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PRIMITIVE IDEALS IN THE COORDINATE RING
OF QUANTUM EUCLIDEAN SPACE

SEI-QWON OH AND CHUN-GIL PARK

A twisted group algebra k"P on a free Abelian group P with finite rank and a
Poisson structure on kP are studied. As an application, the primitive spectrum
of Oq(okn), the coordinate ring of quantum Euclidean space, is described and a
Poisson algebra A is constructed so that there is a bijection between the primitive
spectrum of Oq(okn) and the symplectic spectrum of R.

0. INTRODUCTION

The purpose of this paper is to characterise all primitive ideals of Oq(okn), the
coordinate ring of quantum Euclidean space and to construct a Poisson algebra A
such that there is a natural bijection between the primitive ideals of Oq(okn) and the
symplectic ideals of A, when the ground field k is an uncountably infinite algebraically
closed field with characteristic zero and the parameter q € k* is not a root of unity.
This paper confirms S.P. Smith's suggestion for Oq(pkn); namely that the primitive
ideals of certain algebras related to quantum groups should correspond bijectively to the
symplectic leaves of a naturally associated Poisson structure on the associated algebraic
variety.

In Sections 1 and 2, we establish the structure of the twisted group algebra k"P
when a is an antisymmetric bimultiplicative map on the free Abelian group P with
finite rank, and the Poisson structure on kP induced by an antisymmetric bilinear map
u on P. The idea of these sections was given to the author by T.J. Hodges. The
authors thank him deeply for permission to use it here. In Section 3 that is a main
part of this paper, we characterise the primitive ideals of Oq(okn); this arises from the
work of Takeuchi [11]. The reader is referred to the articles [10] and [11] for further
background of Oq(okn). The multiplicative rule of this algebra Oq(okn) is very similar
to that of the quantised Weyl algebra which has been studied by various authors (see
[1, 2, 4]), and so the techniques of proofs are similar to those of [1] and [8]. The final
section constructs a Poisson algebra A such that there is a bijection between the set of
primitive ideals of Oq(okn) and the set of symplectic ideals of B.
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58 S.-Q. Oh and C.-G. Park [2]

Henceforth, we assume throughout that k is an uncountably infinite algebraically
closed field with characteristic zero, the parameter q £ k* is not a root of unity and P
is a free Abelian group with finite rank unless stated otherwise.

1. TWISTED GROUP ALGEBRAS

1.1. Since quantum tori are essentially just twisted group algebras (see 1.6), we
begin with a brief review of some fairly well-known results about ideals in twisted group
algebras.

Let a 6 Z2(P, k*) be a 2-cocycle on a free Abelian group P with finite rank. Then
the twisted group algebra k"P is the fc-algebra with generators t\ for X £ P with
relations:

In particular, if a is bimultiplicative and antisymmetric, that is,

then a is a 2-cocycle on P, and thus the twisted group algebra k°P is defined and
satisfies the commutation relations:

Henceforth, we assume that a is bimultiplicative and antisymmetric on P.

1.2. Define

Clearly Pa is a subgroup of P and free since every subgroup of a free Abelian group
(with finite rank) is free.

LEMMA . The centre Z(kaP) of k"P is Z(k"P) = { £ > A * A | A 6 Po) , which is
x

isomorphic to kPa.

PROOF: Put Z = Z(k"P). For / = £ «A*A e kaP, f € Z if and only if t^f = ft^
x

for all fj. E P. Since t^f = ^<r2( / i , A)aA<A^, this will occur if and only if A £ Pa for
A

all A in the support of / . u

THEOREM 1 .3 . There is a bisection preserving inclusions between the ideals of

k"P and the ideals of the centre Z(k"P). That is, if I is an ideal of k"P then

I = (/ n Zik'P^k'P, and if J is an ideal of Z{k"P) then J = Jk"P D Z{k"P).

PROOF: Consider the action of P as automorphisms of k"P defined by
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[3] Quantum Euclidean space 59

Let T be a transversal for Pa in P . Then the weight space decomposition of k"P
under this action is

(*) k"P = 0 Z(k'P)tv.

If I is an ideal of kaP then I must be invariant under this action and so

I = 0 7 n Z(k'P)U = 0 ( / n Z(k"P))tv = (7 n Z{k°PJ)k"P.
V U

If J is an ideal of Z(k"P) and x 6 Jfc^P D Z{k"P) then x = ^)a:j./i for some
t

Xi € J and /,• € k"P. Replace each fi with an element written by the decomposition
(*) and then x can be expressed by x = £2 aj/̂ i/ for some av G J . Since x € Z(kaP),

i/6T

\? v $Pa then a,, = 0 and so x € J . Therefore we have that J = Jk"P (~1 Z(fc'TP). D

PROPOSITION 1.4. The centre of the fractional algebra Fract(fc"P) is

PROOF: Observe that both k"P and Z — Z(k"P) are affine domains, thus there
exist fractional algebras Fract(fc<7P) and Fract(Z). Clearly Fract(Z) is contained in
the centre of Fract (k"P). For x,y G kaP, if xj/"1 is a central element of Fract(fc'TP)
then xy = yx and t\xy~1t'^1 = xy~l for all t\ € fc"P, thus we have that xt\y = yt\x.
Express y as elements of (*) in the proof of 1.3. Let us call the number of nonzero
zv € Z in the expression y = ^2zvtv the length of y. We may assume that y has the
shortest length in the set {«/ | xy~l = x'y'~ for some x'}. If the length of y is greater
than 1 then 0 ^ y — atxyt^1 has shorter length than y for some nonzero scalar a and
t\ and we have that

x(y - atxyt^1) = xy - axtxyt^1 = yx - aytxxt^1 = y(x - atxxtj1).

Therefore xy~* = y~lx — (x — atxxtj1)^ — atxyt^1) . This contradicts to the
shortest length of y, so y = zvtv and xy~x — (cr(i/, v)xt-v)z~i € Fract(Z). D

THEOREM 1.5. Let {ei, . . . , en} be a basis of P and let H be the subsemigroup
(with identity) of P generated by e\,..., en. Given an antisymmetric bimultiplicative
map a, let R be a Noetherian k-algebra such that k"H C R C k"P. Then the
multiplicative set C generated by tCi,i — 1, . . . , n, is an Ore set of R and the localisation
C~^R is isomorphic to k"P. If all prime ideals of R are completely prime then all
maximal ideals of Z(k"P) correspond bijectively to all primitive ideals of R disjoint
from C. In fact, the map M >-> (Mk"P)c from the maximal ideals of Z{k"P) into the
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primitive ideals of R disjoint from C is bijective, where (MkT)c is the contraction of
Mk"P.

PROOF: Clearly, every element of C is invertible in k" P and each element of k"P
is of the form b~1a, a G k"H, b G C, thus the localisation C~*R is isomorphic to k"P
and C is a left Ore set. Similarly C is a right Ore set. Note that, by 1.3, there is a
bijection between the set of all maximal ideals of k"P and the set of all maximal ideals
of Z(k"P).

Let M be a maximal ideal of k"P. Then the contraction Mc to R is a prime
ideal disjoint from C and any prime ideal Q of R properly containing Mc contains an
element of C since M is maximal. Since Q is completely prime, tti G Q for some i and
so tei • • • ten G QC\C. Therefore the intersection of all prime ideals properly containing
Mc is not equal to Mc and so Mc is primitive by [7, 9.1.8].

Conversely, let Q be a primitive ideal of R disjoint from C. Then Q is contraction
of a prime ideal M of k^P. It suffices to show that M is maximal. Let Ai, . . . ,Ar

be a basis of the subgroup Pa. The elements t\t, i = l , . . . , r , can be written as
t\{ = /3,6~1ai for some Pi G k*, a,i,bi 6 C. Since <A,- are central elements of k"P
and Q is disjoint from C, aj — ctibi 6 Q for some a; G k* by [7, 9.1.7]. Hence M
contains t\t — ot-iPi for each i = 1 , . . . ,r and thus M D Z(k'TP) is maximal in Z(k"P)
and M = (M 0 Z{k"P))kaP is maximal in fcffP by 1.3. D

1.6. (See [2, 2.1], [6] and [7, 1.5.10 (ii)]) Let A = (Ajj) be an n x n matrix
of nonzero elements of k such that \u = 1 and Xji = A"1 for 1 ^ i,j ^ n. The
multiparameter coordinate ring of quantum affine n-space is the fc-algebra O\(kn)
generated by elements xi,...,xn subject only to the relations XiXj = XijXjXi for
1 ^ i, j ^n. Note that O\(kn) can be expressed as an n-fold iterated skew polynomial
ring starting with the field k; hence, O\(kn) is an affine domain. In particular, if
Xij = q~1, i < j then O\(kn) is called the coordinate ring of quantum affine n-space
and denoted Oq(k

n). As in [2, 2.1] and [6], we write P(A) for the localisation of
O\(kn) with respect to the multiplicative set generated by X\,..., xn , that is, P(X) is
the fc-algebra generated by X\, z ^ 1 , . . . ,xn, x~l subject to the relations X{Xj = XijXjXi.

Note that P(X) is the twisted group algebra k"P, where the free Abelian group
P has basis {ei,...,en} and an antisymmetric bimultiplicative map a G Z2(P,k*) is
given by

Conversely, all twisted group algebra k"P with an antisymmetric bimultiplicative map
a can be presented as a P(X) for A = (a2(ei,e,-)) . In fact, <f> : P(X) —> k"P defined
by 4>{xi) = te,- for all i = l , . . . , n is an isomorphism. Moreover, the subalgebra
O\(kn) of P(A) is isomorphic to the twisted semigroup algebra k"H, where H is the
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subsemigroup of P generated by e\,..., en.

2. POISSON T O R I

2 . 1 . Now let u £ Z2(P,k) be an antisymmetric bilinear map. That is,

w(Ai + A2,/u) =u(\1,fj,) + u(\2,iJ.)

«(A, /U) = -«(A*>-M-

Then it is easily verified that the bracket

defines a Poisson bracket on the group algebra kP. If kP has a Poisson structure then
we always assume that it is induced by an antisymmetric bilinear map u.

LEMMA 2 . 2 . Set

Zp(kP) = {f€kP\ {f,g} = 0 V<? £ kP}.

Then Zp(kP) = kPu where Pu = {A £ P | u(A,/i) = 0 Vp € P]. The Poisson
subalgebra Zp(kP) of kP, which has the trivial Poisson structure (that is, {f,g} =
0 Vf,g), is called the Poisson centre.

PROOF: Let / = X>AiA- Then / G Zp(kP) if and only if {t^J} = 0 for all
A

fj, € P. Since {t^, / } = ^ u(/z, \)a\tll+x , this will occur if and only if A £ Pu for all A
A

in the support of / . D

2.3. Recall that a Poisson ideal of a Poisson algebra A is an ideal I such that {/, g} £ I
for all f £ I and g £ A.

THEOREM. There is a bijection preserving inclusions between the Poisson ideals
of kP and the Poisson ideals of Zp(kP). That is, if I is a Poisson ideal of kP then
1 - (in Zp(kP))kP, and if J is a Poisson ideal of Zp(kP) then J - (JkP) n Zp(kP).

PROOF: Set Zp = Zp(kP). Consider the action of P as linear endomorphisms of
kP defined by

A(^)=«(A,/i)^ = {*A,tMK1.

Let T be a transversal for Pu in P. Then the weight space decomposition of kP under
this action is

(**) kP = 0 zptv.
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If / is a Poisson ideal of kP then / must be invariant under this action and so

/ = 0 1 n zvtv = 0 (I n zp)tv = (/ n zp)kP.
V V

If J is a Poisson ideal of Zp and if a; € (JkP) n Zp then x = J2xifi f°r some
i

Xi G J and /,• € kP. Replace each /; with an element written by the decomposition
(**) and then x can be expressed by x = £) «i/<» for some av £ J. Since x £ Zp, if

v £ Pu then a,, = 0 and so x £ J. Therefore we have that J — (JkP) D Zp. D

2.4. Let A be a Poisson algebra over A; and let Q be a prime Poisson ideal of
A, which means prime in the commutative algebra A and Poisson in A. Then the
Poisson bracket on A defines a Poisson bracket on Fract (A/Q) and we define Q to be
symplectic if

{a e Fract (A/Q) | {a,b} = 0 V6 G Fract (A/Q)}

reduces to the set of scalars (see [5, A.4.1]). A Poisson algebra A is called symplectic
whenever the Poisson ideal (0) is symplectic.

PROPOSITION . The set Z = {a £ Fract (kP) \ {a,b} = 0 Vb G Fract (kP)} is
equal to the fractional algebra of the Poisson centre Zp(kP) = kPu of kP.

PROOF: This follows from the modified version of the proof in 1.4. For complete-
ness sake, we write out the proof. Clearly Fract (kPu) is contained in Z. If x,y are
elements of kP and xy~x € Z then {x,tn}y — {y^^jx for all t^ € kP. Express y as
elements of (**) in the proof of 2.3. Let us call the number of nonzero zv € kPu in the
expression y = ^,zvtv the length of y. We may assume that y has the shortest length
in the set {y' \ xy~x = x'y'~ for some x'}. If the length of y is greater than 1 then
0 7̂  y — a{y, t^t*1 has shorter length than y for some scalar a 6 k* and t^ G kP,
and

z(y-<*{*/, f / J^ 1 ) =yx -ax{y,tp}t~l -y(x - a{x,t^t*1).

Therefore xy~x = (x — a{x,tfl}t~1)(y — a{y,t/J}<~1) i which is a contradiction to
the shortest length of y. Hence we have that y = zvtv and xy~r = (xt-v)z~l €
Fract (kPu). D

THEOREM 2 . 5 . Let {e i , . . . , en} be a basis of P and let H be the subsemigroup
(with identity) of P generated by {ei, . . . , e n } . Let kP be the Poisson algebra induced
by an antisymmetric bilinear map u, let A be a sub-Poisson and Noetherian subalgebra
such that kH Q A C. kP and let C be the multiplicative set generated by tei,...,ten .
Then C~lA = kP and extensions of all symplectic ideals of A disjoint from C are
maximal Poisson ideals of kP.
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PROOF: Clearly, the localisation C~l A is isomorphic to kP. Let Q be a symplectic

ideal of A disjoint from C and let A i , . . . , Ar be a basis of the subgroup Pu . Then Q

is contraction of a Poisson ideal M of kP and t\i = a,^"1 for some ai,bi £ C,

i — 1 , . . . , r , and so a; — a;6{ € Q for some a; € fc*. Hence <A, - a ; 6 M fi Zp(kP).

Therefore Af is a maximal Poisson ideal of kP by 2 .3 . D

COROLLARY 2 . 6 . Under t i e same conditions as 2 .5 , Jet P = Pu 0 P ' for some

subgroup P'. Then there is a bijection between the set of symplectic ideals of A and

the set of maximal Poisson ideals of kP.

PROOF: Let M be a maximal Poisson ideal of kP and let e i , . . . , e r be a basis of

Pu . Then M — (tei — cei,... ,tCr — ar)kP for some a,- € k* by 2 .3 . Let us prove t ha t

the contraction Mc to A is symplectic. Clearly, Mc is a prime ideal of A since M is

prime in kP. Note that the antisymmetric bilinear map u ' = u\pixp> gives a Poisson

structure on kP' and P'u, is trivial. Since fcP' = kP/M = C(A/MC) is symplectic

by 2.4 and F r a c t ( A / M c ) is isomorphic to Fract(A;P'), Mc is a symplectic ideal of A.

Hence the conclusion follows from 2 .5 . D

LEMMA 2 . 7 . Given an antisymmetric bimultiplicative map a 6 Z2(P,k*) and

0 7̂  q € A; which is not a root of unity, define u : P x P —^ fc by

Then u is an antisymmetric bilinear map and

Z{k"P) £ Zp(fcP) = kPu.

PROOF: Clearly, u is an antisymmetric bilinear map and Pa = Pu since q is not
a root of unity, and so Z(k"P) = Zp(kP) = kPu by 1.2 and 2.2. D

3. PRIMITIVE IDEALS INTHE COORDINATE RING OF QUANTUM EUCLIDEAN SPACE

DEFINITION 3.1: (See [9, 5,10, Section 4] and [11, 5.1]) Let q e k*. For each
positive integer n, the coordinate ring of quantum Euclidean space Oq[ok2n) is the
fc-algebra generated by In variables y\,x\,y%,x-i,-• • ,yn,xn satisfying the following
relations:

ViVj = IVjVi {i < J)

(i ^ j)

(i < j)

+ ( l - q2)
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The coordinate ring of quantum Euclidean space 0,(oA:2n+1) is the fc-algebra gen-
erated by 2 n + l variables ZQ, yi,xi,y2,x2, ••• ,yn,xn satisfying the following relations:

(all j)

z0Xj = q'^XjZo (all j)

(t < j)

j (i < j)

+ (i - q2) J2 «'"iJ"af' + g(1 /2 )- '(i - q)% (all j).

Hereafter, we write £>£ for Oq (ok2n) .

LEMMA 3 . 2 . The algebra O™ is a Noetherian domain and all its prime ideals
are completely prime.

PROOF: By [9, 5], O% is an iterated skew polynomial ring

for certain automorphisms an and Pi. Thus, it is a Noetherian domain. Moreover it is
easy to check that a,-, 0i and left /^-derivation Si satisfy the condition of [3, 2.3], and
so all prime ideals of O™ are completely prime. U

LEMMA 3 . 3 . In O^, set

Zi = q~2xtyi - yiXi = q~2(l - q2) ^ q'~'yixt

for i — 1,...,n. Then zn is central, all Zi are normal and j/,-, yi-\, a;,-, Xi-i are normal
modulo Zi-i for each i; ^ 1 (ZQ = 0). More precisely,

ZjVi = ViZj ZjXi = XiZj (i ^ j)

zjVi = q2yiZj zjxi = q~2xiZj (i > j)

q2zi - xty{ - q2yiXi qz{ = X{+1yi+1 - yi+1xi+i (i ^ 1)

q2zi - (1 - q2)yiXi + qzi-i ZJZ{ = Z{ZJ (i ^ 1).

PROOF: This follows immediately from direct calculations. D

DEFINITION 3.4: (See [8, 1.4]) Let pn = {zi,yi,xi,z2,y2,x2,... ,zn,yi,xn} be a
subset of O". We shall say that T C pn is admissible if T satisfies the conditions:

(i) yi e T or xt £ T if and only if «,• € T and z;_i e T, 2 < i < n.
(ii) yi e T or n e T if and only if zx € T.
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The definition of an admissible set should be compared with that of a p-sequence
in [1, 4.2]. In fact, if T is an admissible set then

5 = T - {Zi | y,- e T or Xi € T}

is p-sequence in 0™ . Note that the ideal generated by T is equal to the ideal generated
by the p-sequence S as in [1, 4.3].

LEMMA 3 . 5 . For each prime ideal P of O", P (1 pn is an admissible set.

PROOF: This follows immediately from 3.3. D

LEMMA 3 . 6 . Let T be an admissible set. Then the ideal (T) is completely prime
and there is a subalgebra AT of 0 " such that AT is a multiparameter coordinate ring
of quantum affine space O\T(km) for some matrix XT = (^ij)> ^ij = I,*?*1 or q±2

and
AT = OXT{km) C O»/(T) C P(XT).

PROOF: The ideal (T) is completely prime as in [1, 4.5]. Put

ST = {yjt ZJ | ZJ £ T} U {yj \zj6T, w g T, Xj <£T}UTyU Tx,

and let AT be the subalgebra of O™ generated by all elements of ST and let m be
the number of elements in ST- Since there is no index i such that both yi and Xi are
in ST, we have that, by 3.1 and 3.3, SiSj = XijSjSi for any pair Si,Sj € ST , and so
AT = O\T{km) for the m x m-matrix XT — (Xij) by 1.6. Since

T - {zi | Vi 6 T or xt G T}

is a normalising sequence of generators for (T) and each element of ST is not in the
ideal (T), we get immediately that ATf\{T) = 0,hence AT is embedded into O%/(T).
The image in O"/(T) of the multiplicative set generated by all the elements in ST is
a right and left Ore set in O™/{T) as in [1, 4.8]. Let BT denote the localisation of
Oq/{T) at this set. Since (l — q2)yiX{ — q2zi — qz{-\ {ZQ — 0) by 3.3 and all nonzero
generators y~j G BT are invertible, we have that all XJ € O"/(T) are in BT- Therefore,

AT = OXT(km) C OnJ(T) CBT = P ( A T ) .

It is cumbersome to use the standard overlining notation for images in factor rings
of Qq and so we shall write, for example, i,- for the image of Xi in a factor ring if no
confusion arises.

3.7. Let T be an admissible set such that y; € T and x,- 6 T for some i. Then
the index i is said to be removable in T.
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LEMMA . If T is an admissible set of O^ with removable indices then there is an
integer m < n and an admissible set V of O™ such that O%/(T) = O™/(T) and V
has no removable indices.

PROOF: Suppose that j is removable in T. Then there is a natural epimorphism
4> from O"~l onto 0%/(T) given by

— l • ^ •

yi >—} q yi, x ; •—> x ; , i < j

Vi >-> 2/i+i, Xi i->- xi+u i > j .

Since ker(4>) is prime by 3.6, ker ((j>) fl <pn-\ is an admissible set of 0™"1 by 3.5. An

induction on n completes the proof. D

3.8. From here to 3.11, we shall work to find the centre of P(\T) = BT in 3.6
when T has no removable indices.

Let T be an admissible set of 0™ without removable indices. Note that
(q~~2 — l ^ i z f 1 = z^1y2 and zn are central elements of Fract O™. For ST as in
the proof of 3.6, put

if zn £ T and zx <t T

if zn € T and zx <£ T

if zn $ T and 2 l € T

if zn E T and zx £ T.

L E M M A .

= { i i , i i + l , i i + 2 , - - - , i i + u i } U { i 2 , J 2 + l , i 2 + 2 , - - - ,i2 + v2}

U • •• U {ir,ir + l , » r + 2 , •• • ,ir + vr}

for some nonnegative integers i>,- and positive integers 1 = ii < i2 < • • • < ir satisfying

ij — (ij—i + Vj-i) ^ 2, ir + vr — n.

PROOF: Since T has no removable indices, it follows immediately from the defini-
tion of admissible set. D

LEMMA 3 . 9 . Let T, UT, ij and VJ be as in 3 .8 .

(1) Let vr be odd. Rewrite the elements of

(UT n {yir, xir, yir+1,xir+i,... ,yn,xn})u {zir-i}

as u\,u2,... ,up, say, where u i > u2 > ..• > up in the ordering

J/n *̂ 2/n —1 > • • • > 3/1 ^> z\ > Xi > Z2 > X2 > . . . > Zn > Xn.

UT =ST — {z\ i z,
T T O i "1

UT —^x1 — 1 z\ j
UT =ST — {zn}

UT —ST

I } C_i

C - 1

C - 1

C - 1

= z i

= Zl

= 0

= 0

'yl
lyl

Co = zn

co = 0

Co = Zn

co = 0
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Note that p is odd. Then

2

c r = w 1
1 u

1 u 2
Uk = 2 i r - l

is a central element of BT • If vr is even then put cr = 0.

(2) Let Vj, 1 < j < r, be even. Rewrite the elements of

(UT n {yirxi.,yii+1,xi.+1,... ,yij+Vj,xij+v.}) U {*,•_,.-i}

as «i, U2, • • •, Up > sa7) where u\ > u2 > . . . > up in the ordering

Vn > Vn-i > • • • > 2/1 > z\ > Xi > z2 > x2 > . . . > zn > xn.

Note that p is even. Then

e i -e2 e p_! - e p / 2 Uk±Zi x
CJ = « i u 2 • • • « : , u p ", £ t = <

[ 1 Ufc = 2 ^ - !

is a central element of BT • If Vj is odd then put Cj = 0.

PROOF: This follows by direct calculations using 3.1 and 3.3.

LEMMA 3 .10 . Let T, UT, ij , v, and a be as 3.8 and 3.9. Put

(1) Let v\ be odd and let Vp C\ {zi, z2,..., zn} ^ 0. Assume that i is the least

index such that Z{ 6 VT• Rewrite the elements of (Vr D {j/i, X\,..., yi-\, x;_i}) U {«,}

as tii, u2, • • •, Up, say, where U\ > u2 > • • • > up in the ordering

yn > J/n-i > •.. > yi > zi > Xi > z2 > x2 > ... > zn > xn.

Note that p is odd. Then

e i -C2 - £ p _ , i p j 2 Uk^Zi
c1=u1

iu2
 2---u \ up

p, £k = <
{ 1 ujt = z{

is a central element of BT • Put z = Z{.

(2) Let vi be odd and let VT H {Z\,Z2,. .. ,zn} = 0. Rewrite the elements of

VT n {yi,xi,... ,yn,xn} as U i , u 2 , • • • , u p , s a y , where u i > u 2 > • • • > " p i n t i e

ordering

yn > yn-i > ... > yi > z! > xx > z2 > x2 > ... > zn > xn.
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Note that p is odd. Then

{ y\ y\ € Vr
If v-i is even then put cj = 0.

i i xi e vT.

PROOF: AS in the proof of 3 .11, this follows by 3.1 and 3.3. D

LEMMA 3 . 1 1 . Let BT be as in 3.6 and Jet T, VT, cx and z be as in 3.10. Put

WT =VT - {z} Cl ^ 0

WT =VT CI = 0.

Then the centre of BT is the subalgebra, generated by {cf1 | c; ^ 0, for i =
- 1 , 0 , . . . , r } . If BT is presented by BT = k"P (see 1.6j then P = P' 0 Pa and
the rank of Pa is equal to the number of nonzero Ci's, i = — 1,0,..., r.

PROOF: Let ST be as in the proof of 3.6. Note that each element of ST — WT is
the divisor s of nonzero Ci, i = —1,0,1 , . . . ,r, such that the power of 5 is 1 or — 1, for
example, if c-\ ^ 0 then z\ £ ST — WT and if cr ^ 0 then £i r- i € ST — WT, and that
the number of elements in WT is even. Rewrite the elements of WT as w\, u>2,...,
say, where W\ > Wi > . . . > w-ip in the ordering

xn> zn>yn> xn-i > zn-i > yn-i > • • • > xi > zi > y\.

By the McConnell-Pettit criterion [6], we see that the subalgebra W of BT generated
by all wf1 is simple. But in 3.13, we shall give another proof for the simplicity of W
in order to avoid routine and messy calculations in finding the determinant of a huge
matrix. Since the subalgebra of BT generated by {ct

 1 | Ci yfc 0} is contained in the
centre of BT and each element s € ST - WT is a divisor of each the nonzero c; with
power 1, we have that the centre of BT is the subalgebra generated by the nonzero
cf1 and P = ? ' ® P , , where P' and Pa are the subgroups corresponding W and the
centre Z(BT) , respectively. D

PROPOSITIOH 3 . 1 2 . Let A be a simple algebra over a fieJd k and let B =
A[y; a][x; /?] be an iterated skew polynomial ring, where

a : A ^ A , j3 : A[y; a] —• A[y; a]

are automorphisms such that j3{A) — A, (3(y) = dy, d £ k* and for each pair i,j of
nonnegative integers with i+j ^ 1, there is no 0 ^ a € A satisfying the two conditions

d'a{a) = a, <f~'/?(a) = a.
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Then the localisation C = ^[y*1, x*1] at the multiplicative set generated by y and x
is simple.

PROOF: Note that all elements of C are uniquely expressed in a form / =
£2 dijy'xi . Let us denote by length of / the number of nonzero a,-j S A. For a nonzero
ideal / of C, choose 0 ^ / € / with the smallest length. Suppose that the length of /
is greater than 1. We may assume that / is of the form f = a + by'x3 + ( other terms)
for some nonzero a,b £ A and some nonnegative integers i,j with i + j ^ 1. Since
Ab{atP1\A)') — A, we may also assume that 6 = 1 . By our hypothesis, we have that
d3a(a) ^ a or d"^ (o) ^ a, say d3a(a) ^ a. Then

fy — d3yf = (a — d3a(a))y + (other terms) ^ 0

and the length of fy — d3yf G / is less than that of / . This is a contradiction. Hence
the length of / is 1 and so / is invertible. U

COROLLARY 3 . 1 3 . Let A,B,C, and a, (3 be as in 3.12 and let d e k* not be
a root of unity. If j3 = ar or a = 0r in A for some r ^ 1 then C is simple.

PROOF: For some pair i,j of nonnegative integers and i+j ^ 1, and some nonzero
a € A,suppose that

d3a{a) = a, d"''/?(a) = a.

Suppose that 0 = ar. Then a = d^^a) = d^a^a) = d^-^a, which is absurd
because d is not a root of unity and —i — rj < 0. Hence C is simple by 3.12. For the
case a = Pr, the proof is similar. D

(Proof for the simplicity of W in the proof of 3.11.) Under the same notations as
in the proof of 3.11, note that W2i-\W2i = 9 ">2iW2t—I for some fc = ±1 or ±2 because
J/J and ZJ with the same index j cannot be W21-1 — Zj, wii = Vj by the construction of
WT- Then, by induction on p, the simplicity of W follows immediately from 3.13. D

3.14. Let T be an admissible set O^ without removable indices. Call the rank of
Pa in 3.11 the degree of T, and denote it by deg(T).

If T is arbitrary admissible set of O" then there are m ^ n and an admissible
set V of 0™ without removable indices by 3.7. Denote deg(T) = deg(T'). Call an
admissible set T connected if T satisfies the property: if z,- € T, Zj £ T and i < j
then 2/ € T for all i < I ^ j (see [8, 1.6 (2)]). Clearly every admissible set T
without removable indices is the disjoint union of connected admissible subsets without
removable indices. By 3.9, 3.10 and 3.11, it is easy to find deg(T) for any admissible
set T without removable indices.

THEOREM . Let T be an admissible set of 0£ and let PrimT (Of) be the set of
all primitive ideals P of O™ such that P C\pn = T. Then there is a bijection between
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PrimT(Oq) and the set of all maximal ideals Max(k[tf1,... ,tf1]), where s = degT,
and Prim (Oj) = [}PrimT (Oj) .

T

PROOF: If n — 1 then 0* is the commutative polynomial ring with two variables,
hence the theorem follows from Hilbert's Nullstelnsatz because every primitive ideal of
a commutative ring is maximal. Because of induction on n, and 3.7, we may assume
that T has no removable indices. The theorem then follows immediately from 1.5, 3.2,
3.6 and 3.11. D

4. POISSON STRCTURE OF THE QUANTUM EUCLIDEAN SPACE

4.1. In 3.6, if T = 0 then the subalgebra A0 of O™ is generated by

Sq> = {yi,-- ,Vn,z\,... ,zn}

and thus the matrix A@ is

/ 1

A0 =

q
q
l

1
1

V i

i

i

q

q

q

l

q2

a2

1
q~2

q~2

q~2

1

1

1
1

q~2

q~2

1

1

1
1

1

q~
l
l

1 1 1 1

1 \
1
1

1
1
1

1 /

and P(Ag) can be presented by the twisted group algebra k"P by 1.6, where P has
rank In and an antisymmetric bimultiplicative map a is given by

By 2.7, kP is a Poisson algebra with Poisson bracket induced by the antisymmetric
bilinear map u £ Z2(P,k) defined by

4.2. Let An be the commutative algebra An = k[yi,..., yn,xi,... ,xn] with 2n

variables and for each i = 1 , . . . , n, set, as in 3.3,

zi = q~2(i-q2)
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Then we have that

Let C be the subalgebra of An generated by yi,...,yn,zi,... ,zn and let D be the
localisation of C with respect to the multiplicative set generated by yi,..., yn, z\,..., zn .
Then C C An C D = kP since each yi is invertible in D and so Xi £ D for each i,
and D has a Poisson bracket endowed from the isomorphism from D onto kP defined

by

yi (-* te,-, *i >-»ien+.--

More precisely, D has the following Poisson bracket:

{yi,yj} = yiyj (* < J ) {yi,*j} = o (i < j )

{yi,2j} = - 2 y ^ i ( » > j ) {«<,«>} = 0 (a l l i . j ) .

Thus C becomes a sub-Poisson-algebra of D and zn is a Poisson central element of
D. Moreover, An is also a sub-Poisson-algebra of D because we have the following
formulas in D: q = q2(l — q2)

{xi,zj} = Iqj/"1 ^ - q"1 «<_!),Zj} = 0 (i < j )

{a;,-, 2_,} = {qy-x (zt - q~l2,_i), Zj J = 2x^j (i > j )

(* ̂  i)

(all i)

= -xiXj (i < j).

4.3. We define an admissible set of An as in 3.4. We shall say that a subset T of

n — {xi, • • •, £n, yi, • • •, y-n, *\, • • •, Zn} is admissible if T satisfies the conditions:

(i) j/i e T or u 6 T if and only if 2, £ T and Zi-X € T, 2 ^ i ^ n .

(ii) yi € T or xi € 71 if and only if z^ G T.

As in 3.7, if T is an admissible set of An such that yi £ T and Xi £ T for some
then the index i is said to be removable.

LEMMA 4 . 4 .

(1) Every ideal generated by an admissible set of An is prime Poisson.
(2) For each prime Poisson ideal P of An, PC\pn is an admissible set of An •

(3) If T is an admissible set of An with removable indices then there are
m < n and an admissible set V of Am such that An/(T) £ Am/{T') as
Poisson algebras and T" has no removable indices.
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PROOF: Note that each Z{ is an irreducible element of B. (1) and (2) follow
immediately from 4.2, and (3) follows from the modified proof of 3.8. D

4.5 . Let T be an admissible set of An. Define ST, as in the proof of 3.6, by

ST = {y,,zj | ZJ i T} U {yj \ Zj G T, yj £ T, Xj $ T} U Ty U Tx

and let CT be the subalgebra of An generated by ST- Then CT is embedded into
An/(T), the localisation DT of CT with respect to the multiplicative set generated by
ST is isomorphic to a group algebra kP' and

CT C An/(T) CDT^ kP'.

The commutative algebra DT = fci" has the Poisson bracket induced by an antisym-
metric bilinear map u defined by

where cr2(e;, ej) = A,j is the (i, j)-entry of the defining matrix A^ in the twisted group
algebra P[XT) of 3.6.

LEMMA . The Poisson structures of An/(T) induced by that of An and by that of

DT = kP' are equal and CT is a sub-Poisson algebra.

PROOF: Straightfoward. D

THEOREM 4 . 6 . For each admissible set T of the Poisson algebra An, let
SympT(An) be the set of all symplectic ideals Q of B with Q (~\ p n = T. Then
there is a bisection between SympT(An) and Max(fc[tj , . . . ftf1]), and Symp(An) —
\_\SympT(An), where s = deg(T) when T is considered as an admissible set of O".
T
Moreover, there is a bijection between Prim O^ and symp(An).

PROOF: If n = 1 then A\ has trivial Poisson structure and so there is nothing to
prove since symplectic ideals of Poisson algebra with trivial Poisson structure are only
maximal ideals. Assume n > 1. By induction on n, and 4.4 (3), we may assume that
T has no removable indices. By 4.5 and 2.7, the centre of the twisted group algebra
P(\T) of 3.6 and the Poisson centre of DT of 4.5 are equal, hence the conclusion
follows immediately from 2.6, 3.11 and 3.14. D

THEOREM 4 . 7 . All symplectic ideals of the Poisson algebra An+i/I,

I = (yi - <71/2(1 + qV^xi), correspond bijectively to Prim Oq{ok2n+X) .

PROOF: By [9, 5], the map / from O%+1 into Oq(ok2n+1) given by

qT^zo, xi !->• 20, yi >->• 2/i-i, *i *-* z .- i {i ^ 2)
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is an epimorphism with kernel (y1 — g1^2(l + q^Xi), and the ideal I = {yx —

g1/2(l + q)~ Xi) of An+\ is a prime Poisson ideal and thus An+i/I is a Poisson alge-

bra. Moreover, in 4.6, all primitive ideals of O^+1 containing (yi — gJ/2(l + q)~ xi)

correspond bijectively to all symplectic ideals of An+i containing / . U
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