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In this paper, we address two boundary cases of the classical Kazdan–Warner
problem. More precisely, we consider the problem of prescribing the Gaussian and
boundary geodesic curvature on a disk of R2, and the scalar and mean curvature on
a ball in higher dimensions, via a conformal change of the metric. We deal with the
case of negative interior curvature and positive boundary curvature. Using a
Ljapunov–Schmidt procedure, we obtain new existence results when the prescribed
functions are close to constants.
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1. Introduction

A classical problem arising in geometric analysis consists in prescribing certain
geometric quantities on Riemannian manifolds via a conformal change of metric. It
dates back to [9, 36], where the authors proposed the following problem: given a
smooth function K defined on compact surface (M2, g), can K be achieved as the
Gaussian curvature of M with respect to some conformal metric g̃ = eug?

Analytically, this reduces to solve the following equation in u:

−Δgu+ 2kg = 2Keu in M,

where Δg is the Laplace–Beltrami operator and kg denotes the Gaussian curvature
of M relative to g. Over the last few decades, this equation has received significant
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attention and it is not possible to give here a comprehensive list of references; a
collection of results can be found in [4].

If M has a boundary, then boundary conditions are in order. Here we consider a
non-linear boundary condition corresponding to conformally prescribing the bound-
ary geodesic curvature H, for some given function H defined on ∂M . In this case,
we are led to the boundary value problem:{

−Δgu+ 2kg = 2Keu in M,

∂νu+ 2hg = 2He
u
2 on ∂M,

(1.1)

where ν is the exterior normal vector to ∂M and hg its initial geodesic curvature.
Equation (1.1) has been considered in particular situations; the case of constant
K and H has been studied by Brendle in [10] by means of a parabolic flow. In
this situation, some classification results are available when M is an annulus or the
half-space, see [35, 39, 47]. The case of non-constant curvatures was first addressed
by Cherrier in [17], but his results are obstructed by the presence of Lagrange
multipliers. Recently, the general case with K < 0 in surfaces topologically different
from the disk has been studied in [41], and a blow-up analysis has been performed.

Generally speaking, the case of a disk is challenging due to the non-compact
nature of the conformal map group acting on it, similarly to the Nirenberg problem
on S

2. The problem becomes{
−Δu = 2Keu in B

2,

∂νu+ 2 = 2He
u
2 on S

1,
(1.2)

Integrating (1.2) and applying the Gauss–Bonnet theorem, we obtain∫
B2
Keu +

∫
S1
He

u
2 = 2π,

from which we see that K or H needs to be somewhere positive. Some partial results
are available for the case in which one of the curvatures is zero, see [13, 14, 23, 31,
38, 40]. However, up to our knowledge, there are few results available for the case
of non-constant functions K and H. In [20], the problem is posed in a new varia-
tional setting and existence of solutions in the form of global minimizers is obtained
for non-negative and symmetric curvatures. Existence results for not necessarily
symmetric, non-negative curvatures are found in [45] via a Leray–Schauder degree
argument. In [6], the authors construct blowing-up solutions for (1.2) under certain
non-degeneracy assumptions on K and H using a Ljapunov–Schmidt reduction.

Concerning the blow-up behaviour of sequences of solutions, a rather exhaustive
study is given in [34] (see also [23, 31]). In particular, it is shown that ifK < 0, then
problem (1.2) only admits blow-ups at boundary points where the scaling-invariant
function D2 : S

1 → R defined as

D2 =
H√−K (1.3)

is greater or equal than one (see [34, Theorem 1.1] and [41, Theorem 1.4]).
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The natural analogue of this question in higher dimensions is the prescription of
the scalar curvature of a manifold and the mean curvature of the boundary, and
has received more attention.

More precisely, if (Mn, g) is a Riemannian manifold of dimension n � 3 with
boundary, and K : M → R, H : ∂M → R are given smooth functions, it consists of
finding positive solution for the boundary problem⎧⎪⎪⎨⎪⎪⎩

−4(n− 1)
n− 2

Δgu+ kgu = Ku
n+2
n−2 in M,

2
n− 2

∂νu+ hgu = Hu
n

n−2 on ∂M.

(1.4)

Here kg and hg denote the scalar and boundary mean curvatures of M with respect
to g. If u > 0 solves (1.4), then the metric g̃ = u

4
n−2 g satisfies kg̃ = K and hg̃ = H.

In the literature, we can find many partial results for this equation. The case of
prescribing a scalar flat metric with constant boundary mean curvature is known
as the Escobar problem, in strong analogy with the Yamabe problem. Its study
was initiated by Escobar in [25, 26, 28], with later contributions in [2, 42–44].
Different settings with constant curvatures are considered in [11, 16, 27, 32, 33].
Some results are available for the case of non-constant functions when one of them
is equal to zero. Existence results for the scalar flat problem are given in [1, 12,
24, 46], while the works [7, 8, 37] concern the case with minimal boundaries.

On the other hand, the problem with non-constant functions K and H has
received comparatively little study. In this regard, we highlight [3], which contains
perturbative results about nearly constant positive curvature functions on the unit
ball of R

n.
The case of non-constant K > 0 and H of arbitrary sign was also considered

in [22] in the half sphere of R
3, and a blow-up analysis was carried out. As for

negative K, in [15] the authors study equation (1.4) with K < 0 and H < 0 by
means of a geometric flow, in the spirit of [10], but solutions are obtained up to
Lagrange multipliers. Finally, in the recent work [19], the case with non-constant
functions K < 0 and H of arbitrary sign is treated on manifolds of non-positive
Yamabe invariant. Similarly to the two-dimensional case, it is shown that the nature
of the problem changes greatly depending on whether the function Dn : ∂M → R

given by

Dn =
√
n(n− 1)

H√−K (1.5)

is less than one over the entire boundary or not. When Dn < 1 the energy func-
tional becomes coercive and a global minimizer can be found. However, if Dn � 1
somewhere on ∂M , a min–max argument and a careful blow-up analysis are needed
to recover the existence of solutions, although only in dimension three.

In this paper, we will focus on the following perturbative version of (1.2) and
(1.4): {

−Δu = −2(1 + εK(x))eu in B
2,

∂νu+ 2 = 2D2(1 + εH(x))e
u
2 on S

1,
(P 2
ε )

https://doi.org/10.1017/prm.2023.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.111


4 L. Battaglia, S. Cruz-Blázquez and A. Pistoia

and if n � 3 ⎧⎪⎪⎨⎪⎪⎩
−4(n− 1)

n− 2
Δu = −(1 + εK)u

n+2
n−2 in B

n,

2
n− 2

∂νu+ u =
Dn√

n(n− 1)
(1 + εH)u

n
n−2 on S

n−1,
(Pnε )

where Dn > 1 is defined in (1.3) and (1.5), K : B
n → R, H : S

n−1 → R are smooth
with bounded derivatives and the parameter ε ∈ R small.

Our main result for problem (P 2
ε ) reads as follows:

Theorem 1.1. Assume D2 �= 2√
3
, let ψ : S

1 → R be defined by

ψ(ξ) :=
2π√

D2
2 − 1

((
D2 −

√
D2

2 − 1
)
K(ξ) − 2D2H(ξ)

)
and Φ1 : S

1 → R be defined by

Φ1(ξ) :=
(

D2 −
√

D2
2 − 1

)
∂νK(ξ) − 2D2(−Δ)

1
2H(ξ)

and Φm be defined as in definition 2.1. If one of the following holds true:

(1) For any global maximum ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) =
0 > Φm(ξ) for any j < m;

(2) For any global minimum ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) =
0 < Φm(ξ) for any j < m;

(3) For any critical point ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) = 0 �=
Φm(ξ) for any j < m, ψ is Morse and∑

{ξ:∇ψ(ξ)=0,Φm(ξ)<0}
(−1)indξ ∇ψ �= 1;

then, problem (P 2
ε ) has a solution for |ε| small enough.

Our main result for problem (Pnε ) reads as follows:

Theorem 1.2. Let ψ : S
n−1 → R be defined by

ψ(ξ) := a(Dn)K(ξ) − b(Dn)H(ξ),

with a(Dn), b(Dn) as in (2.3), Φ1 : S
n−1 → R be defined by

Φ1(ξ) := ∂νK(ξ),

and Φm : S
n−1 → R be defined as in definition 2.1. If one of the following holds

true:

(1) For any global maximum ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) =
0 > Φm(ξ) for any j < m;
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(2) For any global minimum ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) =
0 < Φm(ξ) for any j < m;

(3) For any critical point ξ of ψ there exists m = m(ξ) � 1 such that Φj(ξ) = 0 �=
Φm(ξ) for any j < m, ψ is Morse and∑

{ξ:∇ψ(ξ)=0,Φm(ξ)<0}
(−1)indξ ∇ψ �= 1;

then, problem (P 2
ε ) has a solution for |ε| small enough.

Problems (P 2
ε ) and (Pnε ) share many similarities, not only for their geometric

importance, but also from an analytic point of view.
In fact, they both have critical terms in the interior and in the bound-

ary non-linearities: exponential non-linearities in (P 2
ε ) are critical in view of

the Moser–Trudinger inequalities, whereas in (Pnε ) we have the critical Sobolev
exponent and the critical trace exponent

n+ 2
n− 2

= 2∗ − 1,
n

n− 2
= 2� − 1. (1.6)

Moreover, since we are prescribing a negative curvature in the interior and a positive
curvature in the boundary, the two non-linear terms have different signs and are
therefore in competition.

Theorem 1.1 seems to be the first result of prescribing both nearly constant
curvatures on a disk. Similar results were recently obtained in [5] in the case of zero
curvature in the interior and in [30] for the sphere. Theorem 1.2 is the counterpart of
the result obtained in [3], where the authors perturb the positive constant curvature
on the unit ball of R

n.
We also provide higher-order expansions of the reduced energy functional, which

permits to consider also some cases of degenerate critical points. This is the case
when the functionals Φm(ξ) play a role in theorems 1.1 and 1.2.

Such expansions require sharper estimates (see proposition 3.4 and appendix A)
and both derivatives of K, H and non-local terms appear. In particular, non-local
terms are present only if the order of the expansion is high enough, depending
on the dimension. At the first order, we only get the fractional Laplacian in the
two-dimensional case, which is why Φ1(ξ) is defined differently in theorems 1.1
and 1.2.

The definition of Φm for m � 2 is rather involved and it is therefore postponed
to definition 2.1.

Finally, we point out that, in theorem 1.1, Φ1 can be seen as the normal derivative
(up to a constant) of the functional ψ, which can be naturally extended from the
circle to the closed disk. More precisely, for ξ ∈ B2, we set

Ψ(ξ) :=
2π√

D2
2 − 1

(
D2 −

√
D2

2 − 1
)
K(ξ) − 2D2Ĥ(ξ) where

{
ΔĤ = 0 in B

2

Ĥ = H in S
1

;

therefore, in view of the Dirichlet-to-Neumann characterization of the fractional
Laplacian, we have Φ1(ξ) = ∂νΨ(ξ) for any ξ ∈ S

1.
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Quite interestingly, this fact has no higher-dimensional counterpart in
theorem 1.2.

The assumption D2 �= 2√
3

(i.e. αD �= 0 in proposition 4.3) allows to apply the
degree argument to the function which also depend on the extra parameter that
only appears in the 2D case (see (2) of proposition 4.3). It would be interesting to
understand whether this is a mere technical assumption or not and also whether it
has some geometrical meaning.

The plan of the paper is as follows.
In § 2, we introduce some notation and preliminaries which we will use in

the following; in § 3, we study the energy functional associated to the system
and show some of its crucial properties; in § 4, we apply the Ljapunov–Schmidt
finite dimensional reduction; in § 5, we study the existence of critical points to
the reduced energy functional; finally, in the appendix, we prove some crucial
asymptotic estimates.

2. Notation and preliminaries

We remind that B
n will denote the unit ball of R

n, for n � 2. We consider the
well-known inversion map I : R

n
+ → B

n defined by

I (x̄, xn) =

(
2x̄

|x̄|2 + (xn + 1)2
,

1 − |x̄|2 − x2
n

|x̄|2 + (xn + 1)2

)
, (x̄, xn) ∈ R

n−1 × R+. (2.1)

Straightforward computations show that I ◦ I = Id, therefore I −1 has the same
expression. For more details about this map, see for instance [28], Section 2.

We point out that, up to the sign of the last coordinate, I extends the stere-
ographic projection from ∂R

n
+ to S

n−1 and, in dimension 2, it coincides with the
Riemann map from the half-plane to the disk. In particular, I is a conformal map
and satisfies

I �gBn = 	 |dx|2 , 	(x̄, xn) =
4(

|x̄|2 + (xn + 1)2
)2 .

For convenience, we define ρ : R
n
+ → R+ by

ρ =

{
	

n−2
4 if n � 3,

log 	 if n = 2.

We point out that ρ satisfies (1.1) or (1.4) for some particular choices of the
curvatures. More precisely, in dimension n = 2{

−Δρ = 0 in R
2
+

∂νρ = 2e
ρ
2 on ∂R

2
+,

(2.2)
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while in dimensions n � 3⎧⎪⎪⎨⎪⎪⎩
−4(n− 1)

n− 2
Δρ = 0 in R

n
+,

2
n− 2

∂νρ = ρ
n

n−2 on ∂R
n
+.

For the reader’s convenience, we collect here all the constants that appear in our
computations. In the following, we agree that D = Dn.

Definition 2.1. Let n � 2 and D > 1. We define

Λn =
{

4 if n = 2
4n(n− 1) if n � 3 ,

αn =

⎧⎨⎩
2 if n = 2
(n− 2)2

8n(n− 1)
if n � 3

,

βn =

⎧⎨⎩
2 if n = 2

2
√

n

n− 1
if n � 3 ,

an,i,j = Λ
n
2
n

∫
Rn

+

|ȳ|2iyjn(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn,

bn,j = Λ
n−1

2
n βn

D

(D2 − 1)
n−2j−1

2

∫
∂Rn

+

|ȳ|2j(
|ȳ|2 + 1

)n−1 dȳ,

cn,m = Λ
n−1

2
n βnD

(
D2 − 1

)m−n+1
2

×
∫
∂Rn

+

|ȳ|m
⎛⎝ 1

(|ȳ|2 + 1)n−1 −
m−n

2∑
j=0

(−1)j
(n+ j − 2)!
j!(n− 2)!

1
|ȳ|2(n+j−1)

⎞⎠dȳ,

dn,j = Λ
n
2
n ωn−2

∫ π

0

sinj tdt

en = Λ
n−1

2
n βnDωn−2

An,i,j =
1

(j − 2i)!(2i)!
(n− 3)!!

(2i)!!(n+ 2i− 3)!!
,

Bn,j =
(n− 3)!!

(2j)!(2j)!!(n+ 2j − 3)!!
,

Cn,m,i =
(m− i− 1)!

(n− 1)!i!(m− n− 2i)!
(D2 − 1)iDm−n−2i

Dn,m =

(
n+m+1

2 − 2
)
!(

m−n+1
2

)
!(n− 2)!

(
D2 − 1

)m−n+1
2
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In,m,i(K) = Λ
n
2
n

×
∫

Bn

⎛⎝K(z)−
∑

|α|�m

1
|α|!∂ξα

K(ξ)(z− ξ)α

⎞⎠ |z+ ξ|2i (1− |z|2)m−n−2i

|z − ξ|2m dz

Jn,m(H) = Λ
n−1

2
n βnD

×
∫

Sn−1

⎛⎝H(z) −
∑

|α|�m−1

1
|α|!∂ξα

H(ξ)(z − ξ)α

⎞⎠ |z + ξ|m−n+1

|z − ξ|n+m−1
dz

In particular, set

a(Dn) := an,0,0 = Λ
n
2
n

∫
Rn

+

1(
|ȳ|2 + (yn + Dn)2 − 1

)n dȳdyn,

b(Dn) := bn,0 = Λ
n−1

2
n βn

Dn

(D2
n − 1)

n−1
2

∫
∂Rn

+

1(
|ȳ|2 + 1

)n−1 dȳ.
(2.3)

We define the functionals Φj(ξ) as follows.
For j � n− 2 we set:

Φj(ξ)

:=

⎧⎨⎩(1 + ξ)j
(
−∑ j

2
i=0 an,i,jAn,i,j∂

j−2i
ν Δi

τK(ξ) + bn,jBn,jΔjK(ξ)
)

if j even

(1 + ξ)j
∑ j−1

2
i=0 an,i,jAn,i,j∂

j−2i
ν Δi

τK(ξ) if j odd

For j = n− 1, n we set:

Φn−1(ξ) :=

{
0 if n even
(1 + ξn)n−1enBn,n−1

2
Δ

n−1
2 H(ξ) if n odd

Φn(ξ) := (1 + ξn)n−1

×
⎛⎝(−1)n

�n−1
2 �∑
i=0

an,i,n−1An,i,n−1∂
n−1−2i
ν Δi

τK(ξ) + Jn,n−1(H)

⎞⎠ .

For m � n we set:

Φ2m−n+1(ξ)

:= (1 + ξn)m

⎛⎝�m−n
2 �∑
i=0

�m
2 �∑
j=0

(−1)m−n−i−1An,j,mCn,m,id2m−n−2i−2j∂
m−2j
ν Δj

τK(ξ)

+

⎧⎨⎩
0 if n even or m odd
(−1)

m−n+1
2 enB

n,
m

2
Dn,mΔ

m
2 H(ξ) if n odd and m even

⎞⎠
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Φ2m−n+2(ξ)

:= (1 + ξn)m

⎛⎝�m−n
2 �∑
i=0

(−1)m−n−i−1Cn,m,iIn,m,i(K)

+

⎧⎪⎪⎨⎪⎪⎩
cn,mB

n,
m

2
Δ

m
2 H(ξ) if n and m even

0 if n and m odd
(−1)

m−n+1
2 Dn,mJn,m(H) otherwise

⎞⎟⎟⎠
The symbol a � b will be used to mean a � cb with c independent on the

quantities.
We denote as ∂ν the (outer) normal derivative of a function at a point on S

n−1

and as Δτ the tangential Laplacian.
For a multi-index α = (α1, . . . , αn) ∈ N

n we denote:

|α| := α1 + · · · + αn; xα := xα1
1 · · · · · xαn

n ; ∂xα
:= ∂α1

x1
. . . ∂αn

xn
.

2.1. Conformal metrics

Throughout this article, we will use the existing conforming equivalence between
R
n
+ and B

n via the inversion map (2.1), often without explicitly specifying it.
Therefore, it is important to remember the conformal properties of the conformal
Laplacian and conformal boundary operator.

If n � 3 and g̃ = ρ
4

n−2 g is a conformal metric, then the conformal Laplacian and
conformal boundary operators, defined by

Lg = −4(n− 1)
n− 2

Δg + kg, Bg =
2

n− 2
∂ν + hg,

are conformally invariant in the following sense:

Lgϕ = ρ
n+2
n−2Lg̃

(
ϕ

ρ

)
, Bgϕ = ρ

n
n−2Bg̃

(
ϕ

ρ

)
. (2.4)

If n = 2, then the Laplace–Beltrami operator and the normal derivative satisfy the
following conformal property: if g̃ = eρg is a conformal metric, then

Δeρg = e−ρΔg, ∇eρg · ηeρg = e−
ρ
2∇ · ηg.

The following result establishes the conformal invariance of a certain geometric
quantity that will be very much related to our energy functionals.

Lemma 2.2. Let (Mn, g) be a compact Riemannian manifold of dimension n � 3
and g̃ = ϕ

4
n−2 g a conformal metric with ϕ smooth and positive. If we set f̂ = fϕ−1,
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then

4(n− 1)
n− 2

∫
M

(∇g̃û · ∇g̃ v̂) dVg̃ +
∫
M

kg̃ûv̂ dVg̃ + 2(n− 1)
∫
∂M

hg̃ûv̂ dσg̃

=
4(n− 1)
n− 2

∫
M

(∇gu · ∇gv) dVg +
∫
M

kguv dVg + 2(n− 1)
∫
∂M

hguv dσg.

(2.5)

Proof. We will use the following basic identities:

dVg̃ = ϕ2∗
dVg,dσg̃ = ϕ2�

dσg,∇g̃ = ϕ− 4
n−2∇g,

where 2∗, 2� are as in (1.6) and the relation between kg̃, kg, hg̃ and hg given by
(1.4). The first term in the left-hand side of (2.5) can be decomposed using the
previous identities:∫

M

(∇g̃û · ∇g̃ v̂) dVg̃ =
∫
M

ϕ2 (∇gû · ∇g v̂) dVg

=
∫
M

(∇gu · ∇gv) dVg −
∫
M

(
v̂∇gϕ · ∇gu+ û∇gϕ · ∇gv − ûv̂ |∇gϕ|2

)
dVg.

(2.6)

On the other hand, integrating by parts on M and using (1.4):∫
M

kg̃ûv̂ dVg̃ =
∫
M

ûv̂

(
kgϕ

2 − 4(n− 1)
n− 2

(Δgϕ)ϕ
)

dVg

=
∫
M

kguv dVg − 2(n− 1)
∫
∂M

hg̃ûv̂ϕ
2�

dσg + 2(n− 1)
∫
∂M

hguv dσg

+
4(n− 1)
n− 2

∫
M

(
v̂∇gϕ · ∇gu+ û∇gϕ · ∇gv − ûv̂ |∇gϕ|2

)
dVg. (2.7)

Finally, (2.5) can be obtained combining (2.6) and (2.7). �

2.2. Solutions of the unperturbed problems

By means of the inversion map and the classification results available for R
n
+, we

can give an n-dimensional family of solutions for the problems (P 2
ε ) and (Pnε ) with

ε = 0.
First, we consider the problem in B

2:{−Δu = −2eu in B
2

∂νu+ 2 = 2De
u
2 on S

1.
(P 2

0 )

By [47], a family of solutions of the problem in the half space{
−Δu = −2eu in R

2
+

∂νu = 2De
u
2 on ∂R

2
+

(2.8)
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is given by

Ux0,λ(x, y) = 2 log
2λ

(x− x0)2 + (y + Dλ)2 − λ2
,

for λ > 0 and x0 ∈ R. Other classification results for solutions to (2.8) are given in
[29, 39].

Let us call Ûx0,λ = (Ux0,λ − ρ) ◦ I −1. Taking into account equation (2.2) and
the conformal properties of the Laplacian and normal derivative in R

2, it is clear
that {

−ΔÛ = −2eÛ in B
2

∂νÛ + 2 = 2De
Û
2 on S

1.

Therefore, a family of solutions for (P 2
0 ) is given by

Ûx0,λ(s, t) = 2 log
λ
(
x2 + (y + 1)2

)
(x− x0)2 + (y + Dλ)2 − λ2

, (2.9)

with

x = x(s, t) =
2s

s2 + (t+ 1)2
, y = y(s, t) =

1 − s2 − t2

s2 + (t+ 1)2
,

λ > 0 and x0 ∈ R.
Now, we address the unperturbed problem in B

n for n � 3:⎧⎪⎪⎨⎪⎪⎩
−4(n− 1)

n− 2
Δu = −u n+2

n−2 in B
n,

2
n− 2

∂νu+ u = D√
n(n−1)

u
n

n−2 on S
n−1.

(Pn
′

0 )

Consider R
n
+ with its usual metric, and the problem⎧⎪⎪⎨⎪⎪⎩

−4(n− 1)
n− 2

Δu = −u n+2
n−2 in R

n
+,

− 2
n− 2

∂xn
u = D√

n(n−1)
u

n
n−2 on ∂R

n
+.

(2.10)

The results in [18] imply that all solutions of (2.10) have the form

Ux0,λ(x̄, xn) =
(4n(n− 1))

n−2
4 λ

n−2
2

(|x̄− x0|2 + (xn + λD)2 − λ2)
n−2

2

,

for any x0 ∈ ∂R
n
+ and λ > 0.
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12 L. Battaglia, S. Cruz-Blázquez and A. Pistoia

Then, by (2.4), we can write (2.10) as:⎧⎪⎪⎨⎪⎪⎩
ρ

n+2
n−2

−4(n− 1)
n− 2

Δ
(
u

ρ

)
= −u n+2

n−2 in R
n
+,

ρ
n

n−2

(
2

n− 2
∂ν

(
u

ρ

)
+

(
u

ρ

))
= D√

n(n−1)
u

n
n−2 on ∂R

n
+.

If we call û =
(
u
ρ

)
◦ I −1, it is clear that⎧⎪⎪⎨⎪⎪⎩
−4(n− 1)
n− 2

Δû = −û n+2
n−2 in B

n,

2
n− 2

∂ν û+ û = D√
n(n−1)

û
n

n−2 on S
n−1,

which is exactly (Pn
′

0 ). Hence, a family of solutions of (Pn
′

0 ) is given by

Ûx0,λ(x̄, xn) = λ
n−2

2 (n(n− 1))
n−2

4

(
|z̄|2 + (zn + 1)2

|z̄ − x0|2 + (zn + λD)2 − λ2

)n−2
2

, (2.11)

with

z̄ = z̄(x̄, xn) =
2x̄

|x̄|2 + (xn + 1)2
, zn = zn(x̄, xn) =

1 − |x̄|2 − x2
n

|x̄|2 + (xn + 1)2
.

In view of formulae (2.9) and (2.11) we set:

Px0,λ(x̄, xn) =
Λnλ2

(
|z̄|2 + (zn + 1)2

)2

(
|z̄ − x0|2 + (zn + λD)2 − λ2

)2 ,

with z̄, zn as before, x0 ∈ R
n−1, λ > 0, and define

Vx0,λ =
{
Px0,λ

n−2
4 if n � 3,

logPx0,λ if n = 2.
(2.12)

3. Properties of the energy functionals

We define the functionals Jnε : H1 (Bn) → R by

J2
ε (u) =

1
2

∫
B2

|∇u|2 + 2
∫

S1
u+ 2

∫
B2

(1 + εK)eu − 4D

∫
S1

(1 + εH)e
u
2 ,

Jnε (u) =
1
2

∫
Bn

|∇u|2 +
1
2

∫
Sn−1

u2 +
(n− 2)2

8n(n− 1)

∫
Bn

(1 + εK) |u|2∗
(3.1)

− (n− 2)2

4
√
n(n− 1)3

D

∫
Sn−1

(1 + εH) |u|2�

, if n � 3. (3.2)
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Observe that we can write

Jnε (u) = Jn0 (u) + εαnγ
n(u),

with

γn(u) =

⎧⎪⎪⎨⎪⎪⎩
∫

B2
Keu − β2D

∫
S1
He

u
2 if n = 2∫

Bn

K |u|2∗ − βnD

∫
Sn−1

H |u|2�

if n � 3

with αn, βn as in definition 2.1.
Let Vx0,λ be given by (2.12). We set

Γ(x0, λ) = γn (Vx0,λ) =
∫

Bn

KPx0,λ
n
2 − βnD

∫
Sn−1

HPx0,λ

n−1
2 .

The first term of the energy is constant along our family of solutions:

Proposition 3.1. There exist constants En,D, independent on λ and x0, such that

Jn0 (Vx0,λ) = En,D, ∀n � 2.

Proof. Let us study the cases n = 2 and n � 3 separately.
When n = 2, integrating by parts and using (P 2

0 ) and (2.2), we can see that:

1
2

∫
B2

|∇Vx0,λ|2 + 2
∫

S1
Vx0,λ =

1
2

∫
R2

+

|∇ (Ux0,λ − ρ)|2 + 2
∫

R

(Ux0,λ − ρ)e
ρ
2

= −1
2

∫
R2

+

ΔUx0,λ(Ux0,λ − ρ) +
1
2

∫
R

∂νUx0,λ(Ux0,λ − ρ) + 2
∫

R

(Ux0,λ − ρ)e
ρ
2

=
1
2

∫
R2

+

|∇Ux0,λ|2 +
1
2

∫
R2

+

ΔUx0,λ ρ−
1
2

∫
R

∂νUx0,λρ+ 2
∫

R

(Ux0,λ − ρ)e
ρ
2

=
1
2

∫
R2

+

|∇U0,1|2 − 1
2

∫
R2

+

|∇ρ|2 .

Now,

2
∫

B2
eVx0,λ − 4D

∫
S1
e

Vx0,λ
2 = 2

∫
R2

+

eU0,1 − 4D

∫
R

e
U0,1

2 .

Finally,

J2
0 (Vx0,λ) =

1
2

∫
R2

+

(
|∇U0,1|2 − |∇ρ|2

)
+ 2

∫
R2

+

eU0,1 − 4D

∫
R

e
U0,1

2 . (3.3)

As for the case n � 3, from lemma 2.2 it follows

1
2

∫
Bn

|∇Vx0,λ|2 +
1
2

∫
Sn−1

Vx0,λ
2 =

1
2

∫
Rn

+

|∇Ux0,λ|2 =
1
2

∫
Rn

+

|∇U0,1|2 .
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Moreover, by a direct change of variables, we obtain∫
Bn

Vx0,λ
2∗ − βnD

∫
Sn−1

Vx0,λ
2�

=
∫

Rn
+

U0,1
2∗ − βnD

∫
∂Rn

+

U0,1
2�

.

Therefore,

Jn0 (Vx0,λ) =
1
2

∫
Rn

+

|∇U0,1|2 + αn

(∫
Rn

+

U0,1
2∗ − βnD

∫
∂Rn

+

U0,1
2�

)
. (3.4)

�

By a change of variables and using the relations in § 2, we can move to R
n
+ and

write our function Γ in a more suitable way.

Proposition 3.2. It holds

Γ(x0, λ) =
∫

Rn
+

Λ
n
2
n K̃(x̄, xn)λndx̄dxn(

|x̄− x0|2 + (xn + λD)2 − λ2
)n

−
∫
∂Rn

+

Λ
n−1

2
n βnDH̃(x̄)λn−1dx̄(

|x̄− x0|2 + λ2(D2 − 1)
)n−1

=
∫

Rn
+

Λ
n
2
n K̃(λȳ + x0, λyn)(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn

−
∫
∂Rn

+

Λ
n−1

2
n βnDH̃(λȳ + x0)(
|ȳ|2 + D2 − 1

)n−1 dȳ, (3.5)

where K̃ = K ◦ I , H̃ = H ◦ I .

We are interested in the behaviour of Γ at infinity and when λ→ 0.

Proposition 3.3. lim|x0|+λ→+∞ Γ(x0, λ) = ψ((0, −1))

Proof. First, notice that

lim
λ+|x0|→+∞

I (λx̄+ x0, λxn)

= lim
λ+|x0|→+∞

(
2(λx̄+ x0)

|λx̄+ x0|2 + (λxn + 1)2
,
1 − |λx̄+ x0|2 − (λxn)2

|λx̄+ x0|2 + (λxn + 1)2

)

=

{
(0,−1) locally uniformly on (x̄, xn) �= (0, 0),

I (x0, 0) if (x̄, xn) = (0, 0).
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With that in mind, we fix ε > 0 small enough and write

Γ(x0, λ) =
∫
|y|>ε

Λ
n
2
n K̃(λȳ + x0, λyn)(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn

−
∫
|ȳ|>ε

Λ
n−1

2
n βnDH̃(λȳ + x0, 0)(
|ȳ|2 + D2 − 1

)n−1 dȳ

+
∫
|y|�ε

Λ
n
2
n K̃(λȳ + x0, λyn)(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn

−
∫
|ȳ|�ε

Λ
n−1

2
n βnDH̃(λȳ + x0, 0)(
|ȳ|2 + D2 − 1

)n−1 dȳ.

Then, taking limits when λ+ |x0| → +∞,

Γ(x0, λ) = K(0,−1)
∫
|y|>ε

Λ
n
2
n dȳdyn(

|ȳ|2 + (yn + D)2 − 1
)n

−H(0,−1)
∫
|ȳ|�ε

Λ
n−1

2
n βnDdȳ(

|ȳ|2 + D2 − 1
)n−1 +O

(
εn−1

)
+K(I (x0, 0))O (εn) −H(I (x0, 0))O

(
εn−1

)
.

The claim follows from taking limits when ε→ 0. �

The following result describes the behaviour of Γ around λ = 0. Its proof will be
postponed to appendix A.

Proposition 3.4. Define ψ : S
n−1 → R by ψ(ξ) := a(Dn)K(ξ) − b(Dn)H(ξ), and

let us write ξ = I (x0) ∈ S
n−1. The following expansions hold, for any m ∈ N, when

λ
 1:
If n = 2,

Γ(x0, λ) = ψ(ξ) −
(

2π(1 + ξn)λ
((

D −
√

D2 − 1
)
∂νK(ξ) − 2D(−Δ)

1
2H(ξ)

)
+ λ2 log

1
λ

Φ3(ξ) + λ2Φ4(ξ) · · · + λm log
1
λ

Φ2m−1(ξ) + λmΦ2m(ξ)
)

× (1 + o(1));
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If n � 3,

Γ(x0, λ) = ψ(ξ) −
(
an,0,1(1 + ξn)λ∂νK(ξ) + λ2Φ2(ξ) + · · · + λn−2Φn−2(ξ)

+ λn−1 log
1
λ

Φn−1(ξ) + λn−1Φn(ξ) . . .

+ λm log
1
λ

Φ2m−n+1(ξ) + λmΦ2m−n+2(ξ)
)

(1 + o(1)).

Here a(Dn), b(Dn), an,0,1, Φj(ξ) are given in definition 2.1.

4. The linear theory

In this section, we develop the technicalities of the Ljapunov–Schmidt finite dimen-
sional reduction. Most of the results hereby presented are well-known in the
literature of this argument, therefore details of the proofs will be skipped.

4.1. The 2-dimensional case

It is known (see [34]) that the solutions of the linear problem{
−Δψ + 2eUx0,λψ = 0 in B

2

∂νψ − De
Ux0,λ

2 ψ = 0 on S
1

are a linear combination of

Z1
x0,λ(z) := ∂x0Ux0,λ and Z2

x0,λ(z) := ∂λUx0,λ and

given κ > 0, set

Cκ :=
{

(t, x0, λ) ∈ R × (0,∞) × R
n−1 :

1
κ

� |t| + λ � κ, |x0| � κ

}
. (4.1)

Arguing as in theorem 3.3 of [6] we can prove that

Proposition 4.1. Fix p > 1 and κ > 0. For any (x0, λ) ∈ Cκ (see (4.1)) and f ∈
Lp

(
B

2
)

and g ∈ Lp
(
S

1
)

such that∫
B2

f +
∫

S1
g =

∫
B2

fZi
x0,λ +

∫
S1

gZi
x0,λ = 0, i = 1, 2,

there exists a unique φ ∈ H1
(
B

2
)

such that

− 2
∫

B2
eUx0,λφ+ D

∫
S1
e

Ux0,λ
2 φ

= −2
∫

B2
eUx0,λφZi

x0,λ + D

∫
S1
e

Ux0,λ
2 φZi

x0,λ = 0, i = 1, 2, (4.2)

https://doi.org/10.1017/prm.2023.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.111


Prescribing nearly constant curvatures on balls 17

which solves the problem {
−Δφ+ 2eUx0,λφ = f in B

2

∂νφ− De
Ux0,λ

2 φ = g on S
1

Furthermore

‖φ‖ �
(‖f‖Lp(B2) + ‖g‖Lp(S1)

)
.

4.1.1. Rewriting the problem We look for a solution of (P 2
ε ) in the form

u = Ux0,λ + τ + φ, with λ > 0, x0 ∈ R and τ = t
√
ε, t ∈ R

where φ satisfies the orthogonality condition (4.2). We shall rewrite problem (P 2
ε )

as a system⎧⎪⎨⎪⎩
−Δφ+ 2eUx0,λφ = Ein + Nin(φ) + c0 +

∑
i=1,2

ciZi
x0,λ

in B
2

∂νφ− De
Ux0,λ

2 φ = Ebd + Nbd(φ) + c0 +
∑
i=1,2

ciZi
x0,λ

on S
1

(4.3)

where ci’s are real numbers.
The error that we are paying by using this approximating solution equals to

Ein := −εF (Ux0,λ + τ) and Ebd := εG (Ux0,λ + τ)

and the non-linear part is

Nin(φ) := − [F (Ux0,λ + τ + φ) −F (Ux0,λ + τ) −F ′ (Ux0,λ)φ]

− [(F ′ (Ux0,λ + τ) −F ′ (Ux0,λ))φ]

− εK [F (Ux0,λ + τ + φ) −F (Ux0,λ + τ)] ;

Nbd(φ) := − [G (Ux0,λ + τ + φ) − G (Ux0,λ) − G′ (Ux0,λ)φ]

− [(G′ (Ux0,λ + τ) − G′ (Ux0,λ))φ]

− εH [G (Ux0,λ + φ) − G (Ux0,λ)]). (4.4)

Here we set

F(u) := 2eu and G(u) = 2De
u
2 .

We have the following result

Proposition 4.2. Fix κ > 0. There exists εκ > 0 such that or any (x0, λ) ∈ Cκ
(see (4.1)) there exists a unique φ = φ(ε, x0, λ) ∈ H1

(
B

2
)

and ci ∈ R which solve
(4.3). Moreover, (x0, λ) → φ(ε, x0, λ) is a C1−function and ‖φ‖ � ε.

Proof. The proof is standard and relies on a contraction mapping argument com-
bined with the linear theory developed in proposition 4.1 and the estimates for
p > 1

‖Ein‖Lp(B2) � ε and ‖Ebd‖Lp(S1) � ε.

�

https://doi.org/10.1017/prm.2023.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.111


18 L. Battaglia, S. Cruz-Blázquez and A. Pistoia

4.1.2. The reduced energy Let us consider the energy functional J2
ε defined in (3.1),

whose critical points produce solutions of (P 2
ε ). We define the reduced energy

J̃2
ε (t, x0, λ) := J2

ε (Ux0,λ + t+ φ) ,

where φ is given in proposition 4.2.

Proposition 4.3. The following are true:

(1) If (x0, λ) is a critical point of J̃ε, then Ux0,λ + φ is a solution to (P 2
ε ).

(2) The following expansion holds

J̃ε(t, x0, λ) = E2,D − ε
(
αDt

2 + Γ(x0, λ)
)

+ o(ε)

C1-uniformly in compact sets of R × (0, +∞) × R.
Here E2,D is a constant independent on x0, t and λ whose expression is given
by (3.3), Γ is defined in (3.5) and

αD = π

(
D√

D2 − 1
− 2

)
.

Proof. We use the choice τ = t
√
ε and the fact that

D

∫
S1
e

Ux0,λ
2 dσ −

∫
B2
eUx0,λdx = 2π and

∫
S1
e

Ux0,λ
2 dσ = 2π.

�

4.2. The n-dimensional case

Recently, in [21], it has been proved that all the solutions to the linearized
problem ⎧⎪⎪⎨⎪⎪⎩

−4(n− 1)
n− 2

ΔZ = −n+ 2
n− 2

Ux0,λ
4

n−2Z in B
n,

2
n− 2

∂νZ + Z =
n

(n− 2)
√
n(n− 1)

DUx0,λ
2

n−2Z on S
n−1

are a linear combination of the n functions

Zix0,λ = ∂x0,i
Ux0,λ, i = 1, . . . , n− 1 and Znx0,λ = ∂λUx0,λ.

Given κ > 0 set

Cκ :=
{

(x0, λ) ∈ (0,∞) × R
n−1 :

1
κ

� λ � κ, |x0| � κ

}
. (4.5)

Arguing as in [21] we can prove that
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Proposition 4.4. Fix κ > 0. For any (x0, λ) ∈ Cκ (see (4.5)) and f ∈ L
2n

n+2 (Bn)
and g ∈ L

2(n−1)
n

(
S
n−1

)
such that∫

Bn

fZi
x0,λ +

∫
Sn−1

gZi
x0,λ = 0, i = 1, . . . , n,

there exists a unique φ ∈ H1 (Bn) such that

− n+ 2
n− 2

∫
Bn

Ux0,λ
4

n−2φZi
x0,λ

+
n

(n− 2)
√
n(n− 1)

D

∫
Sn−1

Ux0,λ
2

n−2φZi
x0,λ = 0, i = 1, . . . , n, (4.6)

which solves the problem⎧⎪⎪⎨⎪⎪⎩
−Δφ+

n+ 2
4(n− 1)

Ux0,λ
4

n−2φ = f in B
n

∂νφ+
n− 2

2
φ− n

2
√
n(n− 1)

DUx0,λ
2

n−2φ = g on S
n−1

Furthermore

‖φ‖ �
(
‖f‖

L
2n

n+2 (Bn)
+ ‖g‖

L
2(n−1)

n (Sn−1)

)
.

4.2.1. Rewriting the problem We look for a positive solution of (Pnε ) as

u = Ux0,λ + φ with λ > 0, x0 ∈ R

where φ satisfies (4.6). We rewrite problem (Pnε ) as a system⎧⎪⎪⎨⎪⎪⎩
−Δφ+

n+ 2
4(n− 1)

Ux0,λ
4

n−2φ = Ein + Nin(φ) +
n∑
i=1

ciZi
x0,λ

in Bd

∂νφ+
n− 2

2
φ− n

2
√
n(n− 1)

DUx0,λ
2

n−2φ = Ebd +Nbd(φ)+
n∑
i=1

ciZi
x0,λ

in Sph1

(4.7)
where the ci are real numbers. Moreover, the error is given by

Ein := −εF (Ux0,λ) and Ebd := εG (Ux0,λ)

and the non-linear part is

Nin(φ) := − [F (Ux0,λ + φ) −F (Ux0,λ) −F ′ (Ux0,λ)φ]

− εK [F (Ux0,λ + φ) −F (Ux0,λ)]

Nbd(φ) := − [G (Ux0,λ + φ) − G (Ux0,λ) − G′ (Ux0,λ)φ]

− εH [G (Ux0,λ + φ) − G (Ux0,λ)]) (4.8)
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Here we set

F(u) := − n− 2
4(n− 1)

(u+)
n+2
n−2 and G(u) =

n− 2
2
√
n(n− 1)

D(u+)
n

n−2 .

We have the following result:

Proposition 4.5. Fix κ > 0. There exists εκ > 0 such that or any (x0, λ) ∈ Cκ
(see (4.5)) there exists a unique φ = φ(ε, x0, λ) ∈ H1

(
B

2
)

and ci ∈ R which solve
(4.7). Moreover, (x0, λ) → φ(ε, x0, λ) is a C1−function and ‖φ‖ � ε.

Proof. The proof is standard and relies on a contraction mapping argument
combined with the linear theory developed in proposition 4.4 and the estimates

‖Ein‖
L

2n
n+2 (B2)

� ε and ‖Ebd‖
L

2(n−1)
n (S1)

� ε.

�

4.2.2. The reduced energy We consider the functional Jnε defined on (3.2). It is
easy to see that its critical points are positive solutions to equation (Pnε ). Now, we
introduce the reduced energy

J̃nε (x0, λ) := Jnε (Ux0,λ + φ) ,

where φ is given in proposition 4.5. It is quite standard to prove the following result

Proposition 4.6. The following assertions hold true

(1) If (x0, λ) is a critical point of J̃ε, then Ux0,λ + φ is a solution to (Pnε ).

(2) Moreover, we have the following expansion

J̃nε (x0, λ) = En,D − εΓ(x0, λ) + o(ε)

C1-uniformly with respect to (x0, λ) in compact sets of (0, +∞) × R
n−1.

Here En,D is a constant independent on x0 and λ, given by (3.4), and Γ is the
function defined on (3.5)

5. Existence of critical points of Γ

In this section, we are finally able to get critical points of the map (x0, λ) �→
Γ(x0, λ), hence solutions to problems (P 2

ε ), (Pnε ).
We start with the following abstract result about critical points of maps defined

on balls in dependence of the boundary behaviour.

Proposition 5.1. Let f : B
n → R be a C1 map satisfying, as ξ goes to S

n−1,

f(ξ) = f0

(
ξ

|ξ|
)

+ g ξ
|ξ|

(1 − |ξ|)f1
(
ξ

|ξ|
)

+ o
(
g ξ

|ξ|
(1 − |ξ|)

)
,

for some fi : S
n−1 → R with f0 of class C1 and some increasing g ξ

|ξ|
: (0, 1) →

(0, +∞) such that g ξ
|ξ|

(t) →
t→0

0.
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If one of the following holds true:

(1) f1(ξ) > 0 at any global maximum ξ of f0;

(2) f1(ξ) < 0 at any global minimum ξ of f0;

(3) f1(ξ) �= 0 at any critical point ξ of f0, f0 is Morse and∑
{ξ:∇f0(ξ)=0, f1(ξ)>0}

(−1)indξ ∇f0 �= 1;

then, f has at least a stable critical point.

Theorems 1.1 and 1.2 will follow without much difficulty from this proposition
and proposition 3.4.

Proof of theorems 1.1 and 1.2. We only consider the case of theorem 1.1, since the
same arguments also work for theorem 1.2.

Thanks to proposition 4.3, we get a solutions to the problem (P 2
ε ) when-

ever D√
D2−1

− 2 �= 0, that is D �= 2√
3
, and (x0, λ) is a stable critical point of Γ.

After composing with I , this is equivalent to getting a critical point of the map
f(ξ) = Γ

(
I −1(ξ)

)
, which is well-defined and smooth in the whole Bn thanks to

proposition 3.3.
In view of proposition 3.4, f satisfies the assumptions of proposition 5.1 with

f0 = ψ, gξ(t) =

{
t if ∇ψ(ξ) �= 0

t�
m+1

2 � log
1−(−1)m

2
1
λ

if ∇ψ(ξ) = 0
,

f1 =
{−2πΦ1 if ∇ψ(ξ) �= 0
−Φm if ∇ψ(ξ) = 0 ,

with m = m(ξ) as in theorem 1.1 (if m(ξ) is not well-defined, as for minima of ψ
in case (1) or maxima of ψ in case (2), one can just set gξ(t) = t, f1 = −2πΦ1).

Here, we used that λ = 1−|ξ|
1+ξn

+ o(1 − |ξ|) and that

a2,0,0 = 4
∫

R2
+

1
(ȳ2 + (y2 + D)2 − 1)2

dȳdy2 =
2π√

D2 − 1

(
D −

√
D2 − 1

)
b2,0 = 4

D√
D2 − 1

∫
∂R2

+

1
ȳ2 + 1

dȳ =
4πD√
D2 − 1

hence the two definitions of ψ given in theorem 1.1 and proposition 3.4 actually
coincide.

Since −2π < 0, then the assumptions on K, H in theorem 4.3 are equivalent to
the ones in proposition 5.1, hence they ensure existence of solutions. �

To prove proposition 5.1, we will compute the Leray–Schauder degree of the
map f .
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Proof of proposition 5.1. First of all, f can be extended up to S
n−1 as f0. Since g

vanishes at 0, this extension is continuous.
Assume (1) holds and take an absolute maximum point ξ0 for f on Bn. To get a

critical point for f on B
n we suffice to show that ξ0 �∈ S

n−1.
If ξ0 ∈ S

n−1, we would have f1(ξ0) > 0, therefore, for 0 < t
 1 we would have

f((1 − t)ξ0) = f0(ξ0) + gξ0(t)f1(ξ0) + o(gξ0(t)) > f0(ξ0),

contradicting the fact that ξ0 is a maximum point.
If (2) holds, then the same argument shows that the minimum of f on Bn lies in

the interior of B
n, therefore it is a critical point of f .

Assume now that (3) holds. We consider the double of Bn, namely the manifold
obtained by gluing two copies of B

n along the boundary: Bn×{0, 1}
∼ , where (ξ, 0) ∼

(ξ, 1) for ξ ∈ S
n−1. This manifold is clearly diffeomorphic to S

n, hence we will
identify it as S

n.
f can be naturally extended to f̃ : S

n → R as f̃(ξ, i) = f(ξ) for i = 0, 1. The
extension is continuous and, after a suitable rescalement of g close to 0, of class
C1 (with vanishing normal derivative on the equator). Such a rescalement does not
affect the presence of critical points to f̃ , f and f |Sn−1 = f0, which we will now
investigate.

We use the Euler–Poincaré formula to compute the Leray–Schauder degree of f̃ ,
which is a Morse function by assumption:

1 + (−1)n = χ (Sn) =
∑

{ξ∈Sn−1:∇f̃(ξ)=0}
(−1)indξ ∇f̃ +

∑
{ξ �∈Sn−1:∇f̃(ξ)=0}

(−1)indξ ∇f̃

=
∑

{ξ∈Sn−1:∇f̃(ξ)=0}
(−1)indξ ∇f̃ + 2

∑
{ξ∈Bn:∇f(ξ)=0}

(−1)indξ ∇f .

To deal with the critical points on S
n−1, we notice that they are exactly the same

critical points of f0, but their index may change, since each can be either a minimum
or a maximum in the orthogonal direction; precisely:

f1(ξ) > 0 ⇒ indξ∇f̃ = indξ∇f0;
f1(ξ) < 0 ⇒ indξ∇f̃ = indξ∇f0 + 1

and so

∑
{ξ∈Sn−1:∇f̃(ξ)=0}

(−1)indξ ∇f̃

=
∑

{ξ:∇f0(ξ)=0, f1(ξ)>0}
(−1)indξ ∇f0 −

∑
{ξ:∇f0(ξ)=0, f1(ξ)<0}

(−1)indξ ∇f0 .
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Therefore, applying again the Euler–Poincaré formula, this time to f0 on S
n−1, we

get:

1 − (−1)n = χ
(
S
n−1

)
=

∑
{ξ∈Sn−1:∇f0(ξ)=0}

(−1)indξ ∇f0

=
∑

{ξ:∇f0(ξ)=0, f1(ξ)>0}
(−1)indξ ∇f0 +

∑
{ξ:∇f0(ξ)=0, f1(ξ)<0}

(−1)indξ ∇f0 .

By summing the previous equalities we get:∑
{ξ∈Bn:∇f(ξ)=0}

(−1)indξ ∇f = 1 −
∑

{ξ∈Sn−1:∇f0(ξ)=0, f1(ξ)>0}
(−1)indξ ∇f0 .

The latter quantity is non-zero by assumptions, therefore the set of critical points
of f on B

n, on which we are taking the first sum, cannot be empty. �

Acknowledgements
S. C. acknowledges financial support from the Spanish Ministry of Universities
and Next Generation EU funds, through a Margarita Salas grant from the Uni-
versity of Granada, by the FEDER-MINECO Grant PID2021-122122NB-I00 and
by J. Andalucia (FQM-116). This work was carried out during his long visit to
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Appendix A. Proof of proposition 3.4

By introducing a rotation in B
n and moving to R

n
+ via I we can give an expression

for Γ which is more convenient for our computation.

Lemma A.1. Let A : B
n → B

n be the rotation corresponding, via the I , to the
translation of T : x→ x+ x0 on the half-place, namely A = I ◦ T ◦ I −1. There
holds:

Γ(x0, λ) = Λ
n
2
n

∫
Rn

+

K̃A(λy)(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn

− Λ
n−1

2
n βnD

∫
∂Rn

+

H̃A(λȳ)(
|ȳ|2 + D2 − 1

)n−1 dȳ,

where K̃A = K ◦A ◦ I , H̃A = H ◦A ◦ I .
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Proof. By doing a change of variables, we observe that

Γ(x0, λ) =
∫

Bn

KA(z)Px0,λ(Az)
n
2 − βnD

∫
Sn−1

HA(z)Px0,λ(Az)
n−1

2

=
∫

Bn

KA(z)P0,λ(z)
n
2 − βnD

∫
Sn−1

HA(z)P0,λ(z)
n−1

2 .

Here we are using that A is a rotation and its very definition, and we setKA=K ◦A,
HA = H ◦A. Finally, changing variables twice and using the definitions in § 2:

Γ(x0, λ) = Λ
n
2
n

∫
Rn

+

K̃A(x)λn(
|x̄|2 + (xn + λD)2 − λ2

)n dx̄dxn

+ Λ
n−1

2
n βnD

∫
∂Rn

+

H̃A(x̄)λn−1(
|x̄|2 + λ2 (D2 − 1)

)n−1 dx̄

= Λ
n
2
n

∫
Rn

+

K̃A(λy)(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn

+ Λ
n−1

2
n βnD

∫
∂Rn

+

H̃A(λȳ)(
|ȳ|2 + D2 − 1

)n−1 dȳ �

Proof of proposition 3.4. We start by estimating the boundary term, where some
cancellations occur due to symmetry. We expand H̃A(λy) in λ up to order n− 2:∫

∂Rn
+

H̃A(λȳ)(
|ȳ|2 + D2 − 1

)n−1 dȳ

= H̃A(0)
∫
∂Rn

+

dȳ(
|ȳ|2 + D2 − 1

)n−1

+
∑

1�|α|�n−2

λ|α|

|α|! ∂x̄α
H̃A(0)

∫
∂Rn

+

ȳα(
|ȳ|2 + D2 − 1

)n−1 dȳ

+
∫
∂Rn

+

H̃A(λȳ) −∑
|α|�n−2

λ|α|
|α|! ∂x̄α

H̃A(0)ȳα(
|ȳ|2 + D2 − 1

)n−1 dȳ

︸ ︷︷ ︸
=:I

= H(ξ)
∫
∂Rn

+

dȳ(
|ȳ|2 + D2 − 1

)n−1

+ λ2 1
4(n− 1)

ΔH̃A(0)
∫
∂Rn

+

|ȳ|2(
|ȳ|2 + D2 − 1

)n−1 dȳ + . . .
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+ λ2�n−2
2 � (n− 3)!!(

2�n−2
2 �)! (2�n−2

2 �)!! (n− 3 + 2�n−2
2 �)!!Δ�n−2

2 �H̃A(0)

×
∫
∂Rn

+

|ȳ|2�n−2
2 �(

|ȳ|2 + D2 − 1
)n−1 dȳ + I

=
H(ξ)

(D2 − 1)
n−1

2

∫
∂Rn

+

dȳ(
|ȳ|2 + 1

)n−1

+ λ2 1

(D2 − 1)
n−3

2

1
4(n− 1)

ΔH̃A(0)
∫
∂Rn

+

|ȳ|2(
|ȳ|2 + 1

)n−1 dȳ + . . .

+ λ2�n−2
2 � 1

(D2 − 1)
n−2� n−2

2 �
2 − 1

(n− 3)!!(
2�n−2

2 �)! (2�n−2
2 �)!! (n− 3 + 2�n−2

2 �)!!
× Δ�n−2

2 �H̃A(0)
∫
∂Rn

+

|ȳ|2�n−2
2 �(

|ȳ|2 + 1
)n−1 dȳ

+ I,

where we used the formula

Δj |y|2j =
(2j)!!(n− 3 + 2j)!!

(n− 3)!!
(A.1)

and the vanishing, due to symmetry, of integrals of homogeneous polynomials of
odd degree or of degree 2j which are j-harmonic.

Moreover, in view of the conformal properties of the Laplacian, one has

ΔjH̃A(0) = (1 + ξn)2jΔjH(ξ), (A.2)

hence the jth term in the expansion equals

λ2j 1

(D2 − 1)
n−2j−1

2

(n− 3)!!
(2j)!(2j)!!(n+ 2j− 3)!!

(1+ ξn)2jΔjH(ξ)
∫
∂Rn

+

|ȳ|2j(
|ȳ|2 + 1

)n−1 dȳ.

In the jth order expansion, the remainder is actually o
(
λj

)
because we get

∫
|ȳ|� 1

λ

H̃A(λȳ) −∑
|α|�j

λ|α|
|α|! ∂x̄α

H̃A(0)ȳα(
|ȳ|2 + D2 − 1

)n−1 dȳ

+
∫
|ȳ|> 1

λ

H̃A(λȳ) −∑
|α|�j

λ|α|
|α|! ∂x̄α

H̃A(0)ȳα(
|ȳ|2 + D2 − 1

)n−1 dȳ
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=
∫
|ȳ|� 1

λ

O
(|λȳ|j+1

)(
|ȳ|2 + D2 − 1

)n−1 dȳ +
∫
|ȳ|> 1

λ

O
(|λȳ|j)(

|ȳ|2 + D2 − 1
)n−1 dȳ

= O

(
λj+1 log

1
λ

)
+O

(
λn−1

)
.

In order to deal with higher order terms, we need another argument, since this
would get non-converging integrals.

We split the cases n even and n odd.
If n is even, the main order term in the denominator of I is of odd order, hence

its integral vanishes. Therefore,

I = λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−2

1
|α|!∂x̄α

H̃A(0)x̄α(
|x̄|2 + λ2 (D2 − 1)

)n−1 dx̄

= λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−2

1
|α|!∂x̄α

H̃A(0)x̄α

− 1
(n−1)!

∑
|α|=n−1 ∂x̄αH̃A(0)x̄αχ|x|�1(

|x̄|2 + λ2 (D2 − 1)
)n−1 dx̄

= λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄αχ|x|�1

|x̄|2(n−1)
dx̄

+
∫
∂Rn

+

⎛⎝H̃A(x̄) −
∑

|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄α

⎞⎠

×

⎛⎜⎝ λn−1(
|x̄|2 + λ2 (D2 − 1)

)n−1 − λn−1

|x̄|2(n−1)

⎞⎟⎠dx̄

+O

⎛⎝n−2
2∑
j=0

ΔjH̃A(0)λn−1

⎞⎠

= λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄αχ|x|�1

|x̄|2(n−1)
dx̄

+
λn

n!

∑
|α|=n

∂x̄αH̃A(0)
∫
∂Rn

+

ȳα

⎛⎜⎝ 1(
|ȳ|2 + D2 − 1

)n−1 − 1
|ȳ|2(n−1)

⎞⎟⎠
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+

∫
∂Rn

+

⎛⎝H̃A(λȳ) −
∑
|α|�n

λ|α|

|α|! ∂x̄α
H̃A(0)ȳα

⎞⎠

×

⎛⎜⎝ 1(
|ȳ|2 + D2 − 1

)n−1 − 1
|ȳ|2(n−1)

⎞⎟⎠dȳ

︸ ︷︷ ︸
=:I′

+ o

⎛⎝n−2
2∑
j=0

ΔjH̃A(0)λ2j

⎞⎠

= λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄αχ|x|�1

|x̄|2(n−1)
dx̄

+ λn
(
D2 − 1

) 1
2 (n− 3)!!
n!n!!(2n− 3)!!

(Δ)
n
2 H̃A(0)

×
∫
∂Rn

+

|ȳ|n
(

1
(|ȳ|2 + 1)n−1 − 1

|ȳ|2(n−1)

)
dȳ

+ I ′ + o

⎛⎝n−2
2∑
j=0

ΔjH̃A(0)λ2j

⎞⎠ ,

where we used again (A.1); one easily verifies that, due to the behaviours at 0 at
infinity, all the integrals are converging, hence everything is well defined.

After changing variables, the main terms are now

λn−1(1 + ξn)n−1

∫
Sn−1

H(z) −∑
|α|�n−1

1
|α|!∂ξα

H(ξ)(z − ξ)α

|z − ξ|2(n−1)
dz

+ λn
(
D2 − 1

) 1
2 (n− 3)!!
n!n!!(2n− 3)!!

(1 + ξn)n(Δ)
n
2H(ξ)

×
∫
∂Rn

+

|ȳ|n
(

1
(|ȳ|2 + 1)n−1 − 1

|ȳ|2(n−1)

)
dȳ

+ I ′ + o

⎛⎝n−2
2∑
j=0

ΔjH(ξ)λ2j

⎞⎠ ,

where we used the fact that 1
|x̄|2 = |z+ξ|2

|z−ξ|2 and again (A.2). The small o term contains
some new quantities arising when the terms of order λn−1 are transformed into each
other.
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The smallness of the remainder can be shown similarly as before, here and in the
following.

Due to the asymptotic behaviour of both factors, I ′ can be dealt with similarly
as I and one can iterate the argument. In particular, using the series expansion

1
(|ȳ|2 + D2 − 1)n−1 =

∞∑
j=0

(−1)j
(n+ j − 2)!
j!(n− 2)!

(
D2 − 1

)j
|ȳ|2(n+j−1)

,

we get, for any even m > n, the following mth order term:

λm−1(−1)
m−n

2 (1 + ξn)m−1

(
n+m

2 − 2
)
!(

m−n
2

)
!(n− 2)!

(
D2 − 1

)m−n
2

×
∫

Sn−1

⎛⎝H(z) −
∑

|α|�m−1

1
|α|!∂ξα

H(ξ)(z − ξ)α

⎞⎠ |z + ξ|m−n

|z − ξ|n+m−2
dz

+ λm
(
D2 − 1

)m−n+1
2 (n− 3)!!

m!m!!(n+m− 3)!!
(1 + ξn)m(Δ)

m
2 H(ξ)

×
∫
∂Rn

+

|ȳ|m
⎛⎝ 1

(|ȳ|2 + 1)n−1 −
m−n

2∑
j=0

(−1)j
(n+ j − 2)!
j!(n− 2)!

1
|ȳ|2(n+j−1)

⎞⎠dȳ

+
∫
∂Rn

+

⎛⎝H̃A(λȳ) −
∑

|α|�m

λ|α|

|α|! ∂x̄α
H̃A(0)ȳα

⎞⎠

×

⎛⎜⎝ 1(
|ȳ|2 + D2 − 1

)n−1 −
m−n

2∑
j=0

(−1)j
(n+ j − 2)!
j!(n− 2)!

(
D2 − 1

)j
|ȳ|2(n+j−1)

⎞⎟⎠dȳ

+ o

⎛⎝m−2
2∑
j=0

ΔjH(ξ)λ2j

⎞⎠ .

In particular, we point out that if n = 2 this is the main order term in the boundary
estimates, and it equals

− λπ(1 + ξn)(−Δ)
1
2H(ξ). (A.3)

Let us now consider the case n odd. Here, the first term does not vanish and it
gives rise to a logarithmic term. In fact,

I = λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−2

1
|α|!∂x̄α

H̃A(0)x̄α(
|x̄|2 + λ2 (D2 − 1)

)n−1 dx̄
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=
λn−1

(n− 1)!

∑
|α|=n−1

∂x̄αH̃A(0)
∫
|x̄|�1

x̄α(
|x̄|2 + λ2 (D2 − 1)

)n−1 dx̄

+ λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−2

1
|α|!∂x̄α

H̃A(0)x̄α

− 1
(n−1)!

∑
|α|=n−1 ∂x̄αH̃A(0)x̄αχ|x|�1(

|x̄|2 + λ2 (D2 − 1)
)n−1 dx̄

= λn−1

(
log

1
λ

+O(1)
)

(n− 3)!!
(n− 1)!(n− 1)!!(2n− 4)!!

Δ
n−1

2 H̃A(0)ωn−2

+ λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄αχ|x|�1(
|x̄|2 + λ2 (D2 − 1)

)n−1 dx̄

+O

⎛⎝λn−1

n−3
2∑
j=0

ΔjH̃A(0)

⎞⎠
= λn−1 log

1
λ

(n− 3)!!
(n− 1)!(n− 1)!!(2n− 4)!!

Δ
n−1

2 H̃A(0)ωn−2(1 + o(1))

+ λn−1

∫
∂Rn

+

H̃A(x̄) −∑
|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄αχ|x|�1

|x̄|2(n−1)
dx̄

−
∫
∂Rn

+

⎛⎝H̃A(x̄) −
∑

|α|�n−1

1
|α|!∂x̄α

H̃A(0)x̄α

⎞⎠

×

⎛⎜⎝ λn−1

|x̄|2(n−1)
− λn−1(

|x̄|2 + λ2 (D2 − 1)
)n−1

⎞⎟⎠dx̄

+ o

⎛⎝n−3
2∑
j=0

ΔjH̃A(0)λ2j

⎞⎠
= λn−1 log

1
λ

(n− 3)!!
(n− 1)!(n− 1)!!(2n− 4)!!

(1 + ξn)n−1Δ
n−1

2 H(ξ)ωn−2(1 + o(1))

+ λn−1(1 + ξn)n−1

∫
Sn−1

H(z) −∑
|α|�n−1

1
|α|!∂ξα

H(ξ)(z − ξ)α

|z − ξ|2(n−1)
dz

−
∫
∂Rn

+

⎛⎝H̃A(λȳ) −
∑
|α|�n

λ|α|

|α|! ∂x̄α
H̃A(0)ȳα

⎞⎠
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×

⎛⎜⎝ 1
|ȳ|2(n−1)

− 1(
|ȳ|2 + D2 − 1

)n−1

⎞⎟⎠dȳ

+ o

⎛⎝n−3
2∑
j=0

ΔjHξ(0)λ2j

⎞⎠ ;

iterating, for any odd m > n we get

λm−1 log
1
λ

(−1)
m−n

2
(n− 3)!!

(m− 1)!(m− 1)!!(n+m− 4)!!

(
n+m

2 − 2
)
!(

m−n
2

)
!(n− 2)!

(
D2 − 1

)m−n
2

× (1 + ξn)m−1Δ
m−1

2 H(ξ)ωn−2(1 + o(1))

+ λm−1(−1)
m−n

2 (1 + ξn)m−1

(
n+m

2 − 2
)
!(

m−n
2

)
!(n− 2)!

(
D2 − 1

)m−n
2

×
∫

Sn−1

⎛⎝H(z) −
∑

|α|�m−1

1
|α|!∂ξα

H(ξ)(z − ξ)α

⎞⎠ |z + ξ|m−n

|z − ξ|n+m−2
dz

+
∫
∂Rn

+

⎛⎝H̃A(λȳ) −
∑

|α|�m

λ|α|

|α|! ∂x̄α
H̃A(0)ȳα

⎞⎠

×

⎛⎜⎝ 1(
|ȳ|2 + D2 − 1

)n−1 −
m−n

2∑
j=0

(−1)j
(n+ j − 2)!
j!(n− 2)!

(
D2 − 1

)j
|ȳ|2(n+j−1)

⎞⎟⎠dȳ

+ o

⎛⎝m−2
2∑
j=0

ΔjH(ξ)λ2j

⎞⎠ .

The argument to estimate the interior terms is similar. We expand K̃(λy) up to
order n− 1, which is the highest power that can be integrated against P

n
2
x0,λ

.

∫
Rn

+

K̃A(λy)(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn

= K̃A(0)
∫

Rn
+

dȳdyn(
|ȳ|2 + (yn + D)2 − 1

)n
+

∑
1�|α|�n−1

λ|α|

|α|! ∂xα
K̃A(0)

∫
∂Rn

+

yα(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn
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+
∫

Rn
+

K̃A(λy) −∑
|α|�n−1

λn

|α|∂xα
K̃A(0)yα(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn

︸ ︷︷ ︸
=:I′′

= K(ξ)
∫

Rn
+

dȳdyn(
|ȳ|2 + (yn + D)2 − 1

)n
+ λ∂xn

K̃A(ξ)
∫

Rn
+

yn(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn

+
n−1∑
j=2

λj
� j

2 �∑
i=0

1
(j − 2i)!(2i)!

(n− 3)!!
(2i)!!(n+ 2i− 3)!!

∂j−2i
xn

Δi
x̄K̃A(0)

×
∫

Rn
+

|ȳ|2iyj−2i
n(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn + I ′′

= K(ξ)
∫

Rn
+

dȳdyn(
|ȳ|2 + (yn + D)2 − 1

)n
− λ(1 + ξn)∂νK(ξ)

∫
Rn

+

yn(
|ȳ|2 + (yn + D)2 − 1

)n dȳdyn

+
n−1∑
j=2

λj
� j

2 �∑
i=0

1
(j − 2i)!(2i)!

(n− 3)!!
(2i)!!(n+ 2i− 3)!!

(−1)j(1 + ξn)j∂j−2i
ν Δi

τK(ξ)

×
∫

Rn
+

|ȳ|2iyj−2i
n(

|ȳ|2 + (yn + D)2 − 1
)n dȳdyn

+ I ′′,

where we wrote the derivation in x̄ and xn as∑
|α|=j

∂xα
=

j∑
i=0

j!
(j − i)!i!

∑
|β|=i

∂j−ixn
∂x̄β

and used again cancellation by symmetry and (A.1). In the last step, we used (A.2)
(in x̄) and that

∂jxn
= (−1)j(1 + ξn)j∂ν .

In the case n = 2, since
∫

R2
+

y2
(ȳ2+(yn+D)2−1)n dȳdy2 = π

2

(√
D2 − 1 − D

)
, putting

together with (A.3) we get the first-order expansion

Γ(x0, λ) = ψ(ξ) − 2π(1 + ξn)λ
((

D −
√

D2 − 1
)
∂νK(ξ) − 2D(−Δ)

1
2H(ξ)

)
+ o(λ),
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whereas when n � 3 the first-order expansion contains only the interior term:

Γ(x0, λ) = ψ(ξ) − an,0,1(1 + ξn)λ∂νK(ξ).

As for I ′′, we get local terms involving derivatives of K̃A and non-local terms
similarly as before:

I ′′ = λn
∫

Rn
+

K̃A(x) −∑
|α|�n−1

1
|α|!∂xα

K̃A(0)xα(
|x̄|2 + (xn + λD)2 − λ2

)n dx̄dxn

=
λn

n!

∑
|α|=n

∂xα
K̃A(0)

∫
|x|�1

xα(
|x̄|2 + (xn + λD)2 − λ2

)n dx̄dxn

+ λn
∫

Rn
+

K̃A(x) −∑
|α|�n−1

1
|α|!∂xα

K̃A(0)xα

− 1
n!

∑
|α|=n ∂xα

K̃A(0)xαχ|x|�1(
|x̄|2 + (xn + λD)2 − λ2

)n dx̄dxn

= λn
(

log
1
λ

+O(1)
)

×
�n

2 �∑
i=0

(n− 3)!!
(n− 2i)!(2i)!(2i)!!(n+ 2i− 3)!!

∂n−2i
xn

Δi
x̄K̃A(0)ωn−2

∫ π

0

sinn−2i tdt

+ λn
∫

Rn
+

K̃A(x) −∑
|α|�n

1
|α|!∂xα

K̃A(0)xαχ|x|�1(
|x̄|2 + (xn + λD)2 − λ2

)n dx̄dxn

+O

⎛⎝λn n−1∑
j=0

� j
2 �∑
i=0

∂j−2i
xn

Δi
x̄K̃A(0)

⎞⎠
= λn log

1
λ

�n
2 �∑
i=0

(n− 3)!!
(n− 2i)!(2i)!(2i)!!(n+ 2i− 3)!!

∂n−2i
xn

Δi
x̄K̃A(0)ωn−2

×
∫ π

0

sinn−2i tdt(1 + o(1))

+ λn
∫

Rn
+

K̃A(x) −∑
|α|�n

1
|α|!∂xα

K̃A(0)xαχ|x|�1

|x̄|2n dx̄dxn

+

∫
Rn

+

⎛⎝K̃A(λy) −
∑
|α|�n

λ|α|

|α|! ∂xα
K̃A(0)yα

⎞⎠
×

⎛⎝ 1(
|ȳ|2 + (yn + D)2 − 1

)n − 1
|y|2n

⎞⎠dȳdyn

︸ ︷︷ ︸
=:I′′′
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+ o

⎛⎝n−1∑
j=0

λj
� j

2 �∑
i=0

∂j−2i
xn

Δi
x̄K̃A(0)

⎞⎠
= λn log

1
λ

×
�n

2 �∑
i=0

(n− 3)!!
(n− 2i)!(2i)!(2i)!!(n+ 2i− 3)!!

(−1)n(1 + ξn)n∂n−2i
ν Δi

τK(ξ)ωn−2

×
∫ π

0

sinn−2i tdt(1 + o(1))

+ λn(1 + ξn)n
∫

Bn

K(z) −∑
|α|�n

1
|α|!∂ξα

K(ξ)(z − ξ)α

|z − ξ|2n dz

+ I ′′ + o

⎛⎝n−1∑
j=0

λj
� j

2 �∑
i=0

∂j−2i
ν Δτx

iK(ξ)

⎞⎠ .

In order to iterate and find the next order terms, we again need a series expansion:
we get

1(
|ȳ|2 + (yn + D)2 − 1

)n
=

∞∑
j=0

1
|y|2(n+j)

� j
2 �∑
i=0

(−1)j−i
(n+ j − i− 1)!

(n− 1)!i!(j − 2i)!
(
D2 − 1

)i
(2D)j−2i |y|2iyj−2i

n ,

which in turn comes from

1
at2 + bt+ 1

=
∞∑
j=0

tj
� j

2 �∑
i=0

(−1)j−i
(n+ j − i− 1)!

(n− 1)!i!(j − 2i)!
aibj−2i.

Therefore, for m > n we get:

λm log
1
λ

�m−n
2 �∑
i=0

(−1)m−n−i (m− i− 1)!
(n− 1)!i!(m− n− 2i)!

(
D2 − 1

)i
(2D)m−n−2i

×
�m

2 �∑
j=0

(n− 3)!!
(m− 2j)!(2j)!(2j)!!(n+ 2j − 3)!!

(−1)m(1 + ξn)m∂m−2j
ν Δj

τK(ξ)ωn−2

×
∫ π

0

sin2m−n−2i−2j tdt(1 + o(1))

+ λm(1 + ξn)m
�m−n

2 �∑
i=0

(−1)m−n−i (m− i− 1)!
(n− 1)!i!(m− n− 2i)!

(
D2 − 1

)i
(2D)m−n−2i
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×
∫

Bn

⎛⎝K(z) −
∑

|α|�m

1
|α|!∂ξα

K(ξ)(z − ξ)α

⎞⎠ |z + ξ|2i (1 − |z|2)m−n−2i

|z − ξ|2m dz

+
∫

Rn
+

⎛⎝K̃A(λy) −
∑

|α|�m

λ|α|

|α|! ∂xα
K̃A(0)yα

⎞⎠⎛⎝ 1(
|ȳ|2 + (yn + D)2 − 1

)n
−
m−n∑
j=0

1
|y|2(n+j)

� j
2 �∑
i=0

(−1)j−i

× (n+ j − i− 1)!
(n− 1)!i!(j − 2i)!

(
D2 − 1

)i
(2D)j−2i |y|2iyj−2i

n

⎞⎠dȳdyn

+ o

⎛⎝m−1∑
j=0

λj
� j

2 �∑
i=0

∂j−2i
ν ΔτK(ξ)

⎞⎠ .

The proof is now complete, since all the quantities are the same as in definition 2.1.
�
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and geodesic curvatures. Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), 1289–1328.

42 F. C. Marques. Conformal deformations to scalar-flat metrics with constant mean curvature
on the boundary. Comm. Anal. Geom. 15 (2007), 381–405.

43 F. C. Marques. Existence results for the Yamabe problem on manifolds with boundary.
Indiana Univ. Math. J. (), –.

44 M. Mayer and C. B. Ndiaye. Barycenter technique and the Riemann mapping problem of
Cherrier-Escobar. J. Differ. Geom. 107 (2017), 519–560.

45 D. Ruiz.Conformal metrics of the disk with prescribed Gaussian and geodesic curvatures,
https://arxiv.org/abs/2108.12815.

46 X. Xu and H. Zhang. Conformal metrics on the unit ball with prescribed mean curvature.
Math. Ann. 365 (2016), 497–557.

47 L. Zhang. Classification of conformal metrics on R2
+ with constant Gauss curvature and

geodesic curvature on the boundary under various integral finiteness assumptions. Calc.
Var. Partial Differ. Equ. 16 (2003), 405–430.

https://doi.org/10.1017/prm.2023.111 Published online by Cambridge University Press

https://arxiv.org/abs/2108.12815
https://doi.org/10.1017/prm.2023.111

	1 Introduction
	2 Notation and preliminaries
	2.1 Conformal metrics
	2.2 Solutions of the unperturbed problems

	3 Properties of the energy functionals
	4 The linear theory
	4.1 The 2-dimensional case
	4.1.1 Rewriting the problem
	4.1.2 The reduced energy

	4.2 The n-dimensional case
	4.2.1 Rewriting the problem
	4.2.2 The reduced energy


	5 Existence of critical points of 
	A Appendix A. Proof of proposition [st11]3.4
	References

