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The super-temporal-resolution (STR) reconstruction of turbulent flows is an important data
augmentation application for increasing the data reach in measurement techniques and
understanding turbulence dynamics. This paper proposes a data assimilation (DA) strategy
based on weak-constraint four-dimensional variation to conduct an STR reconstruction in a
turbulent jet beyond the Nyquist limit from given low-sampling-rate observations. Highly
resolved large-eddy simulation (LES) data are used to produce synthetic measurements,
which are used as observations and for validation. A segregated assimilation procedure
is realised to assimilate the initial condition, inflow boundary condition and model error
separately. Different types of observational data are tested. The first type is down-sampled
LES data containing many small-scale turbulence structures with or without synthetic
noise. The DA results show that the temporal variation of the small-scale structures is well
recovered even with noise in the observations. The spectra are resolved to a frequency
approximately one order of magnitude higher than what can be captured within the Nyquist
limit. The second type of observation is low-sampling-rate tomographic particle image
velocimetry (tomo-PIV) data with or without the injection of small-scale structures. The
modulation between the large-scale structures contained in the tomo-PIV fields and the
small scales injected from the observations is improved. The resultant small scales in
the STR reconstruction have the characteristics of authentic turbulence to a considerable
extent. Additionally, DA yields much smaller errors in the prediction of particle positions
when compared with the Wiener filter, demonstrating the great potential for Lagrangian
particle tracking in measurement techniques.
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1. Introduction

The high-frequency sampling of flow data has increasingly drawn attention in
the turbulence research community as it has become an important means for
understanding the underlying fluid dynamics within the turbulence kinetic energy cascade.
However, there remains a great challenge in developing hardware for acquiring highly
time-resolved turbulence data, compromising the balancing of the spatial resolution and
temporal sampling rate. Although data-driven reconstruction techniques, such as linear
stochastic estimation (LSE) and machine learning (ML), have brought new impetus
to super-temporal-resolution (STR) reconstruction using time-sparse spatially resolved
flow fields, the resultant evolution at small scales is commonly incorrect owing to the
reduced-order reconstruction, the lack of physical constraint or insufficient temporal
information in the training database. This leads to high demand for the development of
model-assisted data-driven techniques such as data assimilation (DA).

As one of the earliest approaches for STR reconstruction, LSE (Adrian & Moin
1988) attempts to integrate the advantages of a high spatial resolution in field-based
measurements and a high sampling rate of probe signals. It has been established
on the foundation of non-local flow properties and was widely used in early studies
for time-resolved reduced-order reconstruction. Relatively inexpensive discrete probes
provide high-sampling-rate measurement data while capturing not only the temporal
information but also some degree of the spatial information in flow fields. Linear stochastic
estimation approximates the conditional averages of the fields in terms of the measurement
data and has been sequentially modified to couple with proper orthogonal decomposition
(POD) in the estimation of the time series of mode amplitudes used to reconstruct
reduced-order flow fields (Hudy, Naguib & Humphreys 2007; Tinney, Ukeiley & Glauser
2008). However, the implementation of LSE is mainly suited to the reduced-order
reconstruction of flows having periodic or quasi-periodic behaviours, and the resultant
realisations are built in preference to energetic large-scale flow structures represented
by several leading POD modes. Moreover, LSE suffers from the problem of overfitting
through the amplification of singular eigenvalues of small amplitude (Podvin et al. 2018).
Although such a process has been improved using the multi-time-delay approach (Durgesh
& Naughton 2010; Kerherve, Roux & Mathis 2017), the Kalman smoother (Tu et al. 2013),
a new variant of the formulation (Podvin et al. 2018) and multichannel singular spectrum
analysis (Hosseini, Martinuzzi & Noack 2015), there remains a connatural limitation when
there are far fewer probes than degrees of freedom of the flow fields. This limits the number
of POD modes that can be used in the LSE reconstruction and induces error in amplitude
determination. The limitation becomes important when the flow is broad-band and little
kinetic energy is contained in the leading POD modes.

Due to the rapid development of computer science in recent years, ML techniques have
been widely used in fluid dynamic research including flow and heat transfer prediction
(Lee & You 2019; Kim & Lee 2020), turbulence modelling (Duraisamy, Iaccarino &
Xiao 2019; Sirignano & MacArt 2023) and active control (Park & Choi 2020; Pino
et al. 2023). Comprehensive reviews on ML-augmented fluid mechanics were presented
by Brenner, Eldredge & Freund (2019) and Brunton, Noack & Koumoutsakos (2019).
As a representative application using ML techniques, super-resolution reconstruction
can be achieved by constructing a convolutional neural network that directly maps the
low-resolution fields to the high-resolution fields once trained using both a low- and a
high-resolution database (Fukami, Fukagata & Taira 2019; Liu et al. 2020). In addition,
high-sampling-rate training data can be used for STR reconstruction (Fukami, Fukagata
& Taira 2021). While these supervised deep-learning models require labelled low- and
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Four-dimensional variational data assimilation

high-resolution data pairs for training, unpaired data are more practical to use as noted by
Kim et al. (2021), who proposed an unsupervised deep-learning model for super-resolution
reconstruction adopting a cyclic-consistent generative adversarial network. However,
purely ML methods often yield non-physical features when the resolution ratio between
the target and input fields is large due to the lack of physical constraint in the data-driven
optimisation process. The approach based on POD or extended POD, similar to that used
in LSE, is usually adopted to avoid irregular prediction. It has been demonstrated that ML
techniques account for nonlinearities in flows in the interpolation of the model coefficients
and thus perform better in reconstructions using more POD modes than the conventional
LSE approach. Recent work has demonstrated the advantages of ML approaches over LSE
in reduced-order STR reconstruction (Deng et al. 2019; Guemes, Discetti & Ianiro 2019;
Giannopoulos & Aider 2020; Jin et al. 2020). Although POD-based approaches enable us
to recover the main dynamic patterns of the turbulence fluctuations in STR reconstruction,
the high-order modes with temporally varying frequencies higher than the sampling
rate pose a challenge. The aforementioned works largely aimed at understanding either
large-scale motion in the flows or flow feedback control. Additionally, the approaches are
only applicable to statistically stable flows as a large database is required in the training
process. In the fields of computer vision and video processing, STR reconstruction is
commonly known as frame interpolation (Niklaus, Mai & Liu 2017; Chi et al. 2020; Bao
et al. 2021) and is widely used to artificially increase the frame rate of a video by creating
fake frames containing sufficient image details between real frames. However, similar
studies have rarely been conducted for turbulent flows with the recovery of small-scale
structures having evolution frequencies much higher than the sampling rate.

Being different from the purely data-driven techniques, DA (Evensen, Vossepoel &
Leeuwen 2022) integrates measurement data (observations) with physical or semi-physical
equations (predictive models). Thus, DA avoids irregular motions of the reproduced
vortical structures and substantially reduces the training database requirement, and it
is undoubtedly an important approach to increasing the data reach and augmenting
methodology interpretability. Data assimilation has been applied in fluid mechanics for
acoustic state and model parameter predictions using the Bayesian ensemble method
(Nóvoa & Magri 2022), ocean wave forecasting using the high-order spectral method
coupled with the ensemble Kalman filter (Wang & Pan 2021) and data-driven numerical
simulation using a nudging strategy (Zauner et al. 2022). Among various DA algorithms,
variational DA benefits from the driving of adjoint equations and is able to determine the
optimal field with extremely large dimensions and a lower data requirement. Variational
DA includes the three-dimensional type for steady-state processes (Foures et al. 2014;
Mons & Marquet 2021) and four-dimensional type (4D-Var) for unsteady-state prediction
(Chandramouli, Memin & Heitz 2020). In addition, variational DA can be implemented
in either discrete or continuous form. The former implementation discretises the system
before the derivation of the adjoint equation, which has a large memory requirement
for expensive matrix computation (Papoutsis-Kiachagias & Giannakoglou 2016), and the
latter implementation is thus preferred for complex flow configurations (Foures et al. 2014;
He et al. 2018a; Li et al. 2019; Chandramouli et al. 2020; He, Wang & Liu 2021). We focus
on 4D-Var as the unsteady state is the current topic of interest. Four-dimensional variation
is a generalisation of three-dimensional variation that handles observations distributed in
time. It thus optimises the constraint problem via an objective function presenting the
deviation of the model forecast from the observations in time integration. The classical
strong-constraint 4D-Var (Evensen et al. 2022; Wang, Wang & Zaki 2022) seeks an initial
condition such that the forecast best fits the observations within the assimilation interval,
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under the assumption that a precise predictive model entirely determines the true state
once initialised. Its applications in fluid mechanics include the determination of the inflow
and initial conditions for direct numerical simulation (Gronskis, Heitz & Mémin 2013),
the de-noising of particle image velocimetry (PIV) data (Gillissen, Bouffanais & Yue
2019) and the reconstruction of small-scale structures in Kolmogorov flows (Li et al.
2019). However, in the case of turbulent flows, 4D-Var is prone to be a weak constraint
(Bennett 2002; Tremolet 2007) owing to the error in the predictive models induced
by either the subgrid stress or the inappropriate boundary conditions. Weak-constraint
4D-Var has not yet been extensively considered for turbulent flows, except in a few studies
involving the simple example of the reactive–diffusive equation (Vidard et al. 2000),
the development of POD-based reduced-order models in turbulence dynamics (Artana
et al. 2012; Stefanescu, Sandu & Navon 2015) and stochastic model-error assimilation
in a turbulent wake (Chandramouli et al. 2020). In addition, STR reconstruction using
weak-constraint 4D-Var is suited to turbulence research, yet this has not been considered
in previous work.

This paper concentrates on STR reconstruction beyond the Nyquist limit with the
recovery of vortex temporal evolution with frequencies much higher than the sampling
rate of the measurements. The only observations are the two flow realisations at
the start and end instants of the assimilation window, without any training database.
A segregated weak-constraint 4D-Var DA procedure is proposed to determine the initial
condition, the inflow boundary condition and the model error term separately. In the
comprehensive verification of the DA approach for the reconstruction of intermediate
instantaneous fields, time-sparse large-eddy simulation (LES) data of a turbulent round
jet containing many small-scale structures are used to produce observations. Additionally,
tomographic PIV (tomo-PIV) observations generated from synthetic particle images are
used in the DA approach, with the discussion largely focusing on the authenticity and
enhancement of dynamical features within the evolution of the injected small-scale
structures. Furthermore, the accuracy of Lagrangian particle prediction based on the
reconstructed STR flows is evaluated for potential application in particle tracking
velocimetry (PTV).

2. The DA fundamentals

2.1. General framework
The objective of the present DA is to reconstruct detailed turbulent flow fields between two
given three-dimensional realisations with a large time interval. The flow is governed by the
incompressible Navier–Stokes (NS) equations subject to initial and boundary conditions.
When adopting the DA process in practice, the system predictive (physical or primary)
model is subject to errors due to the initial condition, turbulent subgrid stress and boundary
condition effects, leading to the weak-constraint problem when using 4D-Var. In the
present work, the velocity u and kinematic pressure p (the static pressure divided by the
fluid density) constitute the state variables in the DA system. The predictive model reads

∂tu + u · ∇u + ∇p − ν�u − ξ = 0, (2.1)

∇ · u = 0, (2.2)
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where ξ is the model error varying in space and time. The objective function of the
constrained Lagrangian optimisation problem is expressed as

L(u, p, ξ , s) =
∫ t0+�T

t0
[u − H(uobs)]

T
C−1
εε [u − H(uobs)]δ(t − tobs) dt

+
∫ t0+�T

t0
[v, q]TR dt + s∗TC−1

ηη [u(t0)− s] +
∫ t0+�T

t0

α

2
ξTC−1

ξξ
ξ dt.

(2.3)

In (2.3), uobs is the observation; H represents the interpolation from the observational grid
to the DA grid; Cξξ , Cηη and Cεε are the error covariances, which affect the convergence
speed of the computation and are cumbersome to construct as noted by Chandramouli
et al. (2020); δ is the Dirac delta function; and tobs is the instant when the observations
are available. This formulation enables the treatment of 4D-Var problems when the time
interval of the observations is much longer than the time step of the DA computations.
Here R denotes the governing equations as given in (2.1) and (2.2). The variables of
the Lagrangian multiplier [v, q] are referred to as adjoint variables in the following
sections. Terms s and s∗ are the initial condition to be assimilated and its adjoint variable,
respectively. The last term is the regularisation term which avoids ill-conditioned results
of the system and removes noise, with a user-specified coefficient α. Length �T is the
temporal length of the DA window in which the assimilation is performed with the start
time t0. Accordingly, the initial condition s, model error ξ and inflow boundary condition
can be assimilated using the adjoint formulations.

2.2. Continuous adjoint formulations
Continuous adjoint formulations are used to solve the large-scale optimisation problem in
the present DA work. The error covariances can be interpreted as the relative importance of
the observational data in the minimising procedure and are set to unity in this study, which
means that the observational data at different spatial locations are equally important. This
simplification is found to have no appreciable effect on the computational convergence or
the DA results in this study. The objective function is thus expressed in a spatial integral
as

L(u, p, ξ , s) =
∫ t0+�T

t0

∫
Ω

[u − H(uobs)]
2
δ(t − tobs) dx dt +

∫ t0+�T

t0

∫
Ω

(v, q)R dx dt

+
∫
Ω

s∗[u(t0)− s] dx + α

2

∫ t0+�T

t0

∫
Ω

ξ2 dx dt. (2.4)

Data assimilation looks for appropriate ξ and s that minimise L, giving rise to the
extremum problem of the total variation:

δL(u, p, ξ , s) = δuL + δpL + δξL + δsL = 0. (2.5)

This problem can be simplified by choosing appropriate adjoint variables v and q that
reduce the variation with respect to the state variables:

δuL + δpL = 0. (2.6)
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The adjoint NS equations are thus derived from the spatial integral of (2.6) according to
He, Liu & Gan (2020):

−∂v
∂t

− (u · ∇)v − ν�v = −∇u · v − ∇q − 2γ
U2

0
[u − H(uobs)]δ(t − tobs), (2.7)

∇ · v = 0. (2.8)

The last term in (2.7) is the source for adjoint flow production (i.e. adjoint source)
stemming from the difference between prediction and observation. The adjoint flow
approaches zero with the convergence of the iterations. A referential velocity U0 is
introduced in the source term for normalisation; it is also important for the scaling of
the adjoint velocity amplitudes to retain a low adjoint Courant–Friedrichs–Lewy (CFL)
number using the same time step as that used in solving the primary equations. Term γ

is the dimension converter of value unity, which addresses the dimensional inconsistency.
The tensor form of the adjoint transpose convection term is given for clarification as

∇u · v = vj
∂uj

∂xi
. (2.9)

The adjoint boundary conditions can be derived from the surface integral of (2.6) by
deduction (He et al. 2018) and are reproduced here. On the inflow, wall and far-field
boundaries where the primary state variable u is specified, the boundary conditions for
the adjoint velocity v are

vτ = 0, vn = 0, (2.10a,b)

n · ∇q = 0. (2.11)

For the outflow boundaries, where the zero-gradient condition is used for the primary state
variables u, the adjoint velocity conditions are

un · vτ + ν(n · ∇)uτ = 0, (2.12)

un · vn + ν(n · ∇)un − q = 0. (2.13)

Here, the subscripts n and τ denote the normal and tangential components of the variables,
respectively. Vector n is the unit normal vector at the boundaries. The outflow boundary
conditions are usually simplified as zero-gradient conditions to improve the computational
stability (He et al. 2018). According to Othmer (2008), the boundary conditions for the
adjoint pressure q are the same as those for the primary pressure p, since q enters the
adjoint NS equations in a manner similar to how p enters the primary equations. Practical
considerations of all the boundary conditions in the present study are presented in § 2.3.
The adjoint terminal and initial conditions are derived from the time-dependent term of
(2.6) as

v(t0 +�T) = 0, (2.14)

s∗ = v(t0). (2.15)

The total variation thus reduces to

δL = δξL + δsL =
∫ t0+�T

t0

∫
Ω

(v, q)δξR dx dt + α

∫ t0+�T

t0

∫
Ω

ξ dx dt −
∫
Ω

s∗ dx

= −
∫ t0+�T

t0

∫
Ω

v dx dt + α

∫ t0+�T

t0

∫
Ω

ξ dx dt −
∫
Ω

s∗ dx. (2.16)
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Therefore, the model error and the initial condition are solved iteratively according to

ξ = ξ − λξ ∂L
∂ξ

= (1 − αλξ )ξ + λξ v, (2.17)

s = s − λs
∂L
∂s

= s + λss∗ = s + λsv(t0), (2.18)

in a finite-volume code using the steepest descent algorithm with an appropriate choice of
the step lengths λξ and λs (see § 2.3). Equation (2.17) shows that the necessary condition
of α to ensure that the iteration procedure converges is 0 ≤ αλξ ≤ 1. Parameter α can be
set at 1/λξ to remove noise, and should be smaller in cases of problematic instability or
observations with a high signal-to-noise ratio.

The inflow boundary condition uin was assimilated in a manner similar to that for the
initial condition in the work of Lemke (2015). However, considering the observations
of two snapshots at the start and end instants (�T � �t, where �t is the time step of
the computation) of the assimilation window throughout the three-dimensional domain,
this inflow assimilation strategy exhibits strong instability and high sensitivity to the step
size of the steepest descent algorithm. Moreover, cross-talk exists in the DA procedure
between the behaviour of the forcing and the initial and inflow conditions. This cross-talk
results from the fact that the DA residual is still reduced by the updating of ξ even
if incorrect initial and inflow conditions are used. Assimilating the model error and
initial and inflow conditions all at once does not achieve the desired results even though
the objective function has decreased to a minimum. A segregated approach is thus
proposed to assimilate the desired quantities separately. Detailed algorithms are presented
in Appendix A.

2.3. Numerical and practical considerations
As the computational domain considered in this study is a small cuboid, consistent with
a typical tomo-PIV or 4D-PTV measurement, it is far from sufficient for conventional
numerical simulations. The first aspect that should be carefully considered is the boundary
conditions for both the primary and adjoint equations. Once the inflow field has been
assimilated, the Dirichlet condition for the primary velocity u can be applied. The
convective velocity condition can be applied at the outflow boundary for u. The Neumann
condition for the primary pressure p is used for the inflow boundary; this also includes the
correcting pressure δp in the algorithm of the semi-implicit method for pressure-linked
equations (SIMPLE). To improve the computational stability, the Neumann condition
is used on the outflow boundary for p, but the Dirichlet condition is used for δp.
This gives rise to a relatively steady and spatially smooth pressure distribution near the
outflow boundary, which avoids divergence in the pressure correction step in the SIMPLE
algorithm. The free-slip condition for velocity and Neumann condition for pressure are
applied on the side surfaces for both primary and adjoint equations. The above treatment
indeed induces error in the primary flows, but this error is included in the model error
ξ and is thus assimilated in the DA procedure. Equation (2.10) presents the no-slip wall
condition for the adjoint velocity v at the inflow boundary, which reverses the adjoint flows
to the downstream direction. This condition is applicable for large DA domains including
a considerable portion of a free-stream region without observational data (He et al. 2018).
However, the present application with full-field observations inevitably suffers from the
conservation problem as all the adjoint flows are directed upstream, and an outflow for v
is required to maintain the flow continuity. Therefore, the equivalent Neumann condition
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is applied to both the inflow and outflow boundaries by extrapolating v and q from the
inner grid onto the boundary (Ferziger, Peric & Street 2020). For the sidewalls of the
computational domain, which have no appreciable effects on the computational stability
and are almost parallel to the flow mainstream, the free-slip condition for both u and v and
the Neumann condition for both p and q are used.

The second aspect that should be addressed is the discretisation scheme. The
second-order backward scheme is used for the instantaneous terms of both the primary
and adjoint equations. The central differencing scheme is used to discretise the pressure
and viscous terms. For the primary convection terms, the total-variation diminishing
scheme with the SuperBee limiter (Waterson & Deconinck 2007) is used; the scheme is
implemented through deferred correction (Ferziger et al. 2020) to improve the numerical
stability. For the adjoint convection terms, the central differencing scheme is used in most
parts of the computational domain, whereas it blends to the downwind scheme near the
inflow and outflow boundaries. The adjoint transpose convection and adjoint source terms
are implemented explicitly.

The numerical stability and convergence speed are sensitive to the step lengths λξ and λs
in (2.17) and (2.18). A larger step length accelerates the convergence but may induce severe
instability. An appropriate step length can be estimated according to the flow sensitivity
with respect to ξ or s and is then fixed throughout the computation (He et al. 2020). In the
present application, however, a constant step length results in extremely slow convergence
after dozens of iterative loops. The linear search algorithm can be used to improve the
convergence behaviour in combination with using nonlinear conjugate gradient methods
to determine the optimal search direction (Lemke 2015; Li et al. 2019) rather than using the
steepest descent method. Chandramouli et al. (2020) used a second-order limited-memory
Broyden–Fletcher–Goldfarb–Shanno method for their 4D-Var problem. However, such
optimisation algorithms rely on additional computations of the direct problem, which
treble the computational cost in each loop. Moreover, these approaches do not give
converging results in the present study as the residual is assessed only at the terminal
time of the DA window. Therefore, a new algorithm based on the steepest descent method
with an adaptive step length (ALSD) is proposed. The algorithm is based on the estimation
of λ0

ξ
and λ0

s according to He et al. (2020), followed by an increase in λk
ξ

when the residual
εξ decays or a decrease in λk

ξ
(or λk

s ) when the residual εξ (or εs) increases. The superscript
k denotes the loop number of the iteration. The algorithm is formulated as

λk
s =

{
λk−1

s (εk
s ≤ εk−1

s )

0.2λk−1
s (εk

s > εk−1
s ),

(2.19a,b)

λk
ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√√√√ ε0
ξ

εk−1
ξ

λk−1
ξ

(εk
ξ

≤ εk−1
ξ
)

0.5λk−1
ξ

(εk
ξ
> εk−1

ξ
).

(2.20a,b)

The determination of λ0
ξ

and λ0
s depends on a rough estimation. These initial step lengths

can be initialised through trial and error using the first DA window. The resultant cost
increase relative to the overall DA is negligible (<1 %). The use of the ALSD method
greatly reduces the number of iterations required to reach the convergence criterion but
does not increase the computational cost for each iteration.

The last aspect of concern is storage, which is a well-known issue for 4D-Var. It is
necessary to store the primary and adjoint flow fields at all time steps, resulting in great
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demands for storage space and a long reading and writing time. A checkpointing strategy
has been widely used in 4D-Var, where the primary or adjoint simulation is checked at
selected points with flow data stored in memory. All the intermediary data between the
checkpoints in the adjoint or primary simulation are obtained through re-computation.
However, in the present application, all the flow data of the primary and adjoint equations
in the previous iteration are stored in memory owing to the small length of the DA
window. This substantially reduces the time required for re-computation and that required
for reading and writing.

All the computations are conducted using an in-house finite-volume code written in
Fortran 90. The code solves the primary and adjoint NS equations on a structured Cartesian
grid with a collocated arrangement using the SIMPLE algorithm for velocity–pressure
coupling. The primary NS solver is adapted from the work of Ferziger et al. (2020) and
has considerable computational efficiency and stability. Although only the serial version
has been developed presently, this code has high computational efficiency and is capable
of large-scale computations with millions of cells.

3. Computational and synthesis tomo-PIV set-ups

3.1. Description of the raw LES data
The observational data required in the DA computation are obtained from the LES
results of a circular jet with Reynolds number Re = 6000 based on a nozzle diameter
D = 0.014 mm and jet bulk velocity at the nozzle exit U0 = 0.42 m s−1 (He et al.
2018b). This LES was performed on a multiblock grid with adaptive refinement based
on the velocity gradients. This resulted in a grid of approximately 9 million nodes in the
computational domain. The length scale of the grid cells was approximately 300 µm in
the region of DA computation. The dissipation rate of the jet flow can be estimated as
(Panchapakesan & Lumley 1993)

ε ≈ 0.015
U3

c

r1/2
, (3.1)

where Uc is the centreline velocity and r1/2 is the jet half-width. Adopting the above
approximation, the Taylor microscale and Kolmogorov scale are estimated to be 1 mm
and 60 µm, respectively. This suggests that the computational grid has extremely high
spatial resolution for the LES. The time step is fixed at �tLES = 0.0002 s, resulting in a
maximum local CFL number of approximately 1. The mean velocity and the fluctuation are
validated using planar PIV data by He et al. (2018). Data are written with a time interval of
�t = 0.001 s, and 1500 instantaneous fields are saved for the following DA computation
and validation.

3.2. Synthetic tomo-PIV measurement
Tomographic PIV is applied to synthetic particle images produced from the LES data.
Four virtual cameras with a resolution of 1000 × 2000 pixels are installed azimuthally
with an included angle of approximately 20° around the jet using the layout adopted
by He et al. (2022). The virtual measurement domain has fixed dimensions of 0.106 m
(7.57D), 0.053 m (3.79D) and 0.053 m (3.79D) in the x, y and z directions, respectively,
and is placed 0.037 m (2.64D) downstream of the nozzle exit. Therefore, a column
along the x direction being slightly larger than the measurement domain is considered
to be illuminated by a virtual laser. Particles are initialised in the illumination region
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Figure 1. Schematic of the computational domains. The large region denotes the cylindrical LES domain
whereas the white box indicates the cuboid DA domain. The z coordinate is directed outwards perpendicular to
the paper as noted by ‘�’. Lengths Lf and Df are plotted using different scales without showing the full range.

with a mutual distance exceeding 50 µm. New particles are seeded randomly from the
LES inflow boundary and are advected downstream to the illumination region with the
consideration of particle entrainment from the side surface of the illumination region.
After sufficient advection, the particle distribution in the illumination region reaches
statistical stability and the particle concentration in the jet mainstream remains appreciably
higher than the ambient concentration. The coordinates of the particles are then projected
to the cameras, and synthetic images are generated following the procedure described by
Tan et al. (2020). Images are thus produced with a particle diameter of approximately
3–5 pixels on the images and a particle concentration of 0.02 particles per pixel. Particle
images are Gaussian-filtered (3 × 3 pixels) and noise-contaminated (standard deviation of
0.1) to approach real experimental conditions.

The cameras are calibrated using a synthetic dotted plane that can be shifted in the z
direction as in the work of He et al. (2022). Calibration images are generated in the manner
described above, and the projection matrix is then determined. During the tomography
reconstruction, the virtual measurement domain is discretised to 1380 × 690 × 690 voxels
with a physical spatial resolution close to that of the particle images. The voxel size is
approximately 0.072 mm. The particle displacement in the mainstream for each pair of
images is approximately 4 pixels according to the imaging time interval. GPU-accelerated
code (Zeng, He & Liu 2022) based on the MART algorithm, combined with the iterative
multigrid volumetric cross-correlation approach with a final pass interrogation volume
size of 32 × 32 × 32 voxels and 50 % overlap, is used to determine the three-dimensional
velocity fields. This yields a spatial resolution of the velocity vectors of 1.2 mm. One
thousand instantaneous velocity fields are obtained with a time step �t = 0.001 s.

3.3. The DA computational set-up
The DA domain used in this study is a cuboid that has dimensions of 0.1 m (7.17D),
0.05 m (3.57D) and 0.05 m (3.57D) in the x, y and z directions, respectively, and is
placed 0.04 m (2.86D) downstream of the nozzle, as shown in figure 1. This domain is
typical for tomo-PIV and 4D-PTV measurements but far from sufficient for conventional
numerical simulations as the inflow and outflow boundary conditions affect the flow.
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No. Case name �T Total time T (s) λ0
s λ0

ξ α Observations

1 DA-Clear10 10�t 0.01 100 2 × 104 0 Clear LES
2 DA-Clear20 20�t 0.02 100 2 × 104 0 Clear LES
3 DA-Clear30 30�t 0.03 100 2 × 104 0 Clear LES
4 DA-Noisy5e-5 20�t 1.0 100 2 × 104 5 × 10−5 Noisy LES
5 DA-Noisy5e-6 20�t 1.0 100 2 × 104 5 × 10−6 Noisy LES
6 DA-Noisy5e-7 20�t 1.0 100 2 × 104 5 × 10−7 Noisy LES
7 DA-Tomo 20�t 1.0 100 2 × 104 5 × 10−6 Tomo-PIV
8 DA-SS 20�t 1.0 100 2 × 104 2 × 10−5 Tomo-PIV with

SS injection
9 DA-SSN 20�t 1.0 100 2 × 104 2 × 10−5 Tomo-PIV with

SS injection
and noise

Table 1. List of DA cases and parameters.
Time �t (= 0.001 s) is the time step of the DA computation; �T is the length of the DA window; T is the

total physical time for all the DA windows.

It is noted that the DA domain is selected to be slightly smaller than the virtual
measurement domain mentioned in § 3.2 for ease of grid interpolation. The grid used
in DA is Cartesian with 256, 128 and 128 elements uniformly distributed along the x,
y and z directions, respectively, yielding a total of 4.36 million nodes with a spatial
resolution of approximately 400 µm. This grid resolution meets the requirement of
LES but does not enable reliable flow predictions owing to the undersized domain
and inappropriate boundary conditions. The observations are produced by linearly
interpolating (as expressed by H (2.3)) the LES or tomo-PIV data onto the whole DA
grid with a time interval �T . Boundary conditions, differential schemes and step lengths
are applied according to the discussion in § 2.3.

The DA cases considered in this study are listed in table 1. Clear cases (1–3) have
ideal conditions with clear LES data as observations, and the regularisation in the DA
computation is thus turned off. Different window lengths are tested to evaluate the
sampling rate of the observations for the STR reconstruction. Noisy cases (4–6) use the
LES data with white-noise contamination and box filtering (3 × 3 × 3 elements on the
DA grid) as observations for evaluation of the de-noising capability. The noise standard
deviation is approximately 0.3U0 as that used by Gillissen et al. (2019), and is introduced
by adding random numbers in the range of [−Anoise,Anoise] to the LES data, where

Anoise(x) = 0.6max(||u(x)||, 0.2). (3.2)

The coefficient 0.6 is used to tune the noise standard deviation to the desired value, and
the minimum value of 0.2 is used to produce the noise in the ambient flow. The DA-Tomo
case (case 7) uses the tomo-PIV data utomo as observations, whereas in the DA-SS case (8),
small-scale coherent structures are injected into the tomo-PIV observations according to

uobs(t) = utomo(t)+ uLES(t′)− uLES̃(t′). (3.3)

Here, uLES represents the velocity in LES, where uLES̃ is the box-filtered LES data on
the DA grid with a filter size of 7 × 7 × 7 elements, which is close to the physical size
of the tomo-PIV interrogation volume. The time t′ = t + 0.5 s is used to ensure that the
injected small-scale structures are not correlated with the tomo-PIV fields. The DA-SSN
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Figure 2. Residuals and their gradients in DA computations: (a) initial field DA, (b) model error DA in the
case of DA-Clear30 and (c) residual gradients in the model error DA of noisy cases.

case (case 9) is similar to DA-SS except that white noise defined by (3.2) is added for
further verification. The time step of the computation (i.e. the time interval of the STR
reconstructed fields) is fixed at �t = 0.001 s, while �T denotes the length of each DA
window. Time T is the total physical time counting all the DA windows in each case.

All the computations are performed on a desktop computer with an Intel Xeon E-2144G
quad-core processor and 64 G memory. The serial computation of each multi-window case
(cases 4–9) takes approximately 78 hours to find the optimal solution including the initial
and inflow conditions, with there being 1000 instantaneous fields within the total time
of 1.0 s (50 DA windows). Multitask parallel computing is conducted by submitting four
cases at the same time to accelerate the overall computation by a factor of more than 3.
The data writing is the most time-consuming step and further improvements can thus be
made through the appropriate compression of the result files rather than writing ASCII
data directly as done presently.

4. Results and discussion

4.1. Super-temporal-resolution reconstruction with down-sampled observations
Data assimilation is first applied for STR reconstruction using the observations
of down-sampled LES data containing many small-scale turbulence structures. The
computational cases are listed as cases 1–6 in table 1. The length of the intermediate
DA window 20�t equals 100 LES time steps. For cases 4–6, 50 DA windows are
computed within a total time T corresponding to 9 turnovers of the largest-scale mode
(Hussain & Zaman 2006) according to the Strouhal number St = 0.3. Figure 2 presents
the iteration residuals for different step-length strategies in clear and noisy cases. In
the initial field DA phase as shown in figure 2(a), the instantaneous flow at a random
instant is used as the first guess. The adaptive step lengths are computed using (2.19a,b).
The residual has an increasing descent rate with respect to the initial step length, with
only 10 iterations required using λ0

s = 500. Nevertheless, the residual grows rapidly after
reaching a minimum when a constant step length is used; this growth is well suppressed
by the adaptive formulation. In the model-error DA phase as shown in figure 2(b), there
is an increasing descent rate with respect to the initial step length. When adopting the
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Figure 3. Instantaneous flow fields at the middle instant in the DA window: (a,b) DA reconstruction,
(c,d) clear LES data and (e, f ) POD optimal reconstruction. (a,c,e) The longitudinal middle sections and
(b,d, f ) the cross-sections at the location marked by the dashed line.

adaptive scheme, a gradual increase in the step length according to (2.20a) is effective in
accelerating convergence whereas a large step length is prone to cause divergence. This
problem can be solved using the adaptive step length with the combined use of (2.20a)
and (2.20b). Although this adaptive scheme relies on trial and error to determine the
optimal initial step length, the complementary computations can be performed only in
the first time step or the first DA window, yielding an increase in the computational cost
of less than 1 % in total in this study. In noisy cases, the residual gradient with respect
to the iteration number is better suited to convergence evaluation as the residual level is
strongly associated with the regularisation coefficient α. Obviously, larger α results in
better de-noising effects in the DA procedure and thus greater discrepancy between the
DA results and observations. As shown in figure 2(c), the residual gradient has the highest
convergence speed in the DA-Noisy5e-5 case, reducing to below 10−5 after 10 rounds of
iteration. The number of iterations is fixed at 50 in the model-error DA phase of all noisy
cases.

In the STR reconstruction, the flow at the middle instant between the two observations
is undoubtedly subject to the largest reconstruction error. This suggests the need to inspect
the reconstructed flow snapshot at the middle instant in the case of DA-Clear30 as shown in
figure 3. The clear LES data and the POD optimal reconstruction (Appendix C) from the
down-sampled observations with time interval 30�t are also presented for comparison.
The DA result is similar to the LES data on both longitudinal and cross-section planes
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Figure 4. Pointwise error of the reconstructed flow in each clear case: (a) domain integration at different
instants and (b) cross-wise and temporal integrations at different downstream locations. Instantaneous vertical
velocities are inset in (b) for comparison.

as shown in figure 3(a–d). There are also slight differences in the upstream region
near the inflow boundary, where some plume-like signatures are missing from the jet
mainstream in the DA results. This is largely due to the error in the assimilated inflow
conditions. In addition, the temporal evolution of these reconstructed fields shows the
advantage of DA in STR reconstruction compared with interpolation-based approaches,
which basically rely on temporally resolving the turbulence events with a sampling rate
up to that meeting the Nyquist law. A POD full mode reconstruction (reconstruction using
all of the modes) using the existing observations disrupts the real evolution process of
the convecting small-scale vortices and is thus applicable only to slowly evolving vortices.
A POD optimal reconstruction, as shown in figure 3(e, f ), selects the most energetic modes
that are temporally correlated for interpolation. This correctly recovers the flow convective
properties but preserves less than 90 % of the total kinetic energy.

Figure 4 presents the pointwise error defined as

εt =
∑
(x,y,z)

||u(t)− uLES(t)||/
∑
(x,y,z)

||uLES(t)||, (4.1)

εx =
∑
(t,y,z)

||u(x)− uLES(x)||/
∑
(t,y,z)

||uLES(x)||, (4.2)

for each reconstruction scheme in clear cases. The summations are applied for all possible
coordinates (x, y, z) and (t, y, z), respectively. In this application, the terminal observation
is fixed at t/�t = 30 whereas the initial observations are selected at t/�t = 0, 10 and
20 for the cases of DA-Clear30, DA-Clear20 and DA-Clear10, respectively. The direct
simulation by solving the NS equation for the initial field at t/�t = 0 yields an error
that increases monotonically with respect to time, as shown in figure 4(a). This error is
largely induced by the boundary conditions imposed on the compact numerical domain
and is absorbed by the model error in this study. Data assimilation is performed from each
selected initial field and yields the largest error at the middle time of the DA window
before reaching a minimum at the end. The error is slightly higher than zero at each
start and end time owing to the finite residual level at the final iterative loop. With
assimilation of the model error ξ , the error of the DA reconstruction is appreciably lower
than that of the direct simulation and maintains a clear descending trend with respect to
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Figure 5. Cross-correlation coefficients of the reconstructed velocity fields with the referential LES data:
(a) x component, (b) y component and (c) z component. The noisy LES data are averaged over all time. Different
ordinate scales are used for clear illustration.

the decreasing DA window length �T . Additionally, the POD full modes and optimal
reconstructions are compared with the DA results for each corresponding observational
time interval. As the full mode reconstruction at an observational time (start or end of
the DA window) produces the exact fields, the error is reduced to zero. However, the
reconstruction error at the intermediate instants remains much higher than that of the DA
results for each window length. The POD optimal reconstruction reduces the maximum
error for large observational time intervals but performs even worse than the POD full
mode reconstruction for small time intervals. The above results indicate that although
POD reconstruction plays important roles in the feature recovery of large-scale evolution,
the lack of temporal information on small scales in the raw observations remains a barrier
for the temporal resolution enhancement of turbulence details. In the DA reconstruction,
the error is mainly concentrated in the upstream region, where the jet speed is high, as
shown in figure 4(b); the error is manifested as the convection lag of the flow events,
as shown by the instantaneous vertical velocity distributions. In addition, the inflow and
outflow boundary conditions have notable local effects. Nevertheless, most of the error is
below 1 % in the case of DA-Clear30, indicating the high accuracy of the proposed DA
scheme for STR reconstruction even with a long time interval.

As an analogy to the measurement noise in a real experiment (e.g. PTV), the noisy
observations are synthesised by adding white noise to the clear LES data according to
(3.2) and box filtering using 3 × 3 × 3 elements on a DA grid. In these cases, DA is
performed successively in 50 windows using the terminal fields of the previous window
for initialisation. Detailed parameters are given in table 1. To assess the accuracy of the DA
field throughout the domain, the cross-correlation coefficient for the streamwise velocity
is calculated using the clear LES data as reference for each instant in the DA window:

Cx(t) =
∑
x

[u(x, t) · uLES(x, t)]√∑
x

[u(x, t)]2 · ∑
x

[uLES(x, t)]2
, (4.3)

where t ∈ [t0, t0 +�T], and the summations are applied for each spatial location x =
(x, y, z) on the DA grid. The cross-correlation coefficients for other velocity components
are defined similar to (4.3). The final cross-correlation coefficients are averaged for each
relative time with respect to the start instants in all the DA windows. The correlation
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coefficients for all the noisy cases, as well as the noisy observations, are shown in figure 5.
The correlation coefficients of the noisy observations remain appreciably lower than those
of all the DA cases owing to the noise contamination. This clearly indicates the strong
capacity of DA to recover the turbulence properties even when taking noisy measurement
data as observations. Comparatively, the regularisation term in the objective function
not only eliminates noise but also plays an important role in improving the facticity
of the reconstructed flow fields. The correlation coefficient is the highest at the middle
instant of the DA window for the cases of DA-Noise5e-6 and DA-Noise5e-7 owing to the
propagation of the governing equations. This trend is obviously different from that of the
clear cases, where the error is largest in the middle of the window. When a smaller value of
α is used, DA applies a larger weighting to the noisy observational data and thus introduces
more error into the instantaneous field near the initial and terminal instants. We thus
observe straighter correlation lines along time with larger α, and the best performance with
nearly constant correlations in the DA window is achieved in the case of DA-Noise5e-5.
The optimal α is not readily obtained from figure 5 for different DA cases. The value of
α is obviously case-dependent but can be cheaply determined adopting the DA procedure
with only one window. In the remaining discussion of noisy cases, only DA-Noise5e-5 is
taken as the representative example.

The assimilated ξ term acts as a compensator of error between the model prediction
and observation. It also plays an important role in the turbulence evolution. The
physical interpretability of the compensator has increasingly drawn attention for numerous
data-driven techniques. The compensator not only directly reduces the predictive error
between two datasets but also is a feature vital for the flow to evolve correctly. Term ξ

has equivalent effects on flows with pressure gradients in the NS equations but is always
divergence-free according to (2.17). Helmholtz decomposition casts ξ in two parts as

ξ = ψ − ∇ϕ, (4.4)

where ψ is stochastic forcing due to, for example, the subgrid stress. The reconstruction
error is included in ψ in the present DA framework. Term ∇ϕ is the irrotational part,
which is lumped into the pressure gradient. The pressure and pressure gradient component
in the x direction are first explored in figure 6. There is a visible difference in the
pressure and its gradient distributions between the clear LES result and the other results.
Simulation by solving the original NS equations directly does not reproduce the pressure
and gradient correctly, as shown in figure 6(a–d). The quantitative comparison presented
in figure 7 shows the model error effects on the confined computational domain. The
results obtained by simulation and DA have high similarity, as shown in figure 6(c– f ), with
only slight discrepancy observed quantitatively in figure 7. The above results demonstrate
the important contribution of the irrotational part ∇ϕ in compensating for the pressure
gradient discrepancies stemming from the compact computational domain. The results
also indicate that further computation steps after DA are required to reconstruct the
pressure fields correctly. An explicit calculation of ∇ϕ and ψ can be readily made
considering the difference in the pressure gradients between the LES and DA, i.e.

∇ϕ = ∇pLES − ∇pDA, (4.5)

ψ = ξ + ∇pLES − ∇pDA. (4.6)

Probability density functions (PDFs) of ξx, ψx and ∇xϕ are plotted in figure 8, where ∇x is
the streamwise component of the gradient. All quantities are normalised by U2

0/D. Herein,
PDFs are separately calculated for all DA windows at the second instant immediately
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Figure 6. Instantaneous pressure (a,c,e) and streamwise-component pressure gradient (b,d, f ) fields in
(a,b) clear LES, (c,d) simulation and (e, f ) the case of DA-Noise5e-5.
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after the initial time (figure 8a), at the middle instant (figure 8b) and at the terminal
instant (figure 8c) using data in the region r/D < 1 (where r =

√
y2 + z2). The results of

averaging across all instants are shown in figure 8(d). The curves for the negative part of
the abscissa are mirrored to the positive part to demonstrate the asymmetry with respect to
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Figure 8. The PDFs of the quantities ξx, ψx and ∇xϕ at (a) the second instant, (b) the middle instant, (c) the
terminal instant and (d) all instants. The data on the negative abscissa are mirrored to be positive. Here Θ
denotes ξx, ψx or ∇xϕ as indicated by the arrows.

the ordinate axis. The PDFs of ξx have a sharp peak at the origin and rapidly decay in both
positive and negative directions of the abscissa. There are clear differences between the
positive and negative bunches, especially at the first instant, as shown in figure 8(a). This
indicates that ξx has a pronounced bias towards the positive direction and complements the
pressure gradient from the perspective of the whole region of interest. Recalling that direct
simulation yields a lower speed of convection in the downstream direction as depicted in
figure 4(b), ξx is physically interpreted as the driving force for the model prediction to
keep up with the observation evolution. However, the importance of the driving force
varies in time and largely prevails in the first half of the DA window. This depends
on ∇xϕ, which is biased against the driving force. The PDFs of ξx and ∇xϕ averaged
across all the instants and shown in figure 8(d) clearly demonstrate the above mentioned
complementation mechanism during the flow evolution in the DA window, although there
is slightly anomalous behaviour at the terminal instant in figure 8(c), probably due to
computational error. Supplemental evidence for this supposition is provided by the PDFs
of ψx, which show good agreement for the positive and negative bunches at each instant in
the figure. This result is consistent with our previous conjecture as the remaining part of
ξx, when subtracting the irrotational part ∇ϕ, has unbiased stochastic behaviours that are
responsible for the production and dissipation of turbulence.

A direct view of the STR reconstruction is acquired from figure 9, where the temporal
variations of the original and reconstructed velocities are plotted. The streamwise
velocities at x/D = 3.5D on the jet centreline are quantitatively compared in figure 9(a).
The rapid variation of the clear LES results represents the small-scale coherent structures
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Figure 9. Temporal plots of the velocity and vortical structures (Q = 500) from the original and DA
reconstructed flow fields at x/D = 3.5D: (a) streamwise velocity variation on the jet centreline, (b) clear LES
data with the time interval �t = 0.001 s, (c) noisy LES observations with the time interval �T = 0.02 s,
(d) STR reconstructions with the time interval �t = 0.001 s. The green dots and the dashed line in (a)
denote the observational data and the spline fitting, respectively. The black dashed lines in (b–d) indicate
the observational instants.

in the jet turbulence. The down-sampling of the observations (‘Noisy LES obs.’)
only captures the large-scale events even when adopting spline interpolation, and the
observational noise induces appreciable deviation from the clear LES data. However,
the DA results recover the small-scale fluctuations well, even though slight discrepancies
are still observed. A salient feature of DA is that the STR results do not strictly follow
the variation of the observations, manifesting remarkable de-noising and correcting
effects when erroneous observations are used. The spatiotemporal plots of the streamwise
velocities at the cross-section x/D = 3.5D are present in figure 9(b–d). The clear LES data
in figure 9(b) reveal appreciable temporal fluctuations along with the small-scale variation
showing apparent coherent tubular structures. The detailed small vortex organisations are
seen in the vorticity contours. In the down-sampled observations shown in figure 9(c),
although a smooth isosurface is obtained, the loss of details between successive snapshots
is an issue. This situation is equivalent to direct temporal interpolation, which makes
sense only when the original sampling frequency meets the requirement of the Nyquist
sampling law. The DA reconstruction shows obvious advantages in the recovery of flow
details even when using the noisy down-sampled observations. The DA results with the
sampling rate equalling that of the clear LES data are shown in figure 9(d). The contours of
the streamwise vorticity clearly demonstrate the reconstructed flow details. The red circles
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Figure 10. PSDs on the streamwise velocity at the downstream position x/D = 3.5D at various radial
locations: (a) r/D = 0, (b) r/D = 1 and (c) r/D = 1.5.

mark the moderate-scale vortices that exist in the clear LES data and are successfully
reconstructed by DA but are lost in the down-sampled observations.

In-depth analysis of the small scales recovery of DA is conducted using the velocity
spectra. Power spectral densities (PSDs) are computed using Welch’s method (Welch
1967) with all 1000 snapshots for each case. Although the window size of 200
(corresponding to 1.8 turnovers of the largest-scale flow fluctuation) with an overlap
of 100 in the PSD computation does not provide a good estimation of the spectra at
low frequencies due to the data size, the results are not visibly different from those
obtained using larger windows. Our present analysis focuses on high-frequency structures
with Strouhal numbers larger than 0.2, which can be well captured by the present PSD
algorithm. Figure 10 shows the PSDs of the streamwise velocity at various radial locations.
The PSDs of the time-sparse noisy LES data are lower than the others due to the
normalisation using the root mean square of the velocity signals, and it is only possible
to resolve vortical structures up to St = 0.1 with a relatively flat distribution due to the
noise. The POD optimal reconstruction recovers the large-scale vortices well but yields a
rapid decay of the PSDs at St > 0.5 due to the lack of small-scale information. The DA
reconstruction produces the best results up to St = 5, although with a plateau higher than
that for the clear LES data due to the noise in the observations. An observable feature of
the PSDs at different radial locations is the underestimation of the DA reconstruction at
r/D = 0 but a slight overestimation at r/D = 1.5. This feature is reasonable in the present
computations due to the high noise ratio at far radial locations where the flow speed is low.

4.2. Super-temporal-resolution reconstruction for tomo-PIV with small scales injection
Although tomo-PIV has become one of the most widely used volumetric measurement
techniques in fluid mechanics, the compromise between the measurement domain size
and the spatial resolution resulting from the cross-correlation (Lawson & Dawson 2014;
Naka et al. 2016; Fiscaletti et al. 2022) is the major issue that limits its application
in certain circumstances. The present study evaluates the field correction for the
low-sampling-rate tomo-PIV results through DA reconstruction, with much effort being
given to the regeneration of the turbulence structures by small scales (SS) injection from
the observations. It is worth noting that the small vortices cannot be injected from the
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Figure 11. Instantaneous velocity fields and vortical structures (Q = 500) of (a) the synthetic tomo-PIV
measurements, (b) DA reconstruction and (c) filtered LES data on the DA grid.

initial condition as done by Li et al. (2019) because of the weak-constraint nature of the
present DA algorithm and the time-sparse observations.

The case of DA-Tomo (see table 1) is first discussed on the basis of the snapshots
selected at the terminal instant of the DA window. The comparison of the tomo-PIV data
(observation) and the DA result presented in figure 11(a,b) shows excellent similarity
in terms of the velocity contours and even the three-dimensional vortical structures
(Q-criterion isosurface, Q = 500). However, a notable feature of the DA procedure is
the prominent ability to remove the velocity divergence error, which is important for
post-processing, such as vorticity computation and pressure determination, using the

existing three-dimensional fields. A snapshot obtained by box filtering (denoted uLES̃,
filtered using 7 × 7 × 7 elements on the DA grid, which is close to the physical size
of the tomo-PIV interrogation volume) from the clear LES data at a selected instant is
shown in figure 11(c). The velocity contours barely show any difference between the
different data, but the isosurface of the Q criterion in the box-filtered field is more coherent
with many elongated vortex tubes distributed in the jet shear layer. This indicates that
the cross-correlation process in tomo-PIV measurements involves far more than spatial
filtering than what has been commonly understood before, and more complex effects
should be considered.

The turbulence fields of the reconstructed flow can be inspected in more depth by
plotting the joint PDFs of the invariants Q∗ and R∗, which are defined as (Rishita &
Girimaji 2022)

Q∗ = −1
2 bijbji, (4.7)

R∗ = −1
3 bijbjkbki, (4.8)

where bij = Aij/||A||. Here, the asterisk is added to the invariants to distinguish them
from the vortex Q criterion. The velocity gradient tensor is Aij = ∂ui/∂xj, and || · ||
denotes the Frobenius norm. The zero-discriminant lines are determined according to
Q∗3 + 27R∗3/4 = 0. It has been well established that the Q∗–R∗ PDFs have a characteristic
teardrop shape (i.e. a Vieillefosse tail) (Vieillefosse 1984) in various turbulent flows, with
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Figure 12. Joint PDFs of the velocity gradient invariables Q∗ and R∗. The solid contours show the clear
LES data, while the coloured dashed lines show (a) filtered LES results, (b) tomo-PIV data and (c) the DA
reconstruction. White dashed lines in the third and fourth quadrants represent the zero-discriminant lines Q∗3 +
27R∗3/4 = 0. The PDFs are normalised by the mean values on the Q∗–R∗ plane.

a high probability of occurrence along the right discriminant line. This characteristic
probability map represents the predominance of sheet-like structures in the fourth quadrant
and that of vortex stretching in the second quadrant. In this study, Q∗–R∗ maps are
calculated using all the flow instantaneous fields in the region of r/D < 0.75. A map of the
clear LES data is plotted using solid contours in each panel of figure 12 for comparison.
Figure 12(a) shows that both the clear and filtered LES data have the well-known teardrop
shape in the Q∗–R∗ plane, whereas the filtered flow has a slightly slimmer tail indicating
fewer sheet-like structures and less vortex compression effects. However, there is an
appreciable difference in the tomo-PIV data, where the predominant occurrences of the
high PDFs are located slightly above the discriminant lines, as shown in figure 12(b).
Misalignment in tomo-PIV data has previously been observed (Khashehchi et al. 2010)
but with high PDFs slightly below the discriminant lines. This misalignment is obviously
case-dependent, whereas tomo-PIV invariably fails to capture the detailed turbulence
dynamics. The DA reconstruction produces a Q∗–R∗ map having a well-organised teardrop
shape, which is shown in figure 12(c) and is more like the filtered LES results. This
implies an improvement of the DA procedure in turbulence reconstruction even though
the improved reconstruction can be hardly distinguished from the vortical structures, as
shown in figure 11. Additionally, there is a slight difference, with a sharper Vieillefosse
tail, relative to both the clear and filtered LES data. In contrast, Vieillefosse tails were
observed to be shorter and blunter in the work of Li et al. (2019) owing to the use of
different DA algorithms.

The filtered flow uLES̃ is then subtracted from the clear LES fields to derive the
small-scale structures, which can be added to the tomo-PIV observations for the SS
injection. To remove the correlation between the injected small scales and the tomo-PIV
snapshots, a time shift of 0.5 s (approximately 4.5 turnovers of the largest-scale jet
oscillation) is applied for the observations in the cases of DA-SS and DA-SSN. This
approach is analogous to real tomo-PIV work where small-scale information is injected
from independent numerical data. Recalling that the SS injection from initial fields is
subject to extremely expensive computation, taking 15 days to determine a single initial
field in a long DA window as noted by Li et al. (2019), the observation injection in the
present study requires less than 5 minutes to determine each optimal field on a desktop
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Figure 13. Instantaneous vorticity magnitude contours and vortical structures (Q = 3000) of the observations
(a–c) and DA reconstructions (d– f ): (a) tomo-PIV observation, (b) tomo-PIV observation with SS injection,
(c) tomo-PIV observation with SS injection and noise, (d) DA-Tomo, (e) DA-SS and ( f ) DA-SSN. The instant
at the terminal of a DA window is taken.

computer, with the number of computational grid elements being twice that used by Li
et al. (2019). This SS injection is principally achieved by the adjoint source, which transfers
the large-scale information from the observations to the primary flow quantities, with the
system equations serving as the physical filter for the vortex correction and noise removal.
A qualitative understanding of the DA reconstruction for small scales recovery is acquired
from figure 13, which presents different observations and the DA results. It is noted that
the Q value (3000) used to show the three-dimensional vortical structures is much larger
than that used for figure 11. The tomo-PIV field and its DA result in figure 13(a,d) thus
show few vortical structures and a low vorticity magnitude with much emphasis on the
small scales in the cases of SS injection. Recalling that the regularisation coefficient α is
selected to minimise the difference between the mid-time and terminal-time reconstructed
fields and for de-noising in noisy cases, the DA reconstructions in figure 13(e, f ) have a
certain attenuation of the vorticity magnitude relative to the observations in figure 13(b,c)
but are still considerably higher than those in the tomo-PIV field. These results are clear
demonstrations of SS injection, with small-scale structures regenerated in the DA fields
differing from those in the observations. The authenticity of these reproduced small-scale
turbulence dynamics is thus evaluated subsequently.

The joint PDFs of the invariants Q∗ and R∗ of the observations and DA results are
shown in figure 14. These invariant maps are computed according to (4.7) and (4.8). The
invariant map of the clear LES data is plotted in each panel for comparison. It is observed

978 A14-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.972


C. He, X. Zeng, P. Wang, X. Wen and Y. Liu

0.4

0.2

–0.2

–0.4

0Q∗

Q∗

0.4

0.2

–0.2

–0.4
–0.08 –0.04 0 0.04

0

Contours

Coloured lines

2

2

4

4

6

6

8

8

10

10

0.08 –0.08 –0.04 0 0.04 0.08

–0.08 –0.04 0 0.04 0.08 –0.08 –0.04 0 0.04 0.08

0

0.4

0.2

–0.2

–0.4

0

0.4

0.2

–0.2

–0.4

0

(b)(a)

(d )(c)

R∗ R∗

Figure 14. Joint PDFs of the velocity gradient invariables Q∗ and R∗. The solid contours show the clear
LES data, while the coloured dashed lines show (a) tomo-PIV observations with SS injection, (b) tomo-PIV
observations with SS injection and noise, (c) the case of DA-SS and (d) the case of DA-SSN. White dashed
lines in the third and fourth quadrants represent the zero-discriminant lines Q∗3 + 27R∗3/4 = 0. The PDFs are
normalised by the mean value on the Q∗–R∗ plane.

that with SS injection, the tomo-PIV generates the teardrop shape of the invariant map
much better than the original measurements (figure 14a). The Vieillefosse tails shift onto
the right discriminant line but are still shorter than those of the clear LES data. The noise
greatly deteriorates the map pattern such that the characteristic teardrop shape is not seen,
as shown in figure 14(b). The induced error is prone to raise the high-PDF regions in the
third and fourth quadrants above the discriminant lines, which is also seen in the original
tomo-PIV data in figure 12(b). Despite the unphysical turbulence in the observations,
DA is able to improve the dynamical feature substantially, resulting in the well-organised
teardrop shapes of PDFs on the Q∗–R∗ plane as shown in figure 14(c,d).

An important feature of velocity gradients in turbulence flows is the alignment of
the vorticity along the eigenvectors of the strain-rate tensor Sij (Ashurst et al. 1987).
This alignment largely determines the vortex stretching term Sijωiωj, which is the main
source of the enstrophy growth. By examining the PDFs of the cosines of angles between
the vorticity vector and the eigenvectors of Sij (i.e. |ê1 · ω̂|, |ê2 · ω̂| and |ê3 · ω̂|, where
the eigenvectors ê1, ê2 and ê3 are arranged in descending order of the corresponding
eigenvalues λ1 > λ2 > λ3, and ω̂ denotes the normalised vorticity vector), the preferential
alignment of ω̂with ê2 is observed. Checking the vorticity alignments in the different fields
provides a useful means for assessing the effectiveness of the DA scheme in recovering the
turbulence dynamic features. Figure 15 shows that the alignment of the vorticity vector
with each eigenvector in the clear LES data has a tendency similar to that in a turbulent
jet, as shown by Buxton & Ganapathisubramani (2010), and to that in spatially developing
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Figure 15. Alignment of the vorticity vectors with the eigenvectors of the strain-rate tensor. (a) Alignment with
the first (extensive) eigenvector, (b) alignment with the second (intermediate) eigenvector and (c) alignment
with the third (compressive) eigenvector. The ordinate scales differ across panels.

flow, as shown by Gomes-Fernandes, Ganapathisubramani & Vassilicos (2014), with the
preferential alignment of the vorticity being along the second eigenvector. For other data in
figure 15, there are certain discrepancies of the alignments compared with the clear LES.
The vorticity alignments in the case of DA-tomo-PIV have a tendency almost identical
to that of the original tomo-PIV results except for the third eigenvector, where there is a
slight improvement, as shown in figure 15(c). This suggests that the DA procedure hardly
changes the vortex orientation when using the tomo-PIV data as observations due to an
absence of small-scale vortices. The SS injection improves the vorticity alignment with the
first eigenvector, as shown in figure 15(a), whereas the case of DA-SS further augments the
alignments with the second and third eigenvectors, as shown in figure 15(b,c). We see here
evidence for the dynamic feature enhancement of small-scale turbulence structures; this is
more conspicuous when there is noise in the observations, as the alignment is improved
substantially in the case of DA-SSN from a rather poor tendency in the noisy observations.

Another important feature of turbulence flows is the modulation of the small-scale
vortices by the large-scale gradients. Many studies have shown that large-scale structures
modulate small scales both in amplitude and frequency (Mathis, Hutchins & Marusic
2009; Ganapathisubramani et al. 2012; Fiscaletti, Ganapathisubramani & Elsinga 2015)
rather than the scales being independent of each other as had long been considered. In
jet flows, the small-scale signal has a stronger amplitude for positive fluctuations of the
large-scale signal independently of the radial location (Fiscaletti et al. 2015). There is also
preferential alignment between the vorticities on the small and large scales, indicating that
the vorticity direction does not vary appreciably across the scales (Fiscaletti et al. 2016).
This body of research suggests that the anisotropy of the large scales is partially preserved
at the small scale, which seems to be in contrast with the local isotropy hypothesis (Pope
2000). The small scales have been defined to be smaller than the Taylor length scale λT .
Fiscaletti et al. (2016) reported that the scale modulation was weakened at larger scales
but remained appreciable at scales up to 3λT . Inspection of the scale modulation of the
DA results is thus important in evaluating the DA scheme on the accurate recovery of the
scale organisation in the cascade mechanism.
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Figure 16. Modulation and alignment of vortices at different scales. (a) Local vorticity root mean square A∗
gL

conditioned on the fluctuations of the large-scale gradients g∗
L. (b) Alignment of large-scale vorticity vectors

with small-scale vorticity vectors.

Following Fiscaletti et al. (2016), the amplitude modulation is assessed by defining the
local vorticity root mean square A∗

gL and the large-scale velocity gradient g∗
L as

A∗
gL(x) =

√√√√ 1
N

N∑
i=1

(||ωi − ω̃||), (4.9)
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L(x) = 1
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Here, A∗
gL is a measure of small-scale vortical structures whereas g∗

L(x) only includes the
shear components of the large-scale velocity gradients. Both quantities are normalised
by the corresponding mean values. The tilde denotes the large-scale quantities in each
dataset, and N is the number of nodes in the filtering window where the large scales
are computed. Herein, the definition of large scales is not straightforward, as simply
imposing filters does not give a reasonable and clear separation of the different scales
in the present jet. In the clear LES, noisy LES and DA-Noisy5e-5 results, the filtered
LES results obtained using a filter size of 7 × 7 × 7 elements on the DA grid (as shown in
figure 11c) are taken as the large scales. The tomo-PIV original data are used as large scales
for observations of SS injection and SS injection with noise. In the DA-SS and DA-SSN
cases, the DA-Tomo results are used as large scales. With these definitions, the filter size is
estimated to be approximately 3λT using the dissipation formulation of (3.1), and the scale
modulation should still be appreciable according to the above discussion. Statistics of the
activity at small scales conditioned on the large-scale gradients are shown in figure 16(a).
Computations are performed in the region of r/D ≤ 0.75. The results show that the clear
LES results have a nearly linear correlation as obtained by Fiscaletti et al. (2016) for
0.5 < g∗

L < 2.5. This confirms that large-scale gradients strongly modulate small-scale
structures. Even with a high level of noise in observations with attenuated correlation (see
‘Noisy LES’), this modulation is substantially improved in the case of DA-Noisy5e-5. The
accuracy of the modulation recovery by DA is indeed region-dependent, as much better
recovery can be observed (not shown here) by checking only the jet shear layer region at
r/D ≈ 0.5. It is seen that in the case of DA-SS, there is notable improvement relative to
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the SS-injected observations even with temporally sparse observational data. A loss of the
scale modulation in the SS injection with and without noise is expected as the large- and
small-scale structures are fully uncorrelated. Data assimilation improves the modulation
properties regardless of the observational noise. This modulation recovery is an important
criterion with which to assess the DA scheme in the reconstruction of real turbulence even
when the small-scale structures are synthetic or contaminated with noise in measurement
applications.

The modulation is also reflected in the vortex alignment between the small- and
large-scale structures. The PDFs of the cosine of the angle between large and small scales
(expressed as |ωL · ωS|) are plotted in figure 16(b). It is seen that in the clear LES data,
the small-scale vortices have a preferential alignment with the large-scale vortices, as
demonstrated by the rapid increase in the PDFs as |ωL · ωS| approaches 1. We also see
that this alignment is almost fully recovered even with noisy observations in the case
of DA-Noisy5e-5. There is nearly no alignment correlation of different scales in the
observations of SS injection and that with noise, with PDFs being almost horizontal in
the range of 0 ≤ |ωL · ωS| ≤ 1. This is further evidence that the small- and large-scale
structures are independent in the original SS-injected observations. However, the vortex
alignment is clearly improved by DA with the PDFs increasing at large values of |ωL · ωS|.

4.3. Lagrangian particle tracking through STR reconstruction
One of the motivations of the present study on STR reconstruction is to establish
an auxiliary role for the successive prediction of particle positions in 4D-PTV.
Four-dimensional PTV relies on the successive tracking of densely distributed particles
at different instants to form long trajectories. This greatly increases the spatial resolution
of the velocity vectors and improves the measurement accuracy by eliminating ghost
particles that exist in tomo-PIV measurements, when using the same instrument
configuration. The shake-the-box (STB) technique (Schanz, Gesemann & Schrder 2016)
is a representative 4D-PTV technology that predicts the new particle positions after the
trajectory initialisation, followed by position perturbation for the iterative correction.
Physically constrained interpolation schemes are adopted to reconstruct velocity fields
on an Euler grid (Gesemann et al. 2016; Schneiders & Scarano 2016). However, a
high frequency of camera imaging (i.e. small displacements of the particles at two
successive sampling instants) is required to identify the same particles in the image
sequence (i.e. particle pairing) (Khojasteh et al. 2021). This requirement limits the use
of the STB technique to low-speed flows for currently available measurement devices.
Lagrangian particle tracking largely depends on the particle prediction for the next instant
before the position correction (shaking). A Wiener filter (Wiener 1949) is used in the
prediction phase of the STB technique, with the accuracy of prediction deteriorating
drastically for short trajectories and large particle displacement (Schanz et al. 2016).
Although a multi-pulse strategy using more cameras and lasers overcomes this difficulty
by equivalently increasing the sampling rate and thus reducing the particle displacement
(Manovski et al. 2021), we prefer less expensive methods based on STR reconstruction
for artificially increasing the imaging frequency. This relies on the accurate recovery
of the detailed turbulence between the two given snapshots, which can be tentatively
determined by either tomo-PIV or conventional PTV using the double-exposure mode
of the cameras. Although the practice of this measurement strategy is left as a topic of
future study, Lagrangian particle tracking using the existing flow fields is evaluated here
as a preliminary demonstration.
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Figure 17. Particle prediction errors in the clear DA cases at the terminal instant: (a) window length �T =
30�t, (b) window length�T = 20�t and (c) window length�T = 10�t. Results are averaged in the azimuthal
direction.

Once the velocity fields are obtained, the new particle position xt is computed from the
previous position xt−1 and previous local velocity ut−1 as

xt = xt−1 + ut−1 · (�t or �T). (4.11)

The time step of the DA computation �t or the time interval of the observations (DA
window length) �T is used in (4.11) depending on the data used in different cases. This
particle tracking formulation neglects various forces exerted on the particles by the fluid
or adjacent particles; i.e. particles are distributed at a certain distance from each other and
fully follow the flow as required for particle seeding in 4D-PTV measurements. We assume
that the terminal field has been iteratively corrected in real experiments but includes a
certain level of error. This implies that the terminal field does not need to be strictly
accurate in using the present STR reconstruction. The particle prediction using the field of
POD optimal reconstruction (Appendix C) and the Wiener prediction (Schanz et al. 2016;
Tan et al. 2019) are evolved for comparison.

Prediction errors are evaluated at the terminal instants in different DA windows using
the clear DA cases. This evaluation demonstrates the best prediction that the DA can
achieve using the present STR reconstruction strategy. To compute the error, particles
are initialised at different radial and streamwise locations before they are convected
downstream until the terminal instant in the DA window. The errors are computed as the
distance from the predicted particles to the true particles at the terminal instant, and they
are normalised using the voxel size in the tomo-PIV measurement as mentioned in § 3.2.
Figure 17 shows the azimuthally averaged prediction errors for different lengths of the
DA window. The largest error is found to be 13 voxels in the upstream region when the
window length �T = 30�t as shown in figure 17(a). This clearly demonstrates that the
error decreases as the location moves downstream and the window size decreases. For a
window length �T = 20�t as shown in figure 17(b), the error is smaller than 6 voxels at
all the considered locations, and the error becomes less than 2 voxels in the downstream
half-domain when the window length is reduced to �T = 10�t as shown in figure 17(c).

Particle prediction is performed for each DA window independently in noisy cases as
shown in figure 18; i.e. the particles are moved to the true positions (black dots on the true
track) at each initial instant and the errors are evaluated at the terminal instant in a DA
window. Data assimilation needs only two flow snapshots to compute the track whereas
the Wiener prediction requires at least four previous positions for track initialisation and
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Figure 18. Particle prediction and position errors at different times: (a) three-dimensional tracking process
and (b) errors at each terminal instant. The true track is computed using the clear LES data whereas the DA
prediction is based on the case of DA-Noisy5e-5.

many more historical positions for improved accuracy. At time t = 0, two particles are
initialised at r/D = 0 and r/D = 0.5 on the inflow surface. Figure 18(a) shows the seventh
to the tenth true positions of the centreline particle. The true trajectory is computed
using the clear LES data with time interval �t in (4.11), but the time interval between
two successive black dots shown in figure 18(a) is �T = 20�t. The fifth-order Wiener
prediction is applied using all the previous true positions with a time interval �T , as we
assume that only the down-sampled observations are known. It is seen that the Wiener
prediction using the previous eight true positions determines the ninth position far from
the truth; this also occurs for the prediction of the tenth position. The small red dots denote
the DA prediction in the case of DA-Noisy5e-5 with short-time marching realised through
STR reconstruction. This prediction is thus more accurate, being much closer to the true
positions. Figure 18(b) presents the error evolution with time. It is seen that the error in
the DA prediction decays with time as the particle convects downstream. The largest error
is approximately 30 voxels in the upstream region. The error decay in the DA prediction is
mainly due to the increase in accuracy of the STR reconstruction in the downstream region.
The Wiener prediction has an error greater than 100 voxels in the upstream region and
decays as more historical information becomes available. However, the error in the Wiener
prediction remains higher than that in the DA prediction even at the last several instants.
Indeed, the Wiener prediction improves when there are more historical data, but it is not
applicable as the particles exit the measurement domain on excessively long trajectories.
The DA procedure is thus preferable over the Wiener filter for particle prediction with long
time intervals.

Figure 19 shows the particle prediction error for conditions closer to those of a real
experiment subject to various flow measurement errors. The computational procedures are
similar to those used in obtaining the results in figure 17 but involve further averaging
across all the DA windows. The noisy LES and tomo-PIV results are computed using
the time-sparse flow data with the time interval �T = 20�t as if the high-sampling-rate
fields were not available, whereas all DA predictions use the time interval �t. The case
of DA-Clear20 is reproduced here as a lower bound for the present STR strategy, and the
POD optimal reconstruction, which yields much higher particle error, is also shown for
comparison. The particle prediction using the tomo-PIV fields, which has been widely
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Figure 19. Particle prediction errors in different cases at the terminal instants of DA windows with �T =
20�t: (a) x/D = 1, (b) x/D = 3 and (c) x/D = 5. Results are averaged in the azimuthal direction and in
different DA windows.

used in conventional PTV algorithms, has errors larger than 15 voxels in most of the
measurement domain. The DA predictions in the cases of DA-SS and DA-SSN have errors
similar to the error in the tomo-PIV results, whereas the DA prediction in the case of
DA-Tomo has slightly less error owing to the STR reconstruction with a much smaller
time step. Among all the discussed DA approaches, the case of DA-Noisy5e-5 is the most
promising and has a particle prediction error much smaller than that of tomo-PIV used in
conventional PTV algorithms. This DA case, with particle error smaller than 10 voxels,
is thus much more suitable for Lagrangian particle tracking in a fluid with high particle
density than the Wiener prediction. Additionally, this suggests that the uncorrelated SS
injection does not benefit the particle tracking. Thus, correct small-scale structures should
be included in the observations to improve the particle prediction; this can be done
iteratively and is left for future work.

5. Conclusions

This study adopted 4D-Var-based data assimilation to reconstruct flow fields with high
temporal resolution from time-sparse flow snapshots of a turbulent jet at Reynolds number
Re = 6000. The highly resolved LES data were used to produce synthetic measurements
that were used as observations and for validation. The DA procedure was decoupled into
three phases to assimilate the initial condition, inflow boundary condition and model
error separately. In the model error phase, 4D-Var was adopted by computing the primary
and adjoint equations in a forward manner and backward manner, respectively, in a DA
window between two observations with time interval �T , which was much longer than
the computational time step �t. The STR reconstruction could thus be realised after
the computation. The 4D-Var was performed in each window successively with all the
intermediate quantities stored in memory, and high computational efficiency was thus
achieved together with a newly proposed ALSD technique.

Different types of observation were used to evaluate the STR reconstruction of the
present DA method. The first type of observation was down-sampled LES data containing
many small-scale turbulence structures with or without synthetic noise. These data were
considered suitable for evaluating the capacity of the present DA method in the STR
reconstruction of turbulence details beyond the Nyquist limit. For clear LES observations
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with different window lengths, the flow instantaneous fields at the terminal instants were
well recovered by DA, while the largest error was observed at the middle instant in each
DA window. Even at the middle instant, the error was less than 25 % of that of the POD
optimal reconstruction. Noisy cases (DA-Noisy5e-5, DA-Noisy5e-6 and DA-Noisy5e-7)
demonstrated that the de-noising capacity of the present DA was strongly associated with
the regularisation coefficient α. A good estimation of α was that it was approximately
equal to or smaller than 1/λ0

ξ , where λ0
ξ is the initial steepest descent step length of the

model error. It was found that α = 1/λ0
ξ yielded a good balance between the noise removal

and small-scale recovery in the noisy cases. The PDF of the streamwise component of
the model error term ξx had a notable bias in the positive direction, providing good
compensation for the pressure gradient difference between the truth and prediction. The
temporal variation of the flow showed that small-scale structures were well recovered
even with noise contaminating the observations. The spectra were resolved to a frequency
approximately one order higher than that captured by the observations within the Nyquist
limit.

The second type of observation was low-sampling-rate tomo-PIV data with or without
SS injection. These data were obtained by synthesising the particle images from the
LES results and then conducting a virtual experiment using the tomo-PIV algorithm.
Additionally, small-scale structures were reconstructed by adding uncorrelated synthetic
turbulence to the tomo-PIV results. The tomo-PIV results showed vortical structures
different from those of the filtered LES data when using a similar filter size, although the
statistical results were similar. This suggests that the PIV results were more complex than
the spatially averaged results obtained from the ground truth. Data assimilation showed
strong noise removal and divergence correction capacities on tomo-PIV data. Also, DA
had the important feature of correcting the dynamic behaviours of the turbulence structures
even when the small-scale structures were injected from uncorrelated external data. This
feature was manifested by the reproduction of teardrop-shape joint PDF maps of the
velocity gradient invariables and the preferential alignment of the vorticity vector with
the second eigenvector of the strain-rate tensor. The modulation between the large-scale
gradients captured by tomo-PIV and the small-scale structures injected externally was
improved. The small-scale vortices exhibited remarkable alignment with the large-scale
vortices after the DA procedure even though they were originally uncorrelated in the
observations with SS injection.

Lagrangian particle tracking through STR reconstruction is a promising method for
PTV conducted at a high flow speed. This study evaluated the particle prediction error
in different DA cases. The results showed that in the clear DA cases, the largest particle
error was approximately 13 voxels at a window length of �T = 30�t. The particle error
decreased to 2 voxels at a window length of �T = 10�t. In particle prediction in noisy
cases, the largest error was less than 25 % of the prediction using the Wiener filter with
a window length of �T = 20�t. The particle prediction was not improved in tomo-PIV
DA cases with the injection of small-scale structures. The present results suggest that the
authenticity and correlation of the small-scale turbulence in observations are important to
particle prediction. Such authenticity and correlation can be achieved adopting advanced
measurement techniques, which is left as future work.
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1. First guess for s at t = t0.
2. Calculate the adjoint source −2γ [s − H[uobs(t0)]]/U2

0 .
3. Compute v(t0) using (2.7) and (2.8) and v(t0 +�t) = 0.
4. Update s using (2.18).
5. Calculate the residual εs = ||s − H[uobs(t0)]||/||H[uobs(t0)]||.
6. Stop in the case of convergence. Otherwise, use the new s and go to step 2.

Table 2. The DA procedure for the initial condition.

1. Set ξ = 0.
2. Extract uin(t0 +�T) from H[uobs(t0 +�T)].
3. Set n = 0.
4. First guess for s at t = t0 +�T − n�t −�t.
5. Compute u(t0 +�T − n�t) using (2.1) and (2.2) and s from step 4.
6. Calculate the adjoint source as −2γ [u − H[uobs]]/U2

0 at t = t0 +�T − n�t.
7. Compute v(t0 +�T − n�t −�t) using (2.7) and (2.8) and
v(t0 +�T − n�t +�t) = 0.

8. Update s at t = t0 +�T − n�t −�t using (2.18).
9. Compute u(t0 +�T − n�t) using (2.1) and (2.2) and s from step 8.
10. Calculate the residual εs = ||u − H(uobs)||/||H(uobs)|| at t = t0 +�T − n�t.
11. In the case of no convergence, go to step 7 and iterate.
12. In the case of convergence, at t = t0 +�T − n�t −�t, set uobs = s and extract

uin from s. Set n = n + 1 and go to step 4 for reverse recursion.
13. If n = �T/�t − 1, stop.

Table 3. The DA procedure for the inflow boundary condition.

Author ORCIDs.
Chuangxin He https://orcid.org/0000-0001-7953-9380;
Xin Zeng https://orcid.org/0000-0002-9262-777X;
Peng Wang https://orcid.org/0000-0002-4589-0137;
Xin Wen https://orcid.org/0000-0002-6642-5955.

Appendix A. Segregated DA procedures

The initial condition can be assimilated using the observation at the start time of the DA
window. In each iterative loop, the adjoint velocity v and adjoint pressure q are solved
using (2.7) and (2.8), before the initial condition is updated using (2.18). In this strategy,
the primary (2.1) and (2.2) are not solved and ξ is thus not required. The computational
procedure is presented in table 2.

The above DA procedure assimilates a filtered initial field that fulfils the divergence-free
condition and best fits the provided observation at the same instant. When this strategy is
used for the assimilation of the flow realisation before the observation, the inflow boundary
condition of the previous time step can be extracted from the assimilated initial field.
This provides a computational strategy for assimilation of the inflow condition that is
realisable in the present study. The computational procedure is presented in table 3. For
the inflow DA procedure, the model error ξ is neglected because it does not cause an
appreciable discrepancy for a short-time prediction. The historical inflow information
strongly relates to the flow field immediately downstream of the inflow boundary.
The adjoint equations propagate the primary flow information upstream to the inflow
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1. Set ξ = 0.
2. Forward integrate equations (2.1) and (2.2) from t = t0 +�t to t0 +�T .
3. Calculate the residual εξ = ||u − H(uobs)||/||uobs|| at t = t0 +�T .
4. In the case of convergence, stop.
5. In the case of no convergence, calculate the adjoint source −2γ [u − H[uobs]]/U2

0 at time t0 +�T .
6. Backward integrate equations (2.7) and (2.8) from t0 +�T to t0 using v(t0 +�T +�t) = 0.
7. Update ξ at each time step using (2.17).
8. Forward integrate (2.1) and (2.2) from t0 +�t to t0 +�T .
9. Go to step 3.

Table 4. The DA procedure for the model error.

Primary equations

Initial

observation 

Terminal

observation 

DA window, �T 

Adjoint equations

v = 0

STR  reconstructions   

�t

t

Set the DA window

[t
0, t0 + �T ]

DA for s at t
0

(table 1)

DA for uin
(table 2)

DA for ξ

(table 3)

w = 1,2,3,...

Loop for the next  window

[t
0 + w�T, t0 + ( w + 1)�T]

1 2 3 4 5

(a)

(b)

Figure 20. Schematic of the DA routine for STR reconstruction. (a) Computation process for the model error
assimilation. (b) Routine for multi-window batch processing.

surface and thus determine the inflow condition in the manner of time reversal recursion.
However, the error accumulation causes a certain discrepancy for early-time flow recovery;
this is extensively assessed in Appendix B.

The model error ξ can be assimilated after the determination of the initial and inflow
boundary conditions. This is done through the forward and backward integration of the
primary and adjoint equations, respectively, in a selected DA window from time t0 to
t0 +�T . The computational procedure is presented in table 4. There are observations
only at the initial and terminal instants of the DA window with time interval�T , as shown
in figure 20(a). The time step of the DA computation�t is at least one order of magnitude
smaller than �T . The terminal time for solving the adjoint equations is shifted to t0 +
�T +�t, at which instant the terminal condition v = 0 is applied; this treatment avoids ξ
being zero when computing the primary equations at t0 +�T . The adjoint source is only
applied at instant t0 +�T and the adjoint flow develops freely with upstream advection.
The STR reconstruction is thus achieved by obtaining the flow instantaneous fields with
time interval �t.
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Figure 21. Cross-correlation coefficients of the reconstructed velocity fields with the clear LES data on the
inflow boundary for the case DA-Clear30: (a) x component, (b) y component and (c) z component. Different
ordinate scales are used in the panels for clear illustration.

Figure 20(a) shows the forward and backward integrations of the present DA algorithm
for STR reconstruction. Prior to this, the DA for initial and inflow conditions should
be performed. It is noted that the DA for the initial condition needs be conducted only at the
start time of the first window, while the terminal field is used to initialise the computation
in the next adjacent DA window. The routine for the multi-window batch processing is
shown in figure 20(b), with the notation w increasing to iterate over all DA windows.
It is noted that this segregated DA strategy is necessary for the present application
with time-sparse observations, as simultaneous assimilation of all the quantities would
result in an indeterminacy problem in which the residual evaluated at the terminal step
is insensitive to the initial and boundary conditions. The present 4D-Var algorithm is
indeed different from the sequential DA scheme in our previous work (He et al. 2020,
2022), where the backward integration was eliminated by limiting the DA window to one
computational time step. Sequential DA solves the adjoint equations only at the instants
that the observations exist and induces discontinuous variation of the flow quantities at
the observational time. It is thus inappropriate for the purpose of STR reconstruction.
Nevertheless, sequential DA is particularly suited to small-data-driven simulations with
much more confidence on the predictive model.

Appendix B. Evaluation on inflow boundary condition

The inflow boundary condition is obtained through reverse recursion starting from a
terminal time to the start time t0 = 0 using the algorithm in table 3. The accuracy of
the inflow field reconstructions is quantitatively assessed on the inflow surface using
the cross-correlation coefficient defined in (4.3). The correlations of the inflow field
reconstructed by DA in the case of DA-Clear30 with the clear LES data are shown in
figure 21 by the black solid curves. It is seen that the correlations approach 1 close to
the terminal time, i.e. t → 30�t. With the reverse recursion, the correlations gradually
decrease as time marches from t = 30�t to 0. This error most probably results from
neglecting the model error in the inflow DA phase. For the present window length
�T = 30�t, the overall evaluation of the correlation should be the accumulative mean
computed by averaging each correlation coefficient throughout the DA window. Common
sense suggests that the overall correlation increases with the increasing sampling rate of
the observations. If the start time is selected at t instead of time zero, the length of the DA
window decreases to �T − t. The accumulative mean should be computed by averaging
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over the range [t,�T]. By varying the start time t, the accumulative mean is obtained
as shown by the red dashed curves. The accumulative mean is larger than the correlation
coefficient (black solid curve) due to the strong correlation of the inflow data near the
terminal time which has been averaged in the accumulation. This accumulative mean is
thus more appropriate for the quality assessment of the inflow condition reconstructed by
DA. It is noted that the correlation in the x direction remains appreciably higher than those
in other directions owing to the jet mainstream.

In POD reconstructions, we select the clear LES data with the time interval�T − t, and
STR can be achieved by interpolating the model coefficients before the reconstruction.
In the POD optimal reconstruction, the optimal number of leading modes is used for
the reconstruction (see Appendix C). The POD full mode reconstruction uses all the
modes and is equivalent to direct flow interpolation. The correlation of the inflow field
reconstructed using the clear LES data with different time intervals can be obtained by
varying time t, such that all the curves can be plotted in the same figure together with
the DA results. Figure 21 shows that the correlations of the POD optimal reconstruction
almost overlap with those of the DA results but become appreciably higher for t/�t < 10.
This suggests that the model error is dominant for DA-based inflow reconstruction at an
early time. However, the accumulative mean of the correlation remains appreciably higher
than those of all other reconstruction schemes. This suggests a better performance of the
present DA scheme in the determination of the inflow boundary condition compared with
solely data-driven POD reconstruction. Nevertheless, the POD full reconstruction using
all the modes has appreciably stronger correlation than that of the optimal reconstruction.
Although this reconstruction cannot preserve the convective properties owing to the
randomness of the small-scale structures, it can still be considered as an alternative choice
for inflow boundary conditions, especially in cases in which observations contain large
errors and noise.

Figure 21 clearly demonstrates that when the time interval of the observations is
longer than 5�t (t/�t < 25) in the cases of DA-Clear10, DA-Clear20 and DA-Clear30,
the present DA procedure determines the inflow condition much better than POD-based
reconstruction methods. This also holds in the cases of DA-Noisy5e-5, DA-Noisy5e-6
and DA-Noisy5e-7 by further calculation. Therefore, the DA reconstructions of inflow
fields are used in obtaining all the results presented in § 4.1. However, the POD full model
reconstruction is adopted to produce the inflow condition for the results discussed in § 4.2,
as the DA approach does not produce satisfactory results in the tomo-PIV cases.

Appendix C. Proper orthogonal decomposition optimal reconstruction

Super-temporal resolution can be also achieved by interpolating the temporal coefficients
ai of the POD (Sirovich 1987; Lumley 2012) mode in time before the reconstruction.
However, the fixed sampling of the observational data gives rise to chaotic variation of the
temporal coefficients for the high-order modes. Direct interpolation of these coefficients
incorrectly captures the variation of the flow; thus, the high-order mode coefficients are
usually discarded in the reconstruction. The POD optimal reconstruction provides the
best choice of the POD modes in the reconstruction procedure. The highest order of the
POD modes can be determined by the requirement that the coefficient has appreciable
autocorrelation in time with the specified sampling rate. For the ith-order mode, the
autocorrelation Caa is calculated as

Caa(i) =
∫

ai(t)ai(t +�T)
aT

i ai
dt. (C1)
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Figure 22. Autocorrelation of the mode coefficients and the accumulated energy for the clear LES data on
the inflow boundary.

Figure 22 shows the autocorrelation of the model coefficients for the clear LES data on the
inflow boundary. Other datasets can also be used for such computation. Model 0 denotes
the mean flow, the autocorrelation Caa of which equals 1. Autocorrelation Caa decreases
with an increasing mode number. Large Caa indicates that the mode coefficients vary
in time smoothly, and interpolation can thus be performed for STR reconstruction. The
critical point i = 50 is defined, through a quintic polynomial fitting of the autocorrelation
data, as the largest mode number above which Caa becomes negative. We thus use
the leading 50 POD modes for the optimal reconstruction. The critical point varies for
different datasets and should be determined separately. In the present case, the optimal
reconstruction recovers only 89.6 % of the total kinetic energy. Using all of the POD modes
leads to the POD full mode reconstruction, which is equivalent to direct interpolation on
the flow fields.
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