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Natural flyers are capable of producing excessive lift via a stabilized leading-edge vortex
(LEV), which appears to linger above the wing for a longer duration than it could in
an equivalent two-dimensional flow. Previous studies found this stabilization behaviour
closely related to a spanwise flow along the LEV axis; however, it is still debatable how the
spanwise flow influences the LEV stability. In this work, potential flow theory is adopted
to model an LEV attached to a flat-plate wing. To account for the spanwise flow effect, we
propose a finite-area sink (FAS) model which allows the dynamical interaction between
co-located LEV and spanwise flow. Through linear stability analysis of the dynamical
system associated with the LEV movement, we arrive at a stable spiral-sink type of
equilibrium, which is the first mathematical evidence supporting LEV stabilization by
spanwise flow. It is further concluded that the LEV stability can be enhanced by either
increasing the strength or decreasing the cross-section area of the spanwise flow.
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1. Introduction

Over the past decades, a core attraction in unsteady aerodynamics lies in the leading-edge
vortex (LEV), which is key to the high lift performance and manoeuvrability of natural
flyers. It was found that a major lift production occurs during the translational phase of
wing downstroke (Ellington et al. 1996; Dickinson, Lehmann & Sane 1999), when the flow
is relatively steady and the LEV grows extensively. The enhanced lift has been attributed
to LEV stabilization as the LEV of natural flyers appears to be more stable than that in
an equivalent two-dimensional (2-D) flow, meaning it lingers for a longer duration and
gains a larger circulation during the downstroke, resulting in delayed shedding and stall
(Maxworthy 1981; Ellington 1984; DeVoria & Mohseni 2017; Linehan & Mohseni 2020).
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To explain LEV stabilization and trapping, Maxworthy (1979) was the first to propose
that a spanwise flow along the vortex axis pumps vorticity from the vortex core to the
wing tip, thereby preventing the excessive growth of circulation and the subsequent vortex
shedding. The existence of the spanwise flow pertaining to the LEV has been confirmed
experimentally (Ellington et al. 1996; van den Berg & Ellington 1997), while its stabilizing
effect on LEV has been corroborated by later studies (Liu et al. 1998; Birch, Dickinson &
Dickinson 2004; Swanton, Vanier & Mohseni 2010; Jardin & David 2014). The formation
of spanwise flow in an LEV has been attributed to different factors including centrifugal
acceleration, Coriolis force, wing aspect ratio and even bird alula (Lentink & Dickinson
2009; Beem, Rival & Triantafyllou 2012; Carr, Chen & Ringuette 2013; Garmann & Visbal
2014; Jardin 2017; Linehan & Mohseni 2020).

Despite the rich phenomenological observations, which have provided irrefutable
evidences supporting the correlation between spanwise flow and LEV stability, the
underlying stabilization mechanism is still open to debate. As reviewed by Eldredge
& Jones (2019), recent efforts were focused on vorticity transportation in verifying the
effect of spanwise flow in discharging vorticity and maintaining a relatively constant LEV
circulation. However, the results suggest that the balancing of vorticity transportation
is the outcome of the combined effect of convection, stretching, Coriolis tilting and
annihilation. To date, less attention has been given to the dynamical aspect of LEV stability
– the persistent attachment which means a stagnation in vortex convection and shedding.
Actually, relevant theoretical attempts have already been made in the past. Saffman &
Sheffield (1977) modelled the LEV as a free point vortex in 2-D and showed that the loci
for LEV equilibrium are naturally unstable for most conditions. Rossow (1978) further
added a point sink co-locating with the point vortex to account for the bleeding effect of
the spanwise flow in the LEV, but still failed to identify any stable equilibrium locus.

In this study, based on Rossow (1978) coupled vortex-sink model, we propose to
decouple the spanwise flow from the LEV because essentially they are formed by different
mechanisms. Furthermore, we employ a finite-area sink (FAS) to model the spanwise
flow not only because it better represents the reality, but more importantly for it offers
a desingularized velocity field within the sink, thereby allowing the dynamical interaction
between the vortex and the sink. Applying a linear stability analysis of the dynamical
system associated with the LEV convection, we show for the first time that the spanwise
flow modelled by a FAS could indeed promote LEV stabilization.

2. Mathematical formulation

2.1. Potential flow model
In the spirit of Rossow (1978) potential flow model, we employ a point vortex to emulate
the dynamical effect of an LEV, with a sink representing the spanwise flow. Potential
flow has been proven effective in 2-D aerodynamic modelling of a flat plate or an airfoil,
even for unsteady cases (Xia & Mohseni 2013, 2017) as long as the viscous effects on
vortex formation and shedding are properly resolved. For simplicity, we also make the
assumption of ‘quasi-steady’ , which requires the main parameters, including background
flow velocity, LEV circulation and spanwise flow strength, being invariant of time. This
is justifiable for a stabilized LEV, for which both vortex circulation and spanwise flow
velocity approach saturation (Jardin & David 2014).

In this set-up, we can formulate a simple model in the lab coordinate, denoted z-plane
(z = x + iy), where an LEV hovers over a 2-D flat plate undergoing a steady translational
motion of speed U at an angle of attack α. The LEV is represented by a point vortex of
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Figure 1. Flow model and streamline for a 2-D flat plate with a quasi-steady LEV and spanwise flow.
(a) Previous model: the spanwise flow is modelled by a point sink co-located with the LEV. (b) New model:
the spanwise flow is modelled by a FAS placed independently from the LEV. The direction of the branch

cut is determined in the ζ -plane based on the polar angle of the image sink located at a2ζ̄Q
−1, such that

the multi-valuedness of the stream function contributed by the sink-source pair within the cylinder cancels
each other.

circulation Γ (Γ < 0) at zΓ , with the spanwise flow modelled by a co-locating point sink
of strength Q (Q > 0). As illustrated in figure 1(a), the physical flow can be mapped out to
the flow around a cylinder in the ζ -plane (ζ = ξ + iη) using the Joukowski transformation:

z = ζ + a2ζ−1 for |ζ | ≥ a, (2.1)

where a is the radius of the cylinder; a = c/4 (c is the chord length of the flat plate).
Applying the circle theorem (Milne-Thomson 1958), the complex potential in the ζ -plane
can be explicitly written as

w(ζ ) = U(ζe−iα + a2ζ−1 eiα) − iΓ
2π

[ln(ζ − ζΓ ) − ln(ζ − a2ζ̄Γ
−1

)]

− iΓB + iΓ − Q
2π

ln(ζ ) − Q
2π

[ln(ζ − ζΓ ) + ln(ζ − a2ζ̄Γ
−1

)], (2.2)

where ζΓ is the LEV location in the ζ -plane, and ¯ denotes the complex conjugate; ΓB
is the bound circulation, which accounts for the effect of the entire viscous shear layers
around the flat-plate surface and balances the effect of shed vortices in the far field.
Given the quasi-steady assumption, ΓB can be calculated by implementing the steady-state
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Kutta condition at the trailing edge (Xia & Mohseni 2013):

(dw(ζ )/dζ )|ζ=a = 0. (2.3)

By setting a stagnation point at ζ = a in the virtual ζ -plane, (2.3) ensures a finite
flow velocity near the trailing edge of the flat plate in the physical z-plane, thereby
enforcing the streamline emanating from the trailing edge to be parallel to the plate and
fulfilling the flow condition passing a sharp edge. The streamlines obtained by taking
the imaginary component of (2.2) are plotted in figure 1(a). Note the line connecting the
sink to the outside boundary is a branch cut (Ablowitz & Fokas 2003), arising from the
multi-valuedness associated with the stream function of the singular sink. Physically, the
branch cut represents a discontinuity in the stream function, forming a zero-width passage
to channel flow from the sink to the infinite far field. It can be interpreted as a corrective
measure of the potential flow to restore the continuity violated by the sink singularity in a
2-D flow.

Based on this model, we analysed the LEV stability in a previous study (Xia & Mohseni
2012) and found the LEV to be fundamentally unstable; this result, however, contradicts
the consensus that spanwise flow is helpful for LEV stabilization. As an improvement, here
we propose to replace the point sink with a FAS, where the total strength Q is uniformly
distributed within a finite area S0. Furthermore, this new sink is placed at zQ, which
is decoupled from the vortex location zΓ . These updates are intended to allow for the
dynamical interaction between vortex and sink, especially when they overlap spatially. We
believe that failure in capturing this effect previously was responsible for the prediction of
an unstable LEV. In this model, we assume the FAS in the ζ -plane has a circular shape
S of radius r and is centred at ζQ. Note that the mapped FAS in the z-plane is not strictly
circular; however, under the small-area approximation requiring r � a, it approaches a
circular area S0, with radius r0 satisfying r/r0 = |ζ 2

Q/(ζ 2
Q − a2)|. This theory does not

require the small-area approximation since the potential flow is based on r rather than r0.
Nevertheless, r0 is still meaningful in ensuring an approximately constant sink area for the
FAS in the physical plane. A sample flow with a decoupled LEV and FAS is illustrated in
figure 1(b).

Following this conceptualization, the FAS is effectively an area integral of the sink
element QdA/(πr2). Accordingly, (2.2) can be updated as

w(ζ ) = U(ζe−iα + a2ζ−1 eiα) − iΓ
2π

[ln(ζ − ζΓ ) − ln(ζ − a2ζ̄Γ
−1

)]

− iΓB + iΓ − Q
2π

ln(ζ ) − Q
2π2r2

∫∫
S
[ln(ζ − ζq) + ln(ζ − a2ζ̄q

−1
)] dA, (2.4)

where ζq is the ζ -plane location of the sink element. For flow outside of the sink
(|ζ − ζQ| > r), we can convert the area integral in (2.4) to contour integral using the
identity ∫∫

S

∂F
∂ζq

dA = i
2

∮
∂S

F dζ̄q, (2.5)

the derivation of which involves the Wirtinger derivatives (Kracht & Kreyszig 1988) and
Green theory. Here, F(ζq) is analytic over the sink area S (encircled by ∂S). Applying the
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Laurent series and residue theorem, the contour integral can be calculated as∫∫
S
[ln(ζ − ζq) + ln(ζ − a2ζ̄q

−1
)] dA = πr2[ln(ζ − ζQ) + ln(ζ − a2ζ̄Q

−1
)], (2.6)

which recovers the complex potential as if a point sink Q were placed at ζQ. Note (2.6)
is valid only for flow outside the FAS (|ζ − ζQ| > r). Within the FAS (|ζ − ζQ| ≤ r), the
complex potential (2.4) is singular, meaning the potential flow does not exist so that the
FAS shows up as a blank area in the streamlines of figure 1(b). The above explains the
presence of the branch cut extending from the FAS surface to infinity. By satisfying the
trailing-edge Kutta condition (2.3), the bound circulation ΓB is calculated to be

ΓB = 2a

[
−2πU sin(α) + Γ (ξΓ − a)

(ξΓ − a)2 + η2
Γ

− QηQ

(ξQ − a)2 + η2
Q

]
, (2.7)

where ζΓ = ξΓ + iηΓ and ζQ = ξQ + iηQ.

2.2. LEV convection velocity
We next proceed to evaluate the LEV movement by calculating its convection velocity in
the z-plane:

uΓ − ivΓ = (dw′(z)/dz)|z=zΓ , (2.8)

where w′(z) is the complex potential of the desingularized background flow excluding any
singularity at zΓ . So w′(z) is related to the original w(z) as

w′(z) = w(z) + iΓ
2π

ln(z − zΓ ). (2.9)

Within the FAS (|ζ − ζQ| ≤ r), the right-hand side of (2.9) has an additional singular term,

Q

2π2r2
0

∫∫
|zq−z|<ε,ε→0

ln(z − zq) dA′, (2.10)

which is estimated to be of order O(ε2 ln(ε)) ∼ 0 as ε → 0; zq is the z-plane location
for the sink element QdA′/(πr2

0). So this term is neglected in (2.9) given its trivial
contribution.

Following the derivation of the vortex-sink velocity (Xia & Mohseni 2013), we can
combine (2.4), (2.8) and (2.9) to obtain the LEV convection velocity as

uΓ − ivΓ = ζ 2
Γ (uζ

Γ − ivζ
Γ )

ζ 2
Γ − a2

, (2.11)

with the LEV velocity in the ζ -plane given by

uζ
Γ − ivζ

Γ = U(e−iα − a2ζ−2
Γ eiα) + iΓ

2πζΓ (1 − a2|ζΓ |−2)
− iΓB + iΓ − Q

2πζΓ

− Q
2π2r2

∫∫
S

(
1

ζΓ − ζq
+ 1

ζΓ − a2ζ̄q
−1

)
dA − iΓ

πζΓ (1 − a−2ζ 2
Γ )

, (2.12)
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where the last term is known as the Routh correction (Lin 1941). Similar to (2.6), the area
integral in (2.12) can be derived as

∫∫
S

(
1

ζΓ − ζq
+ 1

ζΓ − a2ζ̄q
−1

)
dA

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πr2

ζΓ − ζQ
+ πr2

ζΓ − a2ζ̄Q
−1 for |ζΓ − ζQ| > r

π(ζ̄Γ − ζ̄Q) + πr2

ζΓ − a2ζ̄Q
−1 for |ζΓ − ζQ| ≤ r

. (2.13)

Note that for |ζΓ − ζQ| ≤ r, the integral was evaluated by taking the Cauchy principal
value (−−∫∫ ) to handle the singularity associated with the sink element at ζq = ζΓ .

The first integral in (2.13) tells that the LEV velocity induced by a FAS depends on the
vortex location relative to the sink. For a vortex outside of the sink, the velocity is identical
to that induced by a point sink of the same total strength; however, the velocity reduces to
|ζΓ − ζQ|2/r2 of that induced by an equivalent point sink if the vortex is within the FAS.
Interestingly, the FAS causes its internal flow to be singular as the incompressibility fails
and, thus, the stream function does not exist; still, it induces a meaningful and finite inner
velocity field. In this sense, the FAS model desingularizes the velocity of a point sink,
which enables the mathematical description of its dynamical interaction with a vortex,
especially when they collapse spatially. This justifies our rationale for employing the FAS
model. However, a finite-area vortex (FAV) analogous to the FAS would be unnecessary
in the present calculation of the LEV motion, because (2.12) does not involve velocity
singularity at the vortex itself, so the resultant induced velocity does not change if the
point vortex is replaced by an equivalent FAV.

2.3. LEV stability
The dynamical stability of the LEV can be analysed by applying the indirect method of
Lyapunov and considering the LEV motion as a 2-D dynamical system, in which the
LEV location (zΓ or ζΓ ) is the state variable, and Γ , Q, sink location (zQ or ζQ) are
the input variables. This dynamical system can be written in terms of the LEV velocity in
the ζ -plane as uζ

Γ = uζ
Γ (ξΓ , ηΓ ) and v

ζ
Γ = v

ζ
Γ (ξΓ , ηΓ ), with the Jacobian matrix

J =

⎛
⎜⎜⎜⎝

∂uζ
Γ

∂ξΓ

∂uζ
Γ

∂ηΓ

∂v
ζ
Γ

∂ξΓ

∂v
ζ
Γ

∂ηΓ

⎞
⎟⎟⎟⎠ . (2.14)

Solving uζ
Γ − ivζ

Γ = 0 gives the equilibrium loci of the dynamical system, ζ ∗
Γ = ξ∗

Γ +
iη∗

Γ . The stability of ζ ∗
Γ is analysed below depending on its relative location to the sink.

(a) Case 1: equilibrium outside the sink (|ζ ∗
Γ − ζQ| > r). The LEV velocity (2.12) can

be decomposed into an analytic part, uζ
1 − ivζ

1 , plus a non-analytic part,

uζ
1n − ivζ

1n = iΓ
2πζΓ (1 − a2|ζΓ |−2)

− iΓ a(ξΓ − a)

πζΓ [(ξΓ − a)2 + η2
Γ ]

. (2.15)
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Here uζ
1 − ivζ

1 should satisfy the Cauchy–Riemann equations,

∂uζ
1

∂ξΓ

= − ∂v
ζ
1

∂ηΓ

= ec and
∂uζ

1
∂ηΓ

= ∂v
ζ
1

∂ξΓ

= ei, (2.16a,b)

which physically represent the conditions for continuity and irrotationality, respectively.
The Jacobian matrix (2.14) then becomes(

ec + e11 ei + e12
ei + e21 −ec + e22

)
, (2.17)

where e11 = ∂uζ
1n/∂ξΓ , e12 = ∂uζ

1n/∂ηΓ , e21 = ∂v
ζ
1n/∂ξΓ , e22 = ∂v

ζ
1n/∂ηΓ . Evaluating

the velocity gradients in (2.14) at ζ ∗
Γ yields the characteristic equation

(e∗
c + e∗

11 − λ)(−e∗
c + e∗

22 − λ) − (e∗
i + e∗

12)(e
∗
i + e∗

21) = 0. (2.18)

With Δ denoting the determinant of (2.14), (2.18) has two different eigenvalues:

λ1,2 = 1
2

(
e∗

11 + e∗
22 ±

√
(e∗

11 + e∗
22)

2 − 4Δ∗
)

. (2.19)

(b) Case 2: equilibrium inside the sink (|ζ ∗
Γ − ζQ| ≤ r). For |ζΓ − ζQ| ≤ r, applying a

similar decomposition to Case 1, the non-analytic part of LEV velocity is expressed as

uζ
2n − ivζ

2n = iΓ
2πζΓ (1 − a2|ζΓ |−2)

− iΓ a(ξΓ − a)

πζΓ [(ξΓ − a)2 + η2
Γ ]

− Q(ζ̄Γ − ζ̄Q)

2πr2 , (2.20)

where the last term is contributed by the FAS, and it meets the condition for irrotationality
but not continuity. The analytic part uζ

2 − ivζ
2 still satisfies the Cauchy–Riemann equations,

similar to (2.16a,b). In this case, the characteristic equation has the form(
e∗

c + e∗
11 − Q

2πr2 − λ
)(

−e∗
c − e∗

11 − Q
2πr2 − λ

)
− (e∗

i + e∗
12)(e

∗
i + e∗

21) = 0, (2.21)

with two eigenvalues,

λ1,2 = 1
2 (e∗

11 + e∗
22 ±

√
(e∗

11 + e∗
22)

2 − 4Δ∗) − Q/(2πr2), (2.22)

where the velocity gradients should be evaluated with uζ
2, v

ζ
2 , uζ

2n and v
ζ
2n. Comparing

(2.19) and (2.22), we can conjecture that Case 2 is likely to be more stable than Case 1 as
the additional term associated with Q tends to move the real part of the eigenvalues along
the negative axis. For given inputs of Γ , Q and ζ ∗

Γ , the first term in (2.22) corresponds
to two finite complex (or real) numbers. Therefore, with a sufficiently small r, the second
term can be sufficiently large such that both eigenvalues have negative real parts and fall in
the left-half complex domain, rendering the system exponentially stable. In other words,
the LEV can reach a dynamically stable state if trapped within a sink of sufficiently small
area. This gives the first mathematical evidence that the spanwise flow could contribute to
LEV stabilization in the dynamical sense.
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Figure 2. (a–c) Three LEV equilibria for a benchmark case with α = 45◦, Γ/(cU) = −2, Q/(cU) = 0.6 and
r/a = 0.2. The velocity vectors and contours are associated with the LEV movement calculated based on (2.11)
and (2.12), rather than the actual flow field. Panels (d– f ) plot the trajectories of the perturbed LEV at eight
locations (10−3 away from the centre) around each equilibrium, demonstrating the stability nature of spiral
sink, saddle point and spiral source, respectively. Panel (d) is in logarithmic scale to better visualize the inward
spiral.

3. Results and discussion

We next apply the proposed model to study the equilibrium and stability characteristics of
typical LEV flows. From previous works (Swanton et al. 2010; Jones & Babinsky 2011;
DeVoria & Ringuette 2012; Xia & Mohseni 2013; Jardin & David 2014; Medina & Jones
2016), a fully grown LEV at the mid span situates at approximately 1/4 − 1/2 chord from
the leading edge, with the circulation |Γ |/(cU) saturating around 0.5 − 3. Considering
the physical relevance, we set α = 45◦, Γ/(cU) = −2 and zQ/c = −0.15 + 0.2i for a
benchmark study. Note although the sink strength Q has not been quantified previously,
its magnitude is likely comparable to Γ ; this work explores Q/cU from 0 to 1. Figure 2
shows a representative case with Q/(cU) = 0.6 and r/a = 0.2. Let a = 1 and U = 1
for normalization, based on numerically solving uζ

Γ − ivζ
Γ = 0, the dynamical system

of LEV motion outputs three different equilibria, z∗
Γ 1 = −0.3732 + 0.8458i, z∗

Γ 2 =
−0.2491 + 0.8565i and z∗

Γ 3 = 0.4429 + 0.5033i, as shown in figure 2(a–c), with their
eigenvalues, (−9.4756 + 0.8241i, −9.4756 − 0.8241i), (5.5419, −5.3790) and (0.1437 +
2.0497i, 0.1437 − 2.0497i), corresponding to the stability types of spiral sink (or stable
spiral focus), saddle point and spiral source (or unstable spiral focus), respectively. Their
stability characteristics are further substantiated by the trajectories of the perturbed LEVs
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Figure 3. Change of LEV equilibrium loci under different effects. (a,c,d) Q/(cU) increases from 0 to 1 and
|Γ/(cU)| = 2 for r/a = 0.2, 0.3, 0.1, respectively. (b) Here Q/(cU) = 1, |Γ/(cU)| increases from 0.2 to 2, and
r/a = 0.2. Panel (e) plots the complex eigenvalues for all equilibrium loci in (a–d). The real axis is segregated
into positive and negative branches to visualize the eigenvalues with positive and negative real parts, λp and
λn, in the same logarithmic plot.

around the original equilibria in figure 2(d– f ). We now have verified that z∗
Γ 1 inside the

sink (Case 2 in § 2.3) is indeed a dynamically stable location for the LEV, whereas the
other two equilibria (Case 1) are unstable.

The effects of varying Q, Γ and r on the equilibrium loci are further studied in
figure 3(a–d), with the eigenvalues plotted in figure 3(e) to indicate the stability types.
Insights into the three different types of equilibrium can be obtained. First, the spiral
source (SC), z∗

Γ 3, is an intrinsic equilibrium originating from the Q = 0 point (
), i.e.
the baseline scenario without sink. Physically, the SC is created by the induced velocity
of the flat plate in response to the LEV. This can be understood in the ζ -plane where the
image vortex of the LEV with strength −Γ induces a counter-clockwise circulation around
the cylinder to balance the streamwise flow over the upper cylinder. However, the SC is not
stable and increasing Q/(cU) from 0 to 1 only draws the equilibrium closer to the FAS, as
shown in figure 3(a,c,d), without altering its stability nature (see figure 3e). In figure 3(b),
increasing |Γ |/(cU) from 0.2 to 2 tends to drive the SC away from the flat plate, because a
stronger LEV induces a stronger reverse flow which needs to be offset by a larger distance
between the LEV and the plate. Note that increasing |Γ | makes the LEV more unstable as
the real parts of both SC eigenvalues increase significantly.

The emergence of the saddle point (SD), z∗
Γ 2, involves the velocity balance between

the sink suction and the background flow outside the FAS. As Q increases in
figure 3(a,c,d), the equilibrium locus has to move away from the FAS to offset the

970 R1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.613


X. Xia and K. Mohseni

increased suction velocity. For a similar reason, increasing |Γ | in figure 3(b) would
enhance the backward induced velocity, roughly aligned with the sink suction velocity,
which again is offset by the extended distance between the SD and the FAS. We can
further observe from figure 3(e) that increasing either Q or |Γ | would cause the real parts
of both SD eigenvalues to approach the origin; however, this has no effect on the stability
nature of the SD, as there always exists an eigenvalue with a positive real part to cause an
unstable mode.

It is interesting to note that, in comparing figure 3(a,c,d), varying FAS radius does
not affect the SC locations as they collapse for r/a = 0.1, 0.2 and 0.3. The same can be
observed for the SD locations except for those truncated by the FAS boundaries. This can
be explained by (2.13) that the FAS is effectively a point sink to its outer flow, so its radius
does not play a role. It follows that all properties of the SC and SD should be identical
to those derived using the point-sink model. In fact, previous works (Rossow 1978; Xia &
Mohseni 2012) have already found the SC equilibrium, based on which they concluded that
the LEV is intrinsically unstable regardless of the added sink. Here, through decoupling
the vortex and sink, we are able to identify the new SD equilibrium which, however, is still
unstable. These results suggest that, in the point-sink framework, the LEV is unstable even
after accounting for the vortex-sink interaction.

The current FAS model makes the difference by creating a stable equilibrium, the spiral
sink (SK) at ζ ∗

Γ 1, which locates within the FAS. The SK also results from the balance
between the FAS suction and the streamwise background flow, similar to the mechanism
forming the SD. It is important to note that, as shown in figure 3(a,c,d), a minimum sink
strength, Qmin, is required in each case for the simultaneous appearance of the SK and SD
in the vicinity of the FAS boundary. This means that a sufficiently strong sink is necessary
to LEV stabilization. Further increasing Q would pull the SK closer to the FAS centre;
meanwhile, both eigenvalues move towards the negative real axis, indicating an enhanced
stability. Comparing the cases with different r, Qmin/(cU) decreases from 0.72 to 0.26 as
r/a decreases from 0.3 to 0.1, suggesting that a stable SK equilibrium can exist with a
weaker sink strength if the sink has a smaller area. Furthermore, with decreasing r, the
SK moves closer to the FAS centre, and the real-part eigenvalues become more negative
so the stability is also improved. The effect of varying |Γ | on the SK equilibrium is not
as significant as that by changing the sink properties, as shown in figure 3(b,e). Increasing
|Γ |/(cU) from 0.2 to 2 only slightly attracts the SK towards the FAS centre, while the
real-part eigenvalues remain almost unchanged.

In accord with the theoretical predictions based on (2.22), the above results demonstrate
that both eigenvalues can exist in the left-half complex domain to yield a stable SK
equilibrium that always locates inside the FAS. The conclusion is remarkable: stabilizing
the LEV with a spanwise flow is not only plausible, but the LEV stability can be further
enhanced by either increasing the strength or decreasing the cross-section area of the
spanwise flow. This is also consistent with Jardin & David (2014) numerical results, where
their case C displays a much more stable LEV than case B. It is evident from their figures 5
and 6 that, while the two cases have similar amount of LEV circulation, case C has a
notably stronger and more concentrated spanwise flow.

However, it remains uncertain whether a stable equilibrium always exists for an
arbitrarily placed FAS. To this end, we further investigate the effect of varying FAS
locations on the existence of the SK equilibrium. As illustrated in figure 4, the light-green
contour denotes the FAS centre region associated with SK existence, which is obtained
by scanning the FAS placement over the blue-dashed rectangular area above the flat plate.
Through the comparisons of three groups of conditions, figure 4(a,b), (c,d) and (e, f ),
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Figure 4. Influence of FAS placement on LEV stability. The light-green contour indicates the FAS locations
associated with stable SK equilibrium, obtained by varying FAS placement within the blue-dashed rectangular
area. Here Q, |Γ | and r0, are varied independently for three parameter sets in (a,b), (c,d) and (e, f ). The
streamlines of representative flows are displayed based on selected FAS locations (zQ) and the corresponding
stable SK equilibria of the LEV (ζ ∗

Γ 1).

we find that the region of the FAS location with stable SK shrinks as Q/(cU) decreases
from 0.3 to 0.2, or r0/a increases from 0.25 to 0.3, or |Γ |/(cU) decreases from 1.0 to 0.5.
These trends indicate that large Q and |Γ | and small r0 contribute to LEV stabilization by
extending the stable ranges for FAS placement, in addition to the stability enhancement
effect pertaining to a fixed-point FAS as concluded from figure 3. Furthermore, figure 4
shows that the FAS location with stable SK tends to reside close to the flat-plate surface
and is inclined towards the trailing edge, especially for cases figure 4(e and f ) that have
lower LEV circulations. This can be attributed to the enhanced backward velocity induced
by the image vortex when the LEV approaches the flat-plate wall, thereby promoting its
ability to balance the streamwise flow. In addition, the streamwise flow is decelerated
towards the trailing edge, rendering it more likely to be matched by the induced reverse
velocity. Consequently, the SK equilibrium point could locate either upstream (figure 4a)
or downstream (figure 4b– f ) of the FAS, depending on the relative magnitude of the
velocities between the streamwise flow and the wall-induced flow.

Before closing, we note that the application of the present model to various LEV flows
should be proceeded with caution, as several relevant factors are not considered here.
Future improvement of this model lies in accounting for the other effects, including the
centrifugal acceleration which could influence the spanwise flow, the variation of the
LEV circulation during its growing stage, and the existence of an attached leading-edge
shear layer which could interact with the main LEV, etc. Moreover, it should be reminded
that a sink in 2-D potential flow does not amount to the spanwise flow itself, but rather
corresponds to the flow entrained into the spanwise flow. This entrainment is physical
since the combined LEV and spanwise flow can be considered a swirling jet originating
from the wing base, with the jet spreading and its cross-section area growing along the
span axis. According to the present FAS model, spanwise flow with a smaller cross-section
area provides enhanced LEV stability, implying that the LEV section near the wing base
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could be more stable than the section near the wing tip. This raises another topic worthy
of future investigation.

4. Conclusions

This study revisited the classical experimental finding that spanwise flow helps to stabilize
the LEV. By introducing a FAS model for the spanwise flow and performing linear
stability analysis on the LEV convection, we proved theoretically that the LEV can reach
a dynamically stable state if trapped within a sink of sufficiently small area. The theory
predicted three different types of equilibrium, out of which the most important one locates
within the FAS, yielding a spiral-sink type of stability. Further parametric study implied
that the stability can be improved by either increasing the strength or decreasing the
cross-section of the FAS. In addition to unveiling the aerodynamic secrets of natural flyers,
this work could shed light on how active flow control technique can be innovated for lift
augmentation applications.
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