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Minimal subfields of elliptic curves

Samprit Ghosh

Abstract. For an elliptic curve E defined over a number field K and L/K a Galois extension, we
study the possibilities of the Galois group Gal(L/K), when the Mordell–Weil rank of E(L) increases
from that of E(K) by a small amount (namely 1, 2, and 3). In relation with the vanishing of
corresponding L-functions at s = 1, we prove several elliptic analogues of classical theorems related
to Artin’s holomorphy conjecture. We then apply these to study the analytic minimal subfield, first
introduced by Akbary and Murty, for the case when order of vanishing is 2. We also investigate
how the order of vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of
Kolyvagin.

1 Introduction

Let E be an elliptic curve defined over a number field K, and let L/K be a finite Galois
extension with Galois group G =Gal(L/K). The famous Mordell–Weil Theorem tells
us that, E(L), the group of L-rational points of E, is finitely generated. Throughout
this paper, we will focus on the “free part” of the Mordell–Weil group, that is, E(L)
modulo the torsion subgroup E(L)tors and denote the rank of this quotient by rkE(L).
The question of studying this free part of E(L) as a Z[G]-module is an appealing
one and was raised in the works of Mazur and Swinnerton-Dyer [19], Coates and
Wiles [4], and others. Toward this study, Akbary and Murty in [1] introduced the idea
of a minimal subfield: M ⊆ L, minimal, such that rkE(M) = rkE(L) and produced
explicit examples. They gave a description of the possibilities for Gal(M/K)when the
rank E(L) is small (e.g., 1, 2, and 3). In the first part of this paper, we generalize their
results from small rank to small increase in rank. We show that similar descriptions
of Gal(M/K) holds when rkE(L) = rkE(K) + t for t = 1, 2, and 3. We prove the
following theorem.

Theorem 1.1 Let L/K be a Galois extension of number fields, and let E/K be an elliptic
curve such that rkE(L) = rkE(K) + t. Let M be the minimal subfield.
(1) If t = 1, then M is a quadratic extension of K.
(2) If t = 2, then M is either a cyclic extension of K with [M ∶ K] = 2, 3, 4, 6 or a

dihedral extension of K with [M ∶ K] = 4, 6, 8, 12.

Received by the editors April 12, 2023; revised May 4, 2024; accepted May 17, 2024.
Published online on Cambridge Core May 22, 2024.
AMS subject classification: 11G05, 11G40, 11M06, 11R32, 11R33.
Keywords: Elliptic curves, Mordell–Weil rank, BSD, Artin’s holomorphy conjecture, Heilbronn

characters.

https://doi.org/10.4153/S0008439524000341 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439524000341
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-0863-663X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439524000341&domain=pdf
https://doi.org/10.4153/S0008439524000341


2 S. Ghosh

(3) If t = 3, then Gal(M/K) is isomorphic to one of the following:
Cn × Cm , where n = 2, 3, 4 and m = 1, 2,
D2p × Cm , where p = 2, 3, 4, 6 and m = 1, 2,
A4 × Cm , or S4 × Cm where m = 1, 2.

Section 2 is largely devoted to proving the above theorem starting with a precise
definition of the minimal subfield.

We then venture on a more analytic side of things. The famous Birch and
Swinnerton-Dyer conjecture connects the rank of an elliptic curve to the order of
vanishing of its L-function at s = 1. In this regard, Akbary and Murty introduced
the analytic notion of the minimal subfield in [1]. Its existence is dependent on
the holomorphy of L(E/K ⊗ χ, s) for irreducible characters χ of the Galois group.
For number fields, classical theorems of Foote–Murty and Foote–Wales, shows
holomorphy of Artin L-functions when the Dedekind zeta function has a zero of
small order. In Sections 4 and 5, we develop elliptic analogues of these theorems. For
example, we show the following.

Theorem 1.2 Let E/K be an elliptic curve and suppose that E satisfies the generalized
Taniyama conjecture over K. Let F be a Galois extension of K with solvable Galois
group G = Gal(F/K). Let χ be an irreducible character of G. Then L(E/K ⊗ χ, s) is
holomorphic at s = ω, if ω is a zero of L(E/F , s) of order r ≤ p2 − 2, where p2 is the
second smallest prime factor of ∣G∣.

We also prove that Theorem 1.2 holds for r = 2. These results establish existence of
the analytic minimal subfield when the L-function of E over the top field has a zero
of small order. Also note that these results are unconditional if we assume K = Q as
modularity is known. In Section 6, similar to the algebraic case, we investigate the
possibilities of the Galois group for the analytic minimal subfield, when the order of
vanishing at s = 1 of L(E/F , s) is 2. As an application, we show the following slight
generalization of a theorem of Kolyvagin.

Theorem 1.3 Let E/Q be an elliptic curve, and let K/Q be a solvable Galois extension.
(i) If rkE(K) = rkE(Q) + 1, then ords=1 L(E/K , s) ≥ ords=1 L(E/Q, s) + 1.
(ii) If L(E/Q⊗ χ, s) is holomorphic at s = 1, for every irreducible character χ

of Gal(K/Q) and ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1, then rkE(K) ≥
rkE(Q) + 1.

In both cases, equality holds if the algebraic and the analytic minimal subfields are equal.

We also show that the holomorphy condition in Theorem 1.3(ii) can be dropped if
E has CM.

1.1 Notation and terminology

We will be using a fair bit of group theory and representation theory of finite groups.
In this subsection, we briefly introduce the notations and terminologies we have used.
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Minimal subfields of elliptic curves 3

Throughout the paper, Cn is the cyclic group of order n, D2n is the dihedral group of
order 2n, Q8 is the quaternion group of order 8, whereas, Sn and An are, respectively,
the symmetric and the alternating group of n symbols. If V is a vector space, then
by GL(V), we denote the group of automorphisms of V. By GLn(K) (resp. SLn(K)),
we denote the group of n × n invertible matrices (resp. matrices with determinant 1)
with entries in K. When K = Fq , a finite field with q elements, we have simply written
it as GLn(q) (resp. SLn(q)). We have used PGLn(K) for the projective general linear
group, defined as GLn(K)/Z(GLn(K)). Note that, for any group G, by Z(G), we
denote the center of the group. We define ŜL2(3) to be any nontrivial semidirect
product of Q8 by a cyclic 3-group.

For a finite group G, we denote the set of all irreducible characters of G by Irr(G).
If H is a subgroup of G and χ is a character of G, then χ∣H denotes the restriction of
χ to H. Whereas, if ψ is a character of H, by IndG

Hψ, we denote the induced character
defined as

IndG
Hψ (g) = 1

∣H∣ ∑x∈G
ψ(x−1 gx), where we take ψ(x) = 0 for all x ∉ H.

We denote the usual inner product on the space of complex class functions on G by
⟨_, _⟩. It is given by

⟨α, β⟩ = 1
∣G∣ ∑g∈G

α(g)β(g).

Frobenius reciprocity theorem tells us that for any χ and ψ as above, we have
⟨IndG

Hψ, χ⟩ = ⟨ψ, χ∣H⟩H , where ⟨_, _⟩H is the usual inner product on the space of
complex class functions on the subgroup H. We denote the regular character of G
by “reg.” Note that

reg = ∑
χ∈Irr(G)

χ(1)χ.

In general, by a virtual character of G, we mean a class function∑χ∈Irr(G) aχ χ, where
aχ ∈ Z. In particular, aχ can be negative.

We have written E/K to denote an elliptic curve E defined over the field K. We
denote the L-series of E over K by L(E/K , s). If F/K is a Galois extension and χ
is a character of Gal(F/K), then the twisted L-series of E over K by χ is denoted
by L(E/K ⊗ χ, s), whereas, L(s, χ) has been used to denote the Artin L-function
corresponding to χ of Gal(F/K).

2 Algebraic minimal subfield

Definition 2.1 Let E/K be an elliptic curve, and let L/K be a finite extension (not
necessarily Galois) of number fields. Suppose that rkE(L) = r. The algebraic minimal
subfield M is a subfield with K ⊆ M ⊆ L satisfying:
(i) rkE(M) = r, and
(ii) if K ⊆ F ⊆ L with rkE(F) = r, then M ⊆ F.
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Akbary and Murty showed that for any finite extension L/K and elliptic curve
E/K, the minimal subfield M exists and is unique. Also, if L/K is Galois, then M/K is
Galois (see [1, Proposition 1]). For any finite Galois extension L/K, the Galois group
Gal(L/K) acts on E(L) ⊗Q giving us a representation (writing r = rkE(L))

ρL ∶ Gal(L/K) → GL(E(L) ⊗Q) ≅ GLr(Q).(2.1)

Proposition 2.1 Let L/K be a finite Galois extension with rkE(L) = r, and let M be
the minimal subfield. Then

ρ ∶ Gal(M/K) → GL(E(M) ⊗Q)

is faithful. Moreover, Im(ρ) is conjugate to a finite subgroup of GLr(Z).

For a detailed proof, see [1, Proposition 2]. But the essential idea is that M is
constructed as the fixed field of ker ρL .

2.1 Working with the quotient space

We will write VF = E(F) ⊗Q for any number field F. We will work with the quotient
space VL/VK instead of VL and use elementary linear algebra to prove a similar version
of the above proposition. Note that dimension of this quotient space is precisely the
increase in rank, i.e.,

dim VL/VK = rkE(L) − rkE(K).

We can then consider the quotient representation coming from the Galois action. For
the algebraic minimal subfield, this representation also turns out to be faithful.

Proposition 2.2 Let L/K be a finite Galois extension with rkE(L) = r, and let M
be the algebraic minimal subfield. If rkE(L) − rkE(K) = t, then there exists a faithful
representation

ρ̃ ∶ Gal(M/K) → GL(VM/VK) ≅ GLt(Q).

Moreover, Im(ρ̃) is conjugate to a finite subgroup of GLt(Z).

Proof By Proposition 2.1, we know there is a faithful representation ρ ∶ Gal(M/K)→
GL(VM). We can then consider the quotient representation ρ̃ ∶ Gal(M/K) →
GL(VM/VK), where ρ̃(g) ⋅ (v + VK) = ρ(g) ⋅ v + VK .

Now, let us compute ker ρ̃:

ρ̃(g)(v + VK) = ρ̃(1)(v + VK)

⇒ ρ(g)v − v ∈ VK

⇒ ρ(g) (ρ(g)v − v) = ρ(g)v − v [Since g acts trivially on VK]

⇒ (ρ(g)2 − 2ρ(g) + It)v = 0 for all v ∈ VM .

Thus, the minimal polynomial of ρ(g) divides the polynomial x2 − 2x + 1 = (x − 1)2.
Since Gal(M/K) is finite, the minimal polynomial will also divide xn − 1, where
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n = ∣Gal(M/K)∣. Thus, the minimal polynomial must be x − 1, and hence we have
ρ(g) = It = ρ(1). Since ρ is faithful, this implies g = 1. Thus ρ̃ is also faithful.

The fixed assertion is true more generally, any finite subgroup of GLn(Q) has a
conjugate in GLn(Z). For a proof, see [23, Theorem 1 and Appendix 3, p. 124]. ∎

In the next subsection, we present a number of elementary results from group the-
ory as lemmas. These together with Proposition 2.2 will help us to prove Theorem 1.1.

2.2 Results from group theory

Lemma 2.3 Let ρ ∶ G → GL2(Z) be a faithful representation.
(1) If ρ is reducible, then G ≅ Cn or, Z/2Z⊕Z/2Z, where n = 1, 2, 3, 4, 6.
(2) If ρ is irreducible, then G ≅ D2n , where n = 3, 4, 6.

Lemma 2.4 Let ρ ∶ G → GL3(Z) be a faithful representation. Then G is isomorphic
to one of the following:
Cn × Cm , where n = 1, 2, 3, 4 and m = 1, 2,
D2p × Cm , where p = 2, 3, 4, 6 and m = 1, 2,
A4 × Cm , where m = 1, 2, or
S4 × Cm , where m = 1, 2.

For proofs, see [1, Section 3].

2.3 Proof of Theorem 1.1

Proof For the t = 1 case, by Proposition 2.2, the Galois group Gal(M/K) is iso-
morphic to a subgroup of GL1(Z) = {±1}. Since the rank has increased, M ≠ K, so we
must have [M ∶ K] = 2. Applying Proposition 2.2 and the above Lemmas 2.3 and 2.4,
we directly get the t = 2 and t = 3 case. ∎

Theorem 1.1(1) is particularly interesting as it implies the following.

Corollary 2.5 In any extension of odd degree, particularly in a cubic extension, the
rank can not increase by 1. It either remains the same or jumps by at least 2.

Remark 2.6 Note that generalization to larger values of t becomes heavily reliant on
the knowledge of classification of finite subgroups of GLn(Z). However, we present
here the following easily observed result. We haven’t included it as a theorem as the
author is unsure of whether or not it is vacuous.

Let L/K be a solvable Galois extension of degree n such that rkE(L) = rkE(K) +
t, where t is odd. Let M be its minimal subfield. If the quotient representation
ρ̃ ∶ Gal(M/K) → GLt(Q) is irreducible, then t ∣ n. The proof follows from the two
results stated below.
(a) Let G be a finite group. The degree of every irreducible representation of G over

an algebraically closed field k of characteristic 0, divides the order of G.
For a proof, see [25, Section 6.5].
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(b) Theorem (Dixon) Let G be a finite solvable irreducible subgroup of GLn(K),
where K is a real field and n is an odd integer. Then G is absolutely irreducible.

For a proof, see [6, Theorem 1] and [7].
Note that by absolutely irreducible, we mean that G is irreducible over the algebraic

closure K of K. If in fact, t = p is prime, then the above mentioned papers of Dixon
will provide a nice description of the Galois Group. But we think that requiring ρ̃ to
be irreducible for larger ranks, might be asking too much!

3 Analytic minimal subfield

In this section, we focus on the analytic counterpart of the algebraic minimal subfield.

Definition 3.1 Let E/K be an elliptic curve, and let F be any finite extension of K.
For each zero ω of L(E/F , s), the analytic minimal subfield Fω is a subfield of F with
K ⊆ Fω ⊆ F such that:
(i) ords=ω L(E/Fω , s) = ords=ω L(E/F , s), and
(ii) if K ⊆ M ⊆ F and ords=ω L(E/M , s) = ords=ω L(E/F , s), then Fω ⊆ M.

Proposition 3.1 If F/K is Galois with Galois group G and L(E/K ⊗ χ, s) is holomor-
phic at s = ω for any irreducible character χ of G, then Fω exists and is Galois over K.

For a detailed proof, see [1, Proposition 6]. We briefly mention the construction
here, as we will be using this in Section 6. The idea is to consider those characters for
which the twisted L-function vanishes at ω, i.e.,

Zω = {χ ∣ L(E/K ⊗ χ, ω) = 0}.

Then define

Hω = ⋂
χ∈Zω

ker χ.

The minimal subfield Fω is then the fixed field, KHω of Hω in F.
Therefore from Proposition 3.1, in order to work with Fω , we first need to inves-

tigate holomorphy of L(E/K ⊗ χ, s) at s = ω. We recall some classical theorems on
Artin’s holomorphy conjecture. Let F/K be a Galois extension.

Theorem 3.2 (Stark) If s0 is a simple zero of the Dedekind zeta function ζF(s), then
L(s, χ) is analytic at s = s0 for every irreducible character χ of Gal(F/K).

For a proof, see [26, Theorem 3, p. 144].

Definition 3.2 We say E satisfies the generalized Taniyama conjecture over a num-
ber field K if the L-function L(E/K , s) is the L-function L(π, s) of a cuspidal
automorphic representation π of GL2(AK), where AK is the adèle ring of K.

Note that for K = Q, the above conjecture is known and is called The Modularity
Theorem. The name derives from the fact that if E/Q is an elliptic curve, then its
L-function L(E/Q, s) is the L-function of a modular form. In 1995, Wiles and Taylor

https://doi.org/10.4153/S0008439524000341 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000341


Minimal subfields of elliptic curves 7

first proved the conjecture for semi-stable elliptic curves defined overQ and in 2001, B.
Conrad, F. Diamond, Richard Taylor, and C. Breuil, proved modularity for all elliptic
curves defined over Q. From works of Taylor, Kisin, Wintenberger, and others, the
following result on “potential modularity” is also known: If E/K is an elliptic curve,
where K is a totally real field, then there is a totally real extension L/K such that E/L
is modular (see, for example, [3, 16, 27, 29]).

The following elliptic analogue of Stark’s theorem is due to Akbary and Murty (see
[1, Proposition 7]).

Theorem 3.3 (Akbary–Murty) Let E/K be an elliptic curve and suppose that E
satisfies the generalized Taniyama conjecture over K. Let F be a solvable extension
of K, and let χ be an irreducible character of G = Gal(F/K). Then, L(E/K ⊗ χ, s) is
holomorphic at s = ω, if ω is a simple zero of L(E/F , s).

Using this, they showed, under the same assumptions of the theorem, the analytic
minimal subfield Fω exists. Moreover, Fω is a cyclic extension of K and if ω is real,
then [Fω ∶ K] ≤ 2. Regarding Artin’s holomorphy conjecture, some generalizations of
Theorem 3.2 of Stark, are known. These results, as stated below, are due to Foote,
Murty, and Wales. They ease the condition on ω, from being a simple zero to a zero of
small order. In the next section, we will prove the elliptic analogue of such theorems.

Theorem 3.4 (Foote–Wales) Let F/K be a Galois extension of number fields with
solvable Galois group G. If the Dedekind zeta function of F, ζF(s), has a zero at s = s0
of order less than or equal to 2, then all Artin L-series L(s, χ) are analytic at s = s0 for
every irreducible character χ of G.

For a proof, see the corollary of [10, Theorem II].

Theorem 3.5 (Foote–Murty) Let F/K be a Galois extension of number fields with
solvable Galois group G, and let p2 be the second smallest prime number dividing ∣G∣. If
ζF(s) has a zero of order r at s = s0, where r ≤ p2 − 2, then L(s, χ) is analytic at s0 for
all irreducible characters χ of G.

For a proof, see [9, p. 8]. Also note that, in case ∣G∣ has only one prime factor, i.e.,
∣G∣ is a prime power, then G is nilpotent and L(s, χ) is known to be analytic in such
cases. The key idea behind both of the above two results, was an attempt in finding
minimal counterexamples to Artin’s holomorphy conjecture.

3.1 Automorphic representations and nilpotent Galois groups

Assuming the generalized Taniyama Conjecture for K, M. Ram Murty and V. Kumar
Murty in [21] proved that if F/K is contained in a finite solvable Galois extension
of K, then L(E/F , s) is holomorphic. Their result is predicted by a more general
conjecture in Langlands program which states that if π1 and π2 are cuspidal auto-
morphic representations of GLn(AK) and GLm(AK), respectively, then π1 ⊗ π2 is an
automorphic representation of GLnm(AK). This is known for m = 1, as abelian twists
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are automorphic. The GL(2) ×GL(2) case was proved by Ramakrishnan in [22] and
the GL(2) ×GL(3) by Kim and Shahidi in [15]. In [2], Arthur and Clozel proved
that the Langlands reciprocity is valid for all nilpotent Galois extensions using their
theory of automorphic induction. Therefore, assuming the generalized Taniyama
conjecture for E/K, and for an extension F/K with nilpotent Gal(F/K), we see that
L(E/K ⊗ χ, s) is automorphic for any irreducible character χ of Gal(F/K).

Recently Wong [30] have generalized the above result to certain cases of “nearly
nilpotent” and “abelian-by-nilpotent” Galois extensions. In a subsequent section,
while proving the elliptic analogue of Foote–Wales’s theorem, we will use similar ideas
to eliminate one of the possibilities.

4 Elliptic analogue of Foote and Murty’s Theorem

Theorem 4.1 Let E/K be an elliptic curve and suppose that E satisfies the generalized
Taniyama conjecture over K. Let F be a Galois extension of K with solvable Galois
group G = Gal(F/K). Let χ be an irreducible character of G. Then, L(E/K ⊗ χ, s) is
holomorphic at s = ω if ω is a zero of L(E/F , s) of order r ≤ p2 − 2, where p2 is the
second smallest prime factor of ∣G∣.

Remark 4.2 Note that if ∣G∣ has only one prime factor, then G is nilpotent. Hence
from the above discussion, L(E/K ⊗ χ, s) is known to be automorphic.

As an immediate corollary we get the following.

Corollary 4.3 Under the same conditions of the above theorem, the minimal subfield
Fω exists if ω is a zero of L(E/F , s) of order r ≤ p2 − 2, where p2 is the second smallest
prime factor of ∣G∣.

4.1 Ingredients for the proof of Theorem 4.1

The following Aramata–Brauer-type theorem was proved in [21, Theorem 2].

Theorem 4.4 Let E/K be an elliptic curve and suppose that E satisfies the generalized
Taniyama conjecture over K. If F is a solvable Galois extension of K, then L(E/F , s)
extends to an entire function and L(E/F , s)/L(E/K , s) is entire. In particular,

ords=ω L(E/F , s) ≥ ords=ω L(E/K , s).

We now list some results on finite groups and virtual Heilbronn characters that
will be used to prove Theorem 4.1.

Let F/K be a finite Galois extension with Galois group G. Let H be a subgroup of
G. Let χ and ψ denote the irreducible characters of G and H, respectively. Consider
the virtual Heilbronn characters

θG = ∑ nχ χ and θH = ∑ nψψ,

where nχ denotes the order of zero of L(E/K ⊗ χ, s) at s = ω and nψ denotes the order
of zero of L(E/FH ⊗ ψ, s) at s = ω (FH being the fixed field of H).
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Proposition 4.5 θG ∣H = θH .

For a proof, see [21, Proposition 1].

Theorem 4.6 (Blichfeldt) Let G be a finite group admitting a faithful, irreducible
complex representation ρ. If G possesses a noncentral abelian normal subgroup, then
ρ is induced from a proper subgroup of G.

For a proof, see [5, Corollary 50.7, p. 348].

Theorem 4.7 (Ito) Let G be a solvable group, and let p be a prime such that G has a
faithful character of degree < p − 1. Then G admits an abelian normal Sylow p-subgroup.

For a proof, see [8, Theorem 24.6, p. 128].

Proposition 4.8 Any solvable non-abelian group G has a normal subgroup N of prime
index such that N contains Z(G).

Proof Since G is non-abelian, G1 = G/Z(G) is a nontrivial solvable group. Let H
be a maximal normal subgroup of G1. Then G1/H is solvable and simple and hence is
cyclic of prime order. Thus, the index of H in G1 is prime. Taking N to be the pre-image
of H1 proves the proposition. ∎

We also recall the following result from Clifford’s theory (see [8, pp. 53–54]).

Proposition 4.9 Let N be a normal subgroup of G with [G ∶ N] = p, a prime. Then
for any irreducible character χ of G, either χ∣N is irreducible, or χ∣N = ∑p

i=1 ψ i , where ψ i
are distinct and irreducible characters of N. Moreover, χ = IndG

Hψ i .

4.2 Proof of Theorem 4.1

The proof is based on the idea of minimal counterexamples as that of its classical
counterpart. Assume the theorem is false and suppose F and K are chosen to form
a counterexample with [F ∶ K] minimal. Thus there exists an irreducible character
χ of G and a point s = ω such that ω is a zero of L(E/F , s) of order satisfying the
conditions in the theorem but L(E/K ⊗ χ, s) has a pole at s = ω, i.e., nχ < 0 in the
virtual Heilbronn character θG at s = ω.

Note that G can not be cyclic, since L(E/K ⊗ χ, s) is known to be analytic for cyclic
extensions F/K for every irreducible character χ of G (see, for example, the proof of
[21, Theorem 2, p. 492]).
Step 1 : Every irreducible character χ of G with nχ < 0 is faithful.

Note that by Theorem 4.4, for every field D with K ⊆ D ⊆ F, we have
ords=ω L(E/D, s) ≤ ords=ω L(E/F , s). Thus, for any character χ with a
pole at s = ω, one can consider D = Fker χ , the fixed field of ker χ. Thus,
the conditions of the hypothesis for the counterexample carries over to
D, G/ker χ and K. By minimality of ∣G∣, we must have ker χ = {1}.
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Step 2 : For all proper subgroups H of G, θH is a character of H.
We have the factorization

L(E/F , s) = ∏
χ ∈ Irr(G)

L(E/K ⊗ χ, s)χ(1).

Thus ords=ωL(E/F , s) = r = ∑χ ∈ Irr(G) nχ χ(1) = θG(1). Suppose ψ is an
irreducible character of H. Consider the L-series L(E/FH ⊗ ψ, s). By
Proposition 4.5, we have θG ∣H = θH and so θH(1) = θG ∣H(1) = r. Thus,
if ω is a pole, the triple F , H, FH forms a counterexample contradicting
minimality. Thus, for every irreducible character ψ of H, L(E/FH ⊗
ψ, s) is analytic at s = ω, in particular, nψ ≥ 0 which implies θH is a
character. Note that, by assumption, θG is not a character.

Step 3 : Any irreducible χ of G with nχ < 0, is not induced from any proper
subgroup of G.

Suppose χ = IndG
Hψ for a character ψ of a proper subgroup H of G.

Then
L(E/K ⊗ χ, s) = L(E/FH ⊗ ψ, s) =∏

ϕ
L(E/FH ⊗ ϕ, s)aϕ ,

where characters ϕ are the irreducible constituents of ψ with coefficient
aϕ . By the previous step, since H is a proper subgroup, the factors
are analytic at s = ω, in particular, L(E/FH ⊗ ψ, s) is analytic at s = ω
contradicting nχ < 0.

Step 4 : There are no faithful characters of G of degree ≤ p2 − 2. In particular, if χ
is an irreducible character of G with nχ < 0, then χ(1) > p2 − 2.

If G has a faithful character of degree ≤ p2 − 2, then by Ito’s Theo-
rem 4.7, G will have normal abelian Sylow p i -subgroups for all prime
factors p i , i ≥ 2, of G. Also, all of them will be central and hence index of
Z(G) in G will be a power of p1. In particular, G/Z(G)will be nilpotent
and hence G will be nilpotent contradicting the existence of χ.

Note that, this in particular implies G must be non-abelian.
Step 5 : We now decompose θG into three constituents θn f , θ+, and θ− as

follows:
• θn f is the sum of all constituents nλ λ of θG such that λ is an irre-

ducible character of G that is not faithful (hence the “n f ” ).
• θ+ is the sum of all constituents nψψ of θG such that ψ is an irreducible

character of G that is faithful and nψ > 0.
• θ− = ∑(−nχ)χ, where nχ χ are all those constituents of θG such that

χ is an irreducible character of G that is faithful and nχ < 0.
From Step 1, all the coefficients of θn f are nonnegative. Thus θn f is either
a character or 0. By construction θ− is a character (since there is at least
one irreducible character χ with nχ < 0) and θ+ is either a character or 0.
Also note that, by construction, ⟨θn f , θ−⟩ = 0, as well as ⟨θ+ , θ−⟩ = 0
and ⟨θ+ , θn f ⟩ = 0 and

θG = θn f − θ− + θ+.
The final contradiction will come from showing θ+ = θ−.
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Step 6 : In any finite group X, every normal subgroup appears as one of the
subgroups in a chief series X = X1 ≥ X2 ≥ ⋯ ≥ Xn−1 ≥ Xn = {1}, where
each X i ⊴ G. In particular, for our solvable G the chief factors G i/G i+1
are elementary abelian p-groups (see [14, Corollary 8.7, p. 102]). In
particular, the last chief factor Gn−1/{1} is a nontrivial abelian group.
That is, every normal subgroup of G contains a nontrivial abelian p-
group that is normal in G. We have already seen that every abelian
normal subgroup of G is central. Thus for every irreducible character
λ of G that is not faithful, ker λ ∩ Z(G) ≠ 1. By Proposition 4.8, G has a
normal subgroup N ⊇ Z(G) of prime index, say p.

Step 7 : ⟨θ−∣N , θn f ∣N⟩N = 0
First, we note that χ∣N is irreducible for every irreducible con-

stituent χ of θ−. Since, if not, then from Proposition 4.9, we have
χ∣N = ψ1 +⋯+ ψp for some irreducible characters ψ i of N and χ =
IndG

Hψ1, contradicting Step 3. Now for any irreducible constituent λ of
θn f , we have seen ker λ ∩ Z(G) ≠ {1}, i.e., λ∣N is not faithful as N ⊇
Z(G). Again by Proposition 4.9, either λ∣N is irreducible, or is induced
from irreducible constituents, thus they are also not faithful. Hence
⟨θ−∣N , θn f ∣N⟩N = 0.

Step 8 : θ+∣N = θ−∣N
By Step 2, θN is a character. Also, by Proposition 4.5, θN = θG ∣N =

θ+∣N − θ−∣N + θn f ∣N . Therefore, by Step 7, either θ+∣N = θ−∣N or θ+∣N =
θ−∣N + ϕ for some character ϕ of N. Assume the latter, then

r = θG(1) = θG ∣N(1) = ϕ(1) + θn f (1).(4.1)

Let ϕ1 be an irreducible constituent of ϕ, and hence of θ+∣N . If ψ is an
irreducible constituent of θ+ such that ϕ1 occurs in ψ∣N , we see that
ψ∣N ≠ ϕ1. This is because ϕ1(1) ≤ r by (4.1), where as ψ being faithful,
ψ∣N(1) > p2 − 1 ≥ r by Step 4. Applying Proposition 4.9 again, ψN =
ϕ1 +⋯+ ϕp . These are distinct G-conjugate irreducible characters of
N. Since, ϕ1 is an irreducible constituent of ϕ and ϕ = (θ+ − θ−)∣N is
a G-stable character of N, each ϕ i must also appear as a constituent of
ϕ. Thus, we have ψ(1) = ϕ1(1) +⋯ + ϕp(1) ≤ ϕ(1) ≤ r. This contradicts
ψ(1) = ψ∣N(1) > r computed above, thus θ+∣N = θ−∣N .

Final Step : Let g ∈ G ∖ N , and let H be the subgroup generated by g and Z(G).
Since, H is abelian, H ≠ G. Let λ be a constituent of θn f , then from Step
6, we have ker λ ∩ Z(G) ≠ {1}. Thus, the same holds for IndG

H(λ∣H).
Let χ be an irreducible constituent of θ−, hence is faithful and so
⟨χ, IndG

H(λ∣H)⟩ = 0. Hence by Frobenius reciprocity, ⟨χ∣H , λ∣H⟩ = 0 and
so, like in Step 7, ⟨θ−∣H , θn f ∣H⟩H = 0. Now θH = θG ∣H = θ+∣H − θ−∣H +
θn f ∣H . As before, either θ+∣H − θ−∣H is zero or a character and arguing in
the exact same way as Step 8, we get θ+∣H = θ−∣H . Hence, θ+(g) = θ−(g)
for all g ∈ G ∖ N . Combining this with Step 8, gives θ+ = θ−. This is a
contradiction and hence the theorem is proved.
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5 Elliptic analogue of Foote and Wales’s Theorem

Theorem 5.1 Let E/K be an elliptic curve and suppose that E satisfies the generalized
Taniyama conjecture over K. Let F be a Galois extension of K with solvable Galois
group G = Gal(F/K). Let χ be an irreducible character of G. Then, L(E/K ⊗ χ, s) is
holomorphic at s = ω, if ω is a zero of L(E/F , s) of order ≤ 2.

The proof of this theorem follows its counterpart more directly than the previous
one, because of the following theorem.

Theorem 5.2 (Foote–Wales) Let G be a finite group with a virtual character θ
satisfying the following conditions:
(1) θ(1) ≤ 2,
(2) θ is not a character of G but θ∣H is a character for every proper subgroup H of G,

and
(3) if χ is any irreducible constituent of θ such that ⟨θ , χ⟩ < 0, then χ is faithful,

nonlinear and is not induced from any proper subgroup of G.
Then θ(1) = 2 and G ≅ SL2(p), for some prime p ≥ 5, or ŜL2(3).

Note that in their notation, ŜL2(3) denotes any nontrivial semidirect product of Q8
(the quaternion group of order 8) by a cyclic 3-group. For a proof, see [10, Theorem
III].

Additionally, we are assuming that G is solvable and so G cannot be SL2(p) (p ≥ 5).
For ŜL2(3), Foote and Wales in [10, p. 229] tackles this possibility by quoting a deep
result of Langlands which shows that Artin’s holomorphy conjecture is true in the
case when G/Z(G) ≅ A4. We address this in our next proposition. The proof can be
seen as consequence of a result of Wong (see [30, Theorem 1.3]). But for the sake of
completeness, we present it here.

Proposition 5.3 Suppose that E satisfies the generalized Taniyama conjecture over K.
Let F be a Galois extension of K with solvable Galois group isomorphic to ŜL2(3). Let χ
be an irreducible character of G. Then, L(E/K ⊗ χ, s) is automorphic and hence entire.

Proof Note that Q8 ⊴ ŜL2(3) and the quotient is a 3-group, in particular, is nilpo-
tent. A result of Horváth (see [12, Proposition 2.7]) says that this makes ŜL2(3) an
“SM-group relative to Q8.” What this means in our context, is that, every irreducible
character χ of ŜL2(3), is induced from an irreducible character ψ of a subnormal sub-
group H containing Q8. Moreover, ψ∣Q8 is irreducible and hence ψ(1) = ψ∣Q8(1) ≤ 2.
Further note that, in the degree 2 case, ψ can not be the icosahedral type (recall, this
is the case when the image of the degree 2 representation in PGL2(C) is isomorphic
to A5). This is because, the only prime factors of ŜL2(3), and hence of H, are 2 and 3.
In particular, 5 is not a prime factor of H.

Now if ψ is of degree 1, then, from Artin reciprocity, ψ can be seen as an idèle class
character. If ψ is of degree 2, from theorems of Langlands and Tunnell (see [18, 28]),
ψ is associated with a cuspidal automorphic representation πψ of GL2(AKH). Since H
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is subnormal, there exists a subnormal series

H = H0 ⊴ H1 ⊴ ⋯ ⊴ Ht = ŜL2(3).

Moreover, since we assumed solvability, H i+1/H i is of prime degree. Therefore, by
repeated application of Arthur and Clozel’s theory of base change for cyclic extensions
(see [2, Theorem 4.2]), the base change map B(π) ∈ GL2(AKH) exists. Recall, we are
writing, L(E/K , s) = L(π, s). For a short exposition on the base change map, see [21,
Section 3], we’re following their notation. Now

L(E/K ⊗ χ, s) = L(E/K ⊗ IndG
H ψ, s) = L(E/KH ⊗ ψ, s) = L(B(π) ⊗ πψ , s).

Since functoriality is known in cases of GL(n) ×GL(1) and GL(2) ×GL(2), the latter
due to Ramakrishnan [22], and we saw that either ψ is an idèle class character or an
automorphic representation of GL(2), so L(E/K ⊗ χ, s) is automorphic and hence
entire. ∎

5.1 Proof of Theorem 5.1

As in Theorem 4.1, assume the statement is false and take a counterexample F/K with
[F ∶ K] minimal. Thus, there exists an irreducible character ψ of G = Gal(F/K) and
a point s = ω such that ω is a zero of L(E/F , s) of order ≤ 2 but L(E/K ⊗ ψ, s) has a
pole at s = ω.

Set θ = θG = ∑ nχ χ. Note that nψ < 0. Since we have the factorization

L(E/F , s) = ∏
χ ∈ Irr(G)

L(E/K ⊗ χ, s)χ(1) ,

so, θG(1) = ∑χ ∈ Irr(G) nχ χ(1) = ords=ωL(E/F , s) ≤ 2. Moreover, we can then carry
out Steps 1–4, as it is, in the proof of Theorem 4.1. Hence, all the conditions of
Theorem 5.2 are satisfied. But then the solvability assumption eliminates SL2(p) and
Proposition 5.3 eliminates ŜL2(3) giving us a contradiction.

6 Applications to minimal subfields

We now look at some applications of our theorems in the context of analytic and
algebraic minimal subfields.

Theorem 6.1 Let E/K be an elliptic curve, and let F/K be a finite Galois extension with
solvable Galois group G =Gal(F/K). Suppose that E satisfies the generalized Taniyama
conjecture over K and L(E/F , s) has a zero at ω of order two. Then the analytic minimal
subfield Fω exists. Further, if ω is real, then G =Gal(Fω/K) satisfies one of the following:
(i) G is either cyclic or dihedral.
(ii) Z(G) ≅ Z/2Z and G/Z(G) ≅ D2n , A4 or, S4.

Proof By Theorem 5.1, L(E/K ⊗ χ, s) is holomorphic for every irreducible charac-
ter χ of G. Hence, by Proposition 3.1, Fω exists.
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Now suppose ω is real. We have the factorization

L(E/F , s) = ∏
χ ∈ Irr(G)

L(E/K ⊗ χ, s)χ(1) .

Since ords=ω L(E/F , s) = 2, then there exists χ ∈ Irr(G) such that ords=ω L(E/K ⊗
χ, s) ≥ 1. Since ω is real, we have

ords=ω L(E/K ⊗ χ, s) = ords=ω L(E/K ⊗ χ, s).

Case I : χ ≠ χ. Hence χ(1) = 1 = χ(1). Thus, χ is one-dimensional. Then Fω , being the
fixed field of ker χ ∩ ker χ = ker χ, is cyclic.

Case II : χ = χ and χ(1) = 1. Thus, χ is a real irreducible linear character. Since the
order of vanishing of L(E/F , s) at ω is 2, there exists another such character. Hence,
Gal(Fω)/K is a subgroup of Z2 ⊕Z2.

Case III : χ = χ and χ(1) = 2. Since Fω is the fixed field of ker χ, Gal(Fω/K) admits
a faithful degree 2 irreducible representation coming from the quotient representa-
tion corresponding to χ. Let the character of this representation be denoted by χ̃.
Therefore, we know that G/Z(G) is isomorphic to a finite subgroup of PGL2(C) and
therefore is isomorphic to Cn , Dn , A4 , S4 , or A5 (see [24, Proposition 16 and Section
2.5]). By the solvability condition, A5 can be eliminated. Since χ = χ, we have χ̃ = χ̃,
and so Z(G) = {1} or Z/2Z. Now G/Z(G) cannot be cyclic as that will imply G
is abelian. Note that when Z(G) = {1}, then the only possibilities are D2n and S4.
(This is because A4 does not have any two-dimensional irreducible representations.)
Moreover, if G ≅ S4, then, by [25, Proposition 24, p. 61] (take A = A4), there are
two possibilities. We show that both of them lead to contradictions. Suppose χ̃∣A4

is isotypic (i.e., it is a direct sum of isomorphic irreducible representations). Since A4
does not have any two-dimensional irreducible representation, χ̃∣A4 is also reducible
and isotypic and so, A4 ⊆ Z(G), a contradiction. Thus, there exists an irreducible
representation ψ of A4 such that χ̃ = IndS4

A4
ψ with ψ(1) = 1. But we also know that

every representation of A4 of dimension 1 has V4 in its kernel, therefore, V4 ⊆ ker ψ.
Since V4 ⊴ S4, hence V4 ⊂ ker IndS4

A4
ψ = ker χ̃, contradicting faithfulness of χ̃. ∎

We now look at more applications of our results in relation to the celebrated Birch
and Swinnerton-Dyer conjecture. The BSD conjecture predicts that the rank of E(K)
is equal to the order of vanishing of L(E/K , s) at s = 1. Due to work of Gross and
Zagier [11] and Kolyvagin [17], this is known for K = Q and ords=1L(E/Q, s) ≤ 1. In
the next theorem, we prove a slight generalization to this result, namely, we look at
the case when rank increases by 1 in a solvable extension.

Theorem 6.2 Let E/Q be an elliptic curve, and let K/Q be a solvable Galois extension.
(i) If rkE(K) = rkE(Q) + 1, then ords=1 L(E/K , s) ≥ ords=1 L(E/Q, s) + 1.
(ii) If L(E/Q⊗ χ, s) is holomorphic at s = 1 for every irreducible character χ

of Gal(K/Q), and ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1, then rkE(K) ≥
rkE(Q) + 1.

In both cases, equality holds if the algebraic and the analytic minimal subfields are equal.
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Proof (i) Let M be the algebraic minimal subfield. By Theorem 1.1, M is a quadratic
extension of Q, say of discriminant D. Consider the twisted elliptic curve ED . Then
we have

rkE(M) = rkE(Q) + rkED(Q)

(see, e.g., [13, Proposition 20.5.4, p. 357]). Thus, rkED(Q) = 1 = ords=1L(ED/Q, s). We
also have L(E/M , s) = L(E/Q, s) ⋅ L(ED/Q, s). Thus,

ords=1L(E/K , s) ≥ ords=1L(E/M , s) = ords=1L(E/Q, s) + 1,

where the first inequality follows directly from Theorem 4.4. Note that equality holds
if M = F1 (the analytic minimal subfield at s = 1).

(ii) The holomorphy condition ensures that the analytic minimal subfield exists.
We have the factorization

L(E/K , s) =∏
χ

L(E/Q⊗ χ, s)χ(1) .

Since the order of zero increases by 1, we see that there is a nontrivial character χ of
degree 1 such that L(E/Q⊗ χ, 1) = 0. Since the analytic minimal subfield F1 is the fixed
field of ker χ, thus it is cyclic. Moreover, as ords=1L(E/Q⊗ χ, s) = ords=1L(E/Q⊗
χ, s), we have χ = χ, and so [F1 ∶ Q] = 2. Suppose F1 is of discriminant D. Since,
L(E/F1 , s) = L(E/Q, s) ⋅ L(ED/Q, s), we have ords=1L(ED/Q, s) = 1, and therefore
rkED(Q) = 1. Thus rkE(K) ≥ rkE(F1) = rkE(Q) + 1. ∎

Corollary 6.3 If ords=1 L(E/Q, s) = rkE(Q) and K/Q is a quadratic extension, then

rkE(K) = rkE(Q) + 1 if and only if ords=1L(E/K , s) = ords=1L(E/Q) + 1.

The corollary follows from the fact that in this case both of the minimal subfields
are equal to K. Also note that it is unconditional, as holomorphy of L(E/Q⊗ χ, s) is
known in cyclic case.

The holomorphy condition of L(E/Q⊗ χ) in Theorem 6.2(ii) can be relaxed if E
has complex multiplication. We discuss this next.

Let G be a finite group and H ≤ G be any subgroup. For every complex character
ψ of H, we attach a complex number n(H, ψ) satisfying:
(i) n(H, ψ + ψ′) = n(H, ψ) + n(H, ψ′), and
(ii) n(G , IndG

Hψ) = n(H, ψ).
Define θH = ∑ψ∈Irr(G) n(H, ψ)ψ. Then we have, θG ∣H = θH (see [21, Proposition 1, p.
484]). The following is proved in [20, Theorem 14].

Theorem 6.4 (M. Ram Murty) Suppose n(H, 1) ≥ n(G , 1) for every cyclic subgroup
H of G. Then

∑
χ≠1
∣n(G , χ)∣2 ≤ (n(G , reg) − n(G , 1))2 ,

where “reg” denotes the regular character of G.

We also note the following theorem from [21, Theorem 1].
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Theorem 6.5 (M. Ram Murty and V. Kumar Murty) Let E be an elliptic curve defined
over K. Suppose that E has complex multiplication (CM) and F is a finite extension of
K. If F is contained in a solvable extension of K, then L(E/F , s)/L(E/K , s) is entire.

Combining the above two theorems, we get the following.

Theorem 6.6 Let E/Q be an elliptic curve, and let K/Q be a solvable Galois extension
with Galois group G. Suppose E has complex multiplication. If ords=1 L(E/K , s) =
ords=1 L(E/Q, s) + 1, then rkE(K) ≥ rkE(Q) + 1.

Proof Let n(H, ψ) = ords=1L(E/KH ⊗ ψ, s). For any cyclic subgroup H of G,
L(E/KH ⊗ ψ, s) is entire, moreover by Theorem 6.5, L(E/KH , s)/L(E/Q, s) is entire
and so conditions of Theorem 6.4 are satisfied. In particular,

∑
χ≠1

n(G , χ)2 ≤ 1.

Thus, it must be that, there exists a linear character χ1, such that n(G , χ1) = 1 and
n(G , χ) = 0 for all χ ≠ 1, χ1. That is, L(E/Q⊗ χ, s) is holomorphic at s = 1 for all
irreducible characters χ of G. Thus, the condition of Theorem 6.2(ii) is satisfied and
we have rkE(K) ≥ rkE(Q) + 1 if ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1. ∎
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