COMPOSITIO MATHEMATICA

On the Iwasawa theory of the Lubin—Tate
moduli space

Jan Kohlhaase

Compositio Math. 149 (2013), 793-839.

doi:10.1112/50010437X12000723

FOUNDATION LONDON
COMPOSITIO MATHEMATICAL
MATHEMATICA SOCIETY

https://doi.org/10.1112/50010437X12000723 Published online by Cambridge University Press


http://dx.doi.org/10.1112/S0010437X12000723
https://doi.org/10.1112/S0010437X12000723

G/ § Compositio Math. 149 (2013) 793839
%
©

doi:10.1112/S0010437X12000723

On the Iwasawa theory of the Lubin—Tate
moduli space

Jan Kohlhaase

ABSTRACT

We study the affine formal algebra R of the Lubin—Tate deformation space as a module
over two different rings. One is the completed group ring of the automorphism group I
of the formal module of the deformation problem, the other one is the spherical Hecke
algebra of a general linear group. In the most basic case of height two and ground field
Qp, our structure results include a flatness assertion for R over the spherical Hecke
algebra and allow us to compute the continuous (co)homology of I' with coefficients

in R.
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Introduction

Let K be a non-Archimedean local field with valuation ring o and residue class field k of
characteristic p and cardinality q. Let H denote a fixed one-dimensional formal o-module of height
h > 1 over a separable closure k5P of k, and let 6 denote the valuation ring of the completion K
of the maximal unramified extension of K.

By a famous theorem of Lubin-Tate and Drinfeld, the problem of deforming H to formal
o-modules over complete noetherian local g-algebras with residue class field k%P is represented
by a formal scheme Spf(R) in which R~ 6[[uj, ..., up_1]] is a formal power series ring in h — 1
variables u1, ..., up_1 over 0.

The ring R carries a natural action of the automorphism group I' of H. The latter can be
identified with the group of units o7, of the valuation ring op of the central K-division algebra D
of invariant 1/h. The action of I" on R is continuous and extends to an action of the completed
group ring

A= AI) = o[[I]],
the so-called Twasawa algebra of T' over 6. This is explained at the beginning of §3. By adding
level structures to the above deformation problem, one can also show that R is a module over
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J. KOHLHAASE

the spherical Hecke algebra
H = 8[GLy,(0)\GLy,(K)/GLy(0)] =~ 6[To, Ty Y[T1, - - -, Th1]

of GLy(K) over 0. The Hecke operators T; commute with the action of I up to twists by outer
automorphisms. This is explained at the beginning of § 2.

The formal scheme Spf(R) and its coverings are of fundamental importance in number theory
and notably in understanding the arithmetic of the field K. Moreover, the action of I' on R is
related to important problems in stable homotopy theory (cf. [DH95, §§5 and 6]). Nonetheless,
comparatively little work has been done in understanding the actions of I' and H on R itself.
We point out that Rig := R ®, K is topologically dual to a continuous representation of I' on a
K-Banach space. Continuous and locally analytic representations stemming from equivariant
vector bundles on moduli spaces of p-divisible groups have recently found a lot of interest. Notably
the case of GL;(K) acting on Drinfeld’s p-adic upper half space was studied in detail and found
applications to the de Rham cohomology of p-adically uniformized varieties (cf. [KS12]).

With these motivating problems in mind, the present article deals with the equally prominent
example of the moduli space of Lubin—Tate. The appearance of the Hecke algebra H is a novel
feature here which is not relevant in Drinfeld’s setting (cf. Remark 3.5). Further, the analysis
of the I'-action is significantly complicated by the much more intricate geometry of the period
morphism. In the most basic case of height two and ground field Q,, however, our structural
results are rather precise. They allow us to compute the continuous (co)homology of I" with
coefficients in R and prove a flatness assertion for R over the Hecke algebra H.

In order to describe our results more precisely, let 7 be a uniformizer of o, let R:= R/7R,
and denote by m := (uq, . . ., up_1) R the maximal ideal of the local ring R ~ k5P[[uy, . . ., up_1]].
The leading term of the action of I' on R with respect to the m-adic filtration was computed
by Chai in [Cha96]. We take a different approach here and carry some of Chai’s computations
further by making use of the rigid analytic period morphism ® : Spf(R)"8 — Pffi{_l of Gross and

Hopkins. There is an explicitly known linear action of I" on the projective space }P’};{l for which ®
is equivariant. The main technical problem we have to overcome is that ® is not defined over o.
In order to obtain information about the action of I on R, we need to carefully analyze the
growth behavior of the coordinate functions ¢; of ® (cf. Lemma 1.7). This analysis is based
on a closed formula of Yu (cf. Proposition 1.5). Our algorithm to m-adically approximate the
action of I on R is recorded in Theorem 1.11. Although this is a new approach, the possibility
of computing the action of I" to an arbitrary precision was known before.

Consider the open normal subgroup I'y :=1 4+ Ilop of I', where 1I denotes a uniformizer of D
satisfying IT" = 7. For a limited number of elements v € I'; we compute the image of the power
series y(u;) in R/m?%2 for any 1 <i < h — 1 (cf. Theorem 1.14). If h = 2 we go even further and
compute the image of y(u1) in R/m??™2 (cf. Theorem 1.16). We point out that in contrast to
Chai we do not treat elements which are arbitrarily close to 1. Thus, our computations only
partially generalize his work. If o5 denotes the valuation ring of the unramified extension of
degree h of K, then we finally approximate the action of o} CI' on R. This is in fact much easier
to treat (cf. Theorem 1.19).

Fix 0<i<h—1 and set ug:=m. The main technical result of §2 is a description of the
action of the Hecke operator T; on the quotient R/(uo, . . ., u;—1)R. This does not seem to have
been considered before (cf. Theorem 2.1). It requires an explicit knowledge of how GL,(K) acts
on the torsion points of the universal formal o-module H over R and relies on a subtle analysis
of the double cosets of GLj,(0) modulo its parahoric subgroups (cf. Lemma 2.3).
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Our results completely determine the action of T} on R. If h =2 this allows us to prove
our first main theorem, saying that R/o is a flat module over H/(Tp — 1)H ~ o[T1] without
any restriction on the field K (cf. Theorem 2.6 and Remark 2.7). As in the work [Groll] of
Grofle-Klonne, this result is supposed to have strong representation theoretic consequences.

If h is arbitrary, we also obtain that the action of 77 on R/¢ is topologically nilpotent (cf.
Proposition 2.8). Further, for any non-negative integer n, the endomorphism 77" of R is injective,
continuous with closed A-stable image, and has a torsion free cokernel over o (cf. Corollary 2.5
and Lemma 3.2). Endowing the K-vector space Ry := R®, K with a suitable locally convex
topology, it follows that unless h = 1 the Ax-module Ry is not topologically of finite length (cf.
Proposition 3.3). We compare this with the parallel situation of GLj(K) acting on Drinfeld’s
p-adic symmetric space (cf. Remark 3.5).

The question of whether the A-module R (respectively the Ax-module Rg) is finitely
generated currently remains open. In the most basic case where h =2 and K = Q, we are able to
show, however, that any of the A-modules TJ*(R)/T{""! (R) is finitely generated (cf. Theorem 3.6
and Corollary 3.7). This is achieved by computing the coinvariants of 77 (m)/T7""!(m) for the
action of I'1, using the approximations of § 1. One does obtain a module of finite type, however,
by viewing R/6 as a module over a twisted power series ring A[[T7; 01]], taking into account both
the action of A and that of H (cf. Remark 3.8).

Let Z1:=1+m0oC1Iy, and let myr,/z,) denote the maximal ideal of the local ring

AT /Zy) = NI /Z1)/mA(T1/Z1). If K =Qp with p > h + 1 then fundamental results of Lazard
allow us to determine the structure of the graded ring
gr(A(T1/Zy)) == @ ﬁ?4\(1“1/21)/ﬁj\—’&l/zl)
120

associated with the my, /7 )-adic filtration on A(I'1/Z7). It is isomorphic to the universal
enveloping algebra U(g/3) of an (h? — 1)-dimensional nilpotent Lie algebra g/3 over k5P (cf.
Corollary 3.14 and Remark 3.15).

Let my, be the maximal ideal of the local ring A; := A(T'1). The action of 0* C T and hence
that of Z; on R is trivial. Endowing m/7;(m) with the my,-adic filtration, the associated graded
object

gr(m/T1(m)) = Plm}y, - (w/Ty(w))]/[mist! - (m/T3 ()]
120
may therefore be viewed as a module over gr(A(I'1/Z1)) ~U(g/3). If h=2 and K =Q, with
p >3 then we determine the structure of this module completely (cf. Corollary 3.11 and
Theorem 3.16). This in turn allows us to compute the Lie algebra (co)homology of gr(m /7 (m))
over g/3 (cf. Corollary 3.17). By means of a finitely convergent spectral sequence, the latter is
related to the continuous (co)homology of m/T;(m) over I'1/Z;. Analyzing the action of I' on
H;(g/3, gr(m/Ty(m))) and H'(g/3, gr(m/T1(m))) we obtain that

H;(T, (R/0)/T1(R/8)) = H'(T, (R/0)/T1(R/6)) = 0

for all i >0, assuming h =2, K =Q, and p > 3 (cf. Theorem 3.19). By dévissage and passage
to the limit we finally obtain our second main theorem, saying that the I'-equivariant inclusion
0 — R induces isomorphisms

H;(T,8) ~H;(T, R) and HYT,s)~HYT, R)
for all 4 > 0 under the same hypotheses (cf. Theorem 3.20).
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The preceding assertion is related to the behavior of the Adams spectral sequence in the
theory of ring spectra and is predicted by Hopkins’ chromatic splitting conjecture (cf. [Hov93,
Conjecture 4.2]). In fact, there are important results from algebraic topology exceeding those
in Theorem 3.20. More precisely, let Lie(H) denote the Lie algebra of the universal formal
o-module H. This is a free R-module of rank one carrying a continuous semilinear action of T.
Using methods from stable homotopy theory, the cohomology algebra H®(T", ®,,czLie(H)®") was
computed by Shimomura and Yabe (cf. [SY95]). Their work was later taken up and complemented
by Behrens in [Beh12]. However, these results are not easily accessible to the non-topologist, and
we hope that our representation-theoretic approach, although spelled out only for n =0, is the
more direct one. We also note that the Tate—Farrell cohomology of @,czLie(H)®" was computed
by Symonds if K =Q, and h =p — 1> 2 (cf. [Sym04] and our Remark 3.21).

If h > 2 or if K # Q, then the computations leading to the above results become significantly
more complicated. On the other hand, we develop most of the necessary machinery in complete
generality. Therefore, we are convinced that our methods will prove important in analyzing the
structure of R over A and H in other cases, as well.

Conventions and notation. Let K be a non-Archimedean local field. The normalized valuation
of K, as well as its extension to an algebraic closure of K, will be denoted by v. We denote by o
the valuation ring of K and fix a uniformizer = of 0. Let k := 0/70 denote the residue class field
of 0, and let ¢ and p denote the cardinality and the characteristic of k, respectively. If K =Q,
we will always choose m = p.

We denote by K the completion of the maximal unramified extension of K, and by o its
valuation ring. The residue class field 6/70 of 6 will be identified with a fixed separable closure
k5P of the field k. We denote by o the Frobenius automorphism (x — z7) of k%P, as well as its
unique lift to a ring automorphism of 6.

We fix a positive integer h and denote by D = Dy, the central K-division algebra of invariant
1/h. The valuation v of K uniquely extends to a valuation vp of D. We denote by op the valuation
ring of D and fix a uniformizer IT of op satisfying II" = 7. Let K}, denote the unramified extension
of K of degree h, let oj, denote the valuation ring of K}, and let kj, := 05, /moj, denote the residue
class field of 0,. We fix an embedding K} — D of K-algebras. It restricts to an embedding
oy — op and induces an isomorphism kj, ~ op/Tlop.

If S is a unital ring then we denote by S* its group of units. If £ is a positive integer and if

u=(uy,...,ur) is a family of indeterminates then we denote by S[[u]] := S[[u1, . . ., ug]] the ring
of formal power series in the variables g, . .., uy with coefficients in S. If n = (ny,...,ny) € N¢
we set u™ =it - - uy? and [ :=ny 4+ ng

1. The action of the automorphism group

We fix a positive integer h and a one-dimensional formal o-module H of height h over kP which
is defined over k. By a fundamental theorem of Lubin-Tate and Drinfeld, H admits a deformation
to a formal o-module H over the power series ring R := 0[[u1, . . . , up—1]] which is universal in the
sense that any deformation of H to a formal o-module over a complete noetherian local 8-algebra
with residue class field k%P arises uniquely as a specialization of H (cf. [Dri74, Proposition 4.2],
or [GH94, Proposition 12.10]).

The formal parameters wuq,...,up_; can be chosen in such a way that H(X,Y)=
FYHF(X) + f(Y)), where the logarithm f(X) € X - R[1/x][[X]] satisfies Hazewinkel’s functional
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equation
h
FX) =X+ 2o () (1)
=1

(cf. [GH94, Proposition 5.7]). Here we set up, := 1, and ¢ denotes the o-linear ring endomorphism
of R[1/7][[X]] (and of its subrings R[1/7] and R) determined by ¢(X) := X7 and ¢p(u;) :=u] for
all 1<i<h— 1.

It follows from (1) that f is of the form f(X)=) "% a,X? and that the coefficients
ap € R[1/7] satisfy the recursion formula

min{h,n} min{h,n} _
ap=1 and ma, = Z Ui - @ (ap—s) = Z ul A (2)
i=1 i=1

(cf. [Haz78, 1.3.3, Equations (3.3.6) and (3.3.9)]).

We let T := Aut,(H) denote the group of automorphisms of the formal o-module H. According
to [Dri74, Proposition 1.7], the group I is isomorphic to the group of units o7, of the valuation
ring op of the central K-division algebra D of invariant 1/h. It acts on R from the left by
o-linear local ring automorphisms. More precisely, given an o-linear automorphism v of H, there
is a unique isomorphism 7 : R — R of local ¢-algebras and a unique isomorphism [v] : v, H — H of
formal o-modules such that the reduction of [y] modulo the maximal ideal m of R is y (cf. [GH94,
Proposition 14.7]). Fixing an isomorphism I' ~ 0}, we shall from now on identify the groups I
and op,.

We let R:= R/mR~k*P[[uy,...,u,_1]] and denote by m := (uy,...,us_1)R the maximal
ideal of R. In this section we wish to study the action of I' on R, induced by that on R. Using
the Cartier—Dieudonné module of H, the leading term of this action with respect to the m-adic
filtration of R was computed by Chai in [Cha96]. We choose a different method here and compute
higher terms of this action for a limited number of elements of I'.

We denote by K} the unramified extension of K of degree h, and by o, its valuation ring. We
fix an embedding K, < D and a uniformizer II of D, satisfying II" = . Recall that any element
~v € D can be written uniquely as

h—1
7:ZHi-ai with «aq, ..., ap_1 € Kp.
i=0
We have v € I if and only if ag € 0} and aq, ..., ap—1 € op. Further, Ila = o?1II for all a € oy,

The subgroup o} of I' contains the group of roots of unity pgn_; of order q" — 1. We first
re-prove [Cha96, Lemma 2], by using power series methods.

LEMMA 1.1. If £ € pgn_y C T then the corresponding o-linear ring automorphism of R satisfies
E(u;) = €971 ., for 1 <i<h—1. The unique isomorphism [£]: &H — H which reduces to &
modulo m is given by the power series [£](X) =& - X.

Proof. Viewing ¢ as an element of kj, by reduction modulo 7o, the automorphism ¢ of H is given
by the power series £ - X € k%P[[X]]. This follows from [GH94, Proposition 13.6], by reduction.
Denoting by ¢ the K-linear ring automorphism of R[1/7] determined by &(u;):=¢&9 1wy,
1<i<h—1, it suffices to prove that & f = ¢~ Lf(€X).

We define the R[1/7]-linear automorphism (g~ §) of R[1/x][[X]] by §(X):=¢ tg(€X). A
direct computation shows that if g € R[1/m][[X]] is of the form g = Y, . ap, X" with a,, € R[1/7],

797

https://doi.org/10.1112/50010437X12000723 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000723

J. KOHLHAASE

then &E;) :~§‘1i_1 - 0*(g) for any integer i > 0. Applying the transformation (g §) to (1), we
obtain that f satisfies the functional equation
h i
- €9y o -
FX) =X+ ———¢'"(H(X).

T
=1

Another direct computation shows that the endomorphisms ¢ and &, of R[1/7][[X]] commute
with each other. Applying &, to (1), we obtain that &.f satisfies the same above functional
equation. As in (2), this leads to identical recursive definitions of the coefficients of &, f and f,
whence &, f = f O

In order to study the action of the higher congruence subgroups
i:=1+1T0p, i>1,
of I' on R we shall make use of the period morphism ® : Spf(R)"& — ]P’}I‘v{_l, constructed in [GH94,

§23]. Here IP’];{l denotes the rigid analytic projective space of dimension h — 1 over K , and

Spf(R)"® denotes the rigidification of the formal 8-scheme Spf(R) in the sense of Berthelot
(cf. [deJ95, §7]). The latter is isomorphic to the rigid analytic open unit polydisc of dimension

o

h —1 over K.
In homogeneous projective coordinates, the morphism ® is given by ®(x) = [po(z):...:
on_1(x)], where @, ..., ¢n_1 € O(Spf(R)"8) are certain global rigid analytic functions on

Spf(R)"& without any common zero. They can be constructed from the coefficients a,, of the
logarithm f(X)=>" -qanX @" of the universal formal o-module H of height h over R by
the formulae

©o:= lim 7"a,, and ;= lim 7" Ma,,; f1<i<h—1 (3)
n—oo

n—oo

The convergence holds in the natural K-Fréchet topology of O(Spf(R)") (cf. [GHI4, Proposition
21.2)).

We denote by Dy the affinoid subdomain of Spf(R)"® defined by
Dy :={z € Spf(R)"8 | v(u;(z)) =1 for all 1 <i < h—1}.
The subsequent results follow from [GH94, Lemma 23.14 and Proposition 23.15].

THEOREM 1.2 (Gross—Hopkins). We have ¢g € O(Dy)*, and O(Dy) is isomorphic to the free
Tate algebra over K in the variables (@;/mpo)1<i<h—1- The morphism @ restricts to an
isomorphism ® : Dy — ®(Dy).

We set wy, :=1 and w; := ¢; /o € O(Dyg) for 1 <i<h—1, so that O(Dg) ~ K (x twy, ...,
7 wy_1) by Theorem 1.2. It is a general fact that the morphism & is I'-equivariant for a certain
action of I" on IP’}}(_I. This leads to the following result of Devinatz—Hopkins.

PRrROPOSITION 1.3 (Devinatz—Hopkins). Fix an integer i with 1<i<h—1. If og€oj, if
a1y ...,0p_1 € 0p, and if vy := Z?:o o;IT" €T, then

i ol h ol .
D1 O Wi+ Dy MO W)
R — :
oo + ijl A

In particular, the subdomain Dy of Spf(R)"# is I'-stable.

v(wi) = (4)
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Proof. The formula (4) is a straightforward generalization of [DH95, Remark 2.21,
Proposition 3.3 and Lemma 4.9], which treats the case K = Q. The I'-stability of Dy is then an
immediate consequence of (4) and of the definition of Dy. O

Remark 1.4. Formula (4) can also be expressed by saying that the period morphism @ is
h—1

I-equivariant if any element =) " oI of T acts on the homogeneous coordinates
[po:...:pp_1] of IP’;LV(_l through right multiplication with the matrix
g Ty Wy e e TOp 1
g loa g o}
Qp—1 Qg aq Qp—2
0'2 0'2 0'2 0'2
Qpo Ty Qg ®ph—3
Cly):=
h—1 h—1 h—1 h—1

If h > 2 then this formula for C'(y) does not coincide with formula (22.9) of [GH94, p. 72]. In
fact, the latter seems to lead to certain inconsistencies. For example, the fundamental domain

D := {x € Spf(R)"® | v(u;(x)) = (h —i)h ™! for all 1 <i < h —1}
= {z e Spf(R)"® | v(w;(z)) = (h—i)h  forall 1 <i<h—1}
of Gross-Hopkins is supposed to be stable under the action of I" (cf. [FGL08, Remarque 1.3.2]).

Viewing II as an element of an algebraic closure of K, we have xq := [1:Ih=1. 1002 210 €
®(D) because v(Il) = h~!. Using [GH94, formula (22.9)] for the element vy:=1+1 €T, we
obtain
zo-y=[+0 10 42 I T 410,
which is not contained in ®(D) unless h < 2. Using (4), we obtain
zo-y=[14+: a4+ 110 1120 112 +-10) € &(D).

By Proposition 1.3, the action of T' on O(Spf(R)") extends to a continuous K-linear
action on the K-Banach algebra O(Dy). Since both (u; /7, ..., up—1/m) and (wy/m, ..., wp—1/7)
are affinoid generators of O(Dy), there are power series g1, ..., gn—1 € O(Dy) such that u; =
gi(wi, ..., wp_1) for any index ¢ with 1 < ¢ < h — 1. Using the K-linearity and the continuity of
the I'-action, we obtain the tautological relation

Y(ui) = gi(v(w1), - . ., v(wp-1)) € RS O(Dy) (5)

for any element v € T'.

The power series expansions of the functions ¢; in the variables uy, . . ., up_1 can be expressed
by a closed formula of Yu (cf. [Yu95, Proposition 8]). In the case h =2 this formula already
appears in the work of Gross—Hopkins (cf. [GH94, §25]). Recall that if n is a non-negative
integer, then an ordered partition of n is a decomposition of the set {i € Z |0 <i<n} into a
union of pairwise disjoint non-empty segments, i.e. sets of the form {i € Z|m <i<m’'} with
m,m' € Z and 0 <m <m’ <n. Given such a decomposition and an integer j > 1, we denote
by S; the set of minimal elements of all segments of the decomposition with cardinality j. By
convention, S; =0, if no such segment exists. Thus, an ordered partition of n gives rise to a
collection of sets S = (S;);j>1, which in turn uniquely determines the ordered partition. If j > 1
we set ¢(S;) = ersj ¢* and denote by |S;| the cardinality of 5.
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PRrROPOSITION 1.5 (Yu). Fix an index i with 0 <i < h — 1. If{ is a non-negative integer, let P; 4
be the set of ordered partitions S = (S;);j>1 of ¢h + i such that (¢ —1)h + i ¢ Sy, and such that
= () whenever j > h. We have

h q(S)
)=> > eH
£20 SEPy =
and
h q(S)

)= >

£>0 SeP;

if1<i<h-—1.

Proof. This follows from (3) and [Yu95, Proposition 8], together with our convention u;, =1 and
the observation that

(0]

for any S € P, 4. O

”M}

—J|5|> ;( Ei:SW—Eh:j\Sﬂ):éSjl—f

—
=i+h{

Remark 1.6. As is implicit in the proof of [Yu95, Proposition 8|, if S = (S;)j>1 and T = (Tj)j>1

are two distinct elements of (J;~ ol o Ugso Pie, then the two monomials H . uCI(S ) and H Q(T )

are distinct. Indeed, if szl u;]»(s i) = H;L_l ug(T) then ¢(S;) =¢q(T;) for all 1<j<h—1. F1x
an index j with 1 <j<h — 1. We will show that S; =T and may assume that both S; and
T; are non-empty. Let z; :=min(S;) and y; —mm( i) Denotlng by v, the p-adic Valuatlon
on Z, the equation ¢(S;) = q(7}) implies that z;v,(q) = v,(q(S;)) = vp(¢(T})) = yjvp(q), whence
xzj=y; and q(S; ~ {z;}) = q¢(Tj ~ {y;}). Inductively, we obtain S; =T}, as desired. Now set
g = max(U?:1 S;) and yp = max(U?zl Tj). Since S € Py and T € Py ¢ for certain indices
i,7', 0,0, we have g & Sj, and yr &€ T),. By what we proved above, we obtain g = x7, so that
S and T are ordered partitions of the same integer xg+ jo+ 1 (where jy is chosen so

that g = yr € Sj, =T),). But then the fact that S; = Tj for all j # h also implies Sy, = T}, and
we are done. As a consequence the formulae in Prop081t10n 1.5 give the power series expansions
of the functions ¢; in the variables uy, ..., up_1.

LEMMA 1.7. Let F' be any of the functions yp; with 0 <i < h — 1. Writing F((u) =) cyn—1 bpu”
with b, € R’, we have

[nl > —q-v(bn) (6)

for any n € N*=1 unless F = ¢y and n =0, where equality holds.

Proof. First assume i 0 and note that the required inequality is trivial if b, =0. If £> 0,
and if S € P, is an ordered partition as in Proposition 1.5, then |Sy|</¢. If 0€ S; then
q(S;) = q|S;j| — ¢+ 1 because x > 1 for all z € S; ~ {0}. If 0 & S then ¢(S;) > q|S}]| bythesame
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argument. Hence,

>

-1 h—1 h—1
q(S;)=1—q+q ) _IS1>—q+q) |8l
j=1 j=1

() oo )

By Proposition 1.5 and Remark 1.6 this proves the claim for F' = ¢; with 7 # 0.

1

.
Il

If F'= g then by =1 by Remark 1.6 and because the unique element of P is the ordered
partition S for which S; =0 forall j > 1.If ¢ > 1, and if S € Py ¢, then the condition h(¢ — 1) & Sy,
ensures that |S,| < ¢ — 1. As above, one obtains

h—1 h
> ats)>a( (Slsi) - 1),
Jj=1 J=1
proving the claim by Proposition 1.5. O

COROLLARY 1.8. Let 1 <i<h—1,let y €T, and let F' be any of the functions w;, g; or y(w;)
in O(Dy). Writing F(u) =Y, cyn—1 byu™ with b, € K, the inequality (6) holds for any n € N"~1,

Proof. 1t is clear that if F} and F5 are two power series satisfying the required condition, then
so are I + Fy, F1 - Iy and a - F} for any « € 8. Therefore, the claim for
F:wizﬂztpﬁ-Z%(l—ﬁpo)z
%0 =1
follows from Lemma 1.7. Writing C(v) = (¢ij)o<ij<h—1 € GLp(0p) as in Remark 1.4,
Proposition 1.3 implies

h—1
>0 Cjij
Zh*l . a
j=0 Cj0¥Pj
Since cp; € wo, any of the summands in the numerator satisfies (6) (cf. Lemma 1.7). Hence, so
does the numerator itself. Writing

Y(wi) =

h—1 h—1
Z cjop; = coo + (cooo — coo) + Z CjoPj
j=0 J=1

with cop € 0} € 6%, we can argue as above and obtain the required property for F' = ~(w;).

As for the power series g;, we need to recall the recursive construction of the coefficients of
gi (cf. the formal inverse function theorem in [Haz78, A.4.6]). Let (u) be the ideal of O(Dy)
(as well as that of K[[u]]) generated by the elements uq, . .., up_1. Since w;(u) =wu; mod (u)?

(cf. Propositions 1.5 or 1.13 below), we have g;(u) =wu; mod (u)?, as well. Put ggl)(u) = U

Suppose m > 1 and that we have found a power series gi(m) satisfying gl(m) (wi(u), ..., wp_1(u)) —

(m)

u; € (u)™*1. There is then a homogeneous polynomial h;"” in u of degree m +1 such that
ggm) (w1 (u), ..., wp—1(w)) —u; — hl(»m)(u) € (u)™*2. Setting g§m+1) = g}m) — hz(m), the sequence
(ggm))m% converges to g; both (u)-adically and in the topology of O(Dy). By induction on m we
claim that ggm) satisfies the required property on the valuation of its coefficients. This will prove

the claim for g; and follows by applying the subsequent lemma to gi(m) (wi(u), ..., wp—1(u)). O
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LEMMA 1.9. Ifthe power series F'(u), Fi(u), ..., Fn_1(u) € (u) C O(Dy) satisty (6), then so does
F(Fi(u), ..., Fp1(u)).

Proof. Write F(u) =), byu™ and F(u) =>. cg)u" so that
F(Fi(u), ..., Fh( Z by (W)™ -+ Fyoq ()™ = eu™,

m

where ¢,, € K is a finite sum of terms of the form ¢=b, H LT with n,n(i, j) €

N=1 {0} and Z Z 1 In(2, §)| = |m|. By assumption,

v(em) = mln{ +Z } +Z (i.J |+1

m+4m+w:1@
q q q
as required. O

J=1 n(w

Y

Let y=1+IVa €l with a €0, and 1 <j < h — 1, so that

w; + Wa”i‘wh,jﬂ- flr<ig<yj—1
(14 awp—j) - y(w;) = § w; + 77()4_("] iti=j (7)
wi—l—aalwi_j ifj+1<i<h—-1,
by Proposition 1.3 and since vy =1+ o' T,
LEMMA 1.10. Let o €op, 1 <j<h—1, and set v:=1+ 7o € T. Fix an index i with 1 <i <

h —1 and write g;(u) =), cxn-1 bpu™ with b, € K. If n,m e N1 and if ¢, € K denotes the
coefficient of u™ in the power series expansion of byy(wy)™ - ... y(wp—1)" 1, then

m%»>(mw+1—;)m—@mw+nma

Proof. Writing w(ws) =y cgs)u’”, 1 < s < h—1, the coefficient ¢,, is a sum of terms of the form
c=b, 1= fal g‘a 5 With n, r(¢, s) € N*~1 and > ssIT(€, 8)] =|m|. Note that for s # h — j,
~(ws) satlsﬁes (6) (cf. Lemma 1.7) and has trivial constant coefficient. Further, vy(wp—;) =
70 + g where g satisfies (6) and g(0) =0, as well. By omitting all factors c&a’s) from ¢ for

which s =h — j and (¢, h — j) = 0, we obtain

v(c) — (v(a) + D{L] (¢, h —5) =0} |> Cml+{e (e h - 4) = 0}]’

q
as in the proof of Lemma 1.9. Since
h—1 ng
m| =" " |r(t,s)[ = In| = [{€| (£, h — j) = 0},
s=1 /=1

this yields

. |m| 1
v(en) > min{o()} >~ (o) 41 ) (o] = )

= (vt@) 1= Jlnl = (0(@) + Dl 0
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THEOREM 1.11. Let « € oy, fix an integer j with 1 <j < h —1, and set v:=1+IIPa €. For
any integer { with 1<{<h—1 and any fixed integer i with 1 <i<h—1, let v(wy)(u)=
>on Dy and gi(u) =", bpu™ be the power series expansions of the functions ~y(w,) and g;

in the variables u = (u1, ..., up_1). Fix a multi-index m € N*~1 and set
gi(u) = Z bou™ and  y(wp) (u) = Z Oym,
In|<(v()+1)/(v(a)+1=1/q)-|m] In|<|m|

If m' e N*=' with |m’| <|m| then the coefficient of u™ in the power series expansion of
gi(y(wr), ..., y(wy_1)") € K[[u]] is contained in & and has the same reduction modulo 76 as
the corresponding coefficient of v(u;). Equivalently, ¢.(y(w)") is congruent to ~y(u;) in O(Dy)
modulo the additive subgroup TR+ (u1, ..., us_1)™

Proof. Obviously, the m’th coefficient of ¢}(y(w1),...,v(wp—1)") coincides with that of
gi(y(wy), ..., v(wp—1)). Therefore, the claim follows directly from Lemma 1.10 and the fact
that by (5) we have g (v(wr). . . . +(wn_1)) =(u;) € R = 8[[u]]. 0

In other words, if y =1+ IV € T’ with o € 05, and 1 < j < h — 1, then in order to compute
the image ~(u;) of v(u;) in R up to degree d, it suffices to compute vy(w1), ..., y(ws_1) up to
degree d and to compute g; up to degree strictly smaller than d - (v(a) +1)/(v(a) +1 —1/q).

Example 1.12. Let 1<j<h—1, let £€ppn_g Cop, and let y:=1+ II7¢ €T. In order to

compute 7y(u;) up to degree ¢+ 1, we need to compute the power series wi,...,wp_1 up
to degree ¢+ 1, use (7), and compute the power series g; up to degree strictly smaller than
g+ 1)/(g=1)=q+2+2/(¢-1)<qg+4

PROPOSITION 1.13. Let (u) denote the ideal of O(Dy) generated by ui,...,up—1, and set
ug := 0. We have

and

U}Z(U): SDO(U) ] T - T
for all 2 < i< h — 1. Further,

and

2
q q
upug N wuug o ugul

gi(u) = u; — - - mod (u)q+4,

for all 2 <i < h — 1. Unless q = 2, all monomials of degree q> + 1 vanish modulo (u)4*%.

Proof. We first use Proposition 1.5 and Remark 1.6 to compute the first terms of the power

series expansions of the functions g;, starting with ¢ =0. For later applications we will give
better approximations as would be necessary for Example 1.12. We may of course assume h > 2.
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We have Py o= {{0};>1}, giving the term 1.

Because of the condition 0 ¢ Sy, any ordered partition S = {S;};>1 € Po1 satisfies |S] :=
Z?:l |Sj| = 2. The partitions S € Py with [S| =2 give rise to the terms w_luiu?:_i, 1<i<
h —1. If h > 3 then there is a unique element S € Py with [S| =3 and ¢(5) := Z?;ll q(S;) =
1+ q+¢? Tt is given by S; = {0, 1}, Sp_2 = {2} (respectively the union of these if h =3) and
S; =10, else. It gives rise to the term 7r*2u1+quz2_2. All other elements T € Py with |T'] >3
satisfy q(T) =1+ q+ ¢>.

There is a unique element S € (J,5, Po¢ which minimizes ¢(S). It is given by S = {0},
Sh—1={h + 1} (respectively the union of these if h = 2), S}, = {1} and S; = 0, else. In particular,
S € Py 2. The partition S gives rise to the term ﬂfluluzhjll. All other partitions T € U@2 Poy
satisfy ¢(T) > 1+ q+ ¢"*' > 1+ ¢+ ¢3. Altogether, we obtain

2 3 2 h+1
q q q 1+q, q
Uty n UUp_o  UUp_3 Uy "Up_o  UIUR_ 4

2

=1 d L+q+q° 8
pofu) =14 Mt Phca | Wity | M mod (w7, (8)

T
with the convention that u; =0 for ¢ > h or 7 < 1.

Next assume ¢ = 1. The unique element of P; o gives rise to the term wu;. The elements S of P; 1
with |S| =2 and ¢(S) < 1 + ¢ + ¢ give rise to the terms uzu;{z_l and u;;u%g_Q. The unique element
S € Py with [S| >3 and ¢(S) <1+ ¢+ ¢ is given by Sy = {0, 1}, Sy_1 = {2} (respectively the
union of these if h =2) and S; =0, else. It gives rise to the term ﬂ*1u1+quz2_1. IfSe U@2 Py
then (¢ — 1)h + 1 ¢ S, implies q(S) > ¢~ DH2 > ght2 > (1+a+a® g6 that

2 3 ququ
— 1 h—1 1 3
p1(u) =uy + uguf | +ugul _, + — mod (u)' T4+, 9)
Assuming h > 2, a similar reasoning for ¢ > 2 yields

2 3 2

q q q 1+q, 4
oi(lu) =u; + —— + s —= 4 =2 fuipud , mod (w)'TITTL (10)

77 T 0 T

As a consequence,

wi(u) = o) =uy — +uguj ; mod (u)q+4
and
, upu? UL U Ul ugud
wilw) = S = Ml ey M g e,
o (u) i s T

if 2<i<h—1. We note that the monomials of degree ¢?> + 1 vanish modulo (u)%+* if ¢ # 2.
Even for ¢ =2 they vanish modulo (u)?73. We thus obtain the uniform approximation
ulugfl uluiu?hl

i(u) = w - d (u)t
wi(u) =u; + - - mod (u)

forall1<i<h—1.
If the polynomials ¢}(u) € K[u] are defined by

2,49
ulu 1 2

q
— uzuhfl

g1(u) :=uy +
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and
q q ¢
UL, ULUU UoU;
glu) =y — ——L g L P22 gy 0 <G h - 1,
T T
then a direct calculation using the above approximations of w; and w; shows that
gi(wi, ..., wp_1) =u; mod (u)?** for all 1 <i< h — 1. This proves g/ =¢; mod (u)?+%. 0

We will now approximate the action of I'; on R in the m-adic topology, restricting ourselves
to representatives of I'y /T, If y € I', and if 1 <i < h — 1, then we denote by ~(u;) the image of
~v(u;) in R. For simplicity, we will also assume g # 2, allowing p = 2, however.

THEOREM 1.14. Assume q # 2. Let § € pgn_y C 0}, fix an integer j with 1 <j < h —1, and let
vj:=141P¢EeT. If j =1 we have

(ur) - (L+ &upy) =w + & %], 4 26%qu) ; mod m+?

and

Y1 (ui) - (1 + Eup 1)_uz+€quz 1_£q( +€qu 2>+§q(uz+‘fquz 1)(uh 1+£uh 2)

Z ()uluZ 15&1 -_ mod miT2,

(=1
for2<i<h—-1.If1<j<i<h-—1 we have

vi(ug) - (1 + Eup_j) = wi + € uij — Eup_jpr (ul_ | + fqlugflfj)
q—1 1
i—1 J—
- Zﬂ< >u - 15&7 uf 1—; mod mir2,
/=1

Ifi<i<j<h—-1lorl<i=j<h-—1 we have

i) - (L4 up—j) = w; — Eup—jruf_y + & wuf ;.  mod mTF2,

Proof. According to Theorem 1.11 and Example 1.12, the assertions follow from the following
computations. As before, we denote by (u) the ideal of O(Dy) generated by wui,...,up_1. If
1<%, <h—1then

( wud i wu
wi + —=L 4 g <uh_j+i L > i <j,
T 0

uyuj, j—1 - upud

<1+§uh J+§7T>'yj(wi): ﬂfq +ui+7lil7 i=7,
T

q q
UL, i UrU; ;4 . .
i+ —= 4 ¢ <uij+;] ) j<i,

modulo (u)?*2 by (7) and Proposition 1.13. Further,

2,4
uu

g1(u) =uy + —"=1 mod ()7t
™

by Proposition 1.13 and since g # 2. Let us first assume h > 2. Then
q

wiuy o\ 7
1 (wy) = <1 +&up—1+¢§ - ) (€7 + u1)
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and

q q q
Uiy, h—1 Uiy h—1UIUp
y(wp—1) = (1 +&up—1 +¢§ 7: 2) <Uh—1 +&T up—o + 7: 2 1 ¢t 7:”’)

modulo (u)972. We plug these approximations into the above approximation of g1 (u). Modulo the
additive subgroup mR + (u)4*2 of O(Dy), the resulting power series then coincides with ~; (1)
(cf. Theorem 1.11). Write y1(u1) = >_,,5o ¢n Where ¢, € k°P[[u]] is homogeneous of degree n.

Note that ~(wp—1) € (u), so that ~(u1) =71 (wi;) mod 7R+ (u)?. Using the above
approximation of 7 (w1 ), one computes

v (uy) = (—f)éflulufl__ll mod m.

The gth homogeneous component of vy (wy) is 7&I(—&up_1)9 + u1(—Eup_1)?"t, whereas that of
7y (w1) 21 (wp—1)9 is 7N (7€) (up—y + §qh_luh_2)q. It follows that ¢, = uy (—€up_1)97 L.
The (g + 1)th homogeneous component of ~; (wy) is
q
Uy,
m¢? <—§ L2y (—fuh—1)q+1> +uy(—=8up—1)?,

s

whereas that of 71y (w1)?v1 (wp,_1)9 is

1 h—1

—(up—1 + & un—2)? (€M) (=g — 2)€up—1 + 2m€%ur).
Thus,

Cqr1 = —§q+1u1uz_2 —&{Muguf |+ 28%0 (uf |+ &uf )

= ¢y, + Eugud .
This proves the theorem for j =i =1 in the case h > 2. The case h =2 is similar and will be
treated more generally below (cf. Theorem 1.16).
For the rest of the proof assume A > 2. If ¢ = 2 then

14q q
Uy ULU2Uy, 4

mod (u)7™,

9i(u) = g2(u) = ug —

Using the above approximations for v;(w;) and v (wp—1), as well as

1+q i u? -1
Y1 (w2) = <U2 +eTu 4 u; > <1 + Eupy +E— :_2> mod (u)7*?,

we proceed as before. The first ¢ — 1 homogeneous components of 71 (w7 )4*! are contained in
mR. Further, 71 (wz) and ;1 (wp_1) are contained in (u). Therefore, the first ¢ — 1 homogeneous
components of v;(ug) are the reductions of those of v; (ws), i.e.

co=0 and Cn:(u2+fq2u1)(—§uh,1)”_1 for1<n<qg—1

The homogencous component of degree g of ~i(ws) is (ug + & uy)(—Eup_1)9"t. The gth
homogeneous component of 7 14y (w;)?*! is contained in R, as well, and is congruent to
71 (g + 1)mé%] modulo 7R. Hence,

cq=(u2 + {qzul)(—fuh_l)qfl — &0,
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The homogeneous component of degree ¢ + 1 of ;1 (ws) is given by
(ug + §q2u1)(—§uh_1)q + Wﬁluiﬂ.
Up to additive terms in 7R, that of 71y (wq)1 19 is ﬂfluﬁq — (¢ + )¢9 uduy, 1, whereas that
of 71y (w1)y1 (w2) 1 (wh—1)7 i £9(us + E7ur) (up—1 + €7 up_2)?. Thus,
2 2
Cop1 = (uz + €7 wr) (—Eun—1)" + % (uz + E7 wr) (uf_y + &uf_,) + € ufuy .

This proves the claim for j =1 and i = 2.
If finally j =1 and 2 <i< h — 1 then

q q
uluifl i uluiuhfl

i) = s — L nod (u)+

and
q

q g N -1
i— ulu;_ i—1 UL, U1Uy,
m(wi—1) = (Uil + &1 1%'72-1-7124-5(’ 17T7’3> (1+§Uh—1+§ B 2) ,

T
q q N
i Ui, _ i U1U,; Uiy,
71(wi):<ui+§qui1+ 7: L4 ga 7; 2><1+fuh—1+f 7: 2) ;

modulo (u)?"2 because 1<i— 1. Together with the above approximations of v;(w;) and
~v1(wp—1), we plug these approximations of v (w;—1) and v (w;) into the given approximation of
gi(u). Computing modulo the additive subgroup mR + (u)?*? and referring to Theorem 1.11, we
find co =0, ¢, = (u; + &9 u; 1) (=Eup_1)" Lfor 1 <n<q—1,

1
ui—2)?

o = (o + 0w 1) (~Eun )7 — (g + €7
= (u; + €% i) (—€up—1)T L — €9 (ul_y + €T uly),
and

q
)

i wu
Cor1 = (ui + &0 ui)(—Eup—)T + —— + ¢

Ly € ) (rE (g 4 1) (—Eun) + )

=3

'3 h—
+ ;ﬂfq(ui + &M ui) (up—1 + &7 1Uh72)q
= (u; + &0 1) (—Cup1)? + € up g (ul g 4+ E7ud)

q—1
i 1/q 0 pi—1
+ &0 (ui + £ ui—) (uf_ + &uf ) — Z 7T< )uluglgq uf_Q.

(=1 ¢

This proves the claim for j =1 and 2<i< h — 1.

For j > 1, the proof proceeds by distinguishing a long list of cases. First, one treats the case
h = 3 and then assumes h > 3. If ¢ = 1, one has to distinguish the two cases j=h — 1l and 1 < j <
h — 1. If i = 2 one has to distinguish the three cases j € {2,h — 1} and2<j<h—1.Ifi=h—1
one has to distinguish the three cases j€{h —2,h—1} and 1<j<h—2.If2<i<h—1 one
has to distinguish the five cases j € {i — 1,i,h — 1}, 1 <j<i—1landi<j<h— 1. We will only
present the last two cases. The formulae that we obtain specialize to the correct formulae in all
other cases. We leave the verification of this assertion to the reader.
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Assume h >3,2<i<h—1and i< j<h—1. We have the same approximation of g;(u) as
before. Further,

vi(wr) =wur + 7€%p—j41 mod (u)2,
i—1
Uh—j+i—1 mod (u)27

Vi (wi—1) = wj—1 + m&*
—1
vj(Wh—1) = up—1 +§q up—1-; mod (u)?,
as well as

q q —1
Uty ioq Uity
+ &My )| 1+ Sun—j + ff

v (w;) = (uz + €% g i +

modulo (u)?"2. Thus, v;(w:)7y;(w;— 1)q € (u)?™ and v;(w1)yj(wi)v;(whp—1)7 € ()72, As above,
we obtain cg =0, ¢, = u;(—&§up—;)" ", for 1 <n < ¢, and

q
U1t _q

Cqr1 = ui(—Eup—;)? + + & wuy

i—1
C(u ) (wio1 + 7€ upjigio1)?
s

'3
= ui(—&up—y)T + &M wuf g — Eunjud_y.

If2<i<h-—1land1<j<1i—1,the approximations for v;(w;—1) and vj(w;) have to be replaced
by 7 (wi-1) = w1 +€7

q q q —1
i UL, _ d UL, 5 q Uty 4
’yj(wi)z <ui—i—§q Ui—j + ﬂ_z 1 +§q Zﬂ_] > <1+§Uhj+€ﬂ_j>

u;—1—; mod (u)? and

modulo (u)?™2. Following the same procedure as above, we obtain cy=0, c,= (u; +
£ u;_ ) (—Eup—j)" L, for 1 <n < g, and

q q
i UL JULU;_ g
cgr1 = (wi + 8T ui—j)(=Eup—z)7 + 7: gl ;J
(ul + m€%p—j1) (ui—1 + 5‘11 lui—l—j)q

T
(i + € wi ) (—Eup—j)? — Eup_jyr (ul_y +E7ul_|_))

q—1 1
Lgi— 1 E
—E 7T()uuz 15 Ui g
(=1

This completes the proof. O

Ezample 1.15. Let § € pgn_y Coj, and let y:=1+ h=1¢ eT. If h=2, we will improve the
approximations of Theorem 1.14 by computing the action of v on R modulo m24+2, By
Theorem 1.11, this requires us to compute the power series wj (u;) modulo “1 *20(Dy). Further,
the power series gi(u1) has to be computed modulo (u1)?*! with d<q(2¢+1)/(¢—1)=
2¢+3+3/(¢—1).

THEOREM 1.16. Assume h=2. Let § € pgn_q Coj, and let v:=1+II§€l. For —1<n<gq
let an =" qi~'(n—i+1) €8, so that a_y = ag =0 and a,, € pd C 76, if n < q. Writing the
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image of y(u1) in R~ k*P([u1]] as > oo o cpul with ¢, € k5P for all n > 0, we have
Cco = 0
= (=& for1<n<yg,
p=—n(—€)" T+ 2 (2 forg 4 1<n<2g
7r

and
Aqg—1

(=€)

Proof. Set u:=wuj, w:=w; and g:= g;. According to (8) and (9) we have

Cog+1 =

3
ulta wulTa

+ mod (u)le+e’

wo(u) =1+

and
14+q+4?

o1(u) =u+ u? + 2 mod (u)l+q+q3.

Let us first assume that ¢ >3, so that we need to compute g(u) up to degree 2q + 3 (cf.

Example 1.15). If ¢ > 3 we have ¢ > 2¢ + 3 and obtain

2+q 2q+3
4 “ mod (u)?

T2

and
2+q u2q+3
+(g+1)—

glu) =u+ = mod (u)%+,

We need to compute v(w(u)) modulo (u)?4+2, plug the corresponding truncation into the above
approximation of g(u) and compute the image of the resulting power series modulo the additive
subgroup 7R + (u)?4"2 of O(Dy). According to Theorem 1.11 this image coincides with that of
().

By (7) we have y(w) = (€9 + w)(1 + &w) ™!, where

2+q

mél+w=mé 4+ u — mod (u)%4+?

and

(e = (1re-e)

2q+1 q n
= 3 (60 = 3 " mod ()
n=0 n=0

Therefore, modulo 7R, the first 2¢ + 1 homogeneous components of v(w(u)) are given by w&%u°,
(m€9(=&)" + (=§)" Hu" for 1<n < g+1, and

R R
rulcom = mmg - E e g

R R

™
forg+2<n<2¢+1.
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Next, we will compute 7~ 1v(w)?*?2 in O(Dy) modulo the additive subgroup 7R + (u)?+2.
Note first that

2+q

—(2+9)
<1+§u— €U;+q> ! =(14&u)” (2+9) <1—|—(2—i—q)€u7r

with (1 + éu)~+9 € R, and that

(1+ §u)1> mod (u)?9?

2 2+ 2

1(776““— : +q> q<1 Ferget +£u>‘l>

T T T

24
= %(ﬂ'fq 4 u)?T9 — (2 4 ¢) (7€ + u)HquTQq
2
+ (¢ + 2)§u7;q (1+ fu)_l(ﬁgq + u)2+q mod ™R + (u)2q+2
2+q

=4 (2 4+ )&% mod wR + (u)*T2.
m

Since this power series has w-order ¢ + 1 and since the valuations of its coefficients are all at
least —1, it now suffices to compute (1 + £u)~(3+9) modulo 72R + (). Note that (1 + fu)~2 =
Yoo o(n+1)(—=&u)™, so that we obtain

q

(14 &u)~F9) = <1 - Zq: @ £u> Y (4 1)(=€uw)" mod TR+ (u)' .

i=1 n=0
If 0 < n < g then the nth coefficient of this power series is

n

<n+n«fw—§j<$&m—i+nv@ Y= (n+1+an)(—€)" mod %,

=1

because (?) = (g/i)(—1)""! mod 728 if 1 <i < g. As a consequence, modulo TR, the first 2¢ + 1
homogeneous components of 7~ 1y (w)?*4 are given by 0-u™ for 0 <n < ¢, 269u™ for n =1+ g,
and

(=g 2

2 gt g ) (-

[(n —q— 1+ ap_g_2)

for 24+ g<n<2¢+1.
As for the term (g + 1)7~2y(w)?™3, note that

f 2+q

u2 (2¢+3)
<1+§u— - > = (1+¢u)” 2q“’)(1+<2q+3)
=1-(2¢+3)éu mod (u)?.

The first congruence shows that in order to determine (g + 1)7~2v(w)??*3 mod 7R + (u)?9+2,
it suffices to determine 7=2(q + 1)(mé9 + u — 7~ 1u?79)29F3 mod 7?R + (u)??*2. We have

q—l—l el 4 | gure\ 2
ﬂ T

(1+ gu)_l) mod (u)%1+2

1 1)(2 3
= ;q(ﬂ.gq +u)2q+3 . (Q+ )7ESQ+ )(Wfq +u)2q+2£u2+q mod (u)2q+2
2 3
=(¢+1) <2q;— 3> £2ay2att 4 7r§3q(q + 1)< q;— >u2q mod 2R + (u)2q+2.
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As a consequence,

(q+ 1)7(11}722(1+3 (q+ 1) <2q2+ 3) u2a+!

= 36204291 mod 7R + (u)?7t2

Combining our results, we obtain ¢y =0, ¢, = (—=&)"! for 1<n < q, cgr1 = (=€) + 267 = ¢4,
and

tn=(n—q)(=)"" —(n—q-1)
(="

™

(g

—2(n = g+ an—g1)(=€)""

= —n(=¢)" " + T2 ()", forq+2<n <2,

+(n—qg—1+an_q-2)

because a, € w6 for n < ¢. Finally,

g1 g1
C2q11 = (g + 1)(—5)2(] - q(gﬂ)q + (¢ + aq1)(§7r)q —2(q+1+ aq)(—§)2q + 3¢%4
= a(;__l (_f)q_lv

because a; =1 mod mo. Note that the above formula for ¢,, ¢ + 2 < n < 2¢, specializes to £7 if
n is formally put equal to g 4+ 1. This finishes the proof if ¢ > 3.

For ¢ =3 we need to approximate g(u) up to degree 10 (cf. Example 1.15). Using the
approximation of w given at the beginning of the proof, we find

1
w(u) =u— L. (1 + 2>u9 mod (u)'
T
and
_ U 4\ o 11
glu)=u+ — — <1— 7T2>u mod (u)",
if ¢ =3. If ¢ = 2 we need to approximate g(u) up to degree 9 and find
wu)=u+ | 1-— 1 ut + iJrl u” mod (u)
o T w2 o7
and

™

o) =u— (1 - 1>u4+ (4— ; + 5’2)@; mod (u)™0.

A straightforward computation shows that the asserted formulae for the first 2¢q + 1 coefficients
of y(u) are also valid in these exceptional cases. O

Remark 1.17. If char(K) =p > 0 then ¢ =0 in 0 and a,, =0 for all n < ¢. If char(K) =0, and if
K|Q, is ramified, then p € 726 and we have a, /7 € 76 for all n < ¢. For K =Q, and 7 =p we
have ¢ = p and hence a; = p. Further, the coefficient a,_1 can be computed to

p—1

p . o
apa=) S(p—i)=-plp—1)=p mod p’.
=1

This implies cgg41 =1 if K = Q).
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Remark 1.18. If h =2 and K = Qy then the computations leading to the result in Theorem 1.16
are simple enough to be carried even further. If v =1+ II€ is as before and w := u;, we find

() =u+ u? + 23 + v’ +u” + €2u®  mod wmP.

To give another concrete example, if K = Q5 then the approximation of v(u) in Theorem 1.16
reads

y(u) = u— &u® + 2ud — Eut + 4P + 5ub
— 26507 4+ (367 — )u® — 4684° — ut0 + ¢futt mod w2

We end this section by considering the action of the subgroup o; CI' on R, which can be
approximated in the (u)-adic topology. Here (u) denotes the ideal of R generated by u1, . . ., up_1.

THEOREM 1.19. Assume g # 2, let a € o; CTI', and consider « also as an element of K. For
0<j<h—1setq; = "1 If1<i<h—1 we have

q q
a; — ooy a;(aray_; —1) t3

o(u;) = oju; + upul | + uluiu%_l mod (u)

s

In particular, if « =1+ & for some element § € pn_q C 0y, then
alu) =u; + (fqi — Nl | + (€7 - §)u1uiuz_1 mod m?t3,

If h=2 and q > 3 we have

q+2
o — 2
1 uq-I—

alur) = aqug + 1

a1 — (g +2)af + (g + )i’ o015
+ uy

2

In particular, if « = 1 + &m for some element § € ji,2_y C 03, then

a(ur) = ur + (€~ Quf™ + <7qr(£q — &)+ (&7 - 5)2) ui™™  mod M2+,

Proof. The reason that the action is so much simpler to compute in this situation is that
a(w;) = ajw; has trivial constant coefficient for all j (cf. Propositions 1.3 and 1.13). By (5)
and Proposition 1.13 this implies

a(u;) = gi(a(wi), .. ., a(wp_1))
q q
a0y 4 alaiah_l 3
= qw; — wiw! |+ Twlwiwz_l mod (u)?"
q q q
N ului—l uluiuh_l Oéloéi_l q
= o | u + — — ULU;_
T T T
.
araay

uiuuy_; mod (u)973,
T

proving the first claim.

If h = 2 then we use the better approximation of g(u) appearing in the proof of Theorem 1.16
and proceed as above.
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If h is arbitrary, and if « =1 4 &£, then

14¢7 : -
0= Tl =1+ (€ On (€= ¢ )r mod 7%,
This leads to the required formulae for a(u). O

2. The action of the spherical Hecke algebra

Recall that we fixed a one-dimensional formal o-module H over kP which is defined over k. The
deformation problem of § 1 can be generalized as follows (cf. [Dri74, § 4], and [Str08]). If (S, mg) is
a complete noetherian commutative unital o-algebra with residue class field S/mg ~ k*P, and if
m is a non-negative integer, then one considers isomorphism classes [(H, ¢, )] of triples (H, ¢, )
where H is a one-dimensional formal o-module of height h over S, ¢: H mod mg — H is a
quasi-isogeny of arbitrary height and ¢ is a so-called level-m structure. The latter means that
@:m Mol /o" — (mg, +x) is a homomorphism of abstract o-modules such that the power series
[Tocr—monson(X — p(a)) divides the power series [7]p in S[[X]]. Here (a+— [a]y) denotes the
map 0 — End(H) defining the o-linear structure of H.
The generalized deformation problem just described is represented by a formal scheme X,
which decomposes as a disjoint union
=] Xmn

ne”L

of open affine formal subschemes X, , = Spf(R,, ) (cf. [Dri74, Proposition 4.3] and [RZ96,
Proposition 3.79]). There are non-canonical isomorphisms Ry, ,, ~ Ry, ,» for any two integers
n,n', and Xoo~ Spf(R) with R as in §1. If m and m’ are two non-negative integers with
m’ > m then there is a finite flat morphism X,,, — X,, which is compatible with the above
decompositions. The collection of these morphisms gives the family (X,,)m>0 the structure of a
projective system of formal o-schemes.

The local ring R, := Ry is regular, and if (e1,...,ep) is an o/7™o-basis of 70" /0",
then its image (¢m(e1),. .., pm(en)) under the universal level-m-structure ¢y, : 7~ ™o" /0" —
(mpg,,, +m) is a system of regular coordinates of R, (cf. [Dri74, Proposition 4.3]).

The group of quasi-isogenies of H is isomorphic to D* and functorially acts on each of
the spaces X,, over Spf(6). In fact, if § € D*, then the morphism §:X,, — X,, restricts to
an isomorphism Xy, n — Xy, n—nop(s) for any n € Z. Note that we assume vp to extend v so
that vp(II) = 1/h. The induced action of 0}, on R~ O(X( ) coincides with the one considered
in §1. The morphisms X, — X,, are D*-equivariant. Further, there is a functorial action of
G := GLj,(K) on the projective system (X, )m>0 which induces an ¢-linear action on lim ~ O(X;,)
(cf. [Str08, §2.2.2]). For any integer n, the ring Ry p, := lim = Ry, is stable under the subgroup
GY:={g € GLy(K) | det(g) € 0*}, and if Gy, :=ker(GLj(0) — GLp(0/7™0)) then RS, = Ry
for any m > 0. In fact, the ring extension Ru ,[1/7]|Ron[1/7] is étale and Galois with Galois
group Go=GLy(0) (cf. [Str08, Theorem 2.1.2]). The actions of G and D* on lim O(Xp)
commute with each other.

We let C—Indg0 (6) be the o-module of all functions f : G — o with compact support, satisfying
f(gg0) = f(g) for all g€ G and gy € Gp. It is an 6-linear representation of G via g(f)(g’):=
f(g~tqg") for fec—Inng(B) and g,¢ € G. We let H:= Endg(c—Inng(B)) be the ring of G-
equivariant and ¢-linear endomorphisms of c—Indg0 (6). The o-algebra H is called the spherical

813

https://doi.org/10.1112/50010437X12000723 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X12000723

J. KOHLHAASE

Hecke algebra of G over 6 and is o-linearly isomorphic to the module of all compactly supported
Go-biinvariant functions from G to 0. Its structure can be made explicit as follows. For any
integer ¢ with 0 <i<h —1 let t; :=diag(l,...,1, 7, ...,7) € G be the diagonal matrix whose
first 4 diagonal entries (counted from top to bottom) are equal to 1 and the remaining ones equal
to 7. Because of the Cartan decomposition
G= 11 Gotpoty - - "' G,
ngEZ,n1,...;np—1€L>0
H is a free 0-module, a basis of which is given by the characteristic functions of the double cosets

Got 1t - - - tzh__llGo with ng, . .., ny—1 as above. In fact, if T; denotes the characteristic function
of GotiGo, 0 < 7 < h — 1, then

HQB[TO)T()_luTla"‘aTh—l]) (11)

i.e. H is commutative and, as an 6-algebra, is generated by Tj, To_l, T1,...,Tx_1 subject to the
only relation TpT}, 1= 1. This is an integral version of the classical Satake isomorphism which
is due to Herzig, Henniart, Schneider, Teitelbaum and Vignéras (cf. [Groll], Proposition 2.1).
Note that by Frobenius reciprocity

O(%) = (lim O(Xm))“* ~ Homg (c-Indg, (8), lim O(X,,))

is naturally a module over H. Explicitly, if f € O(%Xy) then

(= >, 9= > (gt:)(f)- (12)

9€Got;Go/Go g€Go/(Gont;Got; )

Since the actions of H and D* on O(X() commute with each other, we obtain an induced structure
of H-module on O(%y)"" ~ O(%X0,0) @ R. We note that this action of H on R depends on the
choice of a uniformizer II of D. Therefore, it is non-canonical and does not quite commute
with that of I'. In fact, the above isomorphisms are given by mapping f € R to the family
(II"(f))nez. If 0 <i< h— 1 then the endomorphism 7; of the direct product O(Xy) is of degree
i — h, as follows from (12) and the definition of the GLj (K )-action. Therefore, the family 7T;(f)
has entry T;(II"~/(f)) in degree zero. If we denote by o; the outer automorphism of I' defined
by conjugation with the element IT"~% of D*, then this implies

Ti(v(f)) = oi()(Ti(f)) forallyel, feR. (13)
The reduction of the action of H on R modulo certain prime ideals of R can be described as
follows.
THEOREM 2.1. Ifi is an integer with 0 <i < h — 1, and if f € R=206[[uq, ..., up_1]|, then

T;(f)(u) = f(u‘fi, R u;il) mod (ug, u1, ..., u;_1)R,

where we change our previous convention and set ug := 7.

In order to prove this theorem, we need some preparation. Let m; be the ideal of R

generated by ug, ..., u;—1. For any positive integer m let m;,, be the ideal of R,, generated
by omlel), ..., om(el,), where @, : 7 ™o"/o" — (mpg, ,+n) denotes the universal level-m
structure and (e}, ..., e") denotes the standard basis of the free (o/7™0)-module 7—™o" /0.

According to [Kohl11, Proposition 1.2], which builds on a result of Strauch, we have m; ,,, N R, =
m; ,, for any two integers m’ >m > 0. Further, m; » := h_H)lm m; ., is a prime ideal of Ry :=
li_r)nm R, lying above m,.
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Let B; := Go Nt;Got; ! which is the parahoric subgroup of GLj,(K) consisting of all matrices
g € Go = GLp(0) of the form
(A B
9=\zc D

with A € GL;(0), D € GLj_;(0), B € 0"~ and C € o(h=9%¢_ Further, let W be the subgroup
of permutation matrices in Gy, identified with the Weyl group of GL;(K) with respect to the
diagonal torus. Let ¢ denote the length function on W corresponding to the generating set
of simple transpositions (jj+ 1), 1<j<h—1. Let W; CW be the Weyl group of the Levi
subgroup of GLj(K) consisting of all matrices of the form

(A 0
9=\o D
with A € GL;(K), D € GLj,_;(K). Finally, let Ny C G be the subgroup of all upper triangular
unipotent matrices in Gy, and let B := ﬂ?;ll B;.

LEMMA 2.2. The group Gy is the disjoint union of the double cosets BwB; with w € W/W;.
If w e W/W; then BwB; = NywB; = Nou?Bi, where W denotes the unique element of minimal
length in wW;. We have |BwB;/B;| = ¢"(®).

Proof. The group B (respectively B;) is the inverse image under the reduction map Gy =
GLp(0) — GLp(k), of the group of upper triangular matrices (respectively of upper triangular
i X (h — i)-block matrices) with coefficients in k. Therefore, the first two assertions follow from
the generalized Bruhat decomposition of GLj (k) (cf. [Bor91, 21.16]). The remaining assertions
follow from [Bor91, 21.21 and Proposition 21.29]. O

We need to give a more precise version of the standard result in Lemma 2.2. If 1 <r <s<h
we let Vs C Ny denote the root subgroup of G consisting of all unipotent matrices possessing
non-zero off-diagonal entries at most in place (r, s). The set ® :={(r,s) | 1 <7, s < h, r# s} can
be identified with the root system of GL,,, and ®* := {(r, s) € ® | r < s} corresponds to the set of
positive roots for the basis determined by the Borel subgroup of upper triangular matrices. We let
®~ := & \ &+, and note that the symmetric group W acts on ® in such a way that wN,,w™! =
Nu(ryu(s) for all (r,s) € ® and all w e W. Letting w € W and ¥y, :={a € ®* |w ! (a) € D7},
the references given in the above proof show that the map [] acv, Na = BwbB; /B;, defined by
(na)acvy = ([aew, na)wB;, is surjective for any fixed but arbitrary ordering of the factors. It
induces a bijection

II Na(k) — BwBi/B. (14)
acVy
Here we abuse notation and also write N, for the group scheme over o whose group of o-rational
points is N,.

LEMMA 2.3. If we W \ W;, and if w denotes the unique element of minimal length in wWj,
then Wy contains a root (r,s) with r <i.

Proof. The assertion is trivial if ¢ = 0 so that we may assume 1 <i << h — 1.

Our proof relies on the fact that the minimal coset representatives of W/W; are explicitly
known. Given integers j and ¢; with 0</¢; <j<h, we let w;(¢;) be the (¢; + 1)-cycle
(j+1—45,...,57+1)in W,sending j + 1 to j + 1 — ¢;. According to [Stu00, Theorem 2|, there
is a unique sequence of integers (¢;, ¢it1, - .., p_1), satisfying 0 < €1 < --- < ¥¢; <1, such that
W = wh—1(lh—1) - - - w;i(4;).
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Since w ¢ W;, we have ¢; #0 and consider the root (i+1,i+1—4¢)e® . If j>i
then j+1—¢;>i4+1—¥¢; >i+1—4;, so that the cycle w;(¢;) fixes i +1 —¢;. Since w;(¢;)
(t+1)=1i+1—¥;, weobtainw(i + 1) =i+ 1 — ¢;. Letting ig := max{j | j >4, {; = ¢;}, asimilar
reasoning shows that w(i +1—4¢;) =ig+2 —¥¢; >i+ 1 — ¢;. Thus,

(i4+1—lig+2—4)=w(i+1,i+1—4)€d.
When writing (i + 1,7+ 1 — ¢;) as an integral linear combination of the basis A :={(r,r+1)|

1<r<h} of @, it has a negative contribution from the positive simple root (i,7+ 1). In the
terminology of [Bor91, 21.23], it is contained in W(A \ {(i,7 4 1)})~. Thus,

(i+1—Llig+2—£4) €@ Nw(T(AN{(,i+1)})7) =Ty,
the last equality being [Bor91, 21.23 (4)], where Uy is denoted by @/. O
Proof of Theorem 2.1. We first recall some of the constructions which are used in the proofs
of [Kohl1, Proposition 1.2 and Theorem 1.4]. Fix an element g € G and an integer r > 0 such

that the matrix 7"¢g~! has coefficients in 0. Fixing an integer m > 1 with 7~ "go” C 7=™+1o" we
may view 7 "go" /0" as an o-submodule of 7~™0"/o". Consider the power series

prg(X):= [ HX, en(a)) € RnllX]]-
aen—"goh /ol
Letting 1 < j < h, and choosing an element 3; € 7 ™o" /0" whose image in 70" /77" go" is the
image of ¢] under the injection 7~ "g: 7~ to" /0P < 770" /77" go" | we have
ger(e) =prglemB) = I H(en(B): om(a)). (15)
aen—Tgoh /ol
If g = to then we may take 7 =1, m = 2 and obtain 7~ "g = 1, as well as pr, (X) = H(X, 0) = X.

Since the diagram

720" Joh —2> (mp,, +m)

|

7=loh foh —> (mp,, +5)

is commutative, we obtain to(cpl(e{)) = cpl(e{) for all j. Since (()01(6'{))1<]'<h is a family of regular
parameters for Ry, this implies that ¢y stabilizes R; and acts as the identity. By (12) this implies
To(f) =to(f) = f for all f € R, proving the theorem for i = 0.

Now assume 1 < i< h — 1. For g =t; we may again take r =1, m = 2, and obtain
pry, (X)= H H(X, QOQ(CMNTG% 4+ 4 omre%)).
al,...,aieo/wo
Now
pa(armey + - - -+ agmeh) = [en]u([mla(p2(e2))) +m - - - +u [lu([7lu(e2(eh)))

is contained in m; 2, because [oj]m(X), [7]m(X) € X R[[X]] and since H(X, Y) has trivial constant
coefficient. Thus,

pr, (X) = X7 mod m; o Ro[[X]],

which, as above, implies ti(gol(e{)) = gol(e{)qi mod m; o for all 1 < j < h.
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Before we consider the action of more general elements of the form gt; with g € Gy, let us show
that ¢;(f)(u) = f(u[fz, .. ,uzll) mod m; for all f € R. As in the proof of [Kohl1, Proposition
1.2], one can use the above form of pry, to see that t; stabilizes m; . In particular, it defines a
ring automorphism of Ro/m; oo. However, R;/m;; is a regular local k%P-algebra with residue
class field k°P. Therefore, Ry /m; 1 ~ k*P[[p1(et™), ..., o1(eM)]] (cf. [Bou06, VIIL5.2 Corollaire
3]). It follows from the above that the subring R;/m;; of R /m; o is stabilized by ¢;, and
that ¢; acts by raising the variables gol(e{) to the power of ¢*. Thus, it suffices to see that the
elements u; are contained in k[[p1(el),. .., p1(e?)]]. This can be deduced from the explicit
construction of R; from Ry, as presented in the proof of [Dri74, Proposition 4.3]. Namely,
extend the automorphism o of 6 to a ring automorphism of R by letting it fix the variables u.
Since the logarithm f of H has coefficients in o[[u]][1/7], the power series [7]g(X) = f (7 f(X))
has coefficients in o[[u]] = R°~!. Hence, so does fo(X) := [7]u(X)/X. As a consequence, o can
be extended to a ring automorphism of L;:= R[[X]]/(fo(X)) such that the image ¥; of X
in L; is invariant under o. Since [ag(X) € o[[u]][[X]], any element of the form [a]m (1) with
o € o/mo is o-invariant, as well. Considering f1(X) := [7]u(X)/ [[oco/mo(X — [oJu (1)), we see
similarly that o extends to Lo := L1[[X]]/(f1(X)) in such a way that the image Y2 of X in Ls is
o-invariant. Proceeding inductively, o extends to a ring automorphism of Ry = Ly in such a way
that the zeros p1(el), ..., p1(e?) of [r]u(X) are all o-invariant. Its reduction modulo m; 1 acts as
the g-power map on the coefficients of any power series in Ry /m; 1 =~ k*P[[p1(e™), ..., o1(el)]].
Since the variables u; are all o-invariant, the claim is proved.

As above, let B;:= G ﬁtiGoti_l, fix we W W, and let @ be the unique element of
minimal length in the coset wWj. Let n € Ny and consider the element g:=nwt; € GLj(K).
For the computation of pr,(X) we may again take r =1 and m=2. Let xi:m ™ol ol —
@?:Hl(o/ﬂmo)efﬁ be the natural projection. If a € 7~ 1go" /o C 770" /0" then a = x;(a) +
(v — xi(e)) with a—Xi(Oé)E@é-:l(o/wmo)ezn. As in the computation of pry (X) we see
that @a(a — xi(a)) €m; 2 and that ya(a) = p2(xi(e)) mod m;s. This in turn implies that
H(X, p2(a)) = H(X, p2(xi(a))) mod m;sRs[[X]]. Thus,

pr,(X)=  [[  HX, ¢2(xi(a)) mod mizRs[[X]].

aen—1lgoh /ol

Now if n’ is contained in a root subgroup N,s C Ny with r <i, and if o € 77 1go” /0", then
Xi(n'a) = x;(a). Therefore,

pry,(X)= [ HX e0a@) = [ HEX, e2(xi(n'a)))

acn—1n/goh /oh acr—1lgoh foh

= ]I  H& e(6(@) =prg(X) mod mizRa[[X]).

aen—1lgoh /oM

As a consequence of (15), g(p1(e])) = (W g)(p1(e})) mod m;o for all 1< j<h. Since the
elements o (ef™), ..., p1(e?) topologically generated Ri/m;; over kP, we obtain g(f)=

(n'g)(f) mod m; . for all fe Ry. If f€ R then (n'g)(f) depends only on the image of n'’
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in Nys(k) (cf. (14)). Since w € W ~ W;, we may choose (r, s) as in Lemma 2.3 and obtain

Z (g9ta)(f) = Z (nwt;)(f)

gEB’wBi/Bi nel—[ae\lfﬁl Na(k)

- (T )

n/eNTS(k) neHaG\I’ﬁ]\{(T,s)} Na(k)

S (00X eon) modm.

n/GN”‘S(k) nenaeq’@\{(r,s)} Na(k)

=0 mod m;,

because |N,s(k)| = ¢ and since Ro/m; o is of characteristic p. According to Lemma 2.2 and (12)
we obtain

TN =t(f)=ful,...,ul ;) mod m,
where the second congruence was proved above. O

As a direct consequence of Theorem 2.1 we obtain the following result.

COROLLARY 2.4. If1< i< h then the prime ideal m; := (7, u1, . .., u;—1)R of R is stable under
the action of the 6-subalgebra of H generated by Ty, . .., T;.

In the following, we shall always view R as a topological ring with respect to its m-adic
topology. Note that the m-adic topology gives R the structure of a pseudo-compact 6-module in
the sense that R is a complete Hausdorff topological o-module which is the projective limit of
discrete o-modules of finite length.

COROLLARY 2.5. For any integer ¢ with 0 <i < h — 1, and for any non-negative integer n, the
o-linear endomorphism T}* of R is continuous with closed image. The 6-linear endomorphism 17"
of R is injective. If m > n then the 6-module T{*(R)/T{"(R) is torsion free. It is non-zero unless
h=1.

tiGot;l

. . GoﬁtiGotfl
Proof. The ring homomorphism ¢;: R — Rs — Rso ‘

is local, hence is continuous

] -1
for the topologies defined by the maximal ideals. Moreover, the trace map Rfoomthoti — R is
R-linear, hence is continuous for the m-adic topologies. By Krull’s intersection theorem, the

Gont;Got; !
(oe)

m-adic topology on R coincides with the topology defined by the maximal ideal of

) -1
GontiGiot; Therefore, it follows from (12) that 7; is continuous. It is a general fact that
continuous o-linear maps between pseudo-compact 6-modules have closed image (cf. [Schll,

Theorem 22.3]).

If T7(f) =0 then the injectivity of 77" modulo 7R (cf. Theorem 2.1) implies that f € 7R,
i.e. f=mf" for some element f’ € R. Since 17" is 6-linear and since R is torsion free over 6, we
obtain T7*(f') = 0, as well. Proceeding inductively, we find f € N,,>on™R = {0}.

Finally, let g, f € R be such that #T7"(g) = T7"(f). According to Theorem 2.1 we have

F@d" ol ) =TP(f) =T (g) =0 mod nR.

Obviously, this implies f € 7R. Writing f = wf’ for some element f’ € R, we obtain 777" (g)
7T (f'), whence T*(g) = T1"(f) because R is torsion free over 6. This proves that 77" (R)/T{"(R
is torsion free over 6. That it is non-zero, provided h # 1, follows from Theorem 2.1.

~—

a
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Note that the image of 6 in lim ~O(Xy,) is pointwise fixed by GL;(K), so that 6 is naturally

an H-submodule of R with T} acting by multiplication with the index (Gp: Go N tiGoti_l). In the
case of height two, we can now prove the following result.

THEOREM 2.6. If h =2 then R/0 is a flat module over H/(Ty — 1)H ~ o[T1].

Proof. Tt follows from Theorem 2.1 that the action of H on R (and hence that on R/0) factors
through H/(To — 1)H. The identification of this quotient with o[71] follows from the integral
Satake isomorphism (11). Letting Rx := R ®, K ~ R ®; K, it suffices to see that Rg /K and
R/k5P are flat over K[T1] and k*P[T}], respectively (cf. [Bos08, 2.6 Lemma 1]).

Since k*°P[T}] is a principal ideal domain, it suffices to see that R/k5P is torsion free over
kSeP[Ty]. Note that the k*P-subspace m of R is in fact a k*P[T}]-submodule which is isomorphic
to R/kSP. If F € k*P[Ty] and f € m = u1k%P[[uy]] then

ordy, (F(f)) = ordy, (f) - >4 ()

by Theorem 2.1, whence m is torsion free over k*P[T7].

To complete the proof, we will show that Ry /K is torsion free over K[T}]. Let f € Rg and
F € K[T1] ~ {0} be such that F(f) e K. We need to see that fe K. If f— f(0)#0 choose
integers r and s such that 7" F € 6[T}] and 7°(f — f(0)) € R with non-trivial images in kP[T}]
and R, respectively. Since 7" F(7*(f — f(0))) € RN K = 8, the case we treated above shows that
7(f — f(0)) € 7R. This contradicts the choice of s and shows that indeed f = f(0) € K. O

Remark 2.7. Without any restriction on h, the above proof can be adjusted to show that R/o is
flat over the subalgebra o[T] of H/(Ty — 1)H.

Let h be arbitrary again. The proof of Theorem 2.6 could have been slightly simplified by
referring to the following result.

PROPOSITION 2.8. The endomorphism Ty of R/6 is topologically nilpotent in the sense that
Nn>0T7'(R/0) = {0}. Equivalently, Np>0T]"(R) = 0. The action of the ring 6[T] on R/6 extends
to an action of o[[T1]].

Proof. Note first that the action of T3 on ¢ is bijective after reduction modulo 7 (cf. Theorem 2.1),
hence is bijective itself. This shows that o is contained in any submodule T7'(R), ie. 6 C
Mo 1T (R).

Conversely, assume f € Np>oT7(R). The image of f in R is contained in Np>oT7(R) =
k5P the last equality following from Theorem 2.1. Therefore, we can write f =« + 7 f’ with
a€o and f' € R. By what we already know, we must have 7f = f —a € Ny>oT]'(R), as
well. As a consequence of Corollary 2.5, this implies f’ € N,>0T7"(R). Inductively, this yields
f €Np=o(6 +7"R) = 0, the last equality coming from the fact that 6 is closed in R (cf. [Schll,
Lemma 22.2]). This proves the first assertion of the proposition. Together with Corollary 2.5
and [Schll, Lemma 22.1], it implies that the natural 6[7}]-linear homomorphism of pseudo-
compact d-modules

R/6 — lim(R/0)/T}'(R/0)
n=0
is bijective. Obviously, the action of 6[71] on the right-hand side extends to lm o[T1]/ Ty 6[T1]
o[[T1]].

o R
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3. Iwasawa theoretic structure theorems

The group I' is a profinite topological group with a basis of open neighborhoods of the identity
given by the subgroups I'; = 1 + IT’op for i > 1. The following assertion is a direct consequence
of a result of Gross and Hopkins (cf. [GH94, Lemma 19.3]).

ProposiTiON 3.1. Endowing the ring R with its m-adic topology and the direct product I' X R
with the product topology, the action of I' on R is continuous in the sense that the map
((v, /)= ~(f)):T x R— R is a continuous map of topological spaces.

Proof. The group I' acts on R by local ring automorphisms which are continuous for the m-
adic topology. For the same reason we have I'(m™) = m" for any integer n > 0, so that the map
I' x R— R is continuous at (1,0). Therefore, it suffices to show that if f € R is an arbitrary
element, then the map (y— v(f)): ' — R is continuous.

Fix an integer n > 1. It suffices to prove that v(f) — f € m" for any element v € T'j(;,_1. Since
m” is an ideal of R, one can further reduce to the case f = u; for some index ¢ with 1 <i < h — 1.
Consider the affinoid subdomain Dy C Spf(R)"8 of § 1. The spectral norm of O(Dy) is given by

9D, := sup lg(z)| = sup |dalg™,
z€Do aeNh-1
if g =3 penn1 dau® € O(Dy). In particular, an element g € R € O(Dy) is contained in m™ if and
only if |g|p, < ¢~ ". Applying [GH94, Lemma 19.3] with e = 1, we have
—Nn

|v(ui) — ui|py = sup |ui(x-7v) —ui(z)| < q

xelo

for any v € I'(,1). By our previous remark this implies v(u;) — u; € m", as required. O

For any profinite group H we define the completed group ring A(H) = 6[[H]] of H over o by

A(H) = 5[[H]) == Lm 8[H/N),
N<oH

where the projective limit runs over all open normal subgroups N of H. If N and N’ are
two open normal subgroups of H with N’ C N, then the transition map 6[H/N’| — 6[H/N]
of this projective limit is the natural homomorphism of group rings induced by the surjective
homomorphism H/N'— H/N. We note that if N is an open normal subgroup of H, then
the group ring 6[H/N] is the projective limit of the Artinian rings (6/7™)[H/N] with m > 0.
Therefore, A(H) is a pseudo-compact topological ring in the sense of [Bru66, p. 442].

We shall abbreviate A := A(T") and A; := A(T';). It follows from Proposition 3.1 that if n is
any positive integer then there is an open normal subgroup N of I' such that N acts trivially on
R/m". In fact, the proof of Proposition 3.1 shows that we may take N := I'j(n—1)- This allows us
to view R/m™ as a module over A via the natural ring homomorphism A — 6[I'/N]. The natural
maps R/m"*! — R/m" are A-equivariant and provide R ~ lim | R/m™ itself with the structure
of a A-module. In fact, this construction makes R a pseudo-compact module over A, i.e. R is a
complete Hausdorff topological A-module possessing a basis of open neighborhoods of zero (the
ideals m™) consisting of A-submodules such that the corresponding quotient modules are of finite
length.

LEMMA 3.2. Ifn is a non-negative integer and if 0 <i < h — 1 then the 6-submodule T]'(R) of
R is A-stable.
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Proof. According to Corollary 2.5 the o-submodule T7*(R) of R is closed, hence is complete for
the induced topology. As a consequence, the natural map

T (R) — lim T7*(R)/(T}*(R) N m™)
m=0
is bijective (cf. [Sch1ll, Theorem 22.3 and Lemma 22.1]). By the construction of the A-module
structure on R it therefore suffices to see that T)'(R) is I'-stable. This follows from (13). O

Following [ST02b, § 1], we endow the K-vector space Rk := R ®, K ~ R ®3 K with the finest
locally convex topology over K for which the inclusion R C R is continuous when R is endowed
with its m-adic topology. An o-lattice L of Ry is open for this topology if and only if RN al is
open in R for any element a € 0 \ {0}.

For any element F' € H we also denote by F'its natural image in H ®, K, viewed as a K-linear
endomorphism of Rx. We also set A :=A®, K ~A®; K.

ProprosITION 3.3. The locally convex K -vector space R is Hausdorff, complete and induces
the m-adic topology on R. For any integer n >0 the K-linear endomorphism 17" of Ry is
continuous and injective. Its image is a closed, Ax-stable f(—subspace of Ri. If h# 1 we have
T (Rk) G T1'(Rk). In this case, the Ag-module Ry is not topologically of finite length.

Proof. Let (u) be the ideal of Ri generated by wui, ..., up—1. For any integer m > 0 consider
the 8-lattice Ly, := 7R + (u)™ of Rx. If a € 8 ~ {0} then aL,, N R D m*™*(%) 5o that L,, is
open in Rk . Further, Ny,>0 L., = {0}, so that Rx is Hausdorff. Since the m-adic topology of R is
obviously finer than the one induced by Rp, it suffices to see that any power m” of the maximal
ideal m of R contains a subset of the form R N L for some open lattice L of R. This is clear from
RNL, Cm™

Since R is complete and since multiplication with 7 is a homeomorphism from Ry to itself,
it follows that any subset of Rx of the form 7™ R, m € Z, is complete, as well. As in the proof
of [ST02b, Lemma 1.4], one can deduce that the locally convex K-vector space Ry is complete.
In fact, any Cauchy net admits a subnet contained in a set of the form 7= R for some integer m.

The injectivity of T7* follows from Corollary 2.5 and the flatness of R over 6. By definition
of the topology of R, the K-linear endomorphism 77" of Ry is continuous if and only if its
restriction 77" : R — Rk to R is. The latter, however, is the composition of the maps 177" : R — R
and R — R, so that the claim follows from Corollary 2.5.

We now show that the K-subspace T]"(Rg) of Ry is closed. Denote by N the §-submodule
of R consisting of all power series f(u)=7) cyn-1 dau® for which do =0 whenever all of
at,...,an_1 are divisible by ¢" in N. We claim that N is a closed 6-module complement
of T{"(R) in R. It is clear that N is a closed o-submodule of R. Both N and R/T]'(R) are
m-adically separated, complete and torsion-free 6-modules (cf. Corollary 2.5). To prove the claim,
it therefore suffices to see that the natural map N — R/T{*(R) is bijective after reduction modulo
706. This follows immediately from Theorem 2.1.

It follows from [Schll, Theorem 22.3|, that the continuous bijection N & T7'(R) — R of
pseudo-compact -modules is a homeomorphism. In particular, the projection pry : R — R onto
N is continuous. This can also be proven directly by showing that m”™ = (m"™ N N) & (m™ N
TI(R)) for any non-negative integer m. Now the K-linear extension (pry)x of pry has kernel
T1"(Rk). In order to see that T7'(Rk) is closed in Ry it therefore suffices to see that (pry)x is
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a continuous endomorphism of Rg. As above, this follows from the fact that its restriction to R
is the composition of the continuous maps pry : R — R and R — R.

The two final assertions of the proposition follow directly from Corollary 2.5. O

Remark 3.4. One can show that the actions of I' and H on R are in fact the o-linear extensions
of op-linear actions on op[[u1, . . ., up—1]]. Our rather ad hoc proof of parts of Proposition 3.3 can
then be simplified, using the methods of [ST02b] for the locally compact field K. In particular,
one can deduce that Ry is the continuous K-linear dual of a continuous unitary representation
of T on a K-Banach space V. Further, V' admits an ascending sequence of closed I'-stable
K -subspaces V,,, n > 0, whose continuous K-linear duals are isomorphic to R /T{'(Rk).

Remark 3.5. Assume the characteristic of K to be zero. If §) denotes the set of all K-rational hy-
perplanes in the (A — 1)-dimensional projective space P’}{_l over K, then Q% := ]P’}IL{_1 N Upges H
is a rigid analytic K-variety known as Drinfeld’s symmetric space of dimension h — 1 over K. Its
ring of global sections O(Q%) is a K-Fréchet space with a natural action of the group GLj,(K)
which is dual to a locally analytic representation in the sense of [ST02a, §3]. By work of Orlik
and Strauch, the GLj(K)-representation O(Q}}() is topologically of finite length (cf. [OS10,
Corollary 7.6]). The exact analog of this representation is the I'-representation O(Spf(R)")
which is dual to a locally analytic representation, as well, provided K = Q,, (cf. [Koh12, Theorem
3.3]). Although the precise relation to its continuous I'-subrepresentation R is currently unclear,
the latter is not topologically of finite length unless h =1 (cf. Proposition 3.3). This is due to
the appearance of the Hecke algebra H which is not relevant in Drinfeld’s setting. In fact, in the
latter situation the spherical Hecke algebra is K[D*/o%] =~ K[Tp, Ty '] with Ty acting trivially.

In the most basic case where K = Q, and h = 2 the results of §1 allow us to prove at least
that the A-modules T*(R)/T/""™ (R) are finitely generated for any integer n > 0.

THEOREM 3.6. If h =2 and if K = Q, then the A-module T{*(R)/T{"*(R) is finitely generated
for any integer n > 0.

Proof. Tt suffices to see that TJ*(R)/T1" (R) is finitely generated over A; := &[[I'1]]. Note that
TP (R)/T]"™(R) is a pseudo-compact A-module (cf. Corollary 2.5, Lemma 3.2 and [Schll,
Theorem 22.3]). Further, as we shall recall below, I'y =1+ Ilop is a pro-p group. Therefore,
the ring A; is a local 6-algebra whose maximal ideal is generated by p and finitely many
elements of the form v — 1, 4 € I'y (cf. [Schll, Propositions 19.5 and 19.7]). According to [Bru66,
Corollary 1.5], it suffices to see that the k*P-vector space (T7'(R)/T]""™ (R))r, of T'i-coinvariants
of T'(R)/T{""! (R) is finite-dimensional.

Note that 77 induces a k*P-linear bijection R/Ti(R) — T{(R)/T]""(R) which is T-
equivariant if the action on the right is changed by an automorphism of I'; (cf. (13)). We may
therefore restrict to the case n = 0. Considering the short exact sequence

0— kP —SR—m—0

of T-equivariant homomorphisms of pseudo-compact A-modules, we may further replace R by
m. Note that 71 (m) Cm and even T} (m) C mP by Theorem 2.1.

We will prove that (m/T1(m))r, is one-dimensional over kP and is generated by the class of
u :=uy. For this it suffices to show that the map m/7}(m) — m/m? induces an isomorphism in
I'1-coinvariants. Namely, the action of I'y on ﬁ/ﬁQ is trivial, as follows from Theorem 1.16 and
the proof of Proposition 3.1.
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We claim that it suffices to prove that for any integer n > 2 the natural map
[(@" + T (W) /(@ + Ty(m))]r, — [m/ @ + Ty(@))]r, (16)

is the zero map. Indeed, by the right exactness of the functor (-)r, this would imply that for any
integer n > 2 the natural map

m/(m" 4+ Ty (m)) — m/(m" + Ty (m))
induces an isomorphism of I';-coinvariants. This in turn would imply
(m/Th(m))r, ~ [li?rr; m/(m" + T1(m))]r,
= L[/ (" =+ 7 () Jr, = [/ (%" + Ty (@),
~ (m/m?)r, ~m/m>,
Here the second isomorphism follows from [Bru66, Lemma 4.2(ii) and Corollary 4.3(ii)], and the
fourth isomorphism comes from the fact that 77 (m) C m2.

We will now show that the map (16) is indeed the zero map for any integer n > 2. Note
that (m"™ + 71 (m))/(m" 1 4 11 (m)) is of k%P-dimension 1 if n is not divisible by p (and then is
generated by the class of u™) and is of dimension 0 if n =0 mod p. We therefore need to show
that u" € m(T'y) + Ty (m) + m" " if n 20 mod p. Here m(T';) denotes the kernel of the natural
surjection m — mp,. For the rest of the proof assume that n > 2 is not divisible by p.

If n#1 mod p then we let v:=1+ Il € I'y. To simplify the notation we write v(u) instead
of v(u), as we did in §1. According to Theorem 1.16 we have (y—1)(u" ') = —(n — 1)u"
mod m" 1. Since n — 1 # 0 in k%P, we have v € m"~1(I'y) + m" ™!, as desired.

Ifn=1 mod pwriten = jp+ 1 with j > 1. Let us first assume j = 1. Let £ be an arbitrary el-
ement of y1,2_;. Set v :=1+1II¢ € I'y. Note that according to Theorem 1.16 we have (y — 1)(u) =
> ( €ttt 4 €PyP*l mod mPH2. Choosing p pairwise distinct elements &1, . .., &, € Pp2—1,
Vlewed also as elements of ks by reduction modulo p, the vectors v; := (&, (&)2, ..., (&)P),
1 <i<p, are a basis of the ko-vector space kb, as follows from the well-known formula of the
Vandermonde determinant. In particular, there are coefficients A1, ..., A\, € k2 C k%P such that
P, Aiv; is the pth standard unit vector of k5. Setting ~; := 1 + II§; € 'y, our above calculation
shows that

p
Z Ni(y — 1)(w) =uwP™ mod mPH2.

This implies uP™! € m(T'y) + mP*2, as desired.

Now assume n = jp + 1 with j > 2. Let us first treat the case p # 2. There is an integer r > 0
such that n —p—2=rp+p—1. If y=14+1I£ € I'; is as before, it follows from Theorem 1.16
that

Y(u)(1 4+ €u) = u + Qgpup-i-l _ £p+1up+2 + (£p+2 _ {)up+3 mod mPT4

(cf. Remark 1.17 to see that we use the assumption K = Q) here). As a consequence, a direct
computation shows that

,y(upfl) - ,y(u)pfl =uP EuP — 3€pu2p71 _ 2§p+1u2p + §u2p+1 mod m2PT2,
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Using p > 2, we obtain
) = @)y
= (u"? — Tgpu(ﬂrl)p)y(up—l)
= u(r—i—l)p—l + éu(r—i-l)p o (’I” + 3)€pu(r+2)p—1
— (r + 2)EPH TP gL g 2P, (17)

A Vandermonde argument similar to the one above shows that
u Py emn P 3(T) + mt L

Since n — p — 1 = (r + 1)p is divisible by p, Theorem 2.1 implies that v P! € Ty (m), completing
the proof if p # 2.

If p=2, let us first assume n = 2j 4+ 1 with 5 odd. It follows from Theorem 1.16 that

’V(U"_Q) = 7( 2y (u) = (u® + Eut) T u + Eu? + )
(] 1)+1 + EuQJ + ]52 2j+1 mod m —n—i—l

Since the image of j in k%P is non-zero, we obtain u™ € m"~2(T'y) + T1(m), as before.

Ifp=2andn>2withn=1 mod 4, we write n =4+ j8 with j >0 and i € {5,9}. Fori =5
we compute

7(u)1+j8 = ujgv(u) mod m"t! = ujg(u +&u? + 2P + £u5) mod m"H,

using that (j + ¢)8 >n for any integer > 1. As in the case p > 2 this implies u" = u>*78 €
m"~2(I'y) + Ty (m) + m" ! because u?+7® € Ty (m).

If i =9 we have n — 6 =3 4+ j8 and compute

()P = y(w) (@ + jEuTH®) mod W = w5y (u)® mod Y,

because y(u)? €m® and 3+ (j+1)8=n+2. A direct computation, using the enhanced
approximation of y(u) in Remark 1.18, shows that

()’ = y(wpy(u)? = (u+ gu® + Eu° + &u’ + u”) (u® + €2u’ + €u°)  mod T
= et +ub + i’ + 20 +4® mod mt®
As above, this implies u” = 278 € m"=3P(Ty) 4 Ty (M) + m" ! because u®78 € Ty (m). O
COROLLARY 3.7. Assume h =2 and K = Q,. If n is a non-negative integer then the A-module
Tr(R/3)/TT Y (R/8) is generated by the class of uf" .

Proof. Note that the reduction of R/6 modulo 76 is A- and H-equivariantly isomorphic
to m. According to [Bru66, Corollary 1.5], it suffices to show that the kSP-vector space
(TP (m) /T (m))r, is generated by the class of uzlon. This was shown in the proof of
Theorem 3.6. O

Remark 3.8. As seen in (13), there is an outer automorphism oy of I', extending to an o6-linear
ring automorphism o7 of A, such that T} - A=07(\) - 71 as endomorphisms of R for all A € A.
By Proposition 2.8, R/6 therefore is a module over the twisted power series ring A[[T1; 01]]. The
latter consists of all formal power series > >° ; A, 77" with A, € A and multiplication defined by

(g A;ﬂ") . <§::0 )\mT1m> = i< Z )\%U’f()\m)>Tf,

=0 “n+m=i
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It follows from Corollary 3.7 and a topological version of the Nakayama lemma applied to the
local pseudo-compact subring A;[[T1; 01]] of A[[T%; 01]] (cf. [Bru66, Corollary 1.5]), that R/o is
finitely generated over A;[[T; 01]] and A[[Ty; 01]], provided h =2 and K = Q,. A generator is
given by the class of u.

The computations of Theorem 3.6 can be generalized so as to compute the graded pieces of
the my,-adic filtration of m/T}(m). This is the content of the subsequent proposition and of its
corollary. For simplicity, we restrict to the case p # 2.

PROPOSITION 3.9. Assume h =2 and K =Q,, with p > 3. Let r be a non-negative integer. If
1<j<p-—1 then

p—1
w4 T () = w2 S Bt T ().
=j+1
In particular,
m;\(lp—l)—i-l W4 Tl (ﬁ) _ ﬁ2rp+2 + Tl (ﬁ)
and
mg\f‘fl)(pfl) W Ty () = MRl 7y ()

for any non-negative integer r.

Proof. Set u:=uj. Assume the assertion to be true for r(p — 1) + j with 1 < j < p — 1 (which it
is if r =0 and j =1, as follows from Corollary 3.7). We will then prove it for r(p — 1) + j + 1.
Let us first assume j=p—1, so that r(p—1)+j+1=(r+1)(p—1)+1. It follows
from [Sch1l, Proposition 26.5] and from Lemma 3.12 below, that I'; is topologically generated
by elements of the form v =141I¢ and v = 1 + {p with £ € p,2_;. By [Sch11, Proposition 19.5],
the ideal my, is generated by p and the corresponding elements v — 1. By our computation of
(v — 1)(u”~1) in the proof of Theorem 3.6, as well as by Theorem 1.19, we have my, - m2"+DP=1 C
m2(r+DP+2 7 (). Further, as in Theorem 3.6, one can prove that equality holds, and hence

that m (TH)(p D+ -+ Ty (m) = m20TUP+H2 L 7y (m), as required.

Now assume j <p— 1. We have m2(tDr=1 C (p D+ -m+ T1(m). As above, this yields

w2 C PV w7y (). Further, 2pr+p lem\POY my ). U y=1+
11§ € Ty for some element £ € p,2_;, then

,y(u2rp+p71) = u2rp+p71 + gu 2r+l)p (2T + 3)€pu2(r+1)p71
— (21 4 2)eP 2P g 2t pHL o q @2 Dp 2

by (17). By the Vandermonde argument used before, we obtain that w2 TP+ and hence
w2+ P+ s contained in mA(p D+itt -m+ T (m).

Further, u?"PtP+P=2 ¢ m’{ (p D+ m+T1( ), by assumption. Applying a suitable element

r(p 1)+j+1

v—1€my,, we obtain u2’"p+p+p Leml -m + Ty (m). Going down step by step, we

1 1 .
obtain m¥PHPHH C mA(lp ARAE + T1( ). It now remains to see that
p—1 p—1
mp, - Z ksepu2rp+€ = Z ksepu2rp+é mod ﬁ2rp+p+]+1 + Tl (ﬁ)
L=j+1 1=j+2
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Let §€pye_y. If y=1+&p and n>2pr+j+1 then Theorem 1.19 implies (y—1)(u") €
mntrtl C mertetitl qf y=1+1I and j+1<l<p—1 then write =p—i with 1<i<
p — j — 1. According to Theorem 1.16 we have

2pr4+-6N — . 2pr ¢ 2pr (1 + gu)z Y

u =1U u =U _—U
) = s ) = v LS
=1+ §u)iuzpr'M mod m2PrtrHitl
This shows
p—1 p—1
my, - Z Sepy, 2rp+L C Z fsep,, 2rp+¢ +ﬁ2rp+p+‘y+1 + T (ﬁ)
l=j+1 1=j+2

Since (y — 1)(u?P*t) = —Leu? P+ mod m*" 2 with £#0 mod p, a downward induction
as above shows that conversely

p—1 p—1
Z ESePq 2Pl C AL Z Esepq2rptt | m2rptetitl oy ().
l=j+2 l=j+1
This completes the proof. O

Remark 3.10. Assume K = Q),, h =2, and let n be a positive integer. Modulo pA+, the ideal mﬁt
is generated by the maximal ideal of the local ring A(T'9,41) = A(F’l’n). Proposition 3.9 shows

)

that if v € I's;41, then the power series (y — 1)(u1) must generically have wj-order Y 7" ; 2p’.
This is in accordance with the result [Cha96, Theorem 2] of Chai.

As an immediate consequence of Proposition 3.9 we obtain the following result.

COROLLARY 3.11. Assume h =2 and K = Q, with p > 3. For any integer ¢ > 0 let
gr' (/71 (M) := [m}, - (@/T1(w))]/[m}}" - (@/T1 ().
(i) Ifi=0 then the k*P-vector space gr'(m/T}(m)) is one-dimensional. A kS°P-basis is given
by the class of u;.

(ii) Ifi > 0 then the k*P-vector space gr'(m/T}(m)) is two-dimensional. Writei =r(p — 1) + j
withr >0and1<j<p—1.Ifj #p — 1 then a k*P-basis of gr’(m/T}(m)) is given by the classes

of uPHITL and W2PYPHI If j=p — 1 then a kSP-basis is given by the classes of u2" TP and
uZ(r+1)p+1

1

Let h and K be arbitrary again and define

o0

gr(m/T1(m)) = EPImy, - (m/Ty(w)))/[mit" - (m/T3 ()]

i=0
as above. The action of the center Z :=0* of I is trivial on R (cf. [GH94, Proposition 14.13]).
Therefore, gr(m/7}(m)) naturally is a module over the graded k*P-algebra

er(AT1/21)) =P T (1) /20)/ TA Ty /20)-
=0

Here Zy:=T1NZ, A(I'1/Zy) := A(T'1/Z1)/7A(I'1/Z1) and Wy (1, /z,) denotes the maximal ideal
of the local ring A(I'1/Z1).
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In a special case, fundamental results of Lazard allow us to explicitly describe the structure
of the ring gr(A(I'1/Z1)). A recent exposition of the necessary techniques was given in [Schll,
Part BJ.

For the rest of this article assume K =@Q, with p>h + 1. Recall that vp denotes the
valuation on the QQ)-division algebra D, extending the p-adic valuation v on @Q,. In particular,
vp(d) Zvp(ll)=1/h>1/(p—1) for any element § € I[lop. Consider the map w:I'1 ~ {1} —
(1/(p—1),00) CR, defined by w(y) :=vp(y—1). As in [Schll, Example 23.2], one shows that
w is a p-valuation on I'; in the sense of [Schll, p. 169].

If i > 1, and if I'; :== 1 + [TPop is as before, then I'; = {y €'y |w(y) >4/h} and ;11 = {v €
['1 |w(v) >i/h}. In the notation of [Sch1l, p. 170], this means I'; = (I'1);/, and Tip1 = (T'1)i /-
It is a general property of p-valued groups which can be checked directly here, that [I';, I';] C I';4;
and '’ C T, CT;yq. Therefore, gri(l'y) :=T;/T;41 is an abelian group of exponent p, i.e. a k-
vector space (note that k =TF, since K =@Q,). In fact, in our situation the structure of gr*(I';)
can be made more explicit. Namely, the map (1 + I — § + Ilop) : Ty — op/Ilop ~ kj, induces
an isomorphism of k-vector spaces gr(T'1) ~ kj, for all integers i > 1 (cf. [PR94, 1.4.4 Proposition
1.8]).

According to [Schll, Lemmas 23.4, 23.5 and Proposition 25.3|, the graded k-vector space

oo o
g=P ') =P Tli/Tina

i=1 i=1

becomes a Lie algebra over the polynomial ring k[t] in the variable ¢ by setting
(Liv1, YTl =97y (7)) 'Tigjr fory €Ty, €Ty,
and
t i1 =9 Tiypy1 for y €T

LEMMA 3.12. The natural map k[t] @y (@I, er'(T1)) — g is an isomorphism of k[t]-modules.

Proof. The assertion is equivalent to the claim that for any integer ¢ > 1 the map (YI'iy1—
VPTing1) - gr(T'y) — gr' (') is bijective. That it is injective, follows from one of the axioms
of a p-valuation, namely w(+?) =w(y) + 1.

If y =1+ T17"6 =1 + 1I'pd € I'j4p, with 6 € 0}, then 7 : =1+ 16 € T'; satisfies

p—1
F=1+pIl's+> <p,) (I'6)7 + (IT'6)P in D.
=2 M
If 2<j<p-—1 then UD((?) (11%6)7) =1 +ij/h > 1+i/h =vp(ll’p). Further, vp((II*§)P)=
pi/h=((p—1)/h)i+i/h>14i/h by our assumption on p. The above explicit form of the
isomorphism Ty 14 /T4 p41 ~ 0p/Hop then implies that 427 =~ mod T'jyp41. O

For any 1 <i < h let (755)1<j<n be a family of elements of I'; whose images in I';/I"; 41 form
a k-basis. It follows from Lemma 3.12 and [Sch11, Proposition 26.5], that for any fixed ordering,
the family (7ij)1<i j<n is an ordered basis of the p-valued group (I';,w) in the sense of [Schll,
p. 182]. Setting b;j :=;; — 1 € my, and b =], ; b?jij, it is explained in [Schll, § 28], that any
element A € A; = A(I'1) admits a unique expansion of the form A=) ynxn cab® with ¢, € 0.

For any non-negative real number v, we let J, denote the closure of the #-submodule of
A generated by all elements of the form pf(hy —1) - - - - (hs — 1) with £,s >0, hy,...,hs €T
and £+ w(hy) + - - +w(hs) = v. According to [Schll, p. 197], each J, is an open, two-sided
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ideal of Aj. Note that if ¢ is the unique non-negative integer satisfying (i — 1)/h < v < i/h then
Jy = Ji/n- As a consequence, Jy,4 1= Upsy Jvr = J(iv1)/h-

Recall that mjr,/z) denotes the maximal ideal of the local ring A(I'1/Z1)=
ATy /Z1) [pA(T'1/ Z1).
LEMMA 3.13. For any integer ¢ > 0 the image ji/h of the ideal J;;;, of Ay under the natural ring
homomorphism Ay — A(I'1/Z1) is equal to Wy /7).

Proof. Since Jy = A; (cf. [Schll, p. 197]), the case i =0 is clear.

The maximal ideal mp, of A; is a closed o-submodule containing the elements pl(hy —1) -
(hs — 1) for all £,5s>0, hy,...,hs €'1. This implies Jin C©my, . Conversely, my, is generated
by p and b;j, 1 <4, j < h (cf. [Schll, Proposition 19.5]). Since w(v;;) =4/h > 1/h for all i, j, all
of these are contained in Jj . Thus, Jy, =my,. Since the image of my, under A; — A(I'1/21)
is precisely My (r, /z,), this proves the lemma in the case i = 1.

If i >1 then mﬁ\l = Jf/h C Ji/n, whence WA(Fl/Zl) gji/h. It remains to prove the reverse
inclusion.

Consider the descending central series (C"™),,>0 of I'; defined by C(©) :=T'; and C(™+1) .=
[Ty, C™)] for m >0. We claim that vy — 1 EmK”lJrl for any v € C™). This is clear for m = 0.

Assume the assertion to be correct for m > 0 and let v € C™ 11 There are elements 71, . . ., 7n €
Iy and 6y, ..., 0, € C) such that v = [y, 01] - - - - - [Yn, On] is the product of the commutators
[V, 65] == yj(sj’y;lé;l. Since

v —1=[n (e, 0] - [Yn, 0n] =1+ 1= [61, 1)),

an inductive argument allows us to assume n = 1. In this case the assertion follows from

by o] = 1=y (' = DO =1 = (07 =Dy ' = 1)
and the induction hypothesis.

Note that C™ CT,,.1. According to [PR94, 1.4.4 Proposition 1.8] and the remark
following [PR94, Theorem 1.9], the composition of the maps C™ < T, 1 — Typ1/Tonsa =~ ky,
is surjective for 0 <m <h—1. For m=h—1 its image is ker(try,|z), where try, |, :kp —k
denotes the trace map. Note that k, =k @ ker(trkh|k) because try, |, is surjective and because
try, k(@) = h - a#0 for all a € k* by our assumption h < p — 1. Note also that k C kj, coincides
with the image of Z1 =1+ po CT'}, under I'y — 'y /Tpy1 ~ kp. It follows that the p-valued
group (I't,w) admits an ordered basis (Vrs)i<rs<n such that 7., € Cr=1 for all 1<r,s<h
with (r, s) # (h, h) and such that v, =1+ p € Z;.

As before, we set bys: =5 —1 for all r,s. It follows from [Schll, Theorem 28.3(ii)],
that any element A € J;/, has the property that its expansion A= Yo Cab™ satisfies v(cq) +
Zr,s arsw(Vrs) = i/h for any o€ NP If ¢, € po or if ap, >0 then c,b® maps to zero in
A(T'1/Zy). Otherwise, 3=, oy py QrsT/h 20/ B, i€ 320 o py TOrs 2 i.'In this case c,b® € m |
because bys € mj , as was shown above. As a consequence, A maps to WA(Fl /7,)> 38 required. O

It follows from the proof of Lemma 3.13 that

g:=g/(t-9)
is an h%-dimensional nilpotent Lie algebra over k with k-basis (v;;i+1)i ;. Denote by 3 the one-

dimensional central Lie subalgebra of g generated by the element 3 := vy, 1. By abuse of
notation we shall also write g/3 for the Lie algebra g/3 ®y k%P over k5P,
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COROLLARY 3.14. Denoting by U(g/3) := Ugser(g/3) the universal enveloping algebra of g/3,
there is an isomorphism

U(g/3) ~ gr(A(I'1/21))
of graded k*°P-algebras.

Proof. According to [Schll, Theorem 28.3], the maps Y11+ (v — 1) + Ji11yn induce an
isomorphism

K [t] @iy Uni(8) — EB Jisn/ Tiivyn
120
of graded k*°P-algebras, sending ¢ to p + J(x41)/5- It gives rise to an isomorphism
U@) — P Tin/ T ir1ym
>0
by reduction modulo t. As a consequence of Lemma 3.13, there is a surjective homomorphism

Di=o ji/h/j(i—f—l)/h — gr(A(I'1/Z1)), whose kernel contains the image of 3 - U(g). We thus obtain
a surjective homomorphism

U(@/3) ~U(g)/3U(8) — gr(A(T'1/21))
of graded k°P-algebras that we claim to be bijective. By the Poincaré-Birkhoff-Witt theorem, it
suffices to see that for any integer ¢ > 0 the elements b* with ap, =0 and 7(«) := Zns TQpg = 1
are k°°P-linearly independent in ﬁf\(rl 171) /ﬁi{?llﬂl 171)"
Assume A=) ann=0,7(a)=i cab® € ﬁf{?l{l 171) with coefficients ¢, € k*°P, not all of which are

zero. Viewing \ € Ay, this is equivalent to the existence of an element ) € ker(A; — A(T1/Z1))
such that A + )\ € j(i+1) s/ (cf. Lemma 3.13). Note that Z; is a p-valued group in its own right

with ordered basis ;. In particular, mp(z,) = bppA(Z1). It follows from [Wil98, Proposition

7.1.2(c)], that the kernel of the natural map A; — A(T'y/Z;) is the closed ideal by, A;. Writing
N=34 dgb®, [Sch11, Theorem 28.3(ii)], implies

1l g |, 0l

which is impossible. O

Remark 3.15. For uniform pro-p groups, results as in Corollary 3.14 are true in much greater
generality (cf. [Wil98, Theorem 8.7.10]). We point out, however, that the p-valued group I' is
not uniform for any h > 2, and that the filtrations (J;/)i>0 and (W}, )i>0 of A1 do not coincide.

According to Corollary 3.14, we may view gr(m/77(m)) as a module over U(g/3). If h =2,
the precise structure of this module is given by Theorem 3.16 below. Let us first introduce some
notation.

Assume h =2, choose §€ e\ pp-1 and set vy :=1+11, y2:=1+1I§, 791 :=
’}/11’}/12’}/1_11’)/1_21 and 99 := 1 + p. We claim that these elements form an ordered basis of (I'1, w).
Computing

e g = (L+ (1 +TE(1 — T+ p)(1 — TIE 4 ¢HPp)
= (L+I1+&) +Ep) (L -1+ &) + (1 +E+EP)p)
=14+ —¢€)p mod I's,
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we have w(y11) = w(v12) = 3 and w(v21) = w(y22) = 1. Since the images of 1 and ¢ in ky form a
basis over k, as do the images of 1 and & — &P, the claim follows from Lemma 3.12 and [Schll,
Proposition 26.5]. We denote by t, 1, b and 3 the images of 711, Y12, Y21 and g2 in gr'(I'y),
gr!(I'y), gr?(I'y) and gr?(I'y), respectively. It follows from Lemma 3.12 that these four elements
form a k5°P-basis of g ®j k°P. They satisfy

[?7 U] =bh and [Ia b] = [Iv 5] = [Ua b] = [Uaﬁ] = [haﬁ] = [ha h] = [3?3] =0.
THEOREM 3.16. Assume h =2 and K = Q, with p > 3. The left ideal I of U(g/3) generated by
h and & — v is a two-sided ideal. There is a non-split exact sequence of U(g/3)-modules
0—U(g/3)/1 — gr(m/T1(m)) — U(g/3)/1 — 0.

Proof. Since b is contained in the center of g, the left ideal of U(g/3), generated by b, is a two-
sided ideal. Further, the ring U(g/3)/(h) ~ U(g/(k*Ph + k°P3)) is commutative because the Lie
algebra g/(k*Ph + k°P3) is. This implies the first assertion.

We continue by explicitly computing the action of h on gr(m/7Ti(m)). Note that b
corresponds to (14 (£ —&P)p) —1¢€ ﬁ?\(rl/zl)/ﬁ?\(rl/zl)' Choosing ¢ € pi,2_; C 05 C 02 whose
reduction modulo poy is equal to & — &P, b is equal to the class of v — 1, where v:=1+ (p.
Note that ¢ & pp—1, so that the image of 7 := (¥ — ¢ in £°°P is non-zero.

The element b defines a graded endomorphism of degree 2 of gr(m/Ti(m)). Setting gr’ :=
gri(m/T1(m)), we need to compute b : gr' — gri*t? for any non-negative integer i. First assume
i >0 and write i =r(p — 1) + 7 with integers » >0 and 1 < j <p — 1. According to the form of
grt, as given in Corollary 3.11, we have to distinguish several cases. Set u:=u; and note first
that we have

1
(v — 1)(u") = nyu™ P 4 (nn + n(n2—|— >772> w2 mod Mt

for any integer n > 1 (cf. Theorem 1.19).
fl1<j<p—3theni+2=r(p—1)+j+2 with j +2 <p— 1. Thus,
gri — ksepu27‘p+j+1 + ksepu2rp+p+j

and
i+2 _ ksepu27‘p+j+3 + ksepu27“p+p+j+2

gr
by Corollary 3.11. Using the above approximation of (y — 1)(u"), we find

- u?rp-i—j-‘rl _ (] + 1)nu2rp+p+j+2 and B - u2rp+p+j —0in gri+2'
If j=p—3theni+2=r(p—1)+p—1, so that

gri _ ksepu2rp+p—2 + ksepu2(r+1)p—3
and
gri+2 _ ksepu2(r+1)p—1 + k;sepUQ(r—f—l)p-i-l
by Corollary 3.11. In this case we obtain
h . u27‘p+p*2 —_ _2nu2(7“+1)p71 and b i u2(7‘+1)p73 =0in gri+1 )

Ifj=p—2theni+2=(r+1)(p—1)+1, so that

gri _ ksepu2rp+p71 + ksepu2(r+1)p72
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and
orit2 = [Sopg 2(r+p+2 y psepy 2r+Dptptl
By the above approximation of (y — 1)(u") we have
f - w2 PPl = 20t Dp g 2t Dptptl — _p 2(rHD)ptptl
and
f o2 TDP=2 = _9p 20t ptr=l — g jp opit2

Ifj=p—1theni+2=(r+1)(p—1)+2, so that
gri _ ksepu2(r+1)p71 + ksepu2(T+1)p+1 and gri+2 — ksepu2(r+1)p+3 + ksepu2(r+1)p+p+2‘

In this case, we find

- 2+ p—1 _ _nu2(r+1)p+p =0 and b- L2+ p+1 nu2(r+1)p+p+2 in grit?.

Finally, we consider the case ¢ =0, in which
gr' = k%Py  and  gr? = kSPud + kSPuP 2,
We have b - u = nuP*2 in gr?.
Altogether, we obtain ker(h) = @, (gr’ Nker(h)) where gr’ Nker(h) is the one-dimensional
kSeP-vector space generated by u?"PTPH) if j =r(p — 1) + j is written as before. In particular,

uPT! € ker(h). Further, ker(h) is a U(g/3)-submodule of gr(m/Ti(m)) because b is central in g§/3.
We claim that the map

o= (08 uPt)  U(g/5) — ker(h)
is surjective with kernel I. By construction, b € ker(¢) so that v factors through U(g/3)/(h) ~

B, ).
Let 6 be an arbitrary (p® — 1)th root of unity, set v :=1+ 116 € I'y, fix a positive integer i,

and consider the k5°P-linear map (y — 1) : gr’ Nker(h) — grit! Nker(h). Write i =r(p — 1) + j as
above. If j <p — 1 then

grin ker(h) = ESePy2rPHPHi and  gr'tln ker(h) = SePq 2rr it
Note that (y — 1)(u?P+P) = —jou?P+P+i+l by Theorem 1.16. If j = p — 1 then

gr' Nker(h) = kP2 P~ and  gr't! Nker(p) = k5Py 20 HDPEPHL

By (17) we have

7(u2(r+1)p—1) = u2(r+1)p—1 + 9u2(r+1)p _ (27,, + 4)9pu2(r+1)p+p—1

—(2r + 3)9P+1u2(7“+1)17+p + g 2(r+Dptp+l

modulo 2" TVPHPH2 - This implies (y — 1) (w20 tP=1) = g2 +0p+p+1 iy gritl M ker(h), and
thus & —y € ker(y). In particular, the restriction of ¥ to kP[r] is still surjective. Since
Y k%°Pr] — ker(h) is a graded homomorphism and since the graded pieces are all of dimension

1 on both sides, the restriction of ¥ to k5P[¢] is bijective. Since the inclusion k*P[r] — k5P|, y)
induces a bijection k*P[r] ~ k5P[r, y]/(&x — v), this proves the claim.

Now consider the quotient gr:= gr(m/Ti(m))/ ker(h). By our above computations, gr =
Di=o gr', where gr' := gr’ /(gr’ Nker(h)) is the one-dimensional k*P-vector space generated by
the class of u if i = 0, by the class of u?PH+1if { =r(p — 1) + j with 1 <j <p — 1, and by the
class of u?("+DP+Lif = (7 4 1)(p — 1). Our computations also show that b acts trivially on gF.
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Let v:=14+110 €'y be as above. We will explicitly compute that action of the kP-
linear endomorphism (y — 1) : gt — gr't! for any i > 0. For i = 0 we have (y — 1)(u) = —6u? by
Theorem 1.16. If i = 7(p — 1) + j with 1 < j <p — 2 then (y — 1)(u*PH 1) = —(j + 1)gu?PTi+2
by the same reference. If j =p — 2 then

gi _ k,sepu27‘p+p—1 and ﬁi—i—l — ksepuZ(r—l—l)p—i—l'
As in the proof of Proposition 3.9, we obtain (y — 1)(u?P+P~1) = gu2(+DP+1 Finally, if j = p — 1,
then
?z’ _ ksepu2(r+1)p+1 and ﬁi—H _ ksepUQ(r—i-l)p-&-Q.
As in the case j < p — 2 we conclude that (y — 1)(u2r+DPH) = _gy2(r+Dp+2,
As above, this shows that the U(g/3)-linear map (§+—0-u):U(g/3) — gf induces an
isomorphism U(g/3)/I ~ gr. Thus, we obtain an exact sequence

0 —U(g/3)/1 — gr(m/Ti(m)) — U(g/3)/1 — 0,

as required. That it is non-split follows from the fact that h does not act trivially on gr(m/77(m)).
In fact, the kernel of § is the left copy of U(g/3)/I in the above presentation. O

If M is a kP-linear representation of the Lie algebra g/3 then we denote by
He(g/3, M) := Tor?(ﬁ/g)(ksep, M) and H*(g/3, M) := Ext; g5 (k*P, M) the Lie algebra homology
and cohomology groups of M, respectively. The former can be computed using the standard
complex (A°*(g/3) @pser M, o), whereas the latter can be computed using the standard complex
(Homyser (A*(§/3), M), 6°). In particular, H;(g/3, M) = H'(g/3, M) = 0 for all i > dim(g/3).

COROLLARY 3.17. Assume h =2 and K = Q, with p > 3.
(i) The k*P-vector space Hy(g/3, gr(m/T1(m))) is one-dimensional, generated by the class
of uy.

(ii) The k*P-vector space Hi(g/3, gr(m/T1(m))) is two-dimensional, generated by the classes
of h @ up and (& —n) ® u{'H.

(iii) The k*°P-vector space Ha(g/3, gr(m/T1(m))) is one-dimensional, generated by the class of
1
(Er—n)Ab@ui.
(iv) Ifi >3 then H;(g/3, gr(m/T1(m))) =0.

Proof. We first compute the homology of the g/3-representation M :=U(g/3)/] appearing
in Theorem 3.16. Using the relations h- M =0 and (§xr—1n) - M =0, one finds that 0s:
N’ (8/3) @rser M — \*(@/3) @peer M is given by

BEAYAHIRmM)=ypAhRm -t AhRym+rAYy®bhm
= —&)Ab@rm.
Using [r, y] = b in §/3, one finds that 5 : A*(§/3) @user M — N (§/3) @pser M is given by

REAYy@mi+rAhRma+9AhRm3)
=—b®mi —r®@ymi+y@rm —r@bhme +hQrma —y® bhmz + b @ yms
=(p — &) ®rm1 — h ® (my — xmg — {rms).
Finally, 9, : A'(§/3) ® M — M is given by 8 (10 ® m) = rom for all w € §/3, m € M.
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Note that the natural map k°P[x] — M =U(g/3)/!I is bijective. In particular, ¢ defines an
injective endomorphism of M. It follows that H3(g/3, M) = ker(93) = 0. Similarly, one sees that

TAY@my +rAh@ma+nAh®mg € ker(ds)
if and only if 1 =0 and me + £m3 = 0. By our above computation,
im(d3) ={t Ah®ma+nAbhms|me, mse€rM and mg + Emz =0},

Since M/rM is one-dimensional, generated by the image mo of 1€ U(g/3), we obtain
Ho(g/3, M) = k°P((y — &) A h ® myp). Further, we have

ker(01) =(IN(g/3) @ M =kP(y— &) @ M + k°Ph @ M.
From our above computation of 5 we obtain that
Hi(g/3. M) = k>*P((y — &) @ mo) + k*P(h ® mo)

is two-dimensional. Finally, Ho(g/3, M) = M /tM = k*Pmy.

Consider the long exact homology sequence associated with the short exact sequence of g/3-
representations in Theorem 3.16. We denote by &°: H;(g/3, M) — H;_1(g/3, M) the associated
connecting homomorphisms. They are defined by choosing k°P-linear sections te: A*(§/3) ®
gr(m/Ty(m)) — \*(9/5) ® M (respectively so: \*(8/3) © M — A\*(9/5) ® gr(m/Ti(m))) of the
homomorphism of complexes A*(g/3) ® M — A*(9/3) ® gr(m/T1(m)) (respectively A*(g/3) ®
gr(m/T1(m)) — A®(g/3) ® M), and by letting 6° be the map induced by t; 1 0 9; o s;.

Under the natural map Ho(g/3, M) — Ho(g/3, gr(m/T1(m))), the class of mg maps to the

class of u’f“, which is trivial (cf. Corollary 3.11). Thus, there is an exact sequence

H1(§/3, @r(@/T1(W)) — Hi(§/3, M) - Ho(a/5, M) — 0.
Here 6'(h ® mg) is the class of huy in Ho(g/3, M), which is trivial because h corresponds to
Yo1 — L €My (r,/z,), Where 721 = 1 + (p satisfies (y21 — 1)(u1) € mP*+2 by Theorem 1.19. Further,
S1((y — &x) ® mg) is the class of (h — &x)uy = (&P — §)u]1)+1, which is non-zero in Hy(g/3, M) =
kSPmyg = k:sepulfﬂ. Thus, ker(6') = k5P (h @ my).
Similarly, %((h — &) A h ® myg) is the class of

b (n—&r)u — (9 — &) @ hur = (€ — Ohul ™ = (& —Hh @ mo

in Hy(g/3, M), which is non-zero. A straightforward analysis of the long exact homology sequence
completes the proof. O

Let H be a compact p-adic analytic group (i.e. a compact Lie group over Q,,). The theory of
continuous (co)homology of H with coefficients in compact continuous H-modules was developed
in [SW00], relying in large parts on the foundational work [Laz65] of Lazard. We need to
consider the parallel situation of pseudo-compact A(H )-modules, i.e. that of complete Hausdorff
topological A(H)-modules M which possess a basis of open neighborhoods of zero consisting of
A(H)-submodules (M), such that the quotients M /M; are of finite length over A(H). Instead
of developing the general formalism of continuous (co)homology of such modules, we will give
an ad hoc definition and rely on the fundamental finiteness properties of the ring A(H) to prove
the necessary properties of our (co)homology functors.

Thus, for any pseudo-compact A(H)-module M we simply set
Ho(H, M) :=Tors" (6, M) and H*(H, M) :=Ext} z (5, M),
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the torsion and extension groups being computed in the category of all (abstract) A(H)-modules.
Here 6 denotes the pseudo-compact A(H )-module carrying the trivial action of H.

The ring A(H) being noetherian (cf. [Sch11, Theorems 27.1 and 33.4]), 6 admits a resolution
by finitely generated free A(H)-modules. By [Bru66, Lemma 2.1(ii)], it follows that the above
torsion groups coincide with those in [Bru66, § 4], computed with respect to the complete tensor
product &, zy. Thus, [Bru66, Corollary 4.3(ii)], implies that the functors He(H, ) commute
with projective limits of pseudo-compact A(H )-modules.

As in [SW00, Theorem 3.7.2], one can prove an analogous statement for the cohomology
functors H*(H, - ). Since this will be of importance later, we will sketch a proof. As a consequence
of our arguments, the above cohomology groups coincide with those computed by means of
continuous cochains (cf. also [Laz65, Chapitre V, Théoreme 3.2.7], and [NSWO00, Proposition
5.2.14]). For the homology groups, the analogous statement is proved in [Bru66, Lemma 4.2(ii)].

LEMMA 3.18. Let H be a compact p-adic analytic group. If the pseudo-compact A(H)-module
M is the projective limit of a projective system (M;);cy of pseudo-compact A(H)-modules M;,
then the natural map
H'(H, M) — lim H'(H, M;)
jeJ
is bijective for all i > 0.

Proof. According to [Schll, Proposition 22.5], the Jacobson radical of A(H) is open. By
construction of the pseudo-compact topology of A(H), any A(H)-module of finite length is
therefore of finite length over 6. As a consequence, any pseudo-compact A(H )-module is a pseudo-
compact -module via restriction of scalars.

Let N be an arbitrary pseudo-compact A(H)-module. If m is a positive integer then
Hom gy (A(H)™, N) is 6-equivariantly isomorphic to N, hence is a pseudo-compact 6-module.
This construction is functorial in the sense that if f: N — N’ is a continuous homomorphism
of pseudo-compact A(H)-modules, then the induced o-linear map Homyg)(A(H)™, N) —
Homp gy (A(H)™, N') is continuous. In fact, the induced map N™ — (N')™ is just the m-fold
direct sum of f. Further, if m’ is another positive integer, and if g: A(H)™ — A(H )m' is a
A(H)-linear map, then the induced ¢-linear map Homy (g (A(H)™ ,N) — Homy gy (A(H)™, N)
is continuous. In fact, the induced map N™ — N™ is just given by left multiplication with an
(m x m/)-matrix with coefficients in A(H), so that the assertion follows from the fact that N is
a topological module over A(H).

Now choose a resolution P®* — 0 — 0 of 0 by finitely generated free A(H )-modules. By [Schll,
Theorem 22.3], the continuous o-linear maps in the complex Hom A(H) (P*, N) of pseudo-compact
o-modules have closed images. Thus, the cohomology groups H®*(H, V) are also pseudo-compact
over 0.

Coming back to our original situation, it follows from the universal property of the projective
limit and the constructions above that the natural o-linear map
Hom gy (P*, M) — lim Homy ) (P*, M;)
JjeJ
is a topological isomorphism for any i > 0.
For varying j € J, the complexes Homy ) (P*, M;) form a projective system of complexes
of continuous o6-linear maps between pseudo-compact 6-modules. Since the category of
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pseudo-compact 6-modules has exact projective limits (cf. [Sch11, Theorem 22.3(iv)]), we have

H'(H, M) ~ H’ (HomA(H) (P*,lim Mj)> ~H' (@ Hom (s (P*, Mj)>

JjeJ jeJ
~ lim(H' Hom(P*, M;)) =~ lim H'(H, M)
JjeJ JjEJ
for any i > 0. O

The following result constitutes the main step in the proof of Theorem 3.20 below.

THEOREM 3.19. Assume 'h:2 and K =Q, with p>3. For any integer i >0 we have
Hi(T, (R/0)/Ti(R/0)) = H(T, (R/6)/T1(R/6)) = 0.

Proof. Set M :=(R/6)/T1(R/6) and M := M/pM ~ /Ty (m). We claim that it suffices to prove
H;(T, M) =H"(T", M) = 0 for all i > 0. To see this, consider the long exact (co)homology sequence
associated with the short exact sequence

0—M-2M—M-—0

(cf. Corollary 2.5, noting that 77(0) =6). Under the above vanishing assumption, we have
pH;(T', M) =H;(T', M) and p H(T', M) = H(T', M) for all i > 0. As seen above, the 6-modules
H;(T', M) and HYT', M) are pseudo-compact. Therefore, [Bru66, Lemma 1.4], implies that
H;(I', M) = HY(T', M) = 0, as required.

Note that there are natural isomorphisms

H, (T, M) ~ Tory (k°?, M) and H*(T, M)~ Ext$(k*P, M),

stemming from the fact that 6 admits a free resolution P®* — 6 — 0 over A which is o-linearly
split, hence remains exact after reduction modulo po (cf. [Laz65, Chapitre V, (2.2)], for the case
of a p-valued group, as well as [Laz65, Chapitre V, (3.2.6)] and the splitting assertion (3.1.6) in
the general case).

If Z := 0" denotes the center of I', then there are Hochschild—Serre spectral sequences
H.(T/Z,Hs(Z,M)) = H, (', M) and H"(['/Z,H*(Z, M)) == H""5(', M).

Using that our (co)homology groups commute with projective limits, the existence of these
spectral sequences can be established by using the Hochschild—Serre spectral sequences for
discrete modules over finite groups, as well as [Bru66, Corollary 4.3]. Alternatively, one can
use the fact that A is topologically projective over A(Z) (cf. [Bru66, Lemma 4.5]) and imitate
the proof of [Kohl1, Theorem 6.8].

Since the action of Z on M is trivial, we have He(Z, M)~ He(Z, k*P) @pser M and
H*(Z, M) ~H*(Z, k*P) @sep M. For the homology groups, this is immediate. For the coho-
mology groups, the assertion follows from Lemma 3.18 together with the facts that M is the
projective limit of finite-dimensional k%°P-vector spaces and that H*(Z, k%P) is finite- dimensional,
as well. As a consequence, He(Z, M) and H*(Z, M) are A(T'/Z)-isomorphic to finite direct sums
of copies of M. Therefore, it suffices to prove H;(I'/Z, M) = H'(I'/Z, M) = 0 for all i > 0.

Set Z1 :=T'1 N Z. Since the finite group (I'/Z)/(I'1/Z1) ~ py2_1/pp—1 has order p + 1, which
is prime to p, another application of the Hochschild—Serre spectral sequences shows that

He(T/Z, M) ~He(T1/Zy, M) (r)2) /(01 )21)
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and
H*(T'/Z, M) ~H*(T1/2Z, M)(F/Z)/(FI/ZI).

Let us now treat the homology groups first. Note that with respect to its maximal adic filtration,
the ring S := A(I'1/Z;) is complete with noetherian graded ring (cf. Corollary 3.14). As in the
proof of [HvO96, 1.7.2 Corollary 2], the finitely generated, maximal adically filtered S-module
M admits a strict resolution L® — M — 0 by finitely generated filtered free S-modules L?, i > 0,
such that the associated complex gr(L®) — gr(M) — 0 is an exact resolution of gr(M) by finitely
generated free gr(S)-modules gr(L?).

We endow the complex kP ®g L® with the tensor product filtration. Its morphisms are of
degree zero. According to [HvO96, ch. III, §1], this filtered complex gives rise to a spectral
sequence with E}, ;-term Torlgr(s)(kzsep, gr(M)) (cf. [HvO96, I11.1.1 Observation 1 and Lemma

1.6.14]). Note that this k*P-vector space is isomorphic to H;(g/3, gr(M)) by Corollary 3.14.

According to [HvO96, ITI.1.1 Remark 3], the E?7 -term of this spectral sequence is the graded
k*°P-vector space associated with a certain filtration on

H; (k5P ®g L®) ~ Tory (k°°P, M) ~ H;(['y/Z1, M).

In fact, together with the filtration of £%°P, also that of 5P @ g L*® and hence that of H;(T'1 /Z1, M)
is discrete in the sense of [HvO96, Definition 1.2.4], with exactly one jump. It follows from its
very definition that the spectral sequence degenerates in E'. As a consequence, H;(I'1/Z1, M) ~
H;(g/3, gr(M)) over kS for all i > 0. This is also proved in [Gru79, Theorem 3.3’].

The group I'/Z acts on the complex k%P ®g L® through its conjugation action on the free
modules L’ and the trivial action on k%P. Note that this changes the chain maps but stabilizes
the homology groups. The induced action on H;(g/3, gr(M)) is the one coming from the adjoint
action of I" on g = @, I'i/T'i11 and the natural action on gr(M). If ¢ € g2y CT then

Ad(Q) @) =C1+ ¢ T = (1 + TP Hy = (P,
Ad(Q)(n) =¢(1+TE)¢ ' To = (L + TP = ¢y

and

Ad(Q)(h) =1+ (= Ep)¢ ' Ta= (14 (£ —&")p)T3 =1,
Since we are free in our choice of £ € pp2_; \ pip—1, we may assume P = —§ in ky by lifting 67 — 0
to pp2_1 with 0 € ko \ k. Under the identification gr!(T'1) =~ kg we then have
1¢p—t — ¢pp—1)
2 ¢ ¢
1, . _ 1¢r1— Cp(p—l)
— (P14 p(p-1) > 5
5 (7 P e+ 5 :

with 3(¢P~1 + ¢PP=D), 1 (¢t — ¢PP=V)¢~1 € k. Similarly,

Pl == 5 = PTG (¢ Py

with %(Cp_l — ¢p—)g, %(Cp_l + ¢P(P=1)) ¢ k. Using that ¢PP—1) =¢1=P, a direct computation
shows that Ad(¢)(x — ) = P (& — ) in A'(§/3). Note that (P~ 'y € kg ~ gr!(T';) is different
from ¢P~1 -1 € g ®p k5P, the tensor product being taken over k.

lp= = (@ ) 4

Y
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By Lemma 1.1 we have ((u) = (P"'u and ¢(uPT!) = uPT!. Together with the above computa-
tions, our results in Corollary 3.17 show that all (I'/Z)/(I'1/Z)-representations H;(g/3, gr(M))
are finite direct sums of non-trivial characters. Thus, H;(T'/Z, M) ~ H;(g/3, gr(M))r/z) /(01 j21) =
0 for all ¢ > 0.

The reasoning for the cohomology groups is similar. We choose a strict resolution P* — k5P —
0 by finitely generated, filtered free S-modules P’. The induced complex gr(P®) — k5P — 0
is a resolution of k5P by finitely generated free gr(S)-modules gr(P?). By [HvO96, 1.2.5 and
Proposition 1.6.6], the kSP-vector spaces Homg(P?, M) are filtered by degree. As above, we
obtain a spectral sequence with initial terms

By~ Exty, g (K*P, gr(M)) ~ H'(g/3, gr(M))

(cf. [HvO96, III1.1.1 Observation 1 and Lemma 1.6.9], as well as our Corollary 3.14). By [HvO96,
Proposition 1.6.7], the filtration of our complex is separated, so that the EY -term of the spectral
sequence is the graded k*P-vector space associated with a certain filtration on Ext (5P, M) ~
HY(Ty/Zy, M) (cf. [HvO96, T11.1.1 Remark 3]).

Since gr(M) is a finitely generated U(g/3)-module (cf. Theorem 3.16), it follows from Poincaré
duality below that the initial terms of the spectral sequence are finite-dimensional kP-vector
spaces almost all of which are zero. Therefore, the spectral sequence is finitely convergent, i.e.
E> = E" for some n > 1 and all i. This implies that H(T'y/Z1, M) admits a filtration whose as-
sociated graded pieces are subquotients of H'(g/3, gr(M)). By the naturality of this construction
under the action of I'/Z, it suffices to show that H(g/3, gr(M))I/2)/T1/20) = for all i > 0.

Fix an integer i > 0. We recall from [Kna88, ch. VI, Theorem 6.10], the construction of the
Poincaré duality isomorphism

3

- (/5. 1) e ( A9 ) ~ Wi(5/5, ax(7T)). (18)

It is induced by the k*°P-linear isomorphisms
3—e 3

NG Sxen gr0T) 01 (A@19)) — Homer (A5/3). 50D ).

given by sending § ® m ® ¢ to the linear map (8’ — &(d A §’) - m). This explicit formula shows
that the duality isomorphism (18) is I'/Z-equivariant.

Note that the adjoint action of §/3 on (A*(§/3))* is trivial. This can be checked directly
and also follows from the fact that any nilpotent Lie algebra is unimodular. On the other hand,
our above computations show that ¢ € p,2_1 acts on (A*@/3))* = (k°°P(x Ay Ab))* through the
trivial character. Therefore, Corollary 3.17 implies that H'(g/3, gr(M)) is a finite direct sum of
non-trivial characters of (I'/Z)/(I'1/Z1). This completes the proof. O

We note that the above spectral sequences, relating Lie algebra and group (co)homology, are
also considered in [SWO00, Theorem 5.1.12].

As pointed out in the introduction, the following result is predicted by Hopkins’ chromatic
splitting conjecture. In greater generality, it was first proved by Shimomura, Yabe and Behrens,
using methods from algebraic topology (cf. [Beh12, Theorem 7.7]).

THEOREM 3.20. Assyme h=2 and K=Q, with p>3. For any integer >0 we
have H;(I', R/o)=H'(I', R/6) =0. Equivalently, the I'-equivariant inclusion 6 — R induces
isomorphisms H;(T", 0) ~ H;(T", R) and H*(I", 0) ~ H"(T", R) for all i > 0.
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Proof. 1t follows from Corollary 2.5, Proposition 2.8 and [Schll, Lemma 22.1], that the
homomorphism
R/6 — lim(R/6)/T{'(R/0)
n>1

of pseudo-compact A-modules is a topological isomorphism. Since our (co)homology groups
commute with projective limits of pseudo-compact A-modules (cf. Lemma 3.18 and the remarks
preceding it), it suffices to prove the analogous statement for (R/0)/17'(R/0), where n is an
arbitrary positive integer. By dévissage, we are further reduced to the analogous statement for
T (R/6)/TP(R/6). By Theorem 2.6, T]" ! induces an b-linear topological isomorphism

(R/8)/Ti(R/6) — T7'"(R/0)/T} (R/).

By (13) this isomorphism becomes I'-equivariant, if the action on the left is pulled back via
an outer automorphism of I'. Since the (co)homology groups of I' for this twisted action
on (R/0)/Ti(R/0) are canonically isomorphic to the original ones, the theorem follows from
Theorem 3.19. O

Remark 3.21. If K = Q, with p > 2 and if h = p — 1 then the so-called Tate—Farrell cohomology of
I with coefficients in R was considered in [Sym04]. In addition to the fact that the Tate—Farrell
cohomology and the continuous group cohomology agree only in large degrees, our methods
are completely different from those of [Sym04]. In fact, Theorem 3.20 follows from a profound
analysis of the structure of R as a A-module which is not discussed in [Sym04].
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