ≈ 1.0. This discrepancy is attributed to the fact that LSA
assumes a linear concentration profile, whereas our study observes a concave profile due
to its lower diffusivity. This nonlinearity leads to a larger local density ratio, making
convection more difficult to initiate. In contrast, examining results in the higher Ra
region, above the green dotted line, reveals that an increased Ra promotes the convection
regime. This observation indicates that at higher Rayleigh numbers, the threshold Λcr for
transitioning from the convection regime to the layering regime increases. The observed
increase in Lambdacr can be attributed to the dynamics of penetrative convection, where a
convection-dominated fluid layer extends into an initially stably stratified layer (an SSL).
As demonstrated by Wang et al. (2021a,b), a higher Rayleigh number enhances the heat
transfer within the convection layer, necessitating a reduction in the thickness of the SSL to
balance the increased heat flux from the convection layer. Consequently, with higher Ra,
the SSL becomes thinner and more susceptible to penetration. Under these conditions,
a higher Λ is required to provide a stronger stabilizing effect, which is essential for
maintaining the equilibrium structure of the layering regime at elevated Ra values.

It is also noteworthy to discuss the unusual distribution of ρ̃ within the convection layers
of the layering regime. Contrary to the ascending density profile observed in figure 3(d)
for Λ = 10−2, the density profiles presented in figures 7(d) and 8(d) exhibit a descending,
stair-like pattern. This suggests that lighter fluid is situated above heavier fluid, which
would typically indicate a stably stratified flow rather than an unstable convective flow. To
resolve this inconsistency, the insets in figures 7(d) and 8(d) display magnified views of
the density distribution within the bulk liquid, revealing a gravitationally unstable stratified
region characterized by increasing density with height. At t = 0, the convective motions
are initiated by this initially unstable stratification, as indicated by the dotted line in
figures 7(d) and 8(d). Over time, the solutal boundary layer evolves and forms a thick,
stably stratified boundary layer, while the bulk liquid retains its unstable stratification.
This phenomenon is consistent with observations reported by Chong et al. (2020b), who
describe it as a subcritical behaviour in DDC.
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Figure 8. Characteristics of the layering regime with convection–convection double-layer structure at
(Ra, Λ) = (108, 3), with descriptions identical to those in figure 7, except that the time moments of the
snapshots in (a) are t = 10−2, 0.1, 0.3 and 0.5 from bottom to top.

4. Quantitative analysis

After examining various flow patterns resulting from the manipulation of Λ and Ra,
we delve into a more quantitative analysis of the flow characteristics and interfacial
behaviours. This encompasses a detailed examination of heat and mass transfer, the
interfacial values of temperature and concentration, and the evolution of the interface
height.
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4.1. Heat and mass transfer
To assess heat transfer in a melting system, a crucial dimensionless parameter is the
thermal Nusselt number, denoted as NuT , which characterizes the ratio of heat transfer
caused by convection to conduction. It is important to note a distinction in NuT between the
RBC system with and without melting. In classical RBC, the entire system is in energetic
equilibrium, allowing NuT to be calculated from any horizontal plane. In the presence of
melting, however, the injected energy must include latent heat due to melting, resulting in
spatial variations in NuT . Here, we define NuT using the injected flux, expressed as

NuT(t) = QC(t)
QD(t)

=

∫ L

0
−∂θ

∂z

∣∣∣∣
z=0

(x, t) dx

L
1 − θ̄Γ (t)

h̄(t)

(
1 + 2 �A(t)

π

) , (4.1)

where QC and QD are the injected thermal flux realized by the convection and by the
pure diffusion, respectively. We recall that x = L = 4 is the position of the right-hand
wall where periodic boundary condition is imposed. Besides, the term 2 �A(t)/π in (4.1)
represents a second-order correction considering topography, with �A = A − 1, and A the
area of the solid–liquid interface per unit length (Favier et al. 2019). Figure 9(a) illustrates
the evolution of NuT(t) with respect to Rae(t), showing a growth with melting, as explained
earlier. Notably, for a melting system driven solely by temperature (Λ = 0), the thermal
Nusselt number follows a scaling NuT ∼ Ra1/4

e , as confirmed by plotting the result of
(Pr, St) = (10, 0.1) from Rabbanipour Esfahani et al. (2018). In our study, we find that
for cases with Λ � 1 in the convection regime, all curves ultimately collapse onto the
correlation NuT ∼ Ra1/4

e after initial jumps due to the onset of convection. Furthermore,
they share identical prefactors 0.25, indicating that the solute concentration, despite
varying with Λ, has minimal influence on the heat transfer of the system. However, when
Λ approaches the borderline between convection and layering regimes (e.g. Λ = 2 at Ra =
107 indicating weak convection), the stabilizing solutal effect becomes non-negligible for
heat transfer. Specifically, we observe NuT initially dropping but eventually converging
to Ra1/4

e after a sharp rise. This initial drop is attributed to the formation of the
stabilizing effect from the SSL temporarily separating the convective liquid layer from the
solid–liquid interface. However, as the interface height rises during melting, Rae increases,
allowing convection to penetrate the SSL, deform the interface, and sharply enhance heat
transfer. Similarly, the NuT profile corresponding to the layering regime (e.g. Λ = 3 at
Ra = 108) exhibits a variation trend similar to that of the weak convection regime, but
with exponent values smaller than 1/4. Moreover, for the diffusion regime with large
Λ, the convection flow is entirely eliminated by the growth of SSL. Consequently, NuT
initially jumps to a large value due to the onset of convection, but ultimately converges to
1 in a short time period.

To evaluate mass transfer in this system, we introduce the solutal Nusselt number,
denoted as NuC. This parameter is defined in a manner analogous to the thermal Nusselt
number NuT and is expressed as

NuC(t) =

∫ L

0
−∂φ

∂z

∣∣∣∣
z=0

(x, t) dx

L
1 − φ̄Γ (t)

h̄(t)

(
1 + 2 �A(t)

π

) , (4.2)
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Figure 9. The temporal evolution of (a) the thermal Nusselt number NuT (t) and (b) the solutal Nusselt
number NuC(t), plotted against Rae(t) for varying Ra (Ra = 106, 107, 108) and Λ (10−2 � Λ � 103). In
(b), the dash-dotted line represents the predicted value of NuC ≈ 2.49 for the ‘melting’-dominated diffusion
regime (Λ � 10) obtained through scaling analysis. For better readability, the different groups of profiles with
Ra = 106, 107 and 108 are distinguished by different transparency. Also, the range of Rae for different Ra is
highlighted in both plots.

which represents the ratio between the mass flux induced by convective processes and
that resulting from pure diffusion. Figure 9(b) presents the results, noting that since
the binary fluid has an initially homogeneous concentration φ = 1, independent of Λ,
all NuC values start from 0. In the convection and layering regimes, the evolution of
NuC closely mirrors that of NuT because both the injected thermal and mass fluxes are
influenced by the same convective structures. In particular, the solutal Nusselt number
converges to NuC = 1.4 Ra1/4

e at Λ � 1, while it is NuT = 0.25 Ra1/4
e for the thermal

Nusselt number. It is crucial to understand the ratio of the two prefactors, i.e. why
NuC(t)/NuT(t) ≈ 1.4/0.25 = 5.6. A scaling analysis based on the energy/mass budget
helps to clarify this ratio.

Regarding heat transfer, the injected thermal flux serves two primary functions. First,
it maintains the liquid at an average temperature, denoted by 〈θ〉� ≈ 1/2, as illustrated in
figure 3(b), where 〈·〉� represents the average over the liquid phase. Second, it provides the
necessary heat flux to facilitate the melting of the solid. These contributions are quantified
by (L/2)(dh̄(t)/dt) and

∫
s–l interface[(−∇θ�) · n](s, t) ds, respectively, with

∫
s–l interface

indicating the line integral of the heat flux along the solid–liquid interface. Consequently,
the energy budget can be expressed as∫ L

0
−∂θ

∂z

∣∣∣∣
z=0

(x, t) dx ≈ L
2

dh̄(t)
dt

+
∫

s–l interface
[(−∇θ�) · n](s, t) ds. (4.3)

Substituting (4.1) and (2.6) into this equation further reformulates it to

NuT(t) L
h̄(t)

≈ L
2

dh̄(t)
dt

+ St−1
∫

s–l interface
vΓ (s, t) ds, (4.4)

where several approximations are adopted: (1) the change in the interface area is
negligible, i.e. �A 	 1; (2) the averaged interfacial temperature in the convection regime
is nearly zero, i.e. θ̄Γ ≈ 0, as discussed in § 4.2; (3) the heat flux contribution from the
solid phase is insignificant, i.e. (∇θ s) · n ≈ 0, as identified in figure 3(b). Additionally, the
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integral of the interface propagation rate, which appears as the second term on the
right-hand side of (4.4), can be estimated based on the average height as∫

s–l interface
vΓ (s, t) ds = L

dh̄(t)
dt

. (4.5)

Finally, (4.3) becomes

NuT(t)
h̄(t)

≈ dh̄(t)
dt

(
1
2

+ St−1
)

, (4.6)

which describes the dynamic coupling between the heat transfer and the evolution of the
solid–liquid interface.

Regarding the mass budget, the injected mass flux serves to maintain the liquid at
an average concentration 〈φ〉� ≈ 1/2, as shown in figure 3(c). The mass budget can be
expressed as

Le−1
∫ L

0
−∂φ

∂z

∣∣∣∣
z=0

(x, t) dx ≈ L
2

dh̄(t)
dt

. (4.7)

Similarly, by substituting (4.2) and applying the approximation �A 	 1, the injected mass
flux can be reformulated as

Le−1 NuC(t) (1 − φΓ (t))
h̄(t)

≈ 1
2

dh̄(t)
dt

, (4.8)

which reflects the interplay between mass transfer and the evolving interface. Combining
the energy and mass conservation laws given by (4.6) and (4.8), we derive the expression

NuC(t)
NuT(t)

≈ Le

(1 + 2 St−1)(1 − φ̄Γ (t))
≈ 6, (4.9)

where φ̄Γ (t) is known to be approximately 0.2 when Λ � 1 (see figure 3 and the
corresponding text), and this relationship will be discussed further in § 4.2. The predicted
value NuC(t)/NuT(t) ≈ 6 closely matches the numerical observation 5.6. This analysis
provides a quantitative understanding of the ratio between solutal and thermal Nusselt
numbers in the context of mass and energy conservation.

In the diffusion regime, which is categorized into ‘melting’ or ‘dissolution’ patterns,
we can provide further insights. For the dissolution cases (Λ � 103), where the φ profile
is almost linearly distributed in the liquid (see figures 6b,d, f ), we expect the solutal
Nusselt number to approach 1, similar to the thermal Nusselt number in the diffusion
regime. However, for the melting cases, the situation becomes more complex as the
concave φ profile in the liquid exhibits more nonlinearity (see figures 6b,d, f ). In this
scenario, we establish a theoretical argument by approximating the entire process as a fully
melting one-dimensional Stefan problem, enabling us to obtain self-similar solutions. We
assume that θΓ and φΓ are maintained at 0 during melting, as illustrated in figure 6. The
temperature and concentration fields in the liquid can then be formulated as θ(z, t) = 1 −
erf(z/2

√
t)/erf(ξ) and φ(z, t) = 1 − erf(z

√
Le/2

√
t)/erf(ξ

√
Le). The interface evolves as

h(t) = 2ξ
√

t, with ξ being obtained from the heat and mass balance at the interface,
given that St = ξ erf(ξ) exp(ξ2)

√
π. Note that these solutions have been discussed in

our previous study (Xue et al. 2023). Based on the presented arguments, the solutal
Nusselt number can be predicted as NuC = −∂zφ|z=0 h(t) ≈ 2.49. Consequently, for all
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Figure 10. Time evolution of φ̄Γ (t) within the range of small to moderate Λ (Λ � 10) depicted at
(a) Ra = 106, (b) Ra = 107, and (c) Ra = 108, respectively. The corresponding Λ values are represented
by different line colours, consistent with those in figure 9. (d) The ultimate value of φ̄Γ as a function
of Λ for different Ra. (e) A schematic representation of the one-dimensional BL-shortcut-BL structure for
the concentration φ and temperature θ profiles. The upper and lower solutal (thermal) boundary layers are
symbolized by δφ,u and δφ,� (δθ,u and δθ,�), respectively.

cases in the diffusion regime, we would expect the stabilized NuC to fall in a region
1 < NuC < 2.49, with the two extremes being labelled by the dashed lines and dash-dotted
lines in figure 9(b). This prediction aligns with our numerical results at Λ � 5 in the same
plot.

4.2. Interfacial temperature and concentration
In this subsection, we investigate the temporal evolution of the averaged temperature
and concentration at the interface, denoted by θ̄Γ (t) and φ̄Γ (t), respectively. We
emphasize their strong coupling through the Gibbs–Thomson correlation (2.5) that
θ̄Γ (t) = θM + mL φ̄Γ (t), where mL = −3 × 10−3Λ.

For small to moderate Λ, where Λ � 10, the average interfacial temperature θ̄Γ (t)
remains at 0, largely due to the negligible solutal undercooling effect. However, as is
evident from figure 3, the interfacial concentration appears to stabilize around φΓ ≈ 0.2
for low Λ, warranting further investigation. Figures 10(a)–10(c) present the time histories
of φ̄Γ (t) at different Λ (Λ � 10), with Ra = 106, 107 and 108 depicted in separate plots.
Additionally, figure 10(d) showcases their φ̄Γ values at the final moment. As melting
commences, φ̄Γ (t) decreases from 1, and notably, for cases where Λ < 1, φ̄Γ (t) almost
stabilizes at a constant value 0.2, independent of Λ. Even at Ra = 107 and 108, which
exhibit secondary convection in the upper liquid layer, φ̄Γ (t) converges to approximately
0.2. This consistency suggests that the ultimate φ̄Γ significantly depends on the convective
structure near the solutal boundary layer beneath the interface, irrespective of whether the
liquid comprises one layer or double layers.

To elucidate why φ̄Γ (t) approaches 0.2, we establish a theoretical model based
on two assumptions. First, inspired by the profiles within the slice x = 2 (insets of
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figures 3b,c), we approximate the concentration and temperature profiles in the liquid
using a one-dimensional BL-shortcut-BL structure (figure 10e) observed in the convection
regime. We assume φ to be linearly distributed in the boundary layer, with value 1/2
in the bulk flow. The thicknesses of the upper and lower solutal boundary layers are
given by

δφ,u(t) =
(

1
2

− φΓ (t)
)/(

−∂φ

∂z

∣∣∣∣
z=h̄

(t)
)

and δφ,�(t) = 1
2

/(
−∂φ

∂z

∣∣∣∣
z=0

(t)
)

.

(4.10a,b)

The ratio between the thicknesses of the lower and upper solutal boundary layers is given
by

δφ,�(t)
δφ,u(t)

=
∂φ

∂z

∣∣∣∣
z=h̄

(t)

(1 − 2φΓ (t))
∂φ

∂z

∣∣∣∣
z=0

(t)
, (4.11)

whereas the upper mass flux can be estimated using the solute-rejection relation
(2.6), with the approximation ∂φ/∂z|z=h̄(t) ≈ −Le φΓ (t) (dh̄(t)/dt), and the lower mass
flux is estimated from the mass budget (4.7), with ∂φ/∂z|z=0(t) ≈ −(Le/2)(dh̄(t)/dt).
Substituting these approximations into (4.11) yields

δφ,�(t)
δφ,u(t)

≈ 2φΓ (t)
1 − 2φΓ (t)

. (4.12)

Following a method analogous to (4.10a,b), the thicknesses of the upper and lower
temperature boundary layers are estimated as

δθ,u(t) = 1
2

/ (
−∂θ

∂z

∣∣∣∣
z=h̄

(t)
)

and δθ,�(t) = 1
2

/(
−∂θ

∂z

∣∣∣∣
z=0

(t)
)

, (4.13a,b)

thus the thickness ratio is

δθ,�(t)
δθ,u(t)

=
(

−∂θ

∂z

∣∣∣∣
z=h̄

(t)
)/(

−∂θ

∂z

∣∣∣∣
z=0

(t)
)

. (4.14)

The upper heat flux is related to the Stefan condition (2.6), so we have
(∂θ/∂z)|z=h̄(t) ≈ St−1 (dh̄(t)/dt), by neglecting the heat flux contribution from the solid
side. Additionally, the lower heat flux is determined from the energy budget (4.3) and (4.6),
which gives −(∂θ/∂z)|z=0(t) ≈ (dh̄(t)/dt)(1

2 + St−1). Combining these two correlations
with (4.14) leads to

δθ,�(t)
δθ,u(t)

≈ 2
St + 2

. (4.15)

Additionally, it is reasonable to assume that the thickness ratio between the lower and
upper boundary layers is the same for both the concentration and temperature fields.
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Figure 11. Evolution of the averaged interfacial values of temperature θ̄Γ and concentration φ̄Γ in the
‘dissolution’-dominated regime, with the Rayleigh number maintained at Ra = 106, for (a) Λ = 102, and
(b) Λ = 103. Solid lines represent numerical results, while the dotted and dash-dotted lines depict the analytical
solutions of (4.18) and (4.19), respectively.

Thus we approximate that
δφ,�(t)
δφ,u(t)

≈ δθ,�(t)
δθ,u(t)

, (4.16)

which can be further simplified by considering (4.12) and (4.15), leading to the correlation

φΓ ≈ 1
St + 4

≈ 0.24. (4.17)

This value closely matches our numerical solution. For other cases with Λ � 10, including
the ‘melting’-dominated diffusion regime and the layering regime without secondary
convection, the concentration gradually drops and converges to 0 due to the slower
diffusion of concentration compared to temperature in the diffusion layer beneath the
melting interface.

For cases where Λ � 102, dominated by the ‘dissolution’ process, an intriguing
interplay between θ̄Γ (t) and φ̄Γ (t) emerges. The solid lines in figure 11 illustrate the
evolution of φ̄Γ and θ̄Γ with respect to the average interface height h̄ for Λ = 102

and 103. Due to a significant solutal undercooling effect, the decrease in φ̄Γ leads to a
noticeable increase in θ̄Γ , ultimately converging to the guide lines in the figure during
the fully developed stage. Understanding this convergence is linked to the characteristics
discussed in figure 6. These characteristics reveal a quasi-linear temperature profile across
the entire domain in the fully developed stage, allowing the interfacial temperature θ̄Γ to
be approximated as

θ̄Γ (t) ≈ 1 − h̄(t). (4.18)

Considering the solutal undercooling effect (2.5), the interfacial concentration φ̄Γ can be
approximated as

φ̄Γ (t) ≈ 1 − h̄(t)
mL

+ 1. (4.19)

Expressions (4.18) and (4.19) are presented as dotted lines in figure 11 for both cases, and
demonstrate excellent agreement with our numerical solution in the developed stage.
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4.3. Interface evolution
We then shift our focus to the time evolution of the interface height h̄(t), analysing
it through an energy argument, a method employed previously by others (Rabbanipour
Esfahani et al. 2018; Favier et al. 2019). In both the convection regime and the
‘melting’-dominated diffusion regime, we make two key approximations. First, we assume
that the average temperature in the liquid is 〈θ〉� = 1/2. Second, we assume that θΓ (x, t)
remains at 0. We define a universal correlation NuT(t) = γ1 Raγ2

e (t), with (γ1, γ2) =
(0.25, 1/4) for the convection regime, and (γ1, γ2) = (1, 0) for the ‘melting’-dominated
diffusion regime, from the observation in figure 9(a). Substituting this correlation into
(4.6) yields an ordinary differential equation (ODE)

γ1 Raγ2 h̄3γ2−1(t) ≈ dh̄(t)
dt

(
1
2

+ St−1
)

, (4.20)

with the relation Rae(t) = Ra h̄3(t). We then obtain the solution of (4.20), which reads

h̄(t) ≈

⎡⎢⎣ (2 − 3γ2)γ1 Raγ2

1
2

+ St−1
t + h2−3γ2

0

⎤⎥⎦
1/(2−3γ2)

. (4.21)

For Ra = 106, the predicted behaviours for h̄(t) based on (4.21) are

h̄(t) ≈
{

(0.941t + 0.134)4/5 for convection regime,

(0.190t + 0.040)1/2 for ‘melting’-dominated diffusion regime.
(4.22)

Consequently, the averaged interface height propagates exponentially, with scaling
exponents 4/5 and 1/2 corresponding to the convection regime and the ‘melting’-dominated
diffusion regime, respectively. Accordingly, the melting rate of the solid follows the scaling
exponents −1/5 and −1/2 in these two regimes. In figure 12(a), a comparison is presented
between the theoretical predictions (solid black line and dashed black line for the two
options of (4.22)) and the numerical solution in these two regimes, showing excellent
agreement. Additionally, the scaling exponents 1/2 and 4/5 are plotted as grey dash-dotted
lines, providing an accurate prediction of the development trend of the corresponding
numerical solutions in the two regimes.

To estimate h̄(t) in the ‘dissolution’-dominated diffusion regime (e.g. at Λ = 103), the
assumption θΓ = 0 is no longer valid, as seen in figures 6(a,c,e). However, it is still
possible to approximate it with the asymptotic correlation between the average interfacial
concentration φ̄Γ and the average interface height h̄ of (4.19):

φ̄Γ (t) ≈ 1 − h̄(t)
mL

+ 1 = 1
3

h̄(t) + 2
3
. (4.23)

Recalling that mL = −3 × 10−3Λ = −3, the ‘dissolution’ dominated by the solute φ

allows us to approximate the φ profile in the liquid with the one-dimensional linear
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Figure 12. Characteristics of the interface height during melting. (a) Averaged interface height at Ra = 106.
(b) Roughness of the interface height at Ra = 106, 107 and 108. The colours of the lines correspond to
different values of Λ and are consistent with those described in figure 9. In (a), the black solid line represents
the theoretical predictions from (4.22) for the convection regime, the black dashed line from (4.22) for the
‘melting’-dominated diffusion regime, and the black dotted line from (4.25) for the diffusion-dominated
regime. The inset in (a) presents the numerical solution for the time evolution of the average height h̄ over
an extended period for Λ = 103, illustrating the very slow dissolution process, which aligns well with the
prediction from (4.25) for the diffusion-dominated regime.

function

φ(z, t) ≈ φ̄Γ (t) − 1
h̄(t)

z + 1. (4.24)

Combining (4.23), the vertical gradient of φ from (4.24), and the solute-rejection relation
(2.6), we obtain the ODE

Le−1
1 −

(
1
3

h̄(t) + 2
3

)
h̄(t)

≈
(

1
3

h̄(t) + 2
3

)
dh̄(t)

dt
. (4.25)

By solving (4.25), the analytical solution for the interface height h̄(t) at Λ = 103 is plotted
in figure 12(a), showing good agreement with the numerical solution, except for a slight
underestimation at the initial stage. The deviation arises from the faster melting by the
initial triggered convection, which is not considered by the theoretical estimation.

Another relevant characteristic that requires investigation is the roughness of the
interface, which is characterized as

hrms(t) =
√

(h(x, t) − h̄(t))2 Ra1/3 =
√

h′(x, t)2 Ra1/3, (4.26)

where Ra1/3 is used for normalization at different Ra (Yang et al. 2023b). The numerical
results are presented in figure 12(b). We observe that in all cases, hrms remains at 0 until
the onset of convection deforms the melting interface, as described previously. In the
convection regime corresponding to very small Λ, the developing trend of the curves
follows that of hrms ∼ Ra1/3

e , consistent with what was derived by Yang et al. (2023b)
for the pure temperature-driven melting problem. For the diffusion and layering regimes
characterized by promoting Λ, the interface roughness is observed to reduce in the picture.
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This reduction is attributed to the weakening or disappearance of convection rolls in these
two regimes. Additionally, even if there are cusps and convexities along the interface, the
cusp regions melt more quickly since the local temperature has a negative gradient there,
resulting in a decreasing hrms.

5. Conclusions and outlook

In this study, we explore the impact of solute presence in a horizontally heated melting
system through numerical simulations employing a recently developed sharp interface
method. The system comprises a binary fluid situated beneath a pure solid substance,
with the latter serving as the solvent for the liquid. As the warmer fluid beneath melts
the solid from the bottom, the liquid experiences dilution from the top. The interplay
between temperature and solute concentration leads to contrasting effects on buoyant
forces, owing to the distinct variations in density. While temperature induces well-known
Rayleigh–Bénard convection (RBC), the solute concentration acts as a stabilizing factor.
Our primary objective is to delve into their antagonistic dynamics across a broad parameter
space defined by (Ra, Λ).

Our numerical findings reveal three distinct flow regimes. The first, characterized by
small Λ, corresponds to the convection regime, where vortex rolls form beneath the
melting interface due to the relatively weak stabilizing effect induced by the solute. In
addition, contrary to the initial expectation that the solute would act as a passive tracer or
exhibit a stabilizing effect in this low Λ scenario, it instead has a destabilizing effect on
the triggered convection. This is due to the fact that the lighter fluid carries a lower solute
concentration, which agitates the lower thermal boundary layer and generates a fluctuating
upward buoyancy force. As Λ increases, the system undergoes a transition from thermal
convection to penetrative convection, giving rise to the layering regime. This regime is
characterized by moderate solutal effects resulting from the melting solid, which leads to
the formation of a stably stratified layer that inhibits the full dominance of convection in
the liquid. In this regime, a double-layer flow structure emerges: the lower layer remains in
the convection regime, while the upper layer may be either another convection regime
or a distinct diffusion regime, depending on the value of Λ. This layering structure
exhibits behaviours very similar to those reported in double-diffusive convection flows.
Our analysis demonstrates that this is, in fact, a transient regime. The third regime emerges
at very large Λ, where temperature and concentration in the liquid undergo fully diffusive
transport, leading to the elimination of convection flow due to the developing stably
stratified layer. Notably, the diffusion regime can further be categorized into ‘melting’ or
‘dissolution’ patterns, each dominated by temperature or solute concentration, exhibiting
distinct characteristics.

Furthermore, we conduct a quantitative analysis to elucidate the flow characteristics of
the system. In the convection regime, both the thermal and solutal Nusselt numbers exhibit
power-law scaling, approximately proportional to ∼Ra1/4

e . The prefactors of these Nusselt
numbers are thoroughly understood through the establishment of an energy and mass
budget. As the system transitions into the diffusion regime, NuT converges to 1, while NuC
converges to 2.49 for the extreme ‘melting’ situation, and 1 for the extreme ‘dissolution’
scenario. Next, we delve into the interfacial values of temperature and concentration,
revealing their dependence on specific flow regimes.

We then investigate the temporal development of the interface height h̄(t) across
different regimes. In the convection and the ‘melting’-dominated diffusion regimes, we
use the energy budget and the correlation NuT(t) = γ1 Raγ2

e (t) to derive that h̄(t) ∼ t4/5
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and h̄(t) ∼ t1/2, respectively. Accordingly, the melting rate of the solid follows scaling laws
t−1/5 and t−1/2 in these two regimes. In the ‘dissolution’-dominated diffusion regime, the
interaction between the interfacial temperature and concentration necessitates solving a
nonlinear ordinary differential equation to determine h̄(t). Additionally, in the convection
regime, the roughness of the interface is observed to scale as hrms(t) ∼ Ra1/3

e , consistent
with findings reported for the one-component melting problem (Yang et al. 2023b). These
results are crucial for developing models to predict h̄(t) in real-world scenarios. For
example, we predict that the melting rate in the ‘melting’-dominated diffusion regime
is t−1/2, which aligns well with the ice-shelf melting results reported by Rosevear et al.
(2022).

Despite the richness of the flow structures revealed in this study, there are avenues
for more systematic investigations in the future. For example, exploring scenarios with
a lighter solute, leading to a two-scalar RBC with a destabilizing solutal effect (Radko
2013), could provide further insights. Geophysically, considering scenarios such as the
melt in a magma ocean where Pr → ∞ while the liquid metal has Pr ∼ O(10−2), the
impact of Pr could lead to significant changes in flow structures (van der Poel et al. 2013).
Additionally, despite the computational resources required, three-dimensional simulations
would still be valuable in unveiling the three-dimensional structures of similar problems.
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Appendix A. Validation and grid-independence tests of the numerical methods

A.1. Code validation: pure substance melting system
The numerical methods employed in this study have been detailed extensively in our
previous work (Xue et al. 2023), and their accuracy has been validated rigorously
through comparisons with various benchmark tests, including analytical solutions and
experimental measurements. Specifically, the robustness and stability of the method for
flow-melting problems have been demonstrated by predicting the solidification/melting
rates of ice cylinders/spheres in salted solutions under forced convection. Therefore, in the
present study, we just perform validation tests focusing on a horizontal melting system
driven solely by temperature, a problem also investigated by Favier et al. (2019). The
computational domain spans [0 : 8] × [0 : 1], discretized with the resolution 4096 × 512.
The solid–liquid interface initially sits at h0 = 0.02, and no solute is present in the system.
Other parameters such as St = 0.1, Pr = 1 and Ra = 108 match those provided by Favier
et al. (2019). Given the absence of solute (Λ = 0), the interfacial temperature equals the
melting temperature, leading to θΓ = θM = 0.

We compute the thermal Nusselt number NuT(t) as a function of Rae(t), and compare the
results with those of Favier et al. (2019). Figure 13 presents this comparison, demonstrating
excellent agreement overall, with minor fluctuations at high Rae attributed to chaotic flow
patterns in that regime.
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Figure 13. Validation test comparing the numerical results of the thermal Nusselt number NuT ∼ Rae with
those provided by Favier et al. (2019), yielding excellent agreement. The dimensionless parameters match
those of (Favier et al. 2019), with St = 0.1, Pr = 1 and Ra = 108.

A.2. Grid-independence test: binary fluid melting system
Furthermore, in order to ensure the grid independence of our simulations when
solutes are introduced into the system, we conducted a series of tests with varying
spatial resolutions while maintaining the same physical configuration. Specifically,
we set Ra = 107, Λ = 1, and kept all other physical parameters consistent with
those described in § 2. To ensure consistent development of the onset convection
across all tests, a manual perturbation was initialized in the temperature field
as

θ ′(x) = 0.01 sin(10πx), (A1)

which ensures that convection begins from the same initial conditions in all simulations.
We varied the spatial resolutions from 256 × 64 to 4096 × 1024, and computed the

time evolution of the average interface height h̄(t) along with the interface shapes at
t = 5 × 10−3 for these tests. The results of these grid independence tests are presented in
figure 14. These tests are essential to ensure that our numerical results are not significantly
affected by the choice of spatial resolution, thus providing confidence in the accuracy of
our simulations.

The convergence behaviour depicted in both plots indicates that as the spatial resolution
increases, the differences between the results diminish, with almost no discernible
discrepancies between simulations conducted with 2048 × 512 and 4096 × 1024 grids.
Therefore, we conclude that using 512 grids along the z-direction is adequate for
simulations with global Rayleigh number Ra = 107. Moreover, considering that the
maximum Rayleigh number reached in our study is Ra = 108, we can estimate the
thickness of the thermal boundary layer δθ using the relation

δθ (Ra = 108)

δθ (Ra = 107)
= Nu−1

T (Ra = 108)

Nu−1
T (Ra = 107)

≈ (107)1/4

(108)1/4 > 0.5, (A2)

where we utilize the power law of heat transfer identified in § 4.1. Equation (A2)
demonstrates that the settling of the resolution 4096 × 1024 will provide sufficient spatial
resolution for cases with higher Ra. This ensures that our simulations accurately capture
the dynamics of the system even at elevated Rayleigh numbers.
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Figure 14. Grid independence study evaluating the spatial resolution employed in the present investigation.
(a) Evolution of the average interface height h̄(t) over time. (b) Visualization of the local reconstructed
interface of x ∈ [1.5 : 2.5] at t = 5 × 10−3 using different spatial resolutions from 256 × 64 to 4096 × 1024.
The simulations are conducted with Ra = 107, Λ = 1, while maintaining consistency with all other physical
parameters outlined in § 2.

Appendix B. Whole transition from layering regime to convection regime in a
long-duration simulation

As discussed in § 3.3 and illustrated in figure 8(e), we hypothesize that by significantly
extending the simulation time in the layering regime, the ‘narrow band region’ situated
between the convection–convection double layers would eventually disappear, leading to
the merging of these layers. To test this hypothesis, we conducted a numerical simulation
with parameters (Ra, Λ) = (107, 2.75) in computational domain [0 : 4] × [0 : 4], which
has sufficient height to support long-duration simulations. Figure 15 presents the results,
which are consistent with the findings in figure 8. Initially, as shown in figure 15(a),
the penetrative convection system exhibits a convection–diffusion double-layer structure
during the time period 0.1 � t � 0.5. With the onset of secondary convection from the
diffusion layer, the system transitions to a convection–convection double-layer structure
for 1 � t � 1.69. Subsequently, the system evolves into a fully convection regime.
Furthermore, figure 15(b) depicts the diminishing trend of the local density ratio ‘band’,
which nearly vanishes at t ≈ 1.69, marking the transition to the convection regime.
These results strongly support the notion that the layering regime, characterized by the
double-layer structure, is not a final state but rather a transitional phase leading to either a
convection regime or a diffusion regime.
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Figure 15. Characteristics of the layering regime transitioning to the convection regime during a long-duration
simulation at (Ra, Λ) = (107, 2.75). (a) Snapshots of the temperature field (left-hand images), solute
concentration field (right-hand images) and solid–liquid interfaces (depicted as white solid lines) at various
times: t = 0.1, 0.5, 1, 1.5, 1.69, 2 and 2.6 (from bottom to top). The colour scheme is consistent with that used
in figure 3. (b) The time evolution of the averaged local density ratio Λ̃∗(z, t) along the height in the (t, z) plot.
The blue solid line marks the position of the averaged solid–liquid interface.
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